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Abstract 

Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable individuals to 

interact with their environment using only cognitive activities. This thesis investigates the 

development of a more user-friendly, intuitive, and easy to use NIRS-BCI through six research 

objectives: exploring prescribed and personalized mental task frameworks offline, using 

researcher-selected tasks to move beyond the binary paradigm, exploring correlations of user 

characteristics with accuracy, comparing user-selected personalized tasks to prescribed tasks 

online, weaning off mental tasks to achieve voluntary self-regulation, and applying personalized 

frameworks to a client case study.  

Firstly, personalized tasks outperformed prescribed tasks in a five-session offline study 

conducted on ten able-bodied participants. Specifically, user-selected tasks resulted in 

significantly higher ease-of-use, while researcher-selected tasks resulted in significantly higher 

accuracies. The same data were used to show that researcher-selected personalized mental 

tasks enabled classification in some users beyond a binary BCI paradigm. Accuracy was 

strongly positively correlated with perceived ease of session, ease of concentration, and 

enjoyment, but strongly negatively correlated with verbal IQ. In a second study, when comparing 

two able-bodied groups online (N = 9 and N = 10), the usability of user-selected personalized 
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mental tasks exceeded prescribed mental tasks without a decrease in accuracy. Expanding on 

this study, the nine able-bodied subjects who used user-selected tasks took part in an additional 

ten sessions and were weaned off mental tasks to achieve online voluntary self-regulatory 

control of a BCI using a neurofeedback-based paradigm. Participants indicated that they found 

self-regulation to be more intuitive and easier to use than mental tasks. Finally, user- and 

researcher-selected frameworks were applied to a client with undiagnosed motor impairments, 

unveiling a host of neuropsychological challenges to BCI control. Overall, this thesis advances 

the field of knowledge of NIRS-BCIs, specifically with respect to usability.  
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Chapter 1: Introduction 
1.1 Brain-Computer Interfaces 

Brain-computer interfaces (BCIs) allow individuals to interact with their environment using only 

cognitive activities (Elisabeth V C Friedrich, Scherer, and Neuper 2012; Ang, Yu, and Guan 

2012; S. M. Coyle, Ward, and Markham 2007). BCIs can serve as a conduit to communication 

or mobility for individuals with severe motor impairments resulting from amyotrophic lateral 

sclerosis, spinal cord injuries, brain stem stroke, muscular dystrophy or other debilitating 

conditions (Elisabeth V C Friedrich, Scherer, and Neuper 2012; Ayaz et al. 2007; Niels 

Birbaumer 2006; J. Wolpaw et al. 2000; Sitaram et al. 2007). BCIs can also be used by able-

bodied individuals for productivity, gaming, entertainment, brain training, meditation and to 

accelerate learning (Elisabeth V C Friedrich, Scherer, and Neuper 2012; J. Wolpaw et al. 2000). 

The basic components of a BCI are: the physiological input, the signal processing unit, the 

classifier, and the output. The input to the BCI can be further categorized into the access 

modality, which refers to how the physiological signal is collected, and the access pathway, 

which refers to how a change in the signal is evoked (Blain, Mihailidis, and Chau 2008; K. Tai, 

Blain, and Chau 2008; Ayaz et al. 2009). The main focus of this thesis is on improving the BCI 

access pathway. 

1.2 Access Modalities 

Access modalities can be classified as invasive and non-invasive. The most common invasive 

BCIs use electrocorticography (ECoG) or intracortical recordings. In ECoG, the brain activity is 

measured using electrodes implanted on the brain surface, while in intracortical recordings, the 

electrodes are implanted inside the cortex. Invasive BCIs have the advantages of high signal-to-

noise ratio and high spatial resolution. However, invasive BCIs have the major limitation of 

requiring surgical implantation, which results in a high risk of neural tissue damage and infection 

(Blain, Mihailidis, and Chau 2008; K. Tai, Blain, and Chau 2008; Ayaz et al. 2009; Morshed and 

Khan 2014).  

The most common non-invasive BCIs used to date are electroencephalography (EEG), 

magnetic resonance imaging (MRI), and near-infrared spectroscopy (NIRS). EEG is the most 

researched of the non-invasive access modalities and involves measuring the electrical brain 

activity, recorded from the scalp, using surface electrodes. EEG has a high temporal resolution 
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and low cost. However, EEG is prone to artefacts, has a low signal-to-noise ratio, and requires 

gel and cumbersome electrode fixation (K. Tai, Blain, and Chau 2008; Ayaz et al. 2009).  

MRI measures the haemodynamic brain activity by ascertaining the concentration of 

deoxygenated haemoglobin (Hb) in the brain through the blood oxygen level dependent (BOLD) 

effect (Ang, Yu, and Guan 2012; S. M. Coyle, Ward, and Markham 2007). The neuronal 

haemodynamic response results from local dilation of arterioles and capillaries in regions of 

neural activation. The dilation causes an increase in cerebral blood flow that exceeds the 

metabolic demand and results in a regional increase in the concentration of oxygenated 

haemoglobin (HbO) and a decrease in the concentration of Hb, peaking approximately five 

seconds after activation (Ayaz et al. 2009; Toomim et al. 2005; Arno Villringer and Chance 

1997). This phenomenon is known as neurovascular coupling (S. M. Coyle, Ward, and 

Markham 2007; Niels Birbaumer and Cohen 2007; Wolf et al. 2002), although other coupling 

trends have also been reported (Bauernfeind et al. 2008; A Villringer et al. 1993; Gert 

Pfurtscheller, Bauernfeind, et al. 2010; Quaresima et al. 2005; Y Hoshi et al. 1994; Koshino et 

al. 2011; Buckner, Andrews-Hanna, and Schacter 2008). MRI does not require electrode gel, 

and is not affected by electrical noise or blinking of the eyes. However, MRI machines are very 

large and expensive, requiring specialized building infrastructure (e.g., vibration, acoustic and 

electromagnetic shielding) and therefore, are not ideally suited as BCIs (Ayaz et al. 2009; 

Sitaram et al. 2007).  

The access modality used in this research is NIRS (Ang, Yu, and Guan 2012; S. M. Coyle, 

Ward, and Markham 2007; Ayaz et al. 2007; S. Coyle et al. 2004). Similar to MRI, NIRS 

measures the haemodynamic activity of the brain. To make NIRS measurements, a near-

infrared light source is placed on the surface of the skin; the light travels through the bone and 

the meninges to the cortex and is scattered back through the tissue in a banana shaped path, to 

a detector (S. M. Coyle, Ward, and Markham 2007). The modified Beer-Lambert’s law can be 

used to calculate the amount of Hb and HbO based on the amount of light absorbed (S. M. 

Coyle, Ward, and Markham 2007; J. Wolpaw et al. 2000; Niels Birbaumer and Cohen 2007; 

Delpy et al. 1988). Compared to EEG, NIRS does not require electrode gel and is not affected 

by electrical noise or blinking of the eyes (S. M. Coyle, Ward, and Markham 2007; Ayaz et al. 

2009; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; T. Falk et al. 

2011; M Izzetoglu et al. 2005). Additionally, compared to MRI, NIRS is relatively inexpensive 

and does not require large equipment (Ayaz et al. 2009; Sitaram et al. 2007). However, similar 
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to MRI, there is an inherent haemodynamic delay. Unlike MRI, NIRS only provides information 

about cortical activation; the activity of deeper brain structures is not measurable by NIRS (S. M. 

Coyle, Ward, and Markham 2007; Ayaz et al. 2009; Sarah D. Power, Falk, and Chau 2010; S. 

Power, Kushki, and Chau 2011; T. Falk et al. 2011; M Izzetoglu et al. 2005). 

1.3 Access Pathways 

BCIs can also differ in the access pathway, which refers to how the signal is evoked. Prior to 

this work, to the best of our knowledge, all active NIRS-BCI studies have used prescribed 

mental activation tasks to control the BCI, where the user performs specific tasks that result in 

predictable changes in haemodynamic activity (Nicolas-Alonso and Gomez-Gil 2012; Strait and 

Scheutz 2014; L. Schudlo, Weyand, and Chau 2014; Zephaniah and Kim 2014). The tasks used 

to control the BCI are chosen by researchers based on previous studies showing differentiability 

in the activation or deactivation caused by a specific set of tasks. By discriminating between the 

changes in the NIRS signal accompanying the performance of different tasks, control of the 

binary BCI is achieved. A number of different mental tasks have been used in past NIRS-BCI 

studies, including: mental math (Ang, Yu, and Guan 2012; Naito et al. 2007; Herff, Heger, 

Putze, et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; L. 

C. Schudlo, Power, and Chau 2013; Ogata, Mukai, and Yagi 2007; Bauernfeind et al. 2008; 

Sarah D. Power, Kushki, and Chau 2012; Utsugi et al. 2007; L. C. Schudlo and Chau 2014), 

mental singing (Naito et al. 2007; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and 

Chau 2011), word generation (Herff, Heger, Putze, et al. 2013; Ogata, Mukai, and Yagi 2007; 

Utsugi et al. 2007), memory (Ayaz et al. 2007; Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007), 

mental counting (Naseer and Hong 2013a), mental rotation (Herff, Heger, Putze, et al. 2013), 

concentration (K. Izzetoglu et al. 2011), motor imagery (S. M. Coyle, Ward, and Markham 2007; 

Sitaram et al. 2007; S. Coyle et al. 2004; Kanoh et al. 2009; Naseer and Hong 2013b), and rest 

(Ang, Yu, and Guan 2012; Ayaz et al. 2007; Naito et al. 2007; Herff, Heger, Putze, et al. 2013; 

S. Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Sarah D. Power, 

Kushki, and Chau 2012; Naseer and Hong 2013a; L. C. Schudlo and Chau 2014). The 

limitations of using prescribed mental tasks include the fact that they may not be the most 

appropriate task for each person, they do not take user preferences into account, and they can 

be cognitively demanding and unintuitive. 
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1.4 Signal Processing 

Throughout this thesis, NIRS data were collected using a multi-channel frequency-domain NIRS 

system (Imagent Functional Brain Imaging System from ISS Inc., Champaign, IL (ISS Inc. 

2012)). The NIRS system was used to measure the blood oxygen content from the prefrontal 

cortex (PFC) at nine discrete locations. A variety of signal processing methods were then 

applied. Briefly, the NIRS signal was passed through a digital low-pass filter to mitigate the 

effect of various sources of physiological noise. After filtering the data, the changes in 

concentrations of HbO, Hb, and total haemoglobin (tHb), were calculated using the modified 

Beer-Lambert’s Law (S. M. Coyle, Ward, and Markham 2007; J. Wolpaw et al. 2000; Niels 

Birbaumer and Cohen 2007; Delpy et al. 1988). Next, temporal and spatial features were 

extracted from the data. The use of both temporal and spatial features was motivated by the 

potential for information gain (L. C. Schudlo, Power, and Chau 2013). Finally, feature selection 

was performed using either sequential forward floating search (SFFS) (L. C. Schudlo, Power, 

and Chau 2013; Pudil, Novovičová, and Kittler 1994; Jain and Zongker 1997; Kudo and 

Sklansky 2000) or a fast correlation based filter (FCBF) (Yu and Liu 2003; Koelstra et al. 2010; 

Chanel, Ansari-Asl, and Pun 2007). 

1.5 Classification and Output 

Since the goal of a BCI is to control the environment, classification of a user’s brain signals must 

be performed. Classification of NIRS signals can either be performed offline, following the 

completion of data collection, or online, in real-time, as the data are being collected. In general, 

the aim of offline classification is to provide an estimate of how a classifier, trained on the data 

collected, would perform on similar future data. Offline classification also provides the ability to 

make adjustments to the analysis methods, such as extracting and selecting different features. 

In contrast, online classification involves training a classifier using previously collected data, and 

then predicting the class of new data as the task is being performed. Online classification can 

enable real-time control and provide the user with immediate performance feedback. We chose 

to employ Fisher’s linear discriminant analysis (LDA) classifier since it has been used 

successfully in earlier NIRS-BCI studies (L. C. Schudlo, Power, and Chau 2013; L. C. Schudlo 

and Chau 2014; S. Power, Kushki, and Chau 2011; Sarah D Power, Kushki, and Chau 2012; 

Sarah D. Power, Kushki, and Chau 2012; Sarah Dianne Power and Chau 2013; Moghimi, 

Kushki, Power, et al. 2012; Faress and Chau 2013; Herff, Heger, Fortmann, et al. 2013; Herff, 
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Heger, Putze, et al. 2013; Bauernfeind et al. 2011; Kelly Tai and Chau 2009) and it is 

computationally efficient. Moreover, based on preliminary data analysis, LDA was shown to 

outperform or perform on par with support vector machines, naïve Bayes, hidden Markov model, 

k-Nearest Neighbors, and decision trees.   

1.6 Motivation 

NIRS-BCIs still lack in several areas, including: user-friendliness, intuitiveness, low information 

transfer rates, large variability in performance between users, and a lack of research on target 

populations. Given these limitations, this research focuses on improving NIRS-BCI usability.  

1.6.1 Personalized mental task frameworks 

A personalized mental task paradigm is an alternative to the currently used prescribed mental 

task framework. It involves selecting a specific set of tasks for each user instead of the same 

tasks for every user. Personalized mental task frameworks can be further sub-categorized into 

user-centered and researcher-centered varieties. To the best of our knowledge, personalized 

tasks have not been studied with NIRS-BCIs; however, researcher-selected personalized tasks 

have been explored in MRI (Sorger et al. 2009) and EEG (Dobrea and Dobrea 2009; 

Palaniappan 2006; Chai et al. 2012) BCI studies. Researcher-selected personalized mental 

tasks are motivated by a large inter-subject variability in performance. Therefore, choosing the 

best tasks for each individual can result in increased accuracies (Sorger et al. 2009; Dobrea and 

Dobrea 2009; Palaniappan 2006; Chai et al. 2012). On the other hand, user-selected 

personalized tasks are motivated by a large inter-subject variability in task ease-of-use and the 

importance of user satisfaction in the adoption and use of assistive technology (Sorger et al. 

2009; Elisabeth V C Friedrich, Scherer, and Neuper 2012; E. Curran et al. 2004; Dobrea and 

Dobrea 2009; Palaniappan 2006; Chai et al. 2012). Therefore, allowing users to choose their 

own personalized mental tasks could potentially improve the ease-of-use and adoption of the 

BCI (Sorger et al. 2009; Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012). To 

facilitate a user-centered approach that allows one to strike a personal balance between 

usability and performance, two task measures were invoked, namely, a measure of usability and 

a measure of performance. It is noted that we are primarily focusing on the user-satisfaction 

dimension of usability (ISO 9241-11 1998). The usability of each task was based on each user’s 

subjective post-task ease-of-use ratings (Tedesco and Tullis 2006; Sauro and Dumas 2009). 

Two methods for displaying task performance were proposed in this thesis: pair-wise accuracy 
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rankings (PWAR) and weighted slope scores (WS-scores). PWAR constitute a ranked list of the 

differentiability of each possible pair-wise combination of tasks. PWAR are motivated by 

providing users with detailed information as to which tasks are likely to result in high 

classification accuracies. WS-scores correspond to a ranked list of tasks that tend to 

consistently increase or decrease haemodynamic activity. WS-scores are motivated by being 

neurofeedback-centered, which allows for an intuitive and simplified choosing method that 

focuses on discernable differences in the neurofeedback between the selected tasks.   

1.6.2 Moving beyond the binary paradigm 

Multiclass BCIs (beyond binary) have the potential to provide users with more outputs, thereby 

increasing the rate of communication (Shin et al. 2013). However, as the number of classes 

increases, so will the difficulty in discriminating between each class. To date, limited research 

on multi-class NIRS-BCIs has been conducted. To the best of our knowledge, three studies 

have explicitly explored multi-class NIRS-BCIs over the prefrontal cortex (PFC) that could 

potentially be used to control a computer, namely, (Herff, Heger, Fortmann, et al. 2013), 

(Hirshfield et al. 2009), and (Sarah D Power, Kushki, and Chau 2012). None of the participants 

in these studies exceeded the 70% threshold, often cited as required for BCI control (Andrea 

Kübler, Neumann, et al. 2001). One potential method for improving the classification accuracies 

in multi-class NIRS-BCIs is the use of researcher-selected personalized mental tasks.  

1.6.3 Correlation of NIRS-BCI accuracy with user characteristics 

Although it is widely accepted that some BCI users perform better than others, the reason for 

this disparity is not well established. Specifically, the prediction of BCI accuracy based on user 

characteristics, such as demographic traits, IQ, and state of mind, are not well explored in 

NIRS-BCI literature. Determining the correlation between user characteristics and performance 

may help reduce some of the large inter-subject variability in classification accuracies.  

1.6.4 Achieving BCI control using self-regulation 

Currently, to the best of our knowledge, all NIRS-BCIs use mental tasks to elicit changes in 

regional haemodynamic activity. One of the limitations of using mental tasks is that they can be 

cognitively demanding and unintuitive. Voluntary self-regulation involves the acquisition of 

voluntary control over one’s physiological signals without the need to perform a mental task. 

Self-regulation has the potential to result in a more intuitive, easier to use, and less mentally 
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demanding access pathway. The field of voluntary self-regulation in BCIs is still in its infancy; 

however, to date, several researchers have shown the potential of voluntary self-regulation in 

EEG-BCIs with users gaining control of the 8-12 Hz mu rhythms (J. R. Wolpaw et al. 1997; J R 

Wolpaw, McFarland, and Vaughan 2000; Daly and Wolpaw 2008; E. A. Curran and Stokes 

2003) and slow cortical potentials (SCPs) (Kotchoubey et al. 1996; Andrea Kübler, Neumann, et 

al. 2001; Daly and Wolpaw 2008; A Kübler et al. 1999; E. A. Curran and Stokes 2003; Niels 

Birbaumer 2006; N. Birbaumer et al. 1981). To the best of our knowledge, no studies have 

explored voluntary self-regulation for the purpose of controlling an NIRS-BCI. A personalized 

mental task framework may be a particularly appealing means of facilitating self-regulation, 

where users start with but are eventually weaned from individualized tasks. 

1.6.5 Performance on target populations 

Despite the fact that one of the greatest potential benefits of BCIs is the provision of control and 

communication for patients with motor impairments, the vast majority of current research is still 

being conducted on able-bodied subjects. It is acknowledged that research on able-bodied 

individuals is important; however, the conclusions may not always transfer to the patient 

population due to both predictable and unpredictable reasons. Therefore, studies on individuals 

with motor-impairments are critical to eventual clinical translation (Grosse-wentrup and 

Schölkopf 2013). To the best of our knowledge, only three NIRS-BCI studies have been 

conducted on individuals with motor impairments (Naito et al. 2007; Sarah Dianne Power and 

Chau 2013; Gallegos-Ayala et al. 2014). Despite these early studies on individuals with motor 

impairments, there is still a paucity of research exploring NIRS-BCI performance for individuals 

with various disabilities. 

1.7 Objectives and Research Questions 

The overall objective of this thesis is to advance the development of a more user-friendly, 

intuitive, practical, and easy to use NIRS-BCI.  

The six secondary objectives (O) and the associated research questions (RQ) are: 

O1. To compare four mental task methodological frameworks: a prescribed task framework, two 

user-selected personalized task frameworks, and a researcher-selected personalized task 

framework.  
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RQ1A. What is the effect of mental task framework on offline accuracies, ease-of-use, 

computational time, and length of training? Specifically, we consider a prescribed mental 

task framework, two personalized user-selected mental task frameworks, and a 

personalized researcher-selected mental task framework.  

RQ1B. What is the effect of personalized user-selected mental task framework on user 

preference?  

O2. To determine if it is possible to use researcher-selected personalized mental tasks to 

develop a more practical BCI and move beyond a binary BCI paradigm. 

RQ2. What levels of offline classification accuracies can be attained for a 2-, 3-, 4-, and 

5-class BCI using a personalized researcher-selected framework? 

O3. To determine if various user characteristics correlate to BCI accuracy. 

RQ3. Is there any correlation between classification accuracies and users’ verbal IQ, 

self-reported tiredness, self-reported concentration, self-reported ease of performance, 

or self-reported enjoyment? 

O4. To compare the usability and performance of a user-selected personalized mental task 

NIRS-BCI to a prescribed mental task NIRS-BCI using a two group online experimental design. 

RQ4A. What is the effect of neurofeedback, performance, and ease-of-use informed 

choice of personalized mental tasks on the ease-of-use of a NIRS-BCI? 

RQ4B. What is the effect of neurofeedback, performance, and ease-of-use informed 

choice of personalized mental tasks on the online accuracy of a NIRS-BCI?  

O5. To determine the usability and performance of a NIRS-BCI that requires users to wean off 

mental tasks to achieve voluntary self-regulation. 

RQ5A.What level of online classification accuracies can be attained for a binary switch 

NIRS-BCI when users are weaned off mental tasks and use a voluntary desire to 

modulate their haemodynamic activity (self-regulation)? 

RQ5B. When comparing mental tasks and self-regulation, which method do users prefer 

in terms of mental work load, intuitiveness, and ease-of-use? 
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O6. To apply personalized mental task frameworks to the NIRS-BCI training of a client with 

motor impairments.  

RQ6. What level of accuracy can be attained when applying user- and researcher-

selected personalized mental task frameworks to a client with undiagnosed motor 

impairments? 

1.8 Thesis Organization 

Chapters 2 through 6 of this thesis are reproduced verbatim from manuscripts. Chapter 2 

addresses the first research objective and corresponding research questions, as described in 

section 1.7. Chapter 3 addresses both the second and third research objectives and 

corresponding research questions. Chapters 4, 5, and 6 address the fourth, fifth, and sixth 

research objectives and corresponding research questions, respectively. As each of these 

chapters is reproduced from stand-alone entities, certain information in the introduction and 

methods sections may be redundant. The final chapter of this thesis summarizes the major 

original contributions of this work. A graphical depiction of the relationship between the research 

objectives and chapters of this thesis is shown in Figure 1. 
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Figure 1. Graphical depiction of the relationship between the research objectives and chapters of this thesis. 
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Chapter 2: Offline Comparison of Four 
Methodological Frameworks  

The entirety of this chapter is reproduced from the article “Exploring Methodological 

Frameworks For A Mental Task-Based Near-Infrared Spectroscopy Brain-Computer Interface”. 

This manuscript has been published in the Journal of Neuroscience Methods. 

2.1 Abstract 

Background: Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable users 

to interact with their environment using only cognitive activities. This paper presents the results 

of a comparison of four methodological frameworks used to select a pair of tasks to control a 

binary NIRS-BCI; specifically, three novel personalized task paradigms and the state-of-the-art 

prescribed task framework were explored.  

New Methods: Three types of personalized task selection approaches were compared, 

including: user-selected mental tasks using weighted slope scores (WS-scores), user-selected 

mental tasks using pair-wise accuracy rankings (PWAR), and researcher-selected mental tasks 

using PWAR. These paradigms, along with the state-of-the-art prescribed mental task 

framework, where mental tasks are selected based on the most commonly used tasks in 

literature, were tested by ten able-bodied participants who took part in five NIRS-BCI sessions. 

Results: The frameworks were compared in terms of their accuracy, perceived ease-of-use, 

computational time, user preference, and length of training. Most notably, researcher-selected 

personalized tasks resulted in significantly higher accuracies, while user-selected personalized 

tasks resulted in significantly higher perceived ease-of-use. It was also concluded that PWAR 

minimized the amount of data that needed to be collected; while, WS-scores maximized user 

satisfaction and minimized computational time. 

Comparison with Existing Method: In comparison to the state-of-the-art prescribed mental 

tasks, our findings show that overall, personalized tasks appear to be superior to prescribed 

tasks with respect to accuracy and perceived ease-of-use.  

Conclusions: The deployment of personalized rather than prescribed mental tasks ought to be 

considered and further investigated in future NIRS-BCI studies. 
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2.2 Introduction 

2.2.1 Near-infrared spectroscopy brain computer interface 

Brain-computer interfaces (BCIs) enable users to interact with their environment using only 

cognitive activities. A BCI consists of an input, signal-processing unit, classifier, and output. The 

input subsystem consists of the access modality, which refers to how the physiological signal is 

collected, and the access pathway, which refers to how a change in the signal is evoked (J. 

Wolpaw et al. 2000; Ayaz et al. 2009). For our study, near-infrared spectroscopy (NIRS) was 

chosen as the input access modality. NIRS is a safe optical neural imaging technique that can 

be used to measure haemodynamic brain activity (S. M. Coyle, Ward, and Markham 2007; Ayaz 

et al. 2007).  

2.2.2 Mental task frameworks 

To the best of our knowledge, all NIRS-BCI studies to date have used prescribed mental task 

access pathways, where researchers instruct all participants to perform a single set of 

predetermined tasks. As an alternative to prescribed mental tasks, personalized mental tasks 

have been proposed in magnetic resonance imaging (MRI) (Sorger et al. 2009) and 

electroencephalography (EEG) (Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012) 

BCI research. The use of personalized mental tasks is motivated by large inter-subject 

variability in task performance, task suitability, and task ease-of-use (Sorger et al. 2009; 

Elisabeth V C Friedrich, Scherer, and Neuper 2012; E. Curran et al. 2004; Dobrea and Dobrea 

2009; Palaniappan 2006; Chai et al. 2012).  

Personalized mental task frameworks can be further sub-categorized into user-centered and 

researcher-centered. To the best of our knowledge, all MRI-BCI and EEG-BCI studies to date 

have focused on researcher-centered selection methods, which involve the researcher choosing 

each user’s personalized mental tasks based on task performance. On the other hand, a user-

centered approach, which involves each user choosing their own tasks, could also be explored. 

A user-centered design is motivated by the importance of user satisfaction in the adoption and 

use of assistive technology (Sorger et al. 2009; J. Wolpaw et al. 2000; Bos, Poel, and Nijholt 

2011; Tan and Nijholt 2010). 
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2.2.3 Objectives 

The goal of this research study was to evaluate four mental task frameworks: one prescribed 

framework, two user-centered frameworks, and a researcher-centered framework. Specifically, 

the frameworks were compared based on accuracy, perceived ease-of-use ratings, 

computational time, user preference, and required data for training. 

2.3 Methods 

It is noted that the data collected during this study were also analyzed to explore multi-class 

NIRS-BCI correlates. For more information on this work, please refer to (Weyand, Takehara-

Nishiuchi, and Chau 2015a). As a result of observed participant head motion or loss of contact 

between the head and the detectors, up to 20 data points (a maximum of four per class) were 

discarded from participants 3 and 9. 

2.3.1 Participants 

Ten able-bodied subjects (4 male, 6 female) between the ages of 16 and 40 were recruited from 

the staff and students at Holland Bloorview Kids Rehabilitation Hospital (Toronto, Canada). 

Eight participants were right-handed according to the Edinburgh handedness test (Oldfield 

1971). Participants were naïve to NIRS-BCIs, had normal or corrected-to-normal vision and had 

no known trauma-induced brain injuries, degenerative disorders, cardiovascular disorders, 

motor impairments, respiratory disorders, drug or alcohol-related conditions, psychiatric 

conditions or metabolic disorders. Participants were asked not to smoke or drink alcoholic or 

caffeinated beverages three hours prior to each data collection session. The study was 

conducted with informed consent and with ethics approval from the Holland Bloorview Kids 

Rehabilitation Hospital and the University of Toronto.  

2.3.2 Instrumentation 

NIRS data were collected using a multi-channel frequency-domain NIRS system with a 

sampling rate of 31.25 Hz (Imagent Functional Brain Imaging System from ISS Inc., 

Champaign, IL (ISS Inc. 2012)). The NIRS system was used to measure the blood oxygen 

content from the prefrontal cortex (PFC) (Ogata, Mukai, and Yagi 2007; Gao et al. 1990). Five 

laser diodes (emitting 690 nm and 830 nm light) and three photomultiplier tube detectors 

attached to a headband were used. The headband was centered on the participant’s forehead 
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with reference to the nose, and was placed directly above the eyebrows, as illustrated in Figure 

2. 

 
Figure 2. Experimental source and detector configuration. The solid circles represent detectors; the open 

circles represent light source pairs; the x’s represent points of interrogation; and the starred areas represent 
the approximate FP1 and FP2 positions of the international 10-20 EEG system. 

The sources and detectors were separated by a distance of 3 cm, which has been shown to 

reach the outer layer of the cerebral cortex (Bauernfeind et al. 2008; Haeussinger et al. 2011; E. 

Okada et al. 1997). The source-detector configuration allowed for the interrogation of nine 

discrete locations. A schematic diagram of the configuration and points of interrogation are 

illustrated in Figure 2.  

2.3.3 Experimental protocol 

Participants performed five sessions, one session each on five different days. Each session 

consisted of three data collection blocks. A schematic illustration of the study and block 

structure is shown in Figure 3. During each data collection block, the participant performed 24 

task intervals. Each task was performed for 20 seconds, and was followed by a 17-second rest 

interval. Based on preliminary analysis, seventeen seconds allowed for an adequate amount of 

time for the haemodynamic activity from the task and ease-of-use selection to subside. In the 

literature, a variety of rest intervals have been used; including, twelve seconds (Sarah D Power, 

Kushki, and Chau 2012; L. C. Schudlo, Power, and Chau 2013; L. C. Schudlo and Chau 2014; 

Sarah Dianne Power and Chau 2013), fourteen seconds (Yoko Hoshi et al. 2011), fifteen 

seconds (S. M. Coyle, Ward, and Markham 2007; Herff, Heger, Fortmann, et al. 2013; Herff, 

Heger, Putze, et al. 2013; Meltem Izzetoglu et al. 2007), twenty seconds (Kelly Tai and Chau 

2009; Naseer and Hong 2013a; Naseer and Hong 2013b; Naseer, Hong, and Hong 2014; 

Ogata, Mukai, and Yagi 2007), and thirty seconds (Ayaz et al. 2012).  
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Figure 3. Study and block structure.  

Two forms of neurofeedback were provided during all sessions: 1) a trapezoid topographic 

image showing the real-time changes in blood oxygenation levels over the PFC and 2) a ball 

that rose and fell with the average change over the entire interrogation area. The feedback was 

updated every 125 ms, and was calculated using cubic interpolation of the oxygenated 

haemoglobin (HbO) values at equally spaced intervals between the points of interrogation. The 

topographic image was 21 pixels in height with parallel sides 21 and 61 pixels in length, as in (L. 

C. Schudlo and Chau 2014). HbO was selected for the feedback since it has been cited to be 

more indicative of activity than deoxygenated haemoglobin (Hb) and total haemoglobin (tHb) (S. 

M. Coyle, Ward, and Markham 2007; S. Coyle et al. 2004). The red colour on the feedback 

represented an increase in haemodynamic activity, while the blue colour represented a 

decrease in haemodynamic activity. The goal of the neurofeedback was to provide participants 

with real-time information on changes in their haemodynamic activity when performing each of 

the tasks. Participants were informed that they should not stop performing the tasks; however, 

they could slightly modify the tasks, i.e. perform the tasks faster or slower, in order to try and 

achieve a more consistent change. In a study by Schudlo et al., it was found that 8 out of 10 

participants adjusted their mental strategies when using feedback (L. C. Schudlo and Chau 

2014). The user interface and haemodynamic feedback is shown in Figure 4. 
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Figure 4. User interface and haemodynamic feedback. 

Participants were asked to perform six different mental tasks, which are described in Table 1. 

The tasks were chosen based on their use in previous BCI studies or functional imaging studies.  

Table 1. Six mental tasks performed by each participant. 

Task Description 

Mental math 
(Math) 

Participants were prompted with a math problem, and they were asked to repeatedly 
subtract a two digit number from a three digit number (Ang, Yu, and Guan 2012; Naito 
et al. 2007; Herff, Heger, Putze, et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. 
Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Ogata, Mukai, 

and Yagi 2007; Bauernfeind et al. 2008; Sarah D. Power, Kushki, and Chau 2012; 
Utsugi et al. 2007; L. C. Schudlo and Chau 2014). 

Word 
generation 

(Words) 

Participants were asked to think of as many words as possible that start with a specific 
letter (Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007; Faress and Chau 2013). 

Counting 
(Count) 

Participants were asked to slowly count in their heads while relaxing (Naseer and Hong 
2013a). 

Happy 
thoughts 
(Happy) 

Participants were asked to think about the details of a past event in their life that made 
them very happy (Kelly Tai and Chau 2009; Koshino et al. 2011). 

Focusing 
(Focus) 

Participants were asked to relax and focus on the feedback (K. Izzetoglu et al. 2011). 

Rest 
(Rest) 

Participants were asked to let their minds wander (Ang, Yu, and Guan 2012; Ayaz et 
al. 2007; Naito et al. 2007; Herff, Heger, Putze, et al. 2013; S. Power, Kushki, and 

Chau 2011; L. C. Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 
2012; Naseer and Hong 2013a; L. C. Schudlo and Chau 2014). 

The participants performed each of the six tasks four times per block in a random order. By the 

end of the fifth session, participants had performed each task 60 times. Immediately after 

performing each task and before the seventeen second rest, participants rated the task’s 

perceived ease-of-use on a 5-point Likert-type scale, ranging from “very easy” to “very difficult” 

(Tedesco and Tullis 2006; Sauro and Dumas 2009).  
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At the end of the fifth session, participants were asked to choose their personalized tasks using 

the two user-centered selection methods, which will be described in section 2.3.4. The order in 

which the frameworks were presented was varied randomly. 

2.3.4 Mental task selection frameworks 

2.3.4.1 Prescribed 

The state-of-the-art prescribed framework involves selecting the most commonly used set of 

tasks in NIRS-BCI literature for all participants. Specifically, mental math and rest were chosen 

as the two tasks (Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; L. 

C. Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 2012; Ang, Yu, and 

Guan 2012; L. C. Schudlo and Chau 2014).  

2.3.4.2 User-selected weighted slope scores (WS-US) 

The user-selected weighted slope score (WS-US) framework involves each participant choosing 

their own two tasks based on a weighted slope score (WS-score) and the average perceived 

ease-of-use rating for each task, across all iterations. The WS-score, WSi, for the ith task, is 

defined as: 
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where mij and mik are the slopes of least square line of best fit to the average haemodynamic 

activity ([HbO]) over time for the jth or kth iteration of the ith task (Bingham and Fry 2010; Dupont 

2009), and N is the number of times the task was performed (N = 60 in this study). The 

weighted slope score is thus the mean of all slopes for each iteration a task was performed 

divided by the corresponding standard deviation, and corresponds to the tendency for a task to 

consistently increase or decrease hemodynamic activity. Users were presented with the 

average perceived ease-of-use ratings and graphs of the best three tasks for increasing and 

decreasing their haemodynamic activity (based on the WS-score), and were asked to select one 

increasing and one decreasing task. Users were informed that tasks higher on the list resulted 

in more consistent and stronger changes in haemodynamic activity and that they should use this 

performance information in combination with their perceived ease-of-use data to choose their 

personalized tasks. 
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2.3.4.3 User-selected pair-wise accuracy rankings (PWAR-US) 

The user-selected pair-wise accuracy rankings (PWAR-US) framework involves each participant 

choosing their own two tasks based on pair-wise accuracy rankings (PWAR) and the average 

perceived ease-of-use rating for each task, across all iterations. The accuracies were calculated 

after session five using one-iteration of six-fold cross-validation with eight selected features for 

each of the possible pair-wise combinations of the six mental tasks (6 choose 2 = 15). The pairs 

of tasks were then ranked from highest to lowest. The PWAR and average perceived ease-of-

use ratings were then displayed to the user, and users where asked to select one pair of tasks 

from the list. Users were informed that tasks higher on the list resulted in better classification 

accuracies, and that they should use this performance information in combination with their 

perceived ease-of-use data to choose their personalized tasks. 

2.3.4.4 Researcher-selected pair-wise accuracy rankings (PWAR-RS) 

The researcher-selected pair-wise accuracy rankings (PWAR-RS) framework involves the 

researcher choosing the best set of tasks (highest ranked) for each participant based on PWAR. 

The PWAR were calculated as described in section 2.3.4.3. 

2.3.5 Data processing 

2.3.5.1 Filtering 

To mitigate the effect of various physiological noise, the NIRS signal was digitally low-pass 

filtered in real-time using a third-order Chebyshev infinite impulse response (IIR) cascade filter 

with a pass-band from 0 to 0.1 Hz, a transition band from 0.1 to 0.5 Hz, a stop-band from 0.5 Hz 

onwards, and a pass band ripple of 0.1 dB (Sarah D. Power, Falk, and Chau 2010; Ayaz et al. 

2009). 

2.3.5.2 Calculating haemoglobin concentrations 

After filtering the data, the changes in concentrations of HbO, Hb, and tHb were calculated 

using the modified Beer-Lambert’s Law (S. M. Coyle, Ward, and Markham 2007; J. Wolpaw et 

al. 2000; Niels Birbaumer and Cohen 2007; Kelly Tai and Chau 2009). In this study, the 

constants used were r = 3cm, 690nm,Hb = 2.1382 mM-1cm-1 (Cope 1991), 830nm,Hb = 0.7804 mM-1 

cm-1 (Cope 1991), 690nm,HbO = 0.3123 mM-1 cm-1(Cope 1991), 830nm,HbO = 1.0507 mM-1 cm-1 (Cope 

1991), DPF690nm = 6.51 (A Duncan et al. 1995), and DPF830nm = 5.86 (A Duncan et al. 1995). 
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2.3.5.3 Feature extraction  

Features were extracted over four time-windows (0-5s, 0-10s, 0-15s, and 0-20s). Features 

included the temporal changes in the three chromophores (Hb, HbO, and tHb) at each of the 9 

points of interrogation (108 features) and the spatial features of the zero to fourth order discrete 

orthogonal Chebyshev image moments (180 features), as proposed in (L. C. Schudlo, Power, 

and Chau 2013). The temporal feature extraction involved normalizing each task interval and 

then determining the least square line of best fit slope over the different time-windows. To derive 

the spatial features, topographic images for ∆[HbO], ∆[Hb], and ∆[tHb] were generated by cubic 

interpolation of the hemoglobin concentration values between locations of empirical integration. 

The images were normalized, and the zero to fourth order discrete orthogonal Chebyshev 

polynomial image moments were extracted from the dynamic topograms. Chebyshev 

polynomials were calculated using equation 9, equation 12, and Table 2 from (Zhu et al. 2010). 

For more information on the feature extraction methods, please refer to (L. C. Schudlo, Power, 

and Chau 2013). A block diagram summarizing the feature extraction methods is shown in 

Figure 5. 
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Figure 5. Block diagram of feature extraction and classification methods. 

2.3.5.4 Cross-validation, feature selection, and pattern classification 

Data collected across all five sessions were pooled together, and accuracies were determined 

using 10-fold cross-validation (Refaeilzadeh, Tang, and Liu 2009). For each iteration of 10-fold 

cross-validation, the data were randomly separated into 10 equal sized portions (folds). Ten 

classification accuracies were calculated by iteratively using each fold as testing data and the 

remaining folds as training data. Only training data were used for feature selection and classifier 

training, and only the testing data were used to estimate the classification accuracies. Finally, all 

classification accuracies were averaged to estimate the overall accuracy. 

A fast correlation based filter (FCBF) was used to select a subset of up to eight features from 

the total feature set for classifier training (Yu and Liu 2003; Koelstra et al. 2010; Chanel, Ansari-
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Asl, and Pun 2007). A judicious subset of features has been shown to lead to smaller 

classification errors (Ang, Yu, and Guan 2012). The upper limit of features was based on 

preliminary data and past work (Sarah D Power, Kushki, and Chau 2012; L. C. Schudlo and 

Chau 2014) and aimed to maintain an adequate ratio of training samples to features, i.e. 

avoiding the “curse of dimensionality” (Hastie, Tibshirani, and Friedman 2009). 

An ensemble of classifiers was invoked for each participant to differentiate between task-

induced changes in the haemodynamic response (Polikar 2006; L. C. Schudlo, Power, and 

Chau 2013). In particular, for each participant, three ensemble classifiers with ten members of 

linear discriminant classifiers were trained: one exclusively with temporal features, a second 

exclusively with spatial features, and a third using a combination of temporal and spatial 

features. The majority vote (Polikar 2006) of the classifiers was used as the class prediction. A 

block diagram summarizing the classification methods is shown in Figure 5.  

2.3.5.5 Pseudo-online BCI simulation 

A secondary pseudo-online analysis (using sessions 1 and 2 for training and sessions 3 - 5 for 

testing) was conducted on the researcher-selected PWAR tasks and prescribed tasks to 

simulate online BCI performance and verify the benefit of researcher-selected tasks with respect 

to accuracy. One-iteration of six-fold cross-validation was performed on the data collected in 

sessions 1 and 2, and the best researcher-selected tasks were chosen based on PWAR. The 

data from sessions 1 and 2 (24 samples per class) were then used for feature selection and to 

train the ensemble of classifiers. The classifiers were then used to predict the classes of the 

data from sessions 3 to 5 (36 samples per class). The same feature extraction (temporal and 

spatial), feature selection (FCBF), and classification (majority vote) methods described in 

sections 2.3.5.3 and 2.3.5.4 were invoked. 

2.3.6 Data analyses 

For all statistical tests, normality of the data was confirmed using the Shapiro-Wilk Normality 

test. 

2.3.6.1 Accuracy comparison 

A two-tailed paired Student’s t-test for two dependent means was used to compare the 

accuracies attained.  
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2.3.6.2 Perceived ease-of-use comparison 

To compare the perceived ease-of-use, the average total subjective perceived ease-of-use 

ratings for each set of tasks was determined, and a two-tailed paired Student’s t-tests for two 

dependent means was run.  

2.3.6.3 Computational time comparison 

To compare the computational time of each framework, a time analysis was performed on a 

desktop computer with a Intel Core2 Quad Q8300, 4Mb cache, 2.50 GHz processor, 2 Gb of 

RAM, running Windows XP. 

2.3.6.4 User preference of selection methods 

To determine which of the two user-centered choosing methods participants preferred, a 

questionnaire was administered at the end of the fifth session. Specifically, participants 

evaluated the following subjective statement: “Did you prefer choosing your tasks using the 

'best tasks to increase/decrease activity' page or the 'suggested task pairs' page? Please 

explain why”. 

2.3.6.5 Data collection requirements 

To determine how much data should be collected before the task selection is made, an analysis 

of the cumulative WS-score and PWAR over time was conducted. The WS-score and 

accuracies were calculated after every block, and the absolute value of the regression slope 

between two adjacent points was determined. A sufficient amount of data was deemed to have 

been collected when two conditions held true: 1) two consecutive slopes had a value less than 

0.05 and 2) the slope between the first and third point was also less than 0.05. Offline 

accuracies were calculated using five iterations of ten-fold cross validation.  

2.3.6.6 Analysis of selected features 

We examined the average number of features selected and the frequency at which each 

chromophore (Hb, HbO, and tHb) and time-window (0-5s, 0-10s, 0-15s, and 0-20s) was 

selected. The analysis was conducted over all ten participants for each of the three classifiers 

(temporal, spatial, and temporal combined with spatial), using all data collected in sessions 1 to 

5, and for all four frameworks. 
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2.4 Results 

2.4.1 Tasks chosen 

The tasks chosen using each of the frameworks is shown in Table 2. It is noted that three out of 

ten participants (P5, P9, and P10) chose the exact same tasks using both user-centered 

selection methods. It is also noted that only one participant (P3) selected the same tasks using 

PWAR as the tasks chosen by the researcher. 

Table 2. Tasks chosen using each of the mental task selection frameworks: prescribed, user-selected using 
weighted slope scores (WS-US), user-selected using pair-wise accuracy rankings (PWAR-US), and 

researcher-selected using pair-wise accuracy rankings (PWAR-RS). Legend: math - mental subtraction, 
words - word generation, count - counting slowly, happy - thinking of happy thoughts, focus - focusing on 

the feedback, and rest - letting your mind wander. For more information on the mental tasks, please refer to 
Table 1. 

Participant Prescribed WS-US PWAR-US PWAR-RS 

1 Math & Rest Happy & Rest Words & Focus Math & Focus 

2 Math & Rest Happy & Count Words & Focus Words & Rest 

3 Math & Rest Words & Rest Happy & Rest Happy & Rest 

4 Math & Rest Math & Words Words & Count Math & Happy 

5 Math & Rest Words & Count Words & Count Math & Focus 

6 Math & Rest Words & Count Words & Rest Happy & Focus 

7 Math & Rest Focus & Count Focus & Rest Math & Rest 

8 Math & Rest Words & Count Math & Focus Happy & Count 

9 Math & Rest Focus & Count Focus & Count Happy & Focus 

10 Math & Rest Words & Count Words & Count Happy & Focus 

2.4.2 Researcher-selected tasks result in significantly higher accuracies 

The average offline cross-validation accuracies and standard deviations for prescribed tasks, 

WS-US tasks, PWAR-US tasks, and PWAR-RS tasks were: 65.3 ± 4.5%, 65.7 ± 8.3%, 68.9 ± 

9.6%, and 76.6 ± 8.2%, respectively, as shown in Figure 6.  
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Figure 6. Box plots of task accuracies for each of the four mental task frameworks. Legend: Prescribed = 

prescribed tasks (mental math and rest), WS-US = user-selected tasks using weighted slope scores, PWAR-
US = user-selected tasks using pair-wise accuracy rankings, PWAR-RS = researcher-selected tasks using 

pair-wise accuracy rankings, * = p < 0.05, and ** = p < 0.01. 

There was no significant difference in the offline accuracies between the WS-US tasks, the 

PWAR-US tasks, and the prescribed tasks. However, the accuracies achieved using the PWAR-

RS tasks were significantly higher than the prescribed tasks (t = 3.91, p = 0.0036), WS-US tasks 

(t = 4.351, p = 0.0018), and PWAR-US tasks (t = 2.63, p = 0.0273). 

For the pseudo-online BCI simulation, the average accuracy for the PWAR-RS tasks was 72.1 ± 

10%, while the average accuracy for the prescribed tasks was 62.6 ± 7%. The two-tailed paired 

student’s t-test showed that the personalized researcher-selected tasks resulted in significantly 

greater accuracies than the prescribed tasks (t = 2.66, p = 0.0257). 

2.4.3 User-selected tasks result in significantly higher perceived ease-
of-use 

The average perceived ease-of-use and standard deviations of the prescribed tasks, WS-US 

tasks, PWAR-US tasks, and PWAR-RS tasks were: 3.44 ± 1.06, 4.19 ± 0.439, 4.3 ± 0.485, and 

3.50 ± 0.899, respectively, as shown in Figure 7.  
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Figure 7. Box plots of task perceived ease-of-use for each of the four mental task frameworks. Legend: 

Prescribed = prescribed tasks (mental math and rest), WS-US = user-selected tasks using weighted slope 
scores, PWAR-US = user-selected tasks using pair-wise accuracy rankings, PWAR-RS = researcher-selected 

tasks using pair-wise accuracy rankings, * = p < 0.05, and ** = p < 0.01. 

Users found tasks chosen using the two user-centered selection methods to be significantly 

easier to use than both the prescribed tasks and the researcher-selected personalized tasks. 

Specifically, the prescribed tasks were significantly harder to use than WS-US tasks (t = 2.778, 

p = 0.0215) and PWAR-US tasks (t = 3.101, p = 0.0127). Moreover, PWAR-RS tasks were 

significantly harder to use than WS-US tasks (t = 2.982, p = 0.0154) and PWAR-US tasks (t = 

3.969, p = 0.0033).  

2.4.4 PWAR have longest computational time 

Obviously, prescribed tasks require no calculations prior to task selection. The computational 

time of all six WS-scores only took 30 seconds. The computational time for all 15 pair-wise 

combinations of tasks was approximately 6 minutes. It is noted that this time will vary depending 

on the speed of the computer and the implementation of the algorithm.  

2.4.5 Users prefer choosing tasks using WS-score rather than PWAR 

When comparing user preference between the two user-centered selection methods, it was 

found that 8 out of 10 participants preferred choosing their personalized tasks using WS-scores 

compared to PWAR. 
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2.4.6 WS-scores require largest data set before task selection 

Obviously, prescribed tasks require no data to be collected prior to task selection. On the other 

hand, it was determined that on average 35 data points per class need to be collected before 

the WS-scores should be used to guide the selection of personalized tasks. However, only 23 

data points per class need to be collected before using PWAR to inform the selection of 

personalized mental tasks. Given the current study structure, this would be equivalent to three 

and two sessions of data collection for WS-Scores and PWAR, respectively. 

2.4.7 Feature selection analysis 

On average 4.9 features were selected across all three classifiers and all four frameworks, as 

shown in Figure 8A. It appears that more features were selected for the combined temporal and 

spatial classifier than the temporal-only and spatial-only classifiers for all four frameworks. All 

three chromophores (Hb, HbO, tHb) and all four time-windows (0-5s, 0-10s, 0-15s, and 0-20s) 

were frequently chosen during features selection for each participant. Overall, features from the 

chromophore Hb and the 0-17s time-window were chosen most often, as shown in Figure 8B 

and Figure 8C, respectively. 
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Figure 8. (A) Average number of features selected. (B) Frequency of occurrence of each chromophore (Hb, 
HbO, and tHb). (C) Frequency of occurrence of each time-window (0-5s, 0-10s, 0-15s, and 0-20s). 

2.5 Discussion 

In order to provide a quick guide for researchers to choose a mental task framework for future 

NIRS-BCI studies, Table 3 summarizes each framework’s performance in terms of the five 

metrics. 

Table 3. A summary of the performance of each of the four frameworks with respect to accuracy, perceived 
ease-of-use, computational time, preference, and amount of data that needs to be collected prior to use. 

Legend: Prescribed = prescribed tasks (mental math and rest), WS-US = user-selected tasks using weighted 
slope scores, PWAR-US = user-selected tasks using pair-wise accuracy rankings, and PWAR-RS = 

researcher-selected tasks using pair-wise accuracy rankings. 

Metric Prescribed WS-US PWAR-US PWAR-RC 

Accuracy 65.3 ± 4.5% 65.7 ± 8.3% 68.9 ± 9.6% 76.6 ± 8.2% 

Ease-of-use (1 
= very difficult; 
5 = very easy) 

3.44 ± 1.06 4.19 ± 0.44 4.30 ± 0.49 3.50 ± 0.90 

Computational 
time 

~ 0 seconds ~ 30 seconds ~ 6 minutes ~ 6 minutes 

Preference Not assessed 
Preferred by 

8/10 
Preferred by 

2/10 
Not assessed 

Amount of data 
before 

choosing 
0 data points 35 data points 23 data points 23 data points 
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2.5.1 Benefits of personalized tasks over prescribed tasks 

Since none of the frameworks outperforms on all metrics, it is imperative to look at the relative 

importance of each metric. Given that accuracy and usability are two of the most important 

metrics in BCIs (J. Wolpaw et al. 2000; Bos, Poel, and Nijholt 2011; Tan and Nijholt 2010; Holz 

et al. 2013), it is clear that personalized tasks are superior to prescribed tasks. Specifically, 

compared to prescribed tasks, researcher-selected tasks resulted in higher accuracies and 

user-selected tasks resulted in higher perceived ease-of-use. These results combined with the 

large inter-subject variability, support the value of personalization. Overall, these findings are in 

line with previous EEG-BCI and MRI-BCI studies that have also found a large inter-subject 

variability and an association between researcher-selected personalized mental tasks and an 

increase in accuracy (Sorger et al. 2009; Dobrea and Dobrea 2009; Palaniappan 2006; Chai et 

al. 2012). Moreover, the benefits of personalization are in line with findings in other areas of 

research such as in education. Specifically, personalization has been shown to increase 

learning, motivation, and depth of engagement in education (Cordova and Lepper 1996). 

2.5.2 Best personalized framework 

Each of the three personalized selection methods explored in this work appears to have 

different benefits. Specifically, the PWAR-RS framework maximizes accuracy and minimizes the 

amount of data that needs to be collected. On the other hand, the PWAR-US framework 

maximizes usability and minimizes the amount of data that needs to be collected. Finally, the 

WS-US framework maximizes usability, maximizes user satisfaction, and minimizes 

computational time. The authors suggest that the choice of personalized BCI framework be 

based on the metric deemed most important for the application at hand. 

2.5.2.1 Accuracy and perceived ease-of-use 

As mentioned in section 2.5.1, both accuracy and usability are often cited to be two of the most 

important metrics of BCIs (J. Wolpaw et al. 2000; Bos, Poel, and Nijholt 2011; Tan and Nijholt 

2010; Holz et al. 2013). Which of the two is more important has not been robustly established, 

and may even depend on the individual use-case. Further research is required in order to 

establish whether usability or accuracy is deemed to be the single most important BCI metric or 

whether this is a multi-criteria decision. Moreover, the long term implications of both measures 

still need to be explored in future research. For example, it is possible that increased usability 

could translate to increased accuracy over time. 
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2.5.2.2 Computational time, user preference, and training data 

Overall, both PWAR and WS-scores have advantages and limitations when it comes to 

computational time, user preference, and data required for task selection.  

PWAR task selection was computationally more demanding than selection by WS-scores. 

Moreover, the computational time of PWAR increases quadratically with the number of mental 

tasks, specifically, the number of pair-wise combinations is (n)*(n-1)/2, where n is the number of 

tasks. For example, with 6 tasks, there are only 15 pair-wise combinations. However, with 10 

tasks there would be 45 pair-wise combinations. In comparison, the computational time of WS-

scores increases linearly with the number of tasks. The higher computational complexity of 

PWAR could be a major limitation as users are often eager to choose their tasks and do not 

want to wait for data to be processed.  

Overall, users appeared to prefer using WS-scores. Based on user feedback, this is likely due to 

the higher transparency of this method. Users were able to understand that they were choosing 

one task that tended to increase the haemodynamic activity and one task that tended to 

decrease the haemodynamic activity. Thus, there was clarity in terms of what to look for in the 

neurofeedback. On the other hand, PWAR is more of a black-box approach from a user’s 

perspective. Users are told that the computer can tell some pairs of tasks apart better than 

others, but they aren’t given a reason as to why or how. Additionally, when using WS-scores, 

participants only have to deal with six items on the screen, three tasks for increasing and three 

tasks for decreasing haemodynamic activity; whereas, for PWAR, there were 15 possible pair-

wise combinations displayed. The increased amount of information may have been more 

difficult for users to process. 

Finally, the fewer data samples required before using PWAR for task selection could be 

considered a major advantage. Specifically, fewer training sessions would be needed before the 

user can start to utilize the BCI. In the research context, time is usually a major factor and the 

shorter the study the more feasible its completion. 

2.5.3 User accuracy/usability trade-off 

When looking at the tasks chosen by users using PWAR, it is evident that perceived ease-of-

use and preferences play a large role in task selection. Despite being presented with the same 

PWAR, only one participant (P3) selected the same tasks as those chosen by the researcher.  



 

30 

 

This speaks to the importance that users place on ease-of-use, and gives insight into the way 

users traverse the accuracy/usability trade-off. It is noted that all users were informed that by 

not choosing the highest performing set of tasks, they would be sacrificing accuracy for ease-of-

use. The lowest PWAR chosen was a rank of 7 out of the 15 combinations. Specifically, P6, P7, 

and P8 all chose the seventh ranked pair of tasks. It is also noted that on average, the fifth set 

of tasks from the PWAR was chosen.  

The accuracy/usability trade-off has not received much attention in research; however, similar 

trade-offs have been explored in other areas of research. One of the most well researched 

areas is the speed/accuracy trade-off made by individuals on a daily basis (Wickelgren 1977; 

Bogacz et al. 2010). Further exploration of the accuracy/usability trade-off should be conducted. 

2.5.4 Significance 

To the best of our knowledge, this is the first NIRS-BCI study to explore personalized mental 

tasks. Researcher-selected tasks have previously been explored in MRI-BCI (Sorger et al. 

2009) and EEG-BCI studies (Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012); 

however, their application to NIRS-BCI’s has not been explored. Since different BCI access 

modalities differ in their methods of measurement and in terms of their measured responses, 

the results from one modality cannot be extended to others. Moreover, to the best of our 

knowledge, this is the first BCI study that has allowed users to choose their own user-selected 

personalized tasks based on task ease-of-use and performance. Since this work, we have used 

personalized mental tasks in two other NIRS-BCI studies (Weyand, Takehara-Nishiuchi, and 

Chau 2015b; Weyand et al. 2015). 

2.5.5 Limitations and future work 

This study was conducted under ideal environmental conditions (quiet and dimly-lit room), which 

may not be indicative of most real-world settings. Further research should be conducted to 

assess the effect of environmental conditions. Secondly, this study was conducted offline; 

further investigation is required to ensure that these results translate to online BCIs. Thirdly, this 

study was conducted over a relatively short period of time, spanning only five sessions. It is 

possible that accuracy and usability measures change over a longer period of time. Fourthly, 

this study provided users with feedback to reinforce task performance, which may have resulted 

in divided attention between performing the task and observing the feedback (Quinlan and 

Dyson 2008). It has been shown in the literature that dual-task paradigms often result in similar 
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activations of brain regions as if the tasks were performed separately; however, possibly with a 

lower overall activation due to the divided attention (Newman, Keller, and Just 2007). It is noted 

that lower task activation is not necessarily a detrimental limitation so long as the changes in 

brain activations can still be classified. Finally, this study has only investigated four task 

selection frameworks. Variations of these frameworks and alternative frameworks could also be 

explored in future research.  

2.6 Conclusions 

This study explored four NIRS-BCI mental task selection frameworks. It was shown that no 

single framework maximized all metrics. However, in general our findings show that 

personalized rather than prescribed tasks are associated with increased accuracy and 

perceived ease-of-use. Specifically, researcher-selected personalized tasks yielded the highest 

accuracies, while user-selected personalized tasks resulted in the highest perceived ease-of-

use. When comparing the personalized task selection methods, it was concluded that PWAR 

minimized the amount of data that needs to be collected. On the other hand, WS-scores 

maximized user satisfaction, and minimized computational time. Overall, this research provides 

an incentive for the further exploration of personalized mental tasks in future NIRS-BCI studies. 
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Chapter 3: Correlates of User Characteristics 
with Accuracy and Moving Beyond Binary 

Classification 
The entirety of this chapter is reproduced from the article “Correlates of near-infrared 

spectroscopy brain-computer interface accuracy in a multi-class personalization framework”. 

This manuscript has been published in Frontiers in Human Neuroscience. 

3.1 Abstract 

Brain-computer interfaces (BCIs) provide individuals with a means of interacting with a 

computer using only neural activity. To date, the majority of near-infrared spectroscopy (NIRS) 

BCIs have used prescribed tasks to achieve binary control. The goals of this study were to 

evaluate the possibility of using a personalized approach to establish control of a 2-, 3-, 4-, and 

5-class NIRS-BCI, and to explore how various user characteristics correlate to accuracy. Ten 

able-bodied participants were recruited for five data collection sessions. Participants performed 

six mental tasks, and a personalized approach was used to select each individual’s best 

discriminating subset of tasks. The average offline cross-validation accuracies achieved were 

78%, 61%, 47%, and 37% for the 2-, 3-, 4-, and 5-class problems, respectively. Most notably, all 

participants exceeded an accuracy of 70% for the 2-class problem, and two participants 

exceeded an accuracy of 70% for the 3-class problem. Additionally, accuracy was found to be 

strongly positively correlated (Pearson’s) with perceived ease of session ( = 0.653), ease of 

concentration ( = 0.634), and enjoyment ( = 0.550), but strongly negatively correlated with 

verbal IQ ( = -0.749).  

3.2 Introduction 

3.2.1 Near-infrared spectroscopy brain-computer interface 

Brain-computer interfaces (BCIs) can be used as an access pathway for individuals with severe 

motor impairments as they require only brain activations and no muscular control (BZ Allison, 

Wolpaw, and Wolpaw 2007). Near-infrared spectroscopy (NIRS) has recently gained attention 

as a BCI access modality due to its non-invasive extraction methods, gel-less donning, and 

robustness to electrical noise (Ferrari, Mottola, and Quaresima 2004; Scholkmann et al. 2014). 

In general, NIRS can be used to detect changes in the amount of oxygen in neuronal blood, 
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which reflect changes in brain activation (Scholkmann et al. 2014; Boas et al. 2014; Strait and 

Scheutz 2014). A computer can be trained to discriminate between mental tasks based on 

changes of the hemodynamic response resulting from the task being performed.  

Currently, most hemodynamic BCIs use two prescribed tasks to achieve binary control of a 

computer. When using binary BCIs for communication, these tasks can be mapped to a “scroll 

and select” or “yes and no” output (Naito et al. 2007). A handful of studies have been conducted 

on NIRS-BCIs over the prefrontal cortex (PFC), achieving average accuracies ranging from 

around 60% to 80% (Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; 

L. C. Schudlo, Power, and Chau 2013; Naseer and Hong 2013a).  

Multiclass BCIs (beyond binary) have the potential to provide users with more outputs, thereby 

increasing the rate of communication (Shin et al. 2013). However, as the number of classes 

increases, so will the difficulty in discriminating between classes. To date, limited research on 

multi-class NIRS-BCIs has been conducted. To the best of our knowledge, three studies have 

explicitly explored multi-class NIRS-BCIs over the PFC that could potentially be used for active 

computer control, namely, (Herff, Heger, Fortmann, et al. 2013), (Hirshfield et al. 2009), and 

(Sarah D Power, Kushki, and Chau 2012). Herff et al. classified mental workload states, using 

the n-back task with an average 3-class and 4-class accuracy of 50.3% and 44.5%, respectively 

(Herff, Heger, Fortmann, et al. 2013). Hirshfield et al. discriminated between different levels of 

mental workloads, achieving an average 3-class accuracy of 54% (Hirshfield et al. 2009). 

Finally, Power et al. were able to distinguish between mental math, mental singing and rest with 

an average accuracy of 56.2% (Sarah D Power, Kushki, and Chau 2012). A second study by 

Herff et al. also explored differentiating mental arithmetic, word generation, and mental rotation. 

Although the accuracies for a 3-class problem were not explicitly stated, the authors indicated 

that the 3-class accuracies were greater than chance (Herff, Heger, Putze, et al. 2013). Overall, 

these studies demonstrate proof-of-concept for a multi-class NIRS-BCI over the PFC, but are 

not at the level that is required for effective BCI use. It appears that none of the participants in 

these studies exceeded the 70% threshold, often cited as required for BCI control (Andrea 

Kübler, Neumann, et al. 2001). 

3.2.2 Personalized tasks 

One potential method for improving the classification accuracies achievable in an NIRS-BCI is 

the use of researcher-selected personalized mental tasks, an approach whereby a user tries a 
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variety of tasks and subsequently a sub-set of tasks that are most suitable for that user are 

selected by the researcher. Task selection is usually based on the discriminating power of the 

tasks. To date, personalized mental tasks have been explored in a 2-class offline NIRS-BCI 

study (Weyand, Takehara-Nishiuchi, and Chau 2015c), as well as in a 2-class magnetic 

resonance imaging (MRI) BCI study (Sorger et al. 2009) and in 2–class (Palaniappan 2006), 3-

class (Chai et al. 2012), and 4-class (Dobrea and Dobrea 2009) electroencephalography (EEG) 

BCI studies. Overall, these studies conclude that there is significant inter-subject variability in 

brain activation elicited by the same mental tasks and cognitive processes, and as a result, the 

tasks that are most effective for controlling a BCI vary among users. Therefore, there is potential 

to improve classification accuracies by choosing the most discriminating tasks for each user 

(Sorger et al. 2009; Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012; Weyand, 

Takehara-Nishiuchi, and Chau 2015c). To the best of our knowledge, to date, personalized 

tasks have not been explored in an NIRS-BCI beyond the binary paradigm. 

3.2.3 Correlation between BCI accuracy and user characteristics 

Another sparsely explored area in literature is the prediction of BCI accuracy based on user 

characteristics, such as: demographic traits, IQ, and state of mind. Determining the correlation 

between user characteristics and performance may help to reduce some of the large inter-

subject variability in classification accuracies, steer future BCI development, and provide 

additional measures for selecting user-specific tasks. 

To date, limited accuracy-user correlation research has been conducted in the field of NIRS-

BCIs. However, several studies have examined the inter- and intra-subject correlations between 

accuracy and characteristics of able-bodied participants using various EEG-based BCIs. 

Studies have reported increased accuracy to be correlated with: increasing self-reported task 

enjoyment (Pearson’s  = 0.3, p < 0.1) (E V C Friedrich, Scherer, and Neuper 2013), increasing 

challenge (Spearman’s  = 0.8, p < 0.01) (Kleih et al. 2011), decreasing sleep (Mann-Whitney 

test, p < 0.05) (Guger et al. 2009), increasing mood (multiple regression b = 0.498, p < 0.05) 

(Nijboer et al. 2008), increasing mastery confidence (multiple regression b = 0.578, p < 0.05) 

(Nijboer et al. 2008), and increasing attention (Spearman’s  = 0.5, p = 0.02) (Hammer et al. 

2012). Conflicting trends have been reported on the association of accuracy with fear of 

incompetence, i.e., anxiety of failing the task. Studies have noted increased accuracy with 

increasing (Spearman’s  = 0.37, p < 0.05) (Kleih et al. 2011), and decreasing (multiple 



 

35 

 

regression b = -0.616, p < 0.05) (Nijboer et al. 2008) fear of incompetence, both when visual 

feedback was provided. However, in the presence of auditory feedback accuracy and fear 

increased together (multiple regression b = 0.47, p < 0.05) (Nijboer et al. 2008). 

Limited research has also been conducted on the correlation of accuracy with user 

demographics. Randolph et al. documented a positive relationship between age and control 

signal strength (multiple linear regression, p = 0.013) (Randolph, Karmakar, and Jackson 2006). 

Meanwhile, Allison et al. observed that older subjects and male subjects tended to perform 

worse; however, it is noted these trends were not significant (Brendan Allison et al. 2010). 

In contrast to the above, several researchers found no correlations between accuracy and user 

characteristics; for example, in Guger et al., gender, education, work duration, and cigarette and 

coffee consumption were not statistically related to accuracy (Guger et al. 2009), and in 

Hammer et al., intelligence, mood, motivation, or learning abilities were not correlated with 

accuracy (Hammer et al. 2012). 

In addition to the studies on able-bodied participants, Nijboer et al. performed an intra-subject 

correlation analysis on six individuals with amyotrophic lateral sclerosis to explore the effect of 

quality of life, depression, mood, mastery confidence, incompetence fear, interest, and 

challenge on performance over time (across sessions). They found that BCI performance was 

positively related to mastery (Spearman’s  = +0.805) in one participant, positively related to 

challenge (Spearman’s  = +0.733) in another, and negatively related to incompetence fear 

(Spearman’s  = -0.824) in a third. No other correlations were found in the remaining three 

participants (Nijboer, Birbaumer, and Kübler 2010). 

Although, to the best of our knowledge, no studies have explored correlations of NIRS-BCI 

performance with respect to user characteristics, the variety of correlations reported in EEG-BCI 

literature, along with the known dependencies of neural oxygenation levels on gender (F. Okada 

et al. 1993), handedness (F. Okada et al. 1993), age (Schroeter et al. 2003; Kwee and Nakada 

2003), and IQ (Graham et al. 2010), suggest that such an investigation is warranted. 

3.2.4 Objectives 

The first objective of this study was to use a personalized mental task approach to determine 

the accuracies achievable for a 2-, 3-, 4-, and 5-class NIRS-BCI. The second objective was to 

ascertain the strength of the correlations between the accuracy achieved over five sessions by 
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each participant and his or her personal characteristics, specifically, gender, handedness, age, 

verbal IQ score, average self-reported ease of session, average self-reported session 

enjoyment, average self-reported user tiredness, and average self-reported ease of 

concentration. 

3.3 Methods 

It is noted that the data collected during this study were also analyzed to compare 2-class 

prescribed and personalized NIRS-BCI frameworks offline. For more information on this work, 

please refer to (Weyand, Takehara-Nishiuchi, and Chau 2015c). 

3.3.1 Participants 

Ten able bodied participants (4 male, 6 female) were recruited from the staff and students at 

Holland Bloorview Kids Rehabilitation Hospital (Toronto, Canada). Signed consent was obtained 

from all participants and the study was approved by the ethics departments at Holland 

Bloorview Kids Rehabilitation Hospital and the University of Toronto. All participants were self-

selected and naïve to NIRS-BCIs.  

3.3.2 Criteria 

Participants had normal or corrected-to-normal vision, were not receiving psychoactive 

medication such as anti-depressants or analgesics, and did not have any health conditions that 

may affect the measurement of or one’s ability to perform mental tasks, including, but not limited 

to: degenerative disorders, cardiovascular disorders, metabolic disorders, trauma-induced brain 

injury, respiratory conditions, drug and alcohol-related conditions, and psychiatric disorders. 

Lastly, participants had to communicate in English, refrain from smoking, and avoid drinking 

alcohol or caffeinated beverages three hours prior to data collection.  

3.3.3 Instrumentation 

The Imagent Functional Brain Imaging System from ISS Inc., Champaign, IL (ISS Inc. 2012) 

was used to collect the NIRS data at a sampling rate of 31.25 Hz. Three photomultiplier tube 

detectors and five laser diodes (emitting 690 and 830 nm light) were arranged in a trapezoid, as 

shown in Figure 9. The trapezoid configuration allowed for discrete signal extraction at nine 

points of interrogation, located between each detector and diode that is separated by a distance 

of 3 cm (Naito et al. 2007). A headband made of rubber polymer (3M 9900 series) was used to 



 

37 

 

position the detectors and light sources. All detectors and diodes were held in place by opaque 

fabric pockets that provided shielding from ambient light, and minimized detector and diode 

motion, while maximizing contact with the head. The headband was positioned above the 

eyebrows and centered with respect to the nose. Additionally, an accelerometer attached to the 

headband was used to collect information on head movement. 

 
Figure 9. Experimental source and detector configuration. The solid circles represent detectors; the open 
circles represent light source pairs; the x’s represent points of interrogation (channels); and the starred 

areas represent the approximate FP1 and FP2 positions of the international 10-20 EEG system. 

3.3.4 Experimental protocol 

3.3.4.1 Study structure and user interface 

Participants took part in five data collection sessions on five separate days. Each session 

consisted of three data collection blocks. During each block, a baseline of 30 seconds was 

collected followed by 24 task intervals. The task intervals consisted of a task being performed 

for 20 seconds followed by a 17 second rest period. All six tasks were performed four times in a 

random order. Participants were asked to remain still during the task intervals. 

Each task was performed 60 times by each participant (4 repetitions/block x 3 blocks/session x 

5 sessions = 60).  

Participants were provided with two forms of feedback: 1) A real-time trapezoidal topographic 

image that corresponded to the hemodynamic changes over the entire interrogation area, and 

2) A ball which rose and fell depending on the average activation over the trapezoid. The goal of 

the neurofeedback was to provide participants with real-time information about changes in their 

haemodynamic activity when performing each of the tasks. Participants were informed that they 

should not stop performing the tasks; however, they could slightly modify the tasks, i.e. perform 

the tasks faster or slower, in order to try and achieve a more consistent change in the feedback. 

In a study by Schudlo and Chau, it was found that 8 out of 10 participants adjusted their mental 

strategies when using feedback (L. C. Schudlo and Chau 2014).The feedback was updated 
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every 125 ms, and was calculated using cubic interpolation of the oxygenated haemoglobin 

(HbO) values at equally spaced intervals between the points of interrogation. The topographic 

image was 21 pixels in height with parallel sides 21 and 61 pixels in length, as in (L. C. Schudlo 

and Chau 2014; Weyand et al. 2015). The red colour on the feedback represented an increase 

in haemodynamic activity, while the blue colour represented a decrease in haemodynamic 

activity. The user interface, including the two types of feedback, is shown in Figure 10. 

 
Figure 10. User interface for all sessions. The task name and symbol shows which of the six tasks the user 
should perform, i.e. mental math, word generation, happy thoughts, relaxing with focus, relaxing with slow 

counting, or unconstrained rest. 

3.3.4.2 Mental tasks 

In this study, we explored six mental tasks, selected on the basis of past literature indicating 

their suitability for NIRS-BCI control. Each of the six mental tasks is described in Table 4.  

Table 4. Mental tasks and descriptions. 

Mental Task Description 

Mental math (MM) Users continuously subtract a randomly generated two-digit number from a 
randomly generated three-digit number. For example, given the equation 

“593-11”, users would think “593-11 = 582; 582-11 = 571; 571-11 = 560…” 
(Ang, Yu, and Guan 2012; Naito et al. 2007; Herff, Heger, Putze, et al. 2013; 
Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; L. 

C. Schudlo, Power, and Chau 2013; Ogata, Mukai, and Yagi 2007; 
Bauernfeind et al. 2008; Sarah D. Power, Kushki, and Chau 2012; Utsugi et 

al. 2007; L. C. Schudlo and Chau 2014). 

Word generation (WG) Users think of as many words that start with a randomly generated letter. For 
example, given the letter “D”, users may think of “dog, data, dashboard, 

donut…” (Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007). 

Happy thoughts (HT) Users think of a past event in their life that made them happy (Kelly Tai and 
Chau 2009). 

Relaxing with focus 
(RF) 

Users concentrate on the trapezoid activation feedback. Focusing on either 
the increasing or decreasing portions (K. Izzetoglu et al. 2011). 
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3.3.5 Additional data collection 

The Ammons Quick Test was used to asses verbal IQ. The Ammons Quick Test is a 5-15 

minute standardized verbal IQ test designed by Robert and Carol Ammons in 1962 and was 

administered after the last data collection session. The test consists of 50 questions in which 

users are asked to attribute a given word with one of four given pictures. The Ammons Quick 

Test has been shown to provide a good approximation of the full scale IQ as measured by the 

Wechsler intelligent scale for adults (WAIS) with Pearson’s product moments of 0.85 (Zagar et 

al. 2013) and 0.89 (Husband and DeCato 1982). The Ammons Quick Test has been used in 

several psychiatric studies (Advokat, Eustis, and Pickering 2005; Marjoram et al. 2005). It 

should be noted that one of the ten participants (P4) chose not to complete the Ammons Quick 

Test.  

A background questionnaire was administered prior to data collection to collect demographic 

data on each participant, including the participant’s age range, gender, and handedness. 

A post-session questionnaire was completed at the end of each session. Participants evaluated 

the following subjective statements on a 7-point Likert-type scale ranging from “Strongly Agree” 

to “Strongly Disagree”: 1) I was tired before the session began, 2) I found it easy to concentrate 

during the session, 3) The session was fun, 4) It was easy to perform the tasks and session, 

and 5) The headgear was comfortable. For correlation analysis, the answers from all five post-

session questionnaires were averaged for each participant. 

3.3.6 Data processing 

As a result of observed participant head motion or loss of contact between the head and the 

detectors, up to 20 data points (a maximum of four per class) were discarded from participants 3 

and 9. 

Relaxing with slow 
counting (RS) 

Users count slowly, starting from any number that they wish (Naseer and 
Hong 2013a). 

Unconstrained rest (RR) Users are allowed to let their mind wander and may think of anything other 
than the five mental tasks (Ang, Yu, and Guan 2012; Naito et al. 2007; Herff, 
Heger, Putze, et al. 2013; S. Power, Kushki, and Chau 2011; L. C. Schudlo, 

Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 2012; L. C. 
Schudlo and Chau 2014). 
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3.3.6.1 Filtering 

The NIRS data were filtered in order to minimize noise due to the Mayer wave at a frequency of 

0.1 Hz, the respiration cycle at a frequency of 0.2-0.4 Hz, and the cardiac cycle at a frequency 

of 0.5-2.0 Hz. A low-pass third-order Chebyshev infinite impulse response (IIR) cascade filter 

was used with a pass-band from 0-0.1 Hz, a transition band from 0.1-0.5 Hz, a stop-band from 

0.5 Hz onwards, and a pass band ripple of 0.1 dB.  

3.3.6.2 Calculating haemoglobin concentrations 

The modified Beer Lambert’s law (Delpy et al. 1988) was used to calculate changes in the 

concentrations of deoxygenated hemoglobin  ([Hb]), oxygenated hemoglobin ([HbO]), and 

total hemoglobin  ([tHb]), as in (L. C. Schudlo, Power, and Chau 2013; Sarah D. Power, 

Kushki, and Chau 2012; L. C. Schudlo and Chau 2014; Weyand, Takehara-Nishiuchi, and Chau 

2015b; Weyand et al. 2015).  

3.3.6.3 Feature extraction 

Features extracted from the NIRS signal consisted of the temporal and spatial changes in the 

concentrations of the three chromophores (Hb, HbO, and tHb) over the four time windows (0-5s, 

0-10s, 0-15s, and 0-20s). Specifically, the temporal features consisted of the linear regression 

slope over the normalized time windows for each of the 9 points of interrogation (4 time 

windows x 3 chromophores x 9 points of interrogation = 108 features), and the spatial features 

consisted of the linear regression slope over the zero to fourth order discrete orthogonal 

Chebyshev image moments over the four time windows (4 time windows x 3 chromophores x 15 

image moments = 180 features). For more information on the extracted features, please refer to 

(L. C. Schudlo, Power, and Chau 2013; Weyand, Takehara-Nishiuchi, and Chau 2015c). Three 

distinct feature sets were considered during this study: temporal features only (108 features), 

spatial features only (180 features), and temporal combined with spatial (temporal-spatial) 

features (288 features).   

3.3.6.4 Feature selection 

For each of the three distinct feature sets, a subset of the features was selected from the 

training data to reduce the dimensionality of the problem and reduce redundancy. The Fast 

Correlation Based Filter (FCBF) was implemented (Yu and Liu 2003). FCBF is useful for feature 

sets with high dimensionality and has been used previously in EEG-BCI studies (Koelstra et al. 
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2010; Chanel, Ansari-Asl, and Pun 2007) and in the detection of the hemodynamic response by 

MRI (Tripoliti, Dimitrios, and Argyropoulou 2007). For more information on the FCBF please 

refer to (Yu and Liu 2003). The FCBF typically reduced the high dimensional feature sets to 

subsets consisting of 3 to 5 features.   

3.3.7 Data analysis 

3.3.7.1 Offline classification 

Offline classification accuracies were calculated using ten iterations of ten-fold cross-validation 

(Refaeilzadeh, Tang, and Liu 2009). For each iteration of ten-fold cross-validation, the data 

were randomly separated into 10 equal sized portions (folds). Ten classification accuracies were 

calculated by iteratively using each fold as testing data and the remaining folds as training data. 

Only training data were used for feature selection and classifier training, and only the testing 

data were used to estimate the classification accuracies. Finally, all classification accuracies 

were averaged to estimate the overall accuracy. 

3.3.7.2 Multi-class classification algorithm 

Classification was performed for all possible n-class combinations of the six mental tasks 

(where n = 2, 3, 4 or 5 classes). Specifically, the 6 choose n (6Cn) task combinations for the 2-, 

3-, 4-, and 5-class problems resulted in a total of 15, 20, 15, and 6 unique task combinations 

being explored for each classification problem, respectively.  

Multi-class classification was conducted in a one-vs-one (OVO) manner by simplifying each n-

class problem into m binary problems (where m = nC2) and voting on the majority class (Rocha 

and Goldenstein 2014; Dietterich and Bakiri 1995). The number of binary problems (m) given n 

= 2, 3, 4, and 5 classes, were 1, 3, 6, and 10, respectively.  

The class of each of the m binary classifiers was determined by the majority vote of three 

ensemble classifiers, one for each feature set (temporal features only, spatial features only, and 

temporal and spatial features). In particular, a bagging ensemble classifier with ten members of 

linear discriminant analysis classifiers was used for each feature set.  

Figure 11 shows an example of the classification algorithm for one set of 3 tasks (Task A vs. 

Task B vs. Task C). The label for the testing data was predicted by a majority vote of the three 
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binary classifiers (A vs. B, A vs. C, and B vs. C), whose individual outputs were derived from a 

majority vote of three ensemble classifiers (temporal, spatial, and temporal-spatial). 

 
Figure 11. Classification scheme for a sample 3 class problem. The output of each of the binary (2-class) 

classifiers was determined by a majority vote of the three ensemble classifiers (temporal, spatial, and 
temporal-spatial). Subsequently, the output of the ternary (3-class) classifier was derived from the majority 

vote of the three binary classifiers.  

3.3.7.3 Correlations between accuracy and user characteristics 

The normality of the data was confirmed with the Shapiro-Wilk normality test. Pearson’s 

correlations with  = 0.1 were computed between accuracy and user characteristics following 

normal distributions, including IQ and state of mind data. Spearman’s Rho correlations with  = 

0.1 were computed between accuracy and the demographic data. For brevity, only the 

correlations with respect to the best 2-class accuracies were reported. The alpha value for the 

correlation analyses was set to 0.1 to minimize type II errors - i.e. missing a correlation that 

exists. Although this increases the probability of type I errors - i.e. finding a correlation when 

there isn’t one - at this stage, we believe it is more important to find potential correlations 

(Banerjee et al. 2009). Moreover, a similar value has been used in a previous EEG-BCI 

correlation analysis (E V C Friedrich, Scherer, and Neuper 2013). 
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3.4 Results 

3.4.1 Accuracies achieved 

The accuracies achieved for the 2-, 3-, 4-, and 5-class problems are shown in Figure 12. 

Average classification accuracies of 78.4 ± 5.7%, 60.5 ± 6.6%, 46.7 ± 5.7%, and 37.2 ± 5.4%, 

were achieved for the 2-, 3-, 4-, and 5-class problems, respectively. 

 
Figure 12. Box plot of accuracies for the 2-, 3-, 4-, and 5-class problems. Whiskers extend from min to max 

value. The dashed line below each box plot shows the upper limit of chance accuracy for each classification 
problem. 

All participants exceeded the 70% threshold for the 2-class problem, and two participants (P3 

and P5) exceeded the 70% threshold for the 3-class problem.  

All participants exceeded chance levels for all n-class problems. Theoretically, for 2, 3, 4, and 5 

classes, the chance level accuracies are 50%, 33%, 25%, and 20%, respectively. However, 

when the number of trials is less than infinity, the chance levels are those values plus or minus 

a confidence interval, given a value α (Mueller-Putz et al. 2008). Using the equation presented 

in (Mueller-Putz et al. 2008), the confidence limits for randomized class labels were calculated 

(Table 5). For the classifier accuracy to be statistically greater than chance, accuracies must 

exceed the upper confidence limit. In all cases, the classification of participant data with 

randomized class labels fell within the confidence limits of chance. 

Table 5. Chance levels and corresponding confidence limits for the 2-, 3-, 4-, and 5-class problems given 60 
trials per class and α = 0.05. The Bonferroni correction was used to account for the multiple task-subsets 

explored (Kaltenbach 2012). Therefore, adjusted α values of 0.0033, 0.0025, 0.0033, and 0.0083 were used for 
the 2-, 3-, 4-, and 5-class problems, respectively. 

Class Chance Level Confidence limits 
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2 50%  (36.8%, 63.2%) 

3 33.4%  (23.2%, 44.2%) 

4 25%  (17.2%, 33.6%) 

5 20%  (14.3%, 26.5%) 

3.4.2 Task frequency analysis 

The best task pairs for each of the participants and for all n-class problems are shown in Table 

6. The most common combination of tasks chosen for the 2-, 3-, 4-, and 5-class problems are 

shown in the last row of Table 6. Additionally, the individual task frequencies for each of the n-

class problems are shown in Figure 13. The most frequently chosen tasks over all classification 

problems were happy thoughts (HT) and relaxing with focus (RF). 

Table 6. Best task combinations for 2-, 3-, 4-, and 5-class problems. Legend: MM = mental math, WG = word 
generation, HT = happy thoughts, RF = relaxing with focus, RS = relaxing with slow counting, and RR = 

unconstrained rest. 

Participant 2-class 3-class 4-class 5-class 

1 WG RF WG HT RF MM WG HT RF MM WG HT RF RS 

2 MM RF WG HT RF MM WG RF RS MM WG HT RF RS 

3 HT RF WG HT RR WG HT RS RR MM WG HT RF RR 

4 MM WG MM WG HT MM WG HT RF MM WG HT RF RS 

5 MM RF MM HT RF MM HT RF RR WG HT RF RS RR 

6 HT RF HT RF RR MM HT RF RR MM WG HT RF RR 

7 WG RF MM HT RF MM WG HT RF MM WG HT RF RS 

8 MM HT MM HT RF MM HT RF RR MM WG HT RF RS 

9 HT RF HT RF RR MM HT RF RR MM WG HT RF RR 

10 MM RF MM HT RF MM HT RF RS MM HT RF RS RR 

Most 
common 

HT&RF and MM&RF MM&HT&RF MM&HT&RF&RR MM&WG&HT&RF&RS 
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Figure 13. Number of times that each task was chosen as the best task for a participant for the 2-, 3-, 4-, and 
5-class problems. It should be noted that since there are 10 participants, if a task is chosen 10 times, then it 

was chosen for all the participants. Legend: MM = mental math, WG = word generation, HT = happy thoughts, 
RF = relaxing with focus, RS = relaxing with slow counting, and RR = unconstrained rest. 

3.4.3 Correlations of accuracy with user characteristics 

Table 7 shows the correlations between assessed criteria and the 2-class classification 

accuracies over all participants. Strong positive correlations were found between accuracy and 

concentration ( = +0.634, p < 0.05), ease of session ( = +0.653, p < 0.05), and enjoyment ( = 

+0.550, p < 0.10), while accuracy and verbal IQ were strongly negatively correlated ( = -0.749, 

p < 0.05). It is noted that verbal IQ scores ranged from 80 to 116. Additionally, a moderate non-

significant negative correlation was found between accuracy and tiredness before the session. 

Finally, weak to no correlation was found between accuracy and gender, as well as between 

accuracy and handedness. However, it is noted that there were 6 female participants and 8 

right-handed participants. As a result of a homogeneous age range (seven of the participants 

were in their twenties), no correlation analysis between age and accuracy was conducted. 

Table 7. Correlations between 2-class accuracies and user characteristics (α = 0.1). 

 
Correlation with 2-class accuracy 

() 
p-value (p) 

Verbal IQ Pearson’s  = -0.749 0.020 

Enjoyment Pearson’s  = 0.550 0.100 

Tiredness Pearson’s  = -0.449 0.193 

Concentration Pearson’s  = 0.634 0.049 

Ease of Session Pearson’s  = 0.653 0.041 

Gender Spearman’s  = -0.221 0.540 

Handedness Spearman’s  = 0.015 0.968 
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3.5 Discussion 

3.5.1 Comparison of classification accuracies 

The average 2-class accuracy achieved in this work (78.4%) appears to be on par with the high-

end of those reported in other NIRS-BCI studies over the PFC (L. C. Schudlo, Power, and Chau 

2013; S. Power, Kushki, and Chau 2011; Sarah D. Power, Falk, and Chau 2010). As expected, 

when moving beyond binary classification there was a significant drop in the accuracies 

achieved as a result of the increasing complexity of the classification problem. Overall, our 

results show promising progress towards distinguishing three and four mental tasks using an 

NIRS-BCI over the PFC. For most participants, the accuracies achieved in this study are still not 

sufficient for real-world BCI use; however, two participants (P3 and P5) were able to exceed the 

70% threshold for a 3-class problem. It is noted that these two participants had the two highest 

enjoyment, concentration and reported ease-of-use ratings, and had two of the three lowest 

verbal IQ scores.  

The average 3- and 4-class accuracies achieved in this work (61% and 47%) appear to be on 

par with the high-end of those reported in other multi-class NIRS-BCI studies over the PFC 

(Hirshfield et al. 2009; Sarah D Power, Kushki, and Chau 2012; Herff, Heger, Putze, et al. 2013; 

Herff, Heger, Fortmann, et al. 2013), namely, average 3-class accuracies of 50% (Herff, Heger, 

Fortmann, et al. 2013), 54% (Hirshfield et al. 2009), and 56% (Sarah D Power, Kushki, and 

Chau 2012), and a 4-class accuracy of 45% (Herff, Heger, Fortmann, et al. 2013). Moreover, 

contrary to our study, it appears that in NIRS-BCI literature, to date, no participant was able to 

exceed the 70% threshold for a 3-class problem. Additionally, to the best of our knowledge, no 

other NIRS-BCI study has attempted to differentiate five mental tasks over the PFC.  

Note that the accuracies achieved for 3- and 4-class NIRS-BCIs over the PFC are still much 

lower than those achieved for EEG-BCIs and NIRS-BCIs over the motor cortex (Shin and Jeong 

2014; An, Lee, and Ahn 2013; Gupta, Parameswaran, and Lee 2009; Palaniappan et al. 2002; 

Chai et al. 2012; Dobrea and Dobrea 2009). This is in line with similar trends of lower 

accuracies in 2-class NIRS-BCI studies over the PFC (S. Power, Kushki, and Chau 2011), when 

compared to 2-class EEG-BCI studies (Nai-Jen and Palaniappan 2004) and NIRS-BCI studies 

over the motor cortex (Sitaram et al. 2007). However, as previous researchers have pointed out, 

there are numerous advantages to using NIRS over the PFC. Specifically, the headband is not 

intrusive and requires minimal set-up time when compared to both EEG-BCIs and NIRS-BCIs 
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over the motor cortex (Sarah D Power, Kushki, and Chau 2012; Bauernfeind et al. 2008; Kopton 

and Kenning 2014; Herff, Heger, Putze, et al. 2013). Additionally, motor tasks may not be 

suitable for all users, such as our target population of clients with motor impairments (E. Curran 

et al. 2004). When conducting NIRS-BCI measurements over areas with hair, there are 

additional challenges, including the integrity of the optode-skin contact and attenuation of light 

by hair (Lloyd-Fox, Blasi, and Elwell 2010). To combat this, spring loaded sources and detectors 

can be used, but these have been shown to be uncomfortable (Lloyd-Fox, Blasi, and Elwell 

2010), with several participants dropping out of studies due to headset discomfort (Cui et al. 

2011; Suzuki, Harashima, and Furuta 2010). On the other hand, it appears that users found the 

NIRS headband in this study to be comfortable. Participants evaluated the post-session 

statement “The headgear was comfortable” at an average rating of 5.3 +/- 0.9 on the 7 point 

Likert-type scale, indicating that on average participants agreed with this statement. Moreover, 

none of the participants reported the headset to be uncomfortable (no rating < 4). 

3.5.2 Correlation between user characteristics and accuracy 

Although correlation analyses were conducted on only ten participants, several interesting 

trends warrant further exploration. 

3.5.2.1 Increasing accuracy with decreasing verbal IQ 

Contrary to the EEG-BCI results by Hammer et al. (Hammer et al. 2012), who found no 

correlation between accuracy and non-verbal intelligence, in this study we found a strong 

negative correlation between accuracy and verbal intelligence. This correlation may seem 

surprising at first; however, upon further analysis, it appears that this trend may be attributable 

to task difficulty and neural efficiency.  

In addition to the correlation between IQ and accuracy, a negative correlation was found 

between verbal IQ and the range (max-min) of HbO concentrations of the chosen tasks ( = -

0.603, p < 0.1). This indicates that in general, individuals with lower IQ elicited larger overall 

changes in their hemodynamic activity. A possible explanation for this is that individuals with 

lower verbal IQ scores tend to elicit stronger, more consistent changes in neuronal 

hemodynamic activity when performing mental tasks since they find them to be more 

challenging.  
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In literature, the relationship between intelligence and hemodynamic brain activity is still widely 

debated, and is often referred to as the “neural efficiency debate” (Graham et al. 2010). Similar 

to findings in this study, several researchers reported that that a decrease in IQ or skill was 

associated with an increase in brain activation. An MRI study conducted by Graham et al. found 

that participants with average IQ showed greater PFC activation during response selection than 

did high IQ participants. The authors argued that the participants with high IQ’s invoked more 

resource-efficient cognitive strategies resulting in less activation (Graham et al. 2010). 

Additionally, a positron emission tomography (PET) study by Haier et al., concluded that there 

was an inverse correlation between neural activity and verbal IQ scores in several brain regions, 

including areas of the frontal cortex (Haier et al. 1992). Moreover, an MRI study by Rypma et al. 

showed that during a working memory task, higher performing participants had overall less PFC 

activation than lower performing participants. This study also found that higher performing 

participants exhibited a larger increase in activation with increased task difficulty (Bart Rypma, 

Berger, and D’Esposito 2002; BART Rypma and D’esposito 1999). Collectively, these results 

reveal a relationship between task difficulty and IQ, and motivate further exploration of 

personalized task difficulty levels for each participant based on IQ scores. 

3.5.2.2 Increasing accuracy with state of mind changes 

We found a strong significant positive correlation between accuracy and each of concentration 

and reported ease. These results appear to be in line with EEG-BCI literature. Specifically, 

Hammer et al. noted a positive correlation between accuracy and attention ( = 0.5, p = 0.02) 

(Hammer et al. 2012), while Nijboer et al. documented a positive correlation between accuracy 

and mastery confidence (b = 0.578, p < 0.05) (Nijboer et al. 2008).  

Additionally, we found a strong significant positive correlation between accuracy and task 

enjoyment. This finding also resonates with EEG-BCI literature. Friedrich et al. uncovered a 

positive correlation between accuracy and self-reported task enjoyment ( = 0.3, p < 0.1) (E V C 

Friedrich, Scherer, and Neuper 2013), while Nijboer et al. cited a positive correlation between 

accuracy and mood (b = 0.498, p < 0.05) (Nijboer et al. 2008). 

Finally, we found a moderate, but not significant, negative correlation of accuracy with tiredness. 

This trend appears to be in contrast to the previous EEG-BCI finding of increased accuracy with 

decreased sleep in a P300 BCI (p < 0.05) (Guger et al. 2009). However, due to the very 

different neural mechanism involved in using a P300 BCI, this inconsistency is not surprising. 
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Overall, these findings motivate future research to enhance NIRS-BCI accuracy via training for 

confidence and concentration, and maximizing enjoyment while minimizing fatigue. 

3.5.3 Limitations and future work 

This study was conducted under controlled conditions which included a dimly lit room free of 

distractions. Future studies should be conducted in more practical environments in order to 

assess the functionality of the BCI in less than optimal conditions. 

Secondly, the study was conducted on able-bodied participants. For use as an access 

technology for individuals with severe motor impairments, the results obtained likely do not 

reflect the performance of this target population. Further research and testing on a clinical 

population is necessary before conclusions about the effectiveness of multi-class BCIs can be 

made. 

Thirdly, when using NIRS as an access modality for a BCI, there is the potential for systemic 

contributions to the signal (Takahashi et al. 2011). Although systemic noise is likely present, it 

has been shown that the majority of the signal originates from the cerebral cortex (Funane et al. 

2014; Yoko Hoshi et al. 2011; Kirkpatrick et al. 1995). Moreover, the cortical component has 

been shown to be non-trivial; strong correlations have been reported between the NIRS and 

fMRI signals (Cui et al. 2011; Sato et al. 2013; Sasai et al. 2012) and between NIRS and EEG 

signals (Moosmann et al. 2003; Koch et al. 2008; Roche-Labarbe et al. 2010; Talukdar, Frost, 

and Diamond 2015).  

Fourthly, in addition to the user characteristics described in this work, several other factors may 

be correlated to NIRS-BCI accuracy. Specifically, future work should explore the correlation of 

anatomical features with accuracy, such as scalp-cortex distance and frontal sinus volume, as 

these have been shown to be correlated with NIRS signal quality (Haeussinger et al. 2011). 

Other future directions include correlation analysis with respect to task performance, as well as 

the exploration of within-subject correlations on a per-session basis.  

Finally, this study was conducted offline and over a relatively short period of time, with only five 

data collection sessions. It is possible that when moving online (with the inclusion of real-time 

performance feedback) and when conducting studies over longer periods of time (with the 

possibility of learning and habituation), performance and the correlation of performance with 

user characteristics may change. Further research on online and long-term trends is necessary. 
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3.6 Conclusions 

This study explored the use of personalized mental tasks to increase the number of outputs of 

an NIRS-BCI. Average classification accuracies of 78.4 ± 5.7%, 60.5 ± 6.6%, 46.7 ± 5.7%, and 

37.2 ± 5.4%, were attained for the 2-, 3-, 4-, and 5-class problems, respectively. All participants 

exceeded the 70% threshold for the 2-class problem, and most notably, two participants were 

able to exceed an accuracy of 70% for the 3-class problem. 

Accuracy positively correlated with ease of session, ease of concentration, and enjoyment, and 

negatively correlated with verbal IQ. Future multi-class NIRS-BCI research ought to consider the 

development of training paradigms for maximizing user concentration, enjoyment, and 

confidence, as well as personalization of task difficulty based on IQ. 

Overall, this research provides an incentive for further exploration of multi-class NIRS-BCIs, as 

well as continued research on the user characteristics that affect classification accuracies. 
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Chapter 4: User-selected Personalized 
Mental Tasks Online Study 

The entirety of this chapter is reproduced from the article “Usability and performance-informed 

selection of personalized mental tasks for an online near-infrared spectroscopy brain-computer 

interface”. This manuscript has been published in Neurophotonics. 

4.1 Abstract 

Brain-computer interfaces (BCIs) allow individuals to use only cognitive activities to interact with 

their environment. The widespread use of BCIs is limited due in part to their lack of user-

friendliness. The main goal of this work was to develop a more user-centered BCI and 

determine if: (i) individuals can acquire control of an online near-infrared spectroscopy BCI via 

usability and performance-informed selection of mental tasks without compromising 

classification accuracy, and (ii) the combination of usability and performance-informed selection 

of mental tasks yields subjective ease-of-use ratings that exceed those attainable with 

prescribed mental tasks. Twenty able-bodied participants were recruited. Half of the participants 

served as a control group, using the state-of-the-art prescribed mental strategies. The other half 

of the participants comprised the study group, choosing their own personalized mental 

strategies out of eleven possible tasks. It was concluded that users were in fact able to acquire 

control of the more user-centered BCI without a significant change in accuracy compared to the 

prescribed task BCI. Furthermore, the personalized BCI yielded higher subjective ease-of-use 

ratings than the prescribed BCI. Average online accuracies of 77 ±12.9% and 73 ±12.9% were 

achieved by the personalized and prescribed mental task groups, respectively.  

4.2 Introduction 

4.2.1 Brain-computer interfaces 

Brain-computer interfaces (BCIs) allow individuals to interact with their environment using only 

cognitive activities (Elisabeth V C Friedrich, Scherer, and Neuper 2012; Ang, Yu, and Guan 

2012; S. M. Coyle, Ward, and Markham 2007; Niels Birbaumer 2006). BCIs exploit a user’s 

brain signals for external device control without requiring intentional muscle activations or the 

peripheral nervous system responses (S. M. Coyle, Ward, and Markham 2007; J. Wolpaw et al. 

2000). The potential applications of BCIs are vast. BCIs can be used by able-bodied individuals 
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for gaming, entertainment, and to accelerate learning (Elisabeth V C Friedrich, Scherer, and 

Neuper 2012; Ayaz et al. 2007). BCIs can also be used by individuals with severe motor 

impairments as a means of communication, as a way of controlling a wheel chair for mobility, or 

as a method for controlling devices in their environment (Niels Birbaumer 2006; J. Wolpaw et al. 

2000; Ayaz et al. 2007; Blain, Mihailidis, and Chau 2008). Individuals with amyotrophic lateral 

sclerosis, spinal cord injuries, brain stem stroke, complete paralysis, or muscular dystrophy 

among other debilitating conditions stand to benefit from BCIs (Ayaz et al. 2007; Sitaram et al. 

2007). Indeed, BCIs have the potential to significantly increase the quality of life for patients with 

severe motor impairments (Naito et al. 2007).  

A BCI consists of an input, a translation algorithm, and an output. The input to a BCI is the 

physiological signal that is being harnessed. The input can be further broken down into the 

access modality, which refers to how the signal is collected, and the access pathway, which 

refers to how a change in that signal is evoked. After the signal is collected, the translation 

algorithm processes the signal to remove noise, extracts features, extracts the most 

discriminant features, and trains a classifier to predict the class to which a case belongs. Finally, 

the output of the BCI involves the control of an external device (J. Wolpaw et al. 2000). For a 

given BCI, any of the above factors can be modulated in order to improve the BCI. Most papers 

focus on improving the translation methods, while only a few papers focus on improving the 

input. The focus of this research is on improving the input access pathway. 

4.2.2 Near-infrared spectroscopy 

Near-infrared spectroscopy (NIRS) is a non-invasive, safe, portable, and low-cost optical neural 

imaging technique that measures haemodynamic brain activity (Ang, Yu, and Guan 2012; S. M. 

Coyle, Ward, and Markham 2007; Ayaz et al. 2007; S. Coyle et al. 2004). Despite temporal 

limitations, NIRS offers several advantages over other non-invasive BCI access modalities, 

including for example, gel and paste-free donning and flexibility of measurement environments. 

For further discussion of the relative merits of NIRS as an access modality, refer to Refs. (S. M. 

Coyle, Ward, and Markham 2007; Ayaz et al. 2007; Sitaram et al. 2007; S. Coyle et al. 2004). 

NIRS works by measuring the changes in the absorption of near infrared light that travels 

through the skin, periosteum, skull, meninges, and the cerebral cortex of the brain. The amount 

of light that is absorbed varies with the amount of oxygen in the blood. Through a mechanism 

known as neurovascular coupling, areas of the brain that are active have an increase in 

oxygenated haemoglobin (HbO), an increase in total haemoglobin (tHb), and a decrease in 
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deoxygenated haemoglobin (Hb) (Wolf et al. 2002; Arno Villringer and Chance 1997; Meltem 

Izzetoglu et al. 2007). However, other coupling trends have also been reported (Bauernfeind et 

al. 2008; A Villringer et al. 1993; Gert Pfurtscheller, Bauernfeind, et al. 2010; Quaresima et al. 

2005; Y Hoshi et al. 1994; Koshino et al. 2011; Buckner, Andrews-Hanna, and Schacter 2008). 

NIRS provides a indirect measure of cognitive activity by ascertaining the changes in the 

concentration of HbO and Hb in the brain (Ang, Yu, and Guan 2012; S. M. Coyle, Ward, and 

Markham 2007).  

4.2.3 Prescribed mental tasks 

NIRS is a promising access modality; however, to date, little research has been done on the 

access pathways accompanying this access modality (Dobrea and Dobrea 2009). Currently, to 

the best of our knowledge, most NIRS-BCI studies have used prescribed mental activation 

tasks. The tasks used to control the BCI are chosen by researchers based on previous studies 

showing differentiability in the activation or deactivation caused by a specific set of tasks. By 

discriminating between the changes in the NIRS signal resulting from the user performing each 

task, one is able to control the binary BCI. Several different mental tasks have been used in 

past NIRS-BCI studies, including: mental math (Ang, Yu, and Guan 2012; Naito et al. 2007; 

Herff, Heger, Putze, et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and 

Chau 2011; L. C. Schudlo, Power, and Chau 2013; Ogata, Mukai, and Yagi 2007; Bauernfeind 

et al. 2008; Sarah D. Power, Kushki, and Chau 2012; Utsugi et al. 2007; L. C. Schudlo and 

Chau 2014), mental singing (Naito et al. 2007; Sarah D. Power, Falk, and Chau 2010; S. Power, 

Kushki, and Chau 2011), word generation (Herff, Heger, Putze, et al. 2013; Ogata, Mukai, and 

Yagi 2007; Utsugi et al. 2007), memory (Ayaz et al. 2007; Ogata, Mukai, and Yagi 2007; Utsugi 

et al. 2007), mental counting (Naseer and Hong 2013a), mental rotation (Herff, Heger, Putze, et 

al. 2013), concentration (K. Izzetoglu et al. 2011), motor imagery (S. M. Coyle, Ward, and 

Markham 2007; Sitaram et al. 2007; S. Coyle et al. 2004; Kanoh et al. 2009; Naseer and Hong 

2013b), and rest (Ang, Yu, and Guan 2012; Ayaz et al. 2007; Naito et al. 2007; Herff, Heger, 

Putze, et al. 2013; S. Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; 

Sarah D. Power, Kushki, and Chau 2012; Naseer and Hong 2013a; L. C. Schudlo and Chau 

2014). 
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4.2.4 Motivation for user-selected personalized mental tasks 

An alternative to using prescribed mental tasks is to use personalized mental tasks, where each 

user has a set of tasks selected specifically for him or her. To date, the exploration of 

personalized mental tasks in NIRS-BCIs is limited. However, personalized tasks have been 

explored in MRI (Sorger et al. 2009) and EEG (Dobrea and Dobrea 2009; Palaniappan 2006; 

Chai et al. 2012) BCI studies. It appears that in all MRI-BCI and EEG-BCI personalized task 

studies, the actual tasks were selected by the researcher based solely on performance with the 

aim of improving the BCI accuracy. Overall, these studies conclude that there is significant inter-

subject variability in brain activation elicited by the same mental tasks and cognitive processes, 

and as a result the tasks that are most effective for controlling a BCI vary among users (Sorger 

et al. 2009; Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012).  

Although improvements in accuracy are important, improving the BCIs usability has also been 

concluded in literature to be vitally important. In a review of the first international meeting 

devoted to BCI research and development, Wolpaw et al. described that the widespread 

application of BCI-based communication systems will depend on cost, ease of training, ease-of-

use, and user satisfaction (J. Wolpaw et al. 2000). Additionally, Bos et al. found that ease-of-use 

was the second most important factor after accuracy in BCI acceptance (Bos, Poel, and Nijholt 

2011; Tan and Nijholt 2010). Furthermore, a study by Holz et al. found that ease-of-use was one 

of the most important aspects of the BCI for four severely motor-restricted end-users (Holz et al. 

2013). From these studies, it can be concluded that BCI usability is greatly important and even if 

classification accuracies are very high, if users dislike performing their assigned tasks, they are 

not likely to use the BCI (J. Wolpaw et al. 2000; Bos, Poel, and Nijholt 2011). Improving the 

ease-of-use of a BCI could result in increased user satisfaction and user-friendliness, which 

could lead to increased adoption and decreased BCI abandonment (J. Wolpaw et al. 2000; Bos, 

Poel, and Nijholt 2011; Tan and Nijholt 2010). 

Currently, when using prescribed tasks or personalized tasks chosen solely based on accuracy, 

users often find the assigned tasks not suitable, unenjoyable, or difficult to perform (Bos, Poel, 

and Nijholt 2011; E. Curran et al. 2004; E V C Friedrich, Scherer, and Neuper 2013). For 

example, math tasks may not be suitable for individuals who have difficulty with, minimal 

knowledge of, or a dislike for arithmetic (E. Curran et al. 2004). Personalized mental tasks that 

are chosen by the user based on both performance and usability could result in the 

development of a more user-centered BCI that is easier to use and more enjoyable.  
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We previously conducted an offline study to compare four mental task frameworks: two user-

selected personalized mental task frameworks, a researcher-selected personalized mental task 

framework, and a prescribed mental task framework (Weyand, Takehara-Nishiuchi, and Chau 

2015c). We showed that user-selected personalized tasks have the potential to yield higher 

perceived ease-of-use ratings (Weyand, Takehara-Nishiuchi, and Chau 2015c). However, 

further studies are needed to verify the value of personalized tasks by comparing personalized 

and prescribed task selection schemes, particularly in an online paradigm. To the best of our 

knowledge, no other NIRS-BCI study has explored the use of personalized tasks and no other 

BCI studies have allowed users to choose personalized tasks based on both performance and 

ease-of-use.  

4.2.5 Objectives 

The aim of this research was to develop a more user-centered personalized mental task access 

pathway for an NIRS-BCI that allows individuals to choose tasks based on their performance 

and subjective ease-of-use ratings. This study pursues two research questions: (1) Can 

individuals acquire control of an online NIRS-BCI via usability and performance-informed 

selection of mental tasks without compromising classification accuracy? (2) Can the 

combination of usability and performance-informed selection of mental tasks for NIRS-BCI 

control yield subjective ease-of-use ratings that exceed those attainable with prescribed mental 

tasks? 

4.3 Methods 

4.3.1 Participants 

Twenty able-bodied subjects (eight male) between the ages of 16 and 40 were recruited from 

the staff and students at Holland Bloorview Kids Rehabilitation Hospital (Toronto, Canada). All 

participants were right-handed according to the Edinburgh handedness test (Oldfield 1971). 

Participants had normal or corrected-to-normal vision and had no known motor impairments, 

degenerative disorders, cardiovascular disorders, trauma-induced brain injuries, drug or alcohol-

related conditions, psychiatric conditions, respiratory disorders or metabolic disorders. 

Participants were asked to not smoke or drink alcoholic or caffeinated beverages three hours 

prior to each data collection session. The study was conducted with informed consent and with 

ethics approval from the Holland Bloorview Kids Rehabilitation Hospital and the University of 

Toronto.  
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Half of the participants were randomly allocated to the study group, which chose their own 

personalized mental tasks, and the other half to the control group, which were assigned 

prescribed mental tasks. Since gender (Marumo et al. 2009; Yang et al. 2007; F. Okada et al. 

1993; Tamura, Hoshi, and Okada 1997), handedness (F. Okada et al. 1993; Tamura, Hoshi, 

and Okada 1997), and age (Schroeter et al. 2003; Kwee and Nakada 2003; Arlene Duncan et 

al. 1996) have been shown to affect NIRS measurements, the two groups were matched based 

on these three criteria. One participant (male) from the personalized mental task group was 

excluded from all results analysis since he was not able to follow the experimental protocol. It is 

noted that the participants in the study group went on to partake in ten more sessions. Data 

from those sessions were not used in the present analysis; however, it was used to explore self-

regulation as an alternative NIRS-BCI access pathway in Ref. (Weyand, Takehara-Nishiuchi, 

and Chau 2015b). 

4.3.2 Experimental setup 

The NIRS data were collected using a multi-channel frequency-domain NIRS system with a 

sampling rate of 31.25 Hz (Imagent Functional Brain Imaging System from ISS Inc., 

Champaign, IL (ISS Inc. 2012)). The NIRS system was used to measure the blood oxygen 

content from the prefrontal cortex (PFC). The PFC is involved in higher brain functions, 

including logical thinking, planning, and emotion (Ogata, Mukai, and Yagi 2007; Gao et al. 

1990).  

Five laser diodes each emitting 690 nm and 830 nm light and three photomultiplier tube 

detectors attached to a headband were used. The headband was made out of a rubber polymer 

(3M 9900 series), which is comfortable on the skin and easily conforms to the shape of any 

head. Black fabric was sewn on the outside of the headband, to create tight, opaque pockets 

within which the light sources and detectors were fit. These pockets secured the sources and 

detectors, minimizing their motion while maximizing their contact with the head. The headband 

was centered on the participant’s forehead with reference to the nose, and was placed directly 

above the eyebrows, as shown in Figure 14 (A). 



 

57 

 

 
Figure 14. (A) NIRS headband placed over the forehead. (B) Experimental source and detector configuration. 
Legend: the solid circles represent detectors; the open circles represent light source pairs; the x’s represent 
points of interrogation; and the starred areas represent the FP1 and FP2 positions of the international 10-20 

EEG system. 

The sources and detectors were arranged in a trapezoidal shape. Each source and adjacent 

detector was separated by a distance of 3 cm. This distance corresponds to a penetration depth 

of approximately 2.5 cm, which has been shown to reach the outer layer of the cerebral cortex 

(Bauernfeind et al. 2008; Haeussinger et al. 2011; E. Okada et al. 1997). Several other NIRS-

BCI studies have also used a source-detector separation distance of 3 cm over the PFC (Naito 

et al. 2007; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; L. C. 

Schudlo, Power, and Chau 2013; Bauernfeind et al. 2008; Sarah D. Power, Kushki, and Chau 

2012). The source-detector configuration allowed for the interrogation of nine discrete locations. 

A schematic diagram of the configuration and points of interrogation are shown in Figure 14 (B).  

Neurofeedback was provided during all sessions in the form of: 1) a trapezoid topographic 

image showing the real-time changes in blood oxygenation levels over the PFC and 2) a ball 

that rose and fell with the average change over the entire interrogation area. The feedback was 

updated every 125 ms, and was calculated using cubic interpolation of the HbO values between 

the points of interrogation. HbO was chosen for the feedback since it has been cited to be more 

indicative of activity than Hb and tHb (S. M. Coyle, Ward, and Markham 2007; S. Coyle et al. 

2004). Participants were informed that the red colour on the feedback represented an increase 

in haemodynamic activity, while the blue colour represented a decrease in haemodynamic 

activity. The activation feedback is shown in Figure 15.  
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Figure 15. User Interface for Session 5, Blocks 2 and 3 (online classification with score feedback). 

4.3.3 Personalized task measures 

In this study, 11 possible mental tasks were considered based on their deployment in previous 

BCI studies or their documented ability to induce PFC activity in functional imaging studies. 

Each of the eleven tasks is described in Table 8.  

Table 8. Eleven mental tasks used in sessions 1 to 3. 

Task Description 

Mental math 
(Math) 

Participants were prompted with a math problem that appeared in the top right 
corner of the screen, and they were asked to repeatedly subtract a two digit 

number from a three digit number. For example, given 986-12; the participant 
would mentally evaluate 986-12 = 974; 974-12 = 962; 962-12 = 950; and so on. 

Numbers were randomly generated. This task has been used in several previous 
NIRS-BCI studies (Ang, Yu, and Guan 2012; Naito et al. 2007; Herff, Heger, Putze, 

et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 
2011; L. C. Schudlo, Power, and Chau 2013; Ogata, Mukai, and Yagi 2007; 

Bauernfeind et al. 2008; Sarah D. Power, Kushki, and Chau 2012; Utsugi et al. 
2007; L. C. Schudlo and Chau 2014; Naseer, Hong, and Hong 2014; Khan, Hong, 

and Hong 2014). 

Mental singing 
(Music) 

Participants were asked to sing a song in their head. They were informed they 
could choose to sing any song they wanted, but they were asked to pick a song 

that they liked. 
This task has been used in previous NIRS-BCI studies (Naito et al. 2007; Herff, 

Heger, Putze, et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. Power, 
Kushki, and Chau 2011). 

Word generation 
(Words) 

Participants were asked to think of as many words as possible that start with a 
specific letter. For example, if the letter “D” appeared on the screen, the user may 

think of the words: dog, draft, door, deli, and so on. Letters (excluding x and z) 
were randomly generated. This task has been used in previous NIRS-BCI studies 

(Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007; Faress and Chau 2013). 
 

Tangram puzzle 
(Rotation) 

Participants were prompted with a tangram puzzle in the top right corner of the 
screen, and were asked to imagine rotating the pieces to make a final picture. 

This task was chosen because it has been shown to alter PFC activity, measured 
using NIRS in a non-BCI study (Ayaz et al. 2012). A similar task was also used in a 

previous NIRS-BCI study (Ayaz et al. 2012; Herff, Heger, Putze, et al. 2013). 

Relaxing with Participants were asked to slowly count in their heads while relaxing. A similar task 
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counting 
(Counting) 

has been used in a previous NIRS-BCI study (Naseer and Hong 2013a; Khan, 
Hong, and Hong 2014). 

Happy thoughts 
(Happy) 

 

Participants were asked to think about the details of a past event in their life that 
made them very happy. This task has been used in a previous NIRS-BCI study: 

(Kelly Tai and Chau 2009). This task also uses episodic memory, which has been 
shown to alter activity in the PFC (Koshino et al. 2011). 

Word colour  
(Stroop) 

 

Participants were prompted with a series of colour names. The words were also 
coloured, but the colour of the words did not always match the written word. For 
example, the word blue may have been written in red ink. The participants were 

asked to say the real colour of the word in their head. This task is commonly 
referred to as the stroop task. This task has been used in a previous NIRS non-BCI 

study (Schroeter et al. 2002; Ehlis et al. 2005). 
Visualizing the 

future 
(Future) 

Participants were asked to imagine their life in five years, specifically focusing on 
their future day-to-day activities. This task was chosen for its potential to alter 
activity in the PFC. The PFC is part of the default mode network and has been 

shown to be activated when envisioning the future and during self-relevant 
mentalization (Buckner, Andrews-Hanna, and Schacter 2008). 

Relaxing with 
focus on the 

feedback 
(Focus) 

Participants were asked to relax and focus on the feedback. A similar task has 
been used in a previous NIRS-BCI study (K. Izzetoglu et al. 2011). 

Motor imagery 
(Motor) 

Participants were asked to imagine moving their arms or legs. Motor imagery has 
been investigated in previous NIRS-BCI studies, but strictly over the motor cortex 
(Sitaram et al. 2007; S. M. Coyle, Ward, and Markham 2007; Naseer and Hong 

2013b). This task was included since it has been shown that the PFC is also 
affected by motor imagery (Kanthack, Bigliassi, and Altimari 2013; Leff et al. 2011). 

Rest 
(Rest) 

Participants were asked to relax and let their minds rest. This task has been used 
in previous NIRS-BCI studies (Ang, Yu, and Guan 2012; Ayaz et al. 2007; Naito et 
al. 2007; Herff, Heger, Putze, et al. 2013; S. Power, Kushki, and Chau 2011; L. C. 

Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 2012; Naseer 
and Hong 2013a; L. C. Schudlo and Chau 2014; Naseer, Hong, and Hong 2014). 

To facilitate a user-centered approach to task selection that allows one to strike a personal 

balance between usability and performance, two task measures were invoked, namely, a total 

ease-of-use score and a weighted slope score.  

Total ease-of-use score: Subsequent to performing an iteration of each task, users rated their 

perceived ease-of-use on a 5-point Likert-type scale, ranging from “very easy” to “very difficult”, 

as per recommendations for measuring post-task usability (Tedesco and Tullis 2006; Sauro and 

Dumas 2009). A total ease-of-use score for each task was determined as the average ease-of-

use rating across all iterations of the task.  

Weighted slope score: Task performance was captured by a task-specific weighted slope 

score (WS-Score) that represents the ability of a subject to consistently increase or decrease 

their haemodynamic activity by performing a task. Specifically, the weighted slope score, iWS , 

for the 
thi  task, was defined as 
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where mij and mik, are the slopes of the least square line of best-fit to the haemodynamic activity 

over time for the jth or kth iteration of the 
thi  task, and N is the number of times the task was 

performed. For each iteration j or k, of each task, i, an average response is computed from the 

haemodynamic response (  HbO ) from each of the 9 channels (i.e., 9 points of interrogation). 

A slope value, mij or mik, is extracted from the best-fit line to each channel-averaged response. 

The weighted slope score is then computed as the mean of all slopes for each iteration of a 

given task divided by the corresponding standard deviation, providing a measure of the 

tendency for a task to consistently increase or decrease haemodynamic activity. 

4.3.4 Data collection sessions 

All participants took part in five data collection sessions on five separate days, spanning a 

period of one week. In each session, participants were seated in front of a computer in a dimly 

lit room. The general protocol was the same for all sessions. Each session started with a short 

warm-up period, which allowed the user to become familiar with the interface. Following the 

warm-up, each participant took part in three data collection blocks. During each data collection 

block, the participant performed either 22 task intervals (session 1, 2, and 3) or 20 task intervals 

(session 4 and 5). Each task interval involved a task being performed for 17 seconds, followed 

by a 20-second rest. The duration of the task and rest activities were chosen on the basis of 

preliminary data and past work (S. Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and 

Chau 2013). A schematic illustration of the overall study, session, and block structure is shown 

in Figure 16. 
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Figure 16. Study, session, and block structure.  

Sessions 1-3: Participants performed each of the eleven tasks twice per block. The tasks were 

presented in a random order. Immediately after performing each task and before the twenty 

second rest, the user was asked to rate the task in terms of its ease-of-use and desirability for 

BCI control. The twenty second rest period allowed cortical haemodynamic changes from the 

previous task and the ease-of-use scoring to dissipate. The goal of these three sessions was to 

determine the magnitude of change in blood oxygenation when the participants performed each 

task and to determine the level of subjective enjoyment of each task. By the end of the third 

session, participants had performed each task 18 times (3 sessions x 3 blocks x 2 iterations), 

and thus N = 18, in Equation (2) above. 

Session 4: The control group was assigned the mental math and rest tasks irrespective of their 

performance in the first three sessions. These tasks represent the current state-of-the-art in 

NIRS-BCIs (Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; L. C. 

Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 2012). On the other hand, 

the study group was instructed to choose their own pair of personalized tasks from among the 

11 possibilities. To inform their choice, participants were provided with their total ease-of-use 

rating for each task from sessions 1-3. In addition, for each task, participants were presented 

with line graphs depicting HbO concentration changes averaged over the 9 points of 

interrogation. Graphs for the top three tasks for increasing haemodynamic activity (highest WS-

Scores) and the best three tasks for decreasing the haemodynamic activity (lowest WS-Scores) 

were shown. Participants were asked to choose a preferred task that tended to increase their 
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haemodynamic response - their ‘increasing task’ - and another that tended to decrease their 

haemodynamic response - their ‘decreasing task’. Subsequently, participants were prompted to 

perform their two tasks: mental math and rest for the comparison group, and personalized tasks 

for the study group.  

Session 5: In the first block, participants were prompted to perform their two tasks as in 

Session 4. During the second and third blocks of the fifth session, participants continued to 

perform their two tasks when prompted by the interface (Figure 15) but received the 

corresponding label (i.e. increase or decrease task) estimated by the computer. A score counter 

was updated, displaying the number of times that the computer correctly labeled (classified) the 

task performed by the user. On average classification took one to two seconds; however, this 

will vary depending on the speed of the computer. An example of the user interface from 

session five, block three, is shown in Figure 15. 

4.3.5 Signal treatment 

4.3.5.1 Filtering 

NIRS data are affected by various sources of physiological noise. In particular, the NIRS signal 

is contaminated with the Mayer wave at a frequency of 0.1 Hz, the respiration cycle at a 

frequency of 0.2 Hz to 0.4 Hz, and the cardiac cycle at a frequency of 0.5 Hz to 2 Hz (Sarah D. 

Power, Falk, and Chau 2010; Ayaz et al. 2009). To mitigate the influences of these noise 

sources, the NIRS signal was passed through a digital low-pass filter in real-time using a third-

order Chebyshev infinite impulse response (IIR) cascade filter with a pass-band from 0 to 0.1 

Hz, a transition band from 0.1 to 0.5 Hz, a stop-band from 0.5 Hz onwards, and a pass band 

ripple of 0.1 dB. 

4.3.5.2 Calculating haemoglobin concentrations 

After filtering the data, the changes in concentrations of HbO, Hb, and tHb, i.e  HbO ,  Hb , 

and  tHb , were calculated using the modified Beer-Lambert’s Law (S. M. Coyle, Ward, and 

Markham 2007; J. Wolpaw et al. 2000; Niels Birbaumer and Cohen 2007; Delpy et al. 1988).  
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     HbOHbtHb   (5) 

where 


BI  is the mean light intensity measured at baseline at wavelength λ, 


AI is the light 

intensity measured at any given time at wavelength λ, 
 Hb and 

 HbO  are the specific extinction 

coefficient of deoxygenated and oxygenated haemoglobin respectively, at wavelength λ, 
DPF  

is the differential path factor at wavelength λ, and r is the geometric distance between the 

emitter and detector. For a derivation of these equations see Refs. (Delpy et al. 1988; Kelly Tai 

and Chau 2009). In this study, r = 3cm, 690nm,Hb = 2.1382 mM-1cm-1 (Cope 1991), 830nm,Hb = 

0.7804 mM-1 cm-1 (Cope 1991), 690nm,HbO = 0.3123 mM-1 cm-1 (Cope 1991), 830nm,HbO = 1.0507 

mM-1 cm-1 (Cope 1991), DPF690nm = 6.51 (A Duncan et al. 1995), and DPF830nm = 5.86 (A Duncan 

et al. 1995). 

4.3.5.3 Feature extraction and feature selection 

Features were extracted over four time windows (0-5s, 0-10s, 0-15s, and 0-17s). Features 

included the temporal changes in the three chromophores (Hb, HbO, and tHb) at each of the 9 

points of interrogation (4 time windows x 3 chromophores x 9 points of interrogation = 108 

features) and the spatiotemporal changes of the zero to fourth order discrete orthogonal 

Chebyshev image moments (4 time windows x 3 chromophores x 15 image moments = 180 

features) (L. C. Schudlo, Power, and Chau 2013). A total of 288 features were thus extracted 

from the data.  
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The temporal feature extraction involved normalizing each measured response, by subtracting 

the mean and dividing by the standard deviation, and then determining the least square line of 

best-fit slope of the concentration change of each of the three chromophores over each of the 

four time windows. For example, the first feature was the least square line of best-fit slope of 

[Hb] at the first point of interrogation, over the first five seconds that the task was performed. 

Temporal features have been previously deployed with NIRS-BCIs (Sarah D Power, Kushki, 

and Chau 2012; Sarah D. Power, Kushki, and Chau 2012; L. C. Schudlo, Power, and Chau 

2013; L. C. Schudlo and Chau 2014; Sarah Dianne Power and Chau 2013). 

To derive the spatial features, topographic images for  HbO ,  Hb , and  tHb  were 

generated by spatial interpolation of the data at the nine points of interrogation. Specifically, 

cubic interpolation at equally spaced intervals between the points of interrogation was 

performed, as in Ref. (L. C. Schudlo, Power, and Chau 2013), to create a trapezoidal image, 21 

pixels in height and with parallel sides 21 and 61 pixels in length. To account for inter-trial 

variability, the pixel values were normalized to fall between 0 and 1, as in Ref. (L. C. Schudlo, 

Power, and Chau 2013). To summarize the spatial changes, zero to fourth order discrete 

orthogonal Chebyshev polynomial image moments were extracted from each image at every 

instance in time. Image moments are a weighted average of the image pixel intensities and take 

the general form: 
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where, f(x,y) is the intensity distribution of the Nx by Ny image, x and y are the pixel coordinates, 

m and n are the degrees (orders) of the Chebyshev polynomials, m+n is the moment order, and 

Pm(x) and Pn(y) are the two-dimensional orthogonal Chebyshev polynomials (Zhu et al. 2010), 

calculated using equation 9, equation 12, and Table 2 from Ref. (Zhu et al. 2010). A total of 15 

image moments were extracted from each image at each time point, one for each possible 

permutation of moment orders of 0, 1, 2, 3, and 4, as shown in Table 9. Finally, the simple least 

square line of best-fit slope of each image moment signal was calculated over each time 

window. For example, the first feature was the least square line of best-fit slope of the change of 

the zeroth order moment (m = n = 0) of [Hb] over the first five seconds that the task was 

performed. 
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Table 9. Degree m and n of each of the fifteen image moments. 

Image moment 
number 

Moment 
order (m+n) 

m n 

1 0 0 0 

2 1 0 1 

3 1 1 0 

4 2 0 2 

5 2 2 0 

6 2 1 1 

7 3 0 3 

8 3 3 0 

9 3 1 2 

10 3 2 1 

11 4 0 4 

12 4 4 0 

13 4 1 3 

14 4 3 1 

15 4 2 2 

The Sequential Forward Floating Search (SFFS) algorithm was used to select a subset of eight 

features from the total feature set used for classifier training (L. C. Schudlo, Power, and Chau 

2013; Pudil, Novovičová, and Kittler 1994). In general, SFFS uses a criterion function to assess 

the discriminative capabilities of each candidate feature set. Starting with an empty feature set, 

the algorithm sequentially adds features with the largest criterion value. At each iteration, the 

method also removes a previously added feature that is presently the least significant with 

respect to the criterion function (Pudil, Novovičová, and Kittler 1994). We used the Fisher 

criterion to assess the discriminatory capabilities of each feature set, as in Refs. (L. C. Schudlo 

and Chau 2014; L. C. Schudlo, Power, and Chau 2013). For this study, the target number of 

eight features was chosen on the basis of preliminary data and past work (Sarah D Power, 

Kushki, and Chau 2012; L. C. Schudlo and Chau 2014). 

4.3.5.4 Pattern classification 

An ensemble of three classifiers was used to differentiate between task-induced changes in the 

haemodynamic response, as in Ref. (L. C. Schudlo, Power, and Chau 2013). In particular, for 

each participant, three linear discriminant analysis classifiers (LDAs) were trained. In general, 

LDAs seek to separate classes by projecting the training samples onto a line that maximizes 

class separabilty (Bishop 2006). The first classifier was trained using eight features selected 

from the 108 temporal features; the second classifier was trained using eight features selected 

from the 180 spatiotemporal features; and the third classifier was trained using eight features 

selected from all 288 features (temporal and spatiotemporal). Feature extraction and selection 
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are described in Sec. 4.3.5.3. The trained classifier was used to label testing data into one of 

the two classes. Each classifier predicted the class of the test data, and the overall classification 

was determined using a majority vote (Polikar 2006), a decision scheme in which the final label 

is taken to be the one predicted by the majority of classifiers. For example, if the decisions of 

the three classifiers are respectively, class 1, class 2 and class 1, the majority vote would yield 

class 1 as the predicted label. The data used for training and testing the classifier is described in 

Sec. 4.3.6.1. For more information on classification and LDA, please refer to Ref. (Bishop 2006). 

4.3.6 Data analyses 

4.3.6.1 Determining accuracies 

Classification of NIRS signals can either be performed offline, following the completion of data 

collection, or online, in real-time, as the data are being collected. In general, the aim of offline 

classification is to provide an estimate of how a classifier, trained on the data collected, would 

perform on similar future data. Offline classification also provides the ability to make 

adjustments to the analysis methods, such as extracting and selecting different features. In 

contrast, online classification involves training a classifier using previously collected data, and 

then predicting the class of new data in real-time as the task is being performed. Online 

classification enables real-time control and can provide the user with immediate feedback. 

Offline accuracies were calculated retrospectively after all the offline data had been collected. 

Specifically, all data collected in session 4 and the first block of session 5 were pooled together, 

and accuracies were determined using thirty iterations of five-fold cross-validation. Cross-

validation is a well-established method for statistically estimating classifier performance, 

namely, how well the classifier will generalize when presented with previously unseen data 

(Refaeilzadeh, Tang, and Liu 2009). Specifically, cross-validation involved randomly partitioning 

the data into five equally sized portions (folds). Next, each fold was used as testing data, while 

the other four folds were used as training data. The training data were used for feature selection 

and classifier training, and the testing data were used to estimate classification accuracy. This 

process was repeated until all folds had been used for testing and five classification accuracies 

had been obtained. Five-fold cross-validation was then repeated twenty-nine more times, with 

new, randomly partitioned folds. Finally, the 150 accuracies were averaged to provide an overall 

mean offline accuracy for each participant (30 iterations x 5 folds = 150 accuracies). 
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Online accuracies were calculated in real-time. The classifier was trained using all the offline 

data (session 4 and the first block of session 5), and each new task was classified immediately 

after being performed. Specifically, in the final 2 blocks of Session 5, the data were classified 

using an online classifier trained on the offline data (Sarah D. Power, Kushki, and Chau 2012). 

4.3.6.2 Comparison of ease-of-use 

The ease-of-use ratings for each task was summed across all 18 instances where the task was 

performed. These sums were then used to rank the tasks based on ease-of-use for that 

participant, where a rank of 1 represented the hardest task to perform and a rank of 11 

represented the easiest task to perform. Finally, the ordinal ease-of-use rankings of the two 

groups were compared using a two-tailed Mann-Whitney U-test. For all statistical tests, 

normality of the data was confirmed using the Shapiro-Wilk Normality test. 

4.3.6.3 Comparison of accuracies 

The offline and online accuracies achieved over sessions 4 and 5 by the personalized mental 

task group were compared to the prescribed mental task group using a two-tailed Student’s t-

test for two independent means (α = 0.05). Additionally, the personalized mental task groups 

offline classification accuracies between the participant’s personalized tasks and the state-of-

the-art prescribed mental strategies (mental math and rest) at the end of session three were 

compared using a two-tailed Student’s t-test for two dependent means (α = 0.05). The offline 

classifications were performed using ten iterations of five-fold cross-validation and using two 

extracted features from the data collected in sessions one through three, which consisted of 

eighteen data points per task.  

4.3.6.4 Evaluation of WS-Score 

In order to verify the suitability of the WS-Score, a Pearson correlation between the WS-Score 

and the online accuracy achieved by the participants was investigated. The total WS-Score for 

each participant was determined by the absolute difference between the WS-Scores for the 

increasing and decreasing tasks after the third session, as shown in Equation 7. 

DIID WSWSWSTotal _
 (7) 

where I is the increasing task in a given pair and D is the decreasing task in a given pair. 



 

68 

 

4.3.6.5 Evaluation of feedback 

At the end of the fifth session, participants were asked to rate on a 7-point Likert-type scale how 

helpful they found the continuous activation feedback to be, with 1 denoting not helpful and 7 

meaning most helpful. The helpfulness of the feedback was compared between the two groups 

using a two-tailed Student’s t-test for two independent means (α = 0.05).  

4.3.6.6 Analysis of time windows of selected features 

A frequency count of the features selected from the different time windows (0-5s, 0-10s, 0-15s, 

and 0-17s) was conducted with all the data collected during the offline sessions. This count was 

completed for the selected eight features, including all nineteen participants, for each of the 

three classifiers (temporal, spatiotemporal, and temporal combined with spatiotemporal). For 

feature selection methods, please refer to Sec. 4.3.5.3. In total, 456 features were considered.  

4.4 Results 

4.4.1 Ease-of-use: personalized vs. prescribed tasks 

The perceived ease-of-use of the personalized task group and prescribed task group are shown 

in Figure 17 (A). A Mann-Whitney U-Test revealed that the overall task ease-of-use of the BCI 

was significantly higher for the personalized mental task group compared to the prescribed 

mental task group (z = 2.16, p = 0.0308).  

 
Figure 17. (A) Ease-of-use rankings for personalized and prescribed task groups. (B) Classification accuracy 

of personalized tasks (chosen after session 3) and prescribed tasks (mental math and rest) for the 
personalized mental task group in sessions 1-3. Legend: * = p < 0.05. 
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A high variability was observed in the perceived ease-of-use ratings for tasks that users found to 

be easiest among both personalized and prescribed task groups. Each task was rated very high 

(5/5) by some users and very low (1 or 2/5) by other users. The inter-subject variability in the 

tasks’ ease-of-use supports the notion that different individuals find different mental tasks easy 

to use. 

4.4.2 Offline and online classification accuracies 

The offline and online classification accuracies achieved in sessions 4 and 5 by the 

personalized mental task group and the prescribed mental task group are shown in Table 10 

and Table 11. Both groups achieved average online classification accuracies greater than 70%, 

which has been cited as the accuracy required for an effective BCI (Andrea Kübler, Neumann, 

et al. 2001). However, only the personalized mental task group achieved an average offline 

accuracy greater than 70%. On average, the personalized mental tasks group achieved an 

offline accuracy of 75% ± 10.8% and an online accuracy of 77% ± 12.9%, while the prescribed 

mental task group achieved an offline accuracy of 68% ± 12.9% and an online accuracy of 73% 

± 12.9%. Statistically, the classification accuracies achieved by the two groups were not 

significantly different, as evaluated by a two-tailed t-test for two independent means (offline 

accuracies: t = 1.29, p = 0.213; online accuracies: t = 0.554, p = 0.587).  

Table 10. Accuracies achieved by prescribed task group. 

ID Offline (%) Online (%) 

101 62.2 52.5 

102 76.8 82.5 

103 68.2 67.5 

104 92.8 95.0 

105 57.4 65.0 

106 71.6 77.5 

107 79.3 82.5 

108 47.7 60.0 

109 63.2 82.5 

110 59.5 67.5 

Average 67.9 73.3 

 

Table 11. Accuracies achieved by personalized task group. 

ID Offline (%) Online (%) 

1 81.7 95.0 

2 69.2 57.5 
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3 71.6 77.5 

4 76.6 60.0 

5 51.4 72.5 

7 75.3 72.5 

8 90.0 92.5 

9 82.5 76.3 

10 76.4 85.0 

Average 75.0 76.5 

For the personalized mental task group, offline analysis was conducted to compare the 

classification accuracies between the participant’s personalized tasks and the state-of-the-art 

prescribed mental strategies (mental math and rest) at the end of session three. The average 

offline classification accuracy for the personalized tasks was 71.8 ± 11.5 % versus 57.7 ± 8.8% 

for prescribed tasks. A Student’s t-test for two dependent means revealed that the personalized 

task accuracies were significantly higher than the prescribed task accuracies (t = -2.90, p = 

0.0198). These results are shown in Figure 17 (B). 

4.4.3 Variability in personalized tasks 

The tasks chosen by the participants of the personalized mental task group as their increase 

and decrease tasks are shown in Figure 18.  

 
Figure 18. Personalized tasks chosen by users to increase and decrease their haemodynamic activity. 

Note that a variety of tasks were chosen for both increase and decrease tasks. Nine of the 

eleven tasks were chosen at least once, and the only tasks that were not chosen at all were 

motor imagery and visualizing the future. Of the eleven tasks, relaxing-with-focus was chosen 

most often as the increasing task, and word generation was most often chosen as the 
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decreasing task. This variability in task choice supports the notion that different individuals 

prefer different mental tasks. Interestingly, mental math was chosen as an increase task by one 

participant and a decrease task by another participant. The same phenomenon was observed 

with the relaxing-with-counting task. This observation suggests a high inter-subject variability in 

the haemodynamic response produced by each task.  

A Hinton plot of the WS-Scores at the end of session three for the personalized mental task 

group is shown in Figure 19. Inter-subject variability in WS-Scores is evident; each of the eleven 

tasks resulted in positive WS-Scores in some users and negative scores in others.  

As previously mentioned two tasks were not chosen by any of the participants - motor imagery 

and visualizing the future. Yet, as seen in Figure 19, they were amongst the top three increase 

and decrease tasks for all participants, except P8. Moreover, motor imagery was the top 

increase task for P5 and the top decrease task for P10, and visualizing the future was the top 

increase task for P7. This beckons the question as to why these tasks were never chosen by 

any of the participants. Upon further analysis of the questionnaires and written comments, many 

of the participants did not enjoy performing these tasks. They found performing motor imagery 

to be cumbersome, and visualizing the future to be very abstract and difficult to perform 

consistently. 
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Figure 19. Hinton diagram of WS-Scores at the end of Session 3. Positive and negative values are 

represented by white and black squares, respectively, and the size of each square is proportional to the 
magnitude of each WS-Score. Chosen tasks are indicated by a dashed box surrounding the corresponding 

black or white square. The largest square represents a magnitude of 1.63. 

4.4.4 Selection of personalized tasks using the WS-Score  

Figure 20 is a scatter plot of each participant’s online classification accuracy along with their 

corresponding total WS-Score. 
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Figure 20. Plot of online accuracy in session 5 versus WS-Score. A regression line was fit to the plot with a 

slope of 13.54 ± 4.3. The 95% confidence intervals are plotted as dotted lines. 

The WS-Scores have a strong positive Pearson’s correlation with the online accuracy ( = 0.61, 

p < 0.01) (Taylor 1990; Hemphill 2003). This suggests that there is potential in using the WS-

Score as a measure of task suitability for controlling an NIRS-BCI. 

Additionally, we computed the correlation between the offline accuracy achieved in sessions 

one to three to the total WS-Score at the end of session three over all participants and for all 55 

pair wise combinations of tasks. A moderate positive Pearson’s correlation was found between 

the WS-Scores and the offline accuracies ( = 0.4, p < 0.001) (Taylor 1990; Hemphill 2003). 

This finding reinforces the potential in using the WS-Score as a measure of task suitability for 

controlling an NIRS-BCI. 

4.4.5 Helpfulness of feedback 

On average, users found the feedback moderately helpful with a rating of 5.2 ± 1.2 on a 7-point 

Likert scale. The personalized mental task group had an average helpfulness rating of 5.8 ± 1.0, 

while the prescribed mental task group had an average helpfulness rating of 4.7 ± 1.1. Based on 

a Student’s t-test for two independent means, the personalized mental task group had a 

significantly higher helpfulness ratings than the prescribed mental task group (t = 2.27, p = 

0.036). Moreover, all participants in the personalized mental task group, other than P7, found 

the feedback to be helpful (rating > 4). In contrast, only five participants in the prescribed mental 

task group found the feedback to be helpful (P102, P104, P105, P108, and P109). Overall, this 
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indicates that participants in the personalized mental task group found the feedback significantly 

more helpful than participants in the prescribed mental task group. 

4.4.6 Time window feature selection analysis 

All four time windows (0-5s, 0-10s, 0-15s, and 0-17s) were frequently chosen during feature 

selection for each participant. Overall, the 0-17 second time window was chosen most often, 

followed by, in descending frequency of selection, the 0-5, 0-15 and 0-10 second time windows, 

as shown in Figure 21. This result is in line with previous findings by Power et al. (S. Power, 

Kushki, and Chau 2011). The largest and smallest time windows were chosen most frequently 

likely because they capture both gradual and early changes in the haemodynamic signal. 

Additionally, the overall distribution of selected time windows was similar for both the 

personalized and prescribed mental task groups. 

 
Figure 21. Frequency of occurrence of each time window (0-5s, 0-10s, 0-15s, and 0-17s) among the selected 

features. 

4.5 Discussion 

4.5.1 Ease-of-use 

Relating to our second research question, the task usability ratings for the personalized task 

NIRS-BCI were found to be significantly higher than those of the prescribed task NIRS-BCI. This 

finding is non-trivial because participants selected tasks based on both ease-of-use and WS-

scores of each task. Each participant had the opportunity to choose their task by evaluating their 

own personal ease-of-use/effectiveness tradeoff. Incidentally, our previous offline single-group 

study also identified a significantly greater perceived ease-of-use for user-selected personalized 

mental tasks compared to prescribed tasks (Weyand, Takehara-Nishiuchi, and Chau 2015c). 
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The significance of developing an easier to use BCI has been well established in literature. As 

described in Sec. 4.2.4, indeed ease-of-use is an identified enabler in the development of BCIs. 

Ease-of-use is recognized as one of the key attributes to the widespread application of BCI-

based communication (J. Wolpaw et al. 2000), one of the most important factor in BCI 

acceptance (Bos, Poel, and Nijholt 2011; Tan and Nijholt 2010), and one of the most important 

aspects of the BCI for four severely motor-restricted end-users (Holz et al. 2013). Furthermore, 

ease-of-use has been linked to satisfaction, which has been shown to positively impact adoption 

and BCI abandonment (J. Wolpaw et al. 2000; Bos, Poel, and Nijholt 2011; Tan and Nijholt 

2010). Overall, an easier to use BCI is vitally important. 

4.5.2 Online and offline classification  

In support of our first research question, it was determined that individuals can acquire control of 

an online NIRS-BCI via usability and performance-informed selection of mental tasks while 

maintaining classification accuracies statistically comparable to those of the prescribed task 

group. This finding corroborates that of our previous offline single-group study, where no 

significant difference was observed between the accuracies of user-selected personalized 

mental tasks and prescribed tasks (Weyand, Takehara-Nishiuchi, and Chau 2015c). 

This study adds to the expanding literature of online NIRS-BCI research. Online classification is 

a critical step towards real-world BCI applications and presents various challenges not 

applicable to offline classification, including hardware and software adaptations to allow for 

immediate classification, and to address classifier generalization issues (L. C. Schudlo and 

Chau 2014). The online accuracies achieved in this study are on par with those reached by 

Schudlo et al. (L. C. Schudlo and Chau 2014), and Coyle et al. (S. M. Coyle, Ward, and 

Markham 2007), and exceed the accuracies of other online NIRS-BCI studies, such as those by 

Chan et al. (Chan, Power, and Chau 2012), and Stangl et al. (Stangl et al. 2013). Our training 

paradigm was similar to that of previous online NIRS-BCIs (i.e. used in Ref. (L. C. Schudlo and 

Chau 2014)), but with fewer samples for classifier training and a shorter task performance 

interval of 17 seconds compared to 20 seconds used by Schudlo et al. (L. C. Schudlo and Chau 

2014). This shorter response interval can improve the communication rate and decrease mental 

demand placed on BCI users. 

It should be noted, that it is possible that a small non-significant increase in accuracy of 

personalized mental tasks was actually also present. The power of the online test was 
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calculated to be only 9.8%, and the associated Cohen’s d effect size was only 0.3 (a small 

effect). A sample size of 166 participants per group would be necessary to increase the power 

of this analysis to 80%. Since the effect size appears to be small and a very large number of 

participants would be required to detect a significant difference, the authors conclude that 

conducting further analysis using this design is not justified.  

However, it is possible that future studies using other tasks or a different length of testing may 

result in significant differences. For example, with fewer tasks there may be a larger effect size 

or smaller standard deviation of the personalized mental task group. It is also possible that if 

longitudinal data were taken for both groups, a greater difference in accuracy may emerge. The 

ease-of-use of selected tasks may be amplified during extended use, and this could have an 

effect on the BCI accuracy over time.  

Additionally, it should also be noted that users chose their personalized tasks based on both 

subjective evaluation of performance and usability of the task. Had task choice been exclusively 

based on performance, a change in accuracy may have been more apparent (Weyand, 

Takehara-Nishiuchi, and Chau 2015c). However, our findings collectively suggest that perceived 

ease-of-use may trump accuracy for some users, and may facilitate BCI control. For example, 

the benefits of personalization in initial acquisition and learning have been demonstrated in 

other areas of research. In education, personalization has increased learning, motivation, and 

depth of engagement (Cordova and Lepper 1996). In an air traffic control training study, 

researchers found that personalized adaptive task selection based on both efficiency and 

preference led to more efficient training than non-personalized task selection (Salden, Paas, 

and van Merriënboer 2006).  

In line with previous literature, users in the present study achieved significantly higher offline 

accuracies in some tasks than other tasks (Sorger et al. 2009; Dobrea and Dobrea 2009; 

Palaniappan 2006; Chai et al. 2012). To the best of our knowledge, no other BCI research study 

has compared online or offline classification accuracies between a personalized and prescribed 

mental task group. However, one study by Dobrea et al. conducted a within group comparison 

of personalized mental tasks and prescribed mental tasks. In this EEG-BCI study, Dobrea et al. 

explicitly compared the offline accuracy of the chosen personalized tasks to a set of prescribed 

state-of-the-art tasks. Dobrea et al. found that the best combination of four tasks from a choice 

of twelve tasks (chosen based on classification accuracies), achieved a greater accuracy than 
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the state-of-the-art quartet of mental tasks for all four participants (Dobrea and Dobrea 2009). In 

line with this result, our study also concluded that the personalized task group achieved 

significantly higher accuracies using their personalized tasks than the state-of-the-art prescribed 

tasks (mental math and rest), based on the session three, offline, within-subject classification 

results.  

4.5.3 Variability in haemodynamic changes 

Overall, all tasks elicited increases in haemodynamic activity in some participants and 

decreases in others (Figure 19). The anterior PFC is known to be involved in various executive 

functions, including: working memory, decision making, predicting future events, multi-tasking, 

maintaining attention, and emotional control (Gao et al. 1990; Kelly Tai and Chau 2009; Koshino 

et al. 2011). Additionally, the medial anterior PFC is part of the default mode network (DMN), 

which is associated with deactivations below resting baseline levels during various goal-directed 

cognitive tasks and is also activated during autobiographical memory and envisioning the future 

(Koshino et al. 2011; Buckner, Andrews-Hanna, and Schacter 2008).  

The task that resulted in the most consistent increase in haemodynamic activity across 

participants appears to be happy thoughts. Happy thoughts elicited an increase in activity in all 

but one participant (P1). This could be due to the fact that happy thoughts involves emotional 

control, which is believed to be a function of the PFC, and it also involves autobiographical 

memory, which is known to activate the DMN (Koshino et al. 2011; Buckner, Andrews-Hanna, 

and Schacter 2008).  

Interestingly, the task that appears to result in the most consistent decrease in haemodynamic 

activity across participants was word generation; it was also the most commonly chosen 

decrease task. Word generation resulted in a strong decrease in haemodynamic activity in all 

participants other than P4 and P10. Word generation has often been associated with activations 

in the left prefrontal cortex (Faress and Chau 2013; Herrmann, Ehlis, and Fallgatter 2003); 

however, other trends have also been observed (Quaresima et al. 2005). The observed 

decrease in activation with respect to baseline may be a consequence of measuring mainly over 

the medial PFC, since the main language areas are predominantly situated on the left side of 

the brain (Schlösser et al. 1998). Furthermore, the decrease in haemodynamic activity may be 

attributable to a deactivation in the DMN or resource sharing with the adjacent verbal areas 

(Shapira-Lichter et al. 2013).  
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The prescribed tasks of mental math and rest were associated with both activations and 

deactivations amongst participants. Rest was usually accompanied by decreased 

haemodynamic activity (all participants other than P2, P4, and P10), while math usually resulted 

in increased haemodynamic activity (all participants other than P5, P7, and P8). Similar trends 

have been observed in literature (Bauernfeind et al. 2008; Gert Pfurtscheller, Bauernfeind, et al. 

2010; Sarah D. Power, Kushki, and Chau 2012). The increase in haemodynamic activity when 

performing mental math could be attributed to the engagement of working memory (Sarah 

Dianne Power and Chau 2013), while the decrease in haemodynamic activity associated with 

the rest task could be related to mental relaxation. On the other hand, the math task-induced 

decrease and rest task-associated increase may be related to role of the medial PFC in the 

DMN (Koshino et al. 2011; Buckner, Andrews-Hanna, and Schacter 2008).  

Inter-subject differences in cortical haemodynamic responses may in part be related to inter-

individual differences in cognitive processing and brain anatomy. Researchers have shown that 

there is a large inter-subject variation in the size, shape, and position of various regions of the 

brain (Nie, Guo, and Liu 2009; Xiong et al. 2000). Thus, it may not be surprising that functional 

activation of the PFC (the region of focus in our study) varied among participants. EEG-BCI 

researchers have drawn similar conclusions about the diversity of thought patterns between 

individuals (Dobrea and Dobrea 2009; Palaniappan 2006).  

The large inter-subject variability that appears to be present in most tasks confirms the need for 

personalized mental strategies. Our results corroborate research showing that the most 

effective task for controlling a BCI will vary among users (Dobrea and Dobrea 2009; Herff, 

Heger, Putze, et al. 2013; S. Power, Kushki, and Chau 2011; Ogata, Mukai, and Yagi 2007; 

Sorger et al. 2009; Nai-Jen and Palaniappan 2004).  

4.5.4 Suitability of personalized task selection method 

Personalized tasks were chosen on the basis of both performance and ease-of-use. 

Incidentally, research in human-computer interactions has identified these considerations to be 

the two most important factors for BCI acceptance (Bos, Poel, and Nijholt 2011). 

The WS-Score was proposed as a measure to aid users in choosing their own personalized 

mental tasks. By providing a method to evaluate each task’s effectiveness, irrespective of task 

pairings, the WS-Score simplified the selection of personalized mental tasks. Moreover, when 

using the WS-Score to select personalized tasks, the user is only concerned with one value per 
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task (the task’s effectiveness); in contrast, when using classification accuracies, the user is 

overwhelmed with all 55 pair-wise classification accuracies. The positive correlation between 

the WS-Score and accuracy (Figure 20) supports the use of the WS-Score as a measure of task 

effectiveness.  

4.5.5 Helpfulness of feedback 

On average, the personalized and prescribed task groups found the continuous activation 

feedback somewhat helpful. This is in line with the findings of a previous NIRS-BCI study by 

Schudlo et al. where a similar form of feedback was deployed and found to be moderately 

helpful (3.13 ± 1.25 on a 5 point Likert scale) by users (L. C. Schudlo and Chau 2014). 

The personalized mental task group found the feedback to be significantly more useful than did 

the prescribed mental task group. This could be due to the fact that users in the former group 

chose their tasks based in part on the feedback. Continuous rather than intermittent (e.g. score 

feedback) feedback may better support long term use of the BCI. Specifically, continuous 

feedback may promote adaptation of mental strategies and could potentially increase the 

accuracy and usability of the BCI over time (Niels Birbaumer et al. 2009; Elisabeth V. C. 

Friedrich, Neuper, and Scherer 2013).  

4.5.6 Significance 

To date, personalized mental tasks have been explored in MRI (Sorger et al. 2009) and EEG 

(Dobrea and Dobrea 2009; Palaniappan 2006; Chai et al. 2012) BCIs. To the best of our 

knowledge, these studies have only explored researcher-selected tasks based solely on 

performance, with the aim of improving BCI accuracy. In contrast, the present study investigated 

user-selected personalized tasks with the aim of improving ease-of-use. To the best of our 

knowledge, to date, the exploration of personalized mental tasks in NIRS-BCIs is limited to one 

offline, single-group study that illustrated the potential of user-selected tasks in increasing ease-

of-use (Weyand, Takehara-Nishiuchi, and Chau 2015c). The present study extends that earlier 

work by evaluating user-selected personalized mental tasks online in a two-group design. 

4.5.7 Limitations and future work 

The study was conducted exclusively with able-bodied participants. The findings reported herein 

likely do not reflect the performance of individuals with severe motor impairments. Further, it 

would be challenging to perform the personalized mental task protocol with individuals who 
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have reached the total locked-in stage (Niels Birbaumer et al. 2009). Nonetheless, with minor 

adjustments, we anticipate that the proposed protocol could be applied to clients with 

incomplete locked-in syndrome who retain reliable visual gaze and a yes/no response. For 

example, the ease-of-use ratings would need to be administered via a binary selection, 

scanning paradigm. There are several potential reasons why an individual with locked-in 

syndrome could stand to benefit from a BCI. Firstly, even if eye gaze has been maintained, 

muscle fatigue could limit effective communication. Secondly, conditions such as amyotrophic 

lateral sclerosis are progressive; therefore, when clients transition from a locked-in to a total 

locked-in state, eye gaze may no longer be a viable access pathway. Literature has suggested 

that gaining control of the BCI prior to reaching total locked-in syndrome may increase the rate 

of success (Nikolaus Weiskopf et al. 2007; Niels Birbaumer 2006; Nicolas-Alonso and Gomez-

Gil 2012; A. Kübler and Birbaumer 2008). Further research and testing on the target population 

is necessary before conclusions about the effectiveness of personalized mental tasks in a 

communication BCI can be drawn. 

Secondly, this study was conducted under ideal environmental conditions (quiet and dimly-lit 

room) that may not be indicative of most real-world settings. Further research should be 

conducted to assess the effect of environmental conditions on the system’s performance. 

Finally, when using NIRS as an access modality for a BCI, there is the potential for systemic 

contributions to the signal (Sarah D. Power, Kushki, and Chau 2012; L. C. Schudlo and Chau 

2014; Tachtsidis et al. 2008). Since near-infrared light travels through the scalp and skull before 

reaching the brain, the recorded signal may contain systemic artefacts. Some researchers have 

proposed using simultaneous shallow measurements to remove the systemic portion of the 

deep NIRS signal (Funane et al. 2014; Chan, Power, and Chau 2012). However, the effect of 

such filtering on classification accuracies has yet to be fully quantified (Chan, Power, and Chau 

2012). Other studies by Hoshi et al. and Villinger et al. reported minimal task-related changes in 

the systemic blood flow (A Villringer et al. 1993; Yoko Hoshi et al. 2011). Furthermore, for the 

purpose of BCI design, it can be argued that as long as the system is able to differentiate 

between mental states, the exact origin and composition of the signal may be a moot point. 

4.6 Conclusion 

This study explored the possibility of allowing participants to choose their own personalized 

mental tasks, based on both performance and usability, to control an online NIRS-BCI. Our 
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findings suggest that individuals can acquire control of an online personalized NIRS-BCI with 

classification accuracies comparable to those of an NIRS-BCI with prescribed, state-of-the-art 

tasks. The personalized mental task NIRS-BCI was significantly easier to use than its 

prescribed mental task counterpart. Users appeared to be able to effectively choose 

personalized mental tasks using the WS-Score as the measure of performance, and post-task 

ease-of-use ratings as the measure of usability. Overall, the personalized mental task NIRS-BCI 

provided a more user-centered and easier-to-use online BCI, without compromising accuracy. 

Personalized mental tasks may support the development of more user-friendly BCIs. 
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Chapter 5: Self-regulation 
The entirety of this chapter is reproduced from the article “Weaning off Mental Tasks to Achieve 

Voluntary Self-Regulatory Control of a Near-Infrared Spectroscopy Brain-Computer Interface”. 

This manuscript has been published in IEEE Transactions on Neural Systems and 

Rehabilitation Engineering journal. 

5.1 Abstract 

As a non-invasive and safe optical measure of haemodynamic brain activity, near-infrared 

spectroscopy (NIRS) has emerged as a potential brain-computer interface (BCI) access 

modality. Currently, to the best of our knowledge, all NIRS-BCIs use mental tasks to elicit 

changes in regional haemodynamic activity. One of the limitations of using mental tasks is that 

they can be cognitively demanding, and unintuitive. The goal of this work was to explore the 

development of a neurofeedback-based NIRS-BCI that weans users off mental tasks, to instead 

use voluntary self-regulation. Ten able-bodied participants were recruited for this study. After 

ten sessions of using two personalized mental tasks to increase and decrease the participant’s 

haemodynamic activity, the users were asked, for the remaining sessions, to stop performing 

their tasks and instead use only a desire to modulate their haemodynamic activity. By the final 

online session, participants were able to exclusively use voluntary self-regulation with an 

average accuracy of 79 ± 13%. Additionally, the majority of participants indicated that BCI 

control via self-regulation was less taxing and more intuitive than BCI operation using mental 

tasks. 

5.2 Introduction 

5.2.1 Brain-computer interfaces 

Brain-computer interfaces (BCIs) allow individuals to interact with their environment using only 

cognitive activities (Elisabeth V C Friedrich, Scherer, and Neuper 2012; Ang, Yu, and Guan 

2012; S. M. Coyle, Ward, and Markham 2007). BCIs can serve as a conduit to communication 

or mobility for individuals with severe motor impairments resulting from conditions such as: 

amyotrophic lateral sclerosis, spinal cord injuries, brain stem stroke, and muscular dystrophy 

(Elisabeth V C Friedrich, Scherer, and Neuper 2012; Ayaz et al. 2007; Niels Birbaumer 2006; J. 

Wolpaw et al. 2000; Sitaram et al. 2007). BCIs can also be used by able-bodied individuals for 
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gaming, entertainment, and to accelerate learning (Elisabeth V C Friedrich, Scherer, and 

Neuper 2012; J. Wolpaw et al. 2000). 

The basic components of a BCI are: the physiological input, the signal processing unit, the 

classifier, and the output. Most BCI research focuses on improving the signal processing unit or 

the classification methods, with only a few papers focusing on improving the physiological input. 

The input to the BCI can be categorized into the access modality, which refers to how the 

physiological signal is collected, and the access pathway, which refers to how a change in the 

signal is evoked (Blain, Mihailidis, and Chau 2008; K. Tai, Blain, and Chau 2008; Ayaz et al. 

2009). The main focus of this research is on improving the BCI access pathway. 

5.2.2 Near-infrared spectroscopy access modality 

The access modality used in this research is near-infrared spectroscopy (NIRS). NIRS is a non-

invasive and safe optical neural imaging technique that measures haemodynamic brain activity 

(Ang, Yu, and Guan 2012; S. M. Coyle, Ward, and Markham 2007; Ayaz et al. 2007; S. Coyle et 

al. 2004). Additionally, compared to electroencephalography (EEG), NIRS does not require 

electrode gel, and is not affected by electrical noise or blinking of the eyes (S. M. Coyle, Ward, 

and Markham 2007; Ayaz et al. 2009; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, 

and Chau 2011; T. Falk et al. 2011; M Izzetoglu et al. 2005). The major limitation of an NIRS-

BCI is, however, the inherent haemodynamic delay. For a more detailed analysis of the 

advantages and limitations of NIRS, please refer to (S. M. Coyle, Ward, and Markham 2007; 

Ayaz et al. 2009; Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; T. 

Falk et al. 2011; M Izzetoglu et al. 2005). 

To make NIRS measurements, a near-infrared light source is placed on the surface of the skin; 

the light travels through the bone and the meninges to the cortex and is scattered back through 

the tissue in a banana shaped path, to a detector (S. M. Coyle, Ward, and Markham 2007). The 

amount of light that is absorbed varies with the amount of oxygen in the blood. Through a 

mechanism known as neurovascular coupling, areas of the brain that are active typically exhibit 

an increase in oxygenated haemoglobin (HbO), an increase in total haemoglobin (tHb), and a 

decrease in deoxygenated haemoglobin (Hb) (S. M. Coyle, Ward, and Markham 2007; Niels 

Birbaumer and Cohen 2007; Wolf et al. 2002). However, other coupling trends have also been 

reported (Bauernfeind et al. 2008; A Villringer et al. 1993; Gert Pfurtscheller, Bauernfeind, et al. 

2010; Quaresima et al. 2005; Y Hoshi et al. 1994; Koshino et al. 2011; Buckner, Andrews-
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Hanna, and Schacter 2008). By measuring the concentration of HbO and Hb in the brain, NIRS 

provides a measure of cognitive activity (Ang, Yu, and Guan 2012; S. M. Coyle, Ward, and 

Markham 2007).  

5.2.3 NIRS-BCI access pathway: self-regulation 

NIRS is a promising access modality; however, to date, little research has investigated the 

access pathways accompanying this access modality. Currently, to the best of our knowledge, 

all active NIRS-BCI studies have used mental activation tasks to control the BCI, where the user 

performs specific tasks that result in predictable changes in haemodynamic activity (Nicolas-

Alonso and Gomez-Gil 2012; Strait and Scheutz 2014; L. Schudlo, Weyand, and Chau 2014; 

Zephaniah and Kim 2014). The main disadvantages of using mental activation tasks are the 

additional cognitive workload required in performing a separate task, and the non-intuitive 

nature of this method of communication (Niels Birbaumer 2006; K. Tai, Blain, and Chau 2008). 

When using mental activation tasks to control a BCI, the user must first determine their 

intention, then they must recall and perform the task that elicits the corresponding change in 

haemodynamic activity.  

Some BCI research groups are exploring voluntary self-regulation as an alternative BCI access 

pathway (Niels Birbaumer 2006; N. Weiskopf et al. 2003; Kotchoubey et al. 1996; Andrea 

Kübler, Neumann, et al. 2001; J. R. Wolpaw et al. 1997; Daly and Wolpaw 2008; A Kübler et al. 

1999). Voluntary self-regulation involves the acquisition of voluntary control over one’s 

physiological signals without the need to perform a mental task. One effective procedure for this 

type of learning is operant conditioning. Operant conditioning was first explored by Edward 

Thorndike and B.F. Skinner in the late 1800s and involves shaping of a subject’s voluntary 

behaviour by consequences (Coon and Mitterer 2013; Skinner 1948; Thorndike and Rock 

1934). Operant conditioning requires two main elements: 1) a subject’s voluntary action, and 2) 

positive or negative reinforcement (Andrea Kübler, Kotchoubey, et al. 2001; Andrea Kübler, 

Neumann, et al. 2001). Cognitive research has also shown that learning is most effective when 

the voluntary action causes an immediate, detectable outcome, and when a subject repeatedly 

undergoes this action-outcome relationship (Pineda et al. 2003). In the application of operant 

conditioning to a BCI, the action is a subject’s voluntary control over a physiological signal, and 

the outcome is real-time physiological signal feedback. The outcome, depending on whether or 

not it achieves the intended goal, is followed by selective reinforcement. Operant conditioning 



 

85 

 

allows a subject to acquire the skill of controlling their physiological signals without performing 

any additional task, and without being consciously aware of how this control is achieved (Niels 

Birbaumer 2006; N. Weiskopf et al. 2003; Kotchoubey et al. 1996). Operant conditioning 

promotes the automatization of thought and behaviour, such as in learning how to ride a bike: 

once learnt, it no longer requires intense concentration or a conscious effort (E. A. Curran and 

Stokes 2003; Poldrack et al. 2005). This sharply contrasts with mental tasks, which constantly 

entail an individual’s conscious engagement. Thus, self-regulation learned through operant 

conditioning may require less mental workload than mental tasks.  

The field of voluntary self-regulation in BCIs is still in its infancy; however, to date, several 

researchers have shown the potential of voluntary self-regulation in EEG-BCIs with users 

gaining control of the 8-12 Hz mu rhythms (J. R. Wolpaw et al. 1997; J R Wolpaw, McFarland, 

and Vaughan 2000; Daly and Wolpaw 2008; E. A. Curran and Stokes 2003) and slow cortical 

potentials (SCPs) (Kotchoubey et al. 1996; Andrea Kübler, Neumann, et al. 2001; Daly and 

Wolpaw 2008; A Kübler et al. 1999; E. A. Curran and Stokes 2003; Niels Birbaumer 2006; N. 

Birbaumer et al. 1981). While some researchers use a direct approach to learning self-

regulation (Kotchoubey et al. 1996; Andrea Kübler, Neumann, et al. 2001; A Kübler et al. 1999; 

N. Birbaumer et al. 1981), others start by using mental tasks that are gradually replaced by self-

regulation (J. R. Wolpaw et al. 1997; Daly and Wolpaw 2008; J R Wolpaw et al. 1991; N. 

Birbaumer et al. 1999). For example, Wolpaw et al. conducted a study where mu and beta 

rhythms were used to control vertical cursor movements. Participants first used motor imagery 

to control vertical cursor movement, but as training progressed, the imagery task was no longer 

necessary (J. R. Wolpaw et al. 1997; J R Wolpaw et al. 1991). Likewise, Daly et al. also found 

that many users indicated that they no longer needed their mental tasks after several sessions 

of training (Daly and Wolpaw 2008). 

To date, NIRS self-regulation is relatively unexplored. Toomim et al. (Toomim et al. 2005) and 

Carmen (Carmen 2005) have conducted studies that show that users are able to voluntarily 

increase NIRS blood oxygen content in the prefrontal cortex, using feedback without a mental 

task, for the purpose of treating attention deficit disorder and migraines. However, to the best of 

our knowledge, no studies have explored voluntary self-regulation for the purpose of controlling 

an NIRS-BCI, and no NIRS studies have explored the potential of weaning users from their 

mental tasks. 
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5.2.4 Objectives 

The overall aim of this study was to determine if NIRS-BCI users could be weaned off mental 

tasks and use just a voluntary desire to alter their cerebral blood oxygenation. The specific 

objectives were: (i) to determine if a NIRS-BCI based on self-regulation can achieve accuracies 

greater than chance, and (ii) to determine if users find an NIRS-BCI controlled using self-

regulation to be more intuitive, easier to use, and less mentally demanding than a NIRS-BCI 

controlled using mental tasks. 

It was hypothesized that after using mental tasks to increase and decrease their haemodynamic 

activities, users can be weaned off mental tasks and still be able to increase and decrease their 

haemodynamic activity. It was also hypothesized that if users can directly modulate their 

haemodynamic activity without the need to perform a separate task, the resulting BCI would be 

more intuitive, easier to use, and require less mental workload.  

5.3 Methods 

5.3.1 Participants 

Ten able-bodied participants (four male) between the ages of 16 and 40 were recruited from the 

staff and students at Holland Bloorview Kids Rehabilitation Hospital (Toronto, Canada). The 

study received ethics approval from the research ethics boards of Holland Bloorview Kids 

Rehabilitation Hospital and the University of Toronto. All participants provided informed written 

consent. 

Participants had normal or corrected-to-normal vision and had no known degenerative 

disorders, cardiovascular disorders, motor impairments, trauma-induced brain injuries, drug or 

alcohol-related conditions, psychiatric conditions, respiratory disorders or metabolic disorders. 

Participants were asked not to smoke or drink alcoholic or caffeinated beverages three hours 

prior to each data collection session. All of the participants were right-handed according to the 

Edinburgh handedness test (Oldfield 1971). It should be noted that one participant (P6, male) 

dropped out of the study since he was not able to follow the session protocol. 
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5.3.2 Instrumentation 

NIRS data were collected from the prefrontal cortex (PFC) using a multi-channel frequency-

domain NIRS system with a sampling rate of 31.25 Hz (Imagent Functional Brain Imaging 

System from ISS Inc., Champaign, IL (ISS Inc. 2012)). The PFC is the most anterior portion of 

the brain lying just behind the forehead and is involved in higher brain functions, including 

logical thinking, planning, and emotion (Ogata, Mukai, and Yagi 2007; Gao et al. 1990).  

Five laser diodes each emitting 690 nm and 830 nm light and three photomultiplier tube 

detectors were attached to a headband. The headband was made out of a rubber polymer (3M 

9900 series). The rubber was comfortable on the skin and easily conformed to the shape of the 

subject’s head. Black fabric was sewn on the outside of the headband to create tight pockets for 

the light sources and detectors. These pockets secured the sources and detectors, ensuring 

close and stable contact with the head. The headband was centered on the participant’s 

forehead with reference to the nose, and was placed above the eyebrows, as shown in Figure 

22 (A). 

 
Figure 22. (A) NIRS headband placed over the forehead. (B) Experimental source and detector configuration. 
Legend: the solid circles represent detectors; the open circles represent light source pairs; the x’s represent 
points of interrogation (channels); and the starred areas represent the approximate FP1 and FP2 positions of 

the international 10-20 EEG system. 

The sources and detectors were arranged in a trapezoidal shape. Each source and adjacent 

detector was separated by a distance of 3 cm. This distance corresponds to a penetration depth 

of approximately 2.5 cm, which has been shown to reach the outer layer of the cerebral cortex 

(Bauernfeind et al. 2008; Haeussinger et al. 2011; E. Okada et al. 1997). Several other NIRS-

BCI studies have also used a source-detector separation distance of 3 cm over the PFC (Sarah 

D. Power, Falk, and Chau 2010; S. Power, Kushki, and Chau 2011; Bauernfeind et al. 2008; 

Naito et al. 2007; L. C. Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 

2012). The source-detector configuration allowed for the interrogation of nine discrete locations 

(channels), as shown in Figure 22 (B). 
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5.3.3 Experimental protocol 

Participants took part in sixteen data collection sessions at a frequency of one session per day. 

The first fifteen sessions took place at a frequency of five sessions per week for a total of three 

weeks. The sixteenth session took place ten days after session fifteen. A schematic illustration 

of the overall study, session, and block structure is shown in Figure 23. 

 
Figure 23. Study, session, and block structure. 

All sessions adhered to the same general structure. Each session started with a short warm-up 

period, which allowed the user to become familiar with the interface. Following the warm up, 

each participant took part in three data collection blocks. During each data collection block, the 

participant performed 22 task intervals (sessions 1- 3) or 20 task intervals (sessions 4-16). Each 

task was performed for 17 seconds, and was followed by a 20 second rest interval. The lengths 

of the task and rest intervals were chosen on the basis of preliminary data and past work (S. 

Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013). 

Neurofeedback was provided during all sessions in the form of a graphical user interface 

consisting of: 1) a trapezoid topographic image showing the real-time changes in blood 

oxygenation levels over the PFC and 2) a ball that rose and fell with the average change over 

the entire interrogation area. The feedback was updated every 125 ms, and was calculated 

using cubic interpolation of the HbO concentrations across the nine points of interrogation (S. M. 

Coyle, Ward, and Markham 2007; S. Coyle et al. 2004). Participants were informed that the red 

colour on the feedback display represented an increase in haemodynamic activity, while the 
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blue colour represented a decrease in haemodynamic activity. The activation feedback is shown 

in Figure 24.  

 
Figure 24. User interface for Sessions 6-10 (online classification and game feedback). 

Sessions 1-5: The purpose of the first five sessions was to select personalized mental tasks for 

each of the participants. In sessions one to three, participants performed eleven mental tasks 

twice per block in a random order. The eleven mental tasks are described in Table 12.  

Table 12. Eleven mental tasks used in sessions 1 to 3. 

Task Description 

Mental math  
(Ang, Yu, and Guan 2012; Naito et al. 2007; Herff, 
Heger, Putze, et al. 2013; Sarah D. Power, Falk, 

and Chau 2010; S. Power, Kushki, and Chau 
2011; L. C. Schudlo, Power, and Chau 2013; 

Ogata, Mukai, and Yagi 2007; Bauernfeind et al. 
2008; Sarah D. Power, Kushki, and Chau 2012; 

Utsugi et al. 2007; L. C. Schudlo and Chau 2014; 
Naseer, Hong, and Hong 2014; Khan, Hong, and 

Hong 2014) 

Participants were prompted with a math problem 
and they were asked to repeatedly subtract a two 

digit number from a three digit number. For 
example, given 986-12, the participant would 

mentally evaluate 986-12 = 974; 974-12 = 962; 
962-12 = 950; and so on. Numbers were randomly 

generated.  

Mental singing  
(Naito et al. 2007; Herff, Heger, Putze, et al. 2013; 
Sarah D. Power, Falk, and Chau 2010; S. Power, 

Kushki, and Chau 2011) 

Participants were asked to sing a song in their 
head.  

Word generation  
(Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007; 

Faress and Chau 2013) 

Participants were asked to think of as many words 
as possible that start with a specific letter. For 

example, if the letter “D” appeared on the screen, 
the user may think of the words: dog, door, deli, 

and so on. Letters (excluding x and z) were 
randomly generated.  

Tangram puzzle  
(Ayaz et al. 2012; Herff, Heger, Putze, et al. 2013) 

Participants were prompted with a tangram puzzle 
in the top right corner of the screen, and were 
asked to imagine rotating the pieces to make a 

final picture. 

Counting 
 (Khan, Hong, and Hong 2014; Naseer and Hong 

Participants were asked to slowly count in their 
heads while relaxing. 
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2013a) 

Happy thoughts  
(Kelly Tai and Chau 2009) 

 

Participants were asked to think about the details 
of a past event in their life that made them very 

happy. 

 Stroop  
(Schroeter et al. 2002; Ehlis et al. 2005) 

 

Participants were prompted with a series of colour 
names. The words were also coloured, but the 
colour of the words did not always match the 
written word. For example, the word blue may 

have been written in red ink. The participants were 
asked to say the real colour of the word in their 

head.  

Visualizing the future  
(Buckner, Andrews-Hanna, and Schacter 2008) 

Participants were asked to imagine their life in five 
years, specifically focusing on their future day-to-

day activities.  

Focus on the feedback  
(K. Izzetoglu et al. 2011) 

Participants were asked to relax and focus on the 
feedback.  

Motor imagery  
(Kanthack, Bigliassi, and Altimari 2013; Leff et al. 
2011; Sitaram et al. 2007; S. M. Coyle, Ward, and 

Markham 2007; Naseer and Hong 2013b) 

Participants were asked to imagine moving their 
arms or legs.  

Rest  
(Ang, Yu, and Guan 2012; Ayaz et al. 2007; Naito 

et al. 2007; Herff, Heger, Putze, et al. 2013; S. 
Power, Kushki, and Chau 2011; L. C. Schudlo, 

Power, and Chau 2013; Sarah D. Power, Kushki, 
and Chau 2012; Naseer and Hong 2013a; L. C. 

Schudlo and Chau 2014; Naseer, Hong, and Hong 
2014) 

Participants were asked to relax and let their minds 
rest.  

At the beginning of session 4, users were instructed to choose their own pair of personalized 

tasks based on task performance and their subjective ease-of-use ratings. Task performance 

was captured by a task-specific weighted slope score that represents the tendency for a task to 

consistently increase or decrease haemodynamic activity. Specifically, the weighted slope 

score, iWS , for the 
thi  task, was defined as: 
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where mij and mik are the slopes of least square line of best-fit to the haemodynamic activity 

over time for the jth or kth iteration of the ith task, and N is the number of times the task was 

performed. The ease-of-use ratings were based on post task ease-of-use rankings on a 5-point 

Likert-type scale, ranging from “very easy” to “very difficult” (Tedesco and Tullis 2006; Sauro 

and Dumas 2009). A total ease-of-use score for each task was determined as the average 

ease-of-use rating across all iterations of the task. Each participant chose one task that 
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increased their haemodynamic activity and one task that decreased their haemodynamic 

activity.  

For sessions four and five, participants performed their two chosen mental tasks. It should be 

noted that once tasks were chosen, participants were not allowed to change their tasks. 

Sessions 6-10: For sessions six through ten, participants performed their chosen increase and 

decrease mental tasks. The goal of these sessions was for the participants to improve at 

performing their tasks through operant conditioning. All sessions were classified online, in real-

time, using a classifier trained on the previously collected personalized mental task sessions 

(i.e. data from session 4 onwards). In addition to the trapezoid and ball feedback, two additional 

pieces of feedback were provided in order to motivate participants to perform well. Firstly, the 

participant was presented with a game involving a character running across a field. The 

character encountered obstacles that had to be either jumped over or ducked under. If the 

classification was done correctly, the character would jump or duck as required; however, if the 

classification was incorrect, the character would run into the obstacle. In addition, a numerical 

score was displayed to the participant, with a point awarded every time the character 

successfully avoided an obstacle. A screenshot of the user interface for sessions six through ten 

is shown in Figure 24. 

Sessions 11-15: In sessions 11 to 15, participants were informed that they must stop 

performing their tasks and instead use voluntary self-regulation. Voluntary self-regulation was 

described to participants as using a desire to increase or decrease the feedback without 

performing a separate mental task. They were informed that they should try to decrease and 

increase the feedback in a manner similar to that achieved with their mental tasks, but without 

performing the actual mental tasks. Since the transition to self-regulation from mental tasks can 

be difficult, it was acknowledged that users may want to occasionally revert to mental tasks. 

Participants were informed that if they felt the need to use some form of their mental task in the 

first few sessions of self-regulation, this was acceptable. However, participants were reminded 

that the goal was to gradually minimize the use of tasks with each passing session. Participants 

were also informed that they would no longer receive prompts for mental tasks and that by the 

last session, they should not be using their tasks for any iterations.  

As participants transitioned from mental tasks to self-regulation, it was hypothesized that the 

patterns of haemodynamic activity would remain similar, but not necessarily identical. As a 
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result, including data from mental task performance might negatively affect the classification of 

haemodynamic activity via self-regulation. For this reason, offline self-regulation sessions were 

required before online self-regulation classification could commence.  

To facilitate the training of a new classifier using only self-regulation data, session 11 and the 

first block of session 12 were analyzed offline. Online classification resumed from session 12, 

block 2 through session 15, block 3. The online self-regulation classifier was trained using all 

offline self-regulation sessions (i.e. data from session 11 onwards). The online sessions also 

included the score and game feedback. The user interface used for session 12, block 2 through 

session 15, block 3 is shown in Figure 25. 

 
Figure 25. User interface for session 12, block 2 to session 15, block 3 (online classification and game 

feedback). 

Session 16: Session 16 served as a follow-up session and was scheduled approximately ten 

days after session 15. The goal of session 16 was to determine if participants could still perform 

self-regulation after a ten day break. The classifier for session 16 was trained on all previously 

collected self-regulation data (i.e. data from session 11-15), and was only scheduled for 

participants who achieved an average self-regulation classification accuracy greater than 70%, 

which has been cited as the accuracy required for an effective BCI (Andrea Kübler, Neumann, 

et al. 2001).  
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5.3.4 Data analysis 

5.3.4.1 Filtering 

The NIRS signal is affected by various sources of physiological noise; including, the Mayer 

wave oscillation at a frequency of 0.1 Hz, the respiration cycle between 0.2 Hz to 0.4 Hz, and 

the cardiac cycle between 0.5 Hz to 2 Hz (Ayaz et al. 2009; Sarah D. Power, Falk, and Chau 

2010). To remove noise from the signal, the NIRS data were digitally low-pass filtered in real-

time using a third-order Chebyshev infinite impulse response (IIR) cascade filter with a pass-

band edge frequency of 0.1 Hz, a stop-band edge frequency of 0.5 Hz, and a pass band ripple 

of 0.1 dB. 

5.3.4.2 Calculating haemoglobin concentrations 

After filtering the data, the relative change in concentration of Hb, HbO, and the tHb were 

calculated using the modified Beer-Lambert’s Law (S. M. Coyle, Ward, and Markham 2007; J. 

Wolpaw et al. 2000; Niels Birbaumer and Cohen 2007).  
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where 


BI  is the mean light intensity measured at baseline at wavelength λ,


AI  is the light 

intensity measured at any given time at wavelength λ, 
 Hb and 

 HbO  are the specific extinction 
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coefficient of deoxygenated and oxygenated haemoglobin at wavelength λ (for this study: 

690nm,Hb = 2.1382 mM-1cm-1
, 830nm,Hb = 0.7804 mM-1 cm-1, 690nm,HbO = 0.3123 mM-1 cm-1, and 

830nm,HbO = 1.0507 mM-1 cm-1 (Cope 1991)), DPF is the differential path factor at wavelength λ 

(for this study: DPF690nm = 6.51, and DPF830nm = 5.86 (A Duncan et al. 1995)) and r is the 

geometric distance between the emitter and detector (for this study: r = 3cm). 

5.3.4.3 Feature extraction and feature selection 

A total of 288 features were extracted from the data. Features were extracted over four time 

windows (0-5s, 0-10s, 0-15s, and 0-17s). The extracted features included the temporal changes 

in the three chromophores (Hb, HbO, and tHb) estimated at each of the 9 channels (4 time 

windows x 3 chromophores x 9 channels = 108 features) and the spatiotemporal features of the 

zero to fourth order discrete orthogonal Chebyshev image moments (4 time windows x 3 

chromophores x 15 image moments = 180 features) (L. C. Schudlo, Power, and Chau 2013). 

The temporal feature extraction involved normalizing each task interval and then determining 

the slope over the different time windows using the least-square line of best fit. Before extracting 

spatial features, topographic images for  HbO ,  Hb , and  tHb  were generated by cubic 

interpolation of the haemoglobin concentration values between locations of empirical 

integration. After the topographic images were generated, the images were normalized, and the 

zero to fourth order discrete orthogonal Chebyshev polynomial image moments were extracted 

from the dynamic topograms to summarize the spatiotemporal features of the data (L. C. 

Schudlo, Power, and Chau 2013). 

After the features were extracted, the sequential forward floating search (SFFS) algorithm was 

used to select a subset of eight features from the total feature set (L. C. Schudlo, Power, and 

Chau 2013; Pudil, Novovičová, and Kittler 1994). In this algorithm, the Fisher criterion was used 

to assess the discriminate capabilities of each feature set, as in (L. C. Schudlo and Chau 2014; 

L. C. Schudlo, Power, and Chau 2013). A judicious subset of features has been shown to lead 

to smaller classification errors (Ang, Yu, and Guan 2012). For this study, the target number of 

features was chosen on the basis of preliminary data and past work (Sarah D Power, Kushki, 

and Chau 2012; L. C. Schudlo and Chau 2014). 
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5.3.4.4 Pattern classification 

Three linear discriminant analysis classifiers were trained: one using just temporal features, one 

using just spatiotemporal features, and one using a combination of temporal and spatiotemporal 

features. All three classifiers predicted the class labels of unseen data, using the majority vote 

as the predictor (L. C. Schudlo, Power, and Chau 2013). All offline analysis was conducted 

using 30 iterations of 5-fold cross-validation. 

5.3.4.5 Survey 

After completing each session, participants filled out a questionnaire on the ease-of-use and 

intuitiveness of the BCI. The questionnaire consisted of 7-point Likert-type questions that asked 

the user to evaluate the BCI, as well as compare their current BCI experience with that of 

previous sessions. Participants also completed the NASA Task Load Index at the end of each 

session. The NASA Task Load Index is a standardized subjective workload assessment 

designed for evaluating the mental, physical, and temporal demands of human-machine 

systems as well as the subject’s perceived personal performance, effort and frustration. The 

score for each factor is weighted by the perceived contribution to total workload and summed to 

arrive at a final task load index (Hart 2006). The NASA questionnaire has good reliability and 

validity (Rubio et al. 2004; Hoonakker et al. 2011) and has been used in previous BCI studies 

(Felton, E.A Williams, J.C Vanderheiden, G.C Radwin 2012; Duvinage et al. 2012).  

5.3.4.6 Analysis of selected features 

We examined the frequency at which each feature was selected. Specifically, the chosen 

chromophores (Hb, HbO, and tHb), time windows (0-5s, 0-10s, 0-15s, and 0-17s), and channel 

locations (Ch1-9) were considered. The chromophore and time window analysis was done on 

the eight selected features, over all nine participants, for each of the three classifiers (temporal, 

spatiotemporal, and temporal combined with spatiotemporal), and both classification schemes 

(mental task and self-regulation). In total, 432 features were analyzed. The channel location 

analysis was done on the eight selected features, over all nine participants, for the temporal 

classifier only, and both classification schemes (mental task and self-regulation). In total, 144 

features were analyzed. 
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5.4 Results 

5.4.1 Chosen tasks 

The personalized tasks chosen by each of the participants during the mental task sessions are 

shown in Table 13. 

Table 13. Increase and decrease task chosen by each participant for the mental tasks sessions. Tasks 
labelled “(VP)” indicate that this task was associated with a visual prompt. 

ID Increase Task Decrease Task 

1 Relaxing with focus Relaxing with slow counting 

2 Relaxing with slow counting Word generation (VP) 

3 Mental math (VP) Stroop (VP) 

4 Music imagery Rest 

5 Happy thoughts Word generation (VP) 

7 Happy thoughts Mental math (VP) 

8 Relaxing with focus Word generation (VP) 

9 Relaxing with focus Word generation (VP) 

10 Mental rotation (VP) Rest 

5.4.2 Self-regulation accuracies 

The average accuracies and 95% confidence intervals achieved during the five sessions of self-

regulation (sessions 11-15) over all participants is shown in Figure 26. 
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Figure 26. (A) Individual accuracies across all sessions. (B) Average accuracy and 95% CI profile across all 

participants and all sessions. 

The average offline and online accuracies achieved over all participants were 72 ± 13% and 76 

± 14%, respectively, and the average online accuracy achieved in the final online session of 

self-regulation (session 15) was 79 ± 13%. Other than participant 7, all participants were able to 

achieve self-regulation accuracies significantly greater than chance, as calculated using the 

binomial test (two-tailed, α = 0.05) (Mueller-Putz et al. 2008).  

5.4.3 Follow-up session accuracies 

The 7 participants (i.e., all except P2 and P7) who were able to effectively control the BCI using 

self-regulation in sessions 11-15 (i.e. achieved an average accuracy greater than 70% (Andrea 

Kübler, Neumann, et al. 2001)) took part in an additional session (session 16) approximately 10 

days following their last self-regulation session. The summary and spread of the follow-up 

session accuracy (10 days after session 15) are shown as the final data point in Figure 26. 
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Normality of the data was confirmed by the Shapiro-Wilk Normality test, and a two-tailed 

Student’s t-test (α = 0.05) for two dependent means did not indicate a significant difference 

between accuracies for sessions 15 and 16 (t = 1.21, p = 0.271). This result suggests that even 

after a ten day break, participants were still able to control the BCI using voluntary self-

regulation without a significant change in accuracy. 

5.4.4 Comparison of self-regulation accuracies to mental task 

accuracies 

The accuracies for all six online mental task sessions (sessions 5-10) and four online self-

regulation sessions (sessions 12-15) are shown in Figure 26. A linear mixed effect model was 

run to compare the accuracies obtained using self-regulation to those obtained using mental 

tasks (West, Welch, and Galecki 2007; Demidenko 2013; Oberg and Mahoney 2007). In the full 

version of this model, “type of control” (mental tasks or self-regulation) and “session” were 

modelled as fixed effects, while the intercept and the slope of session over subject were 

modelled as random effects. The intercept and slope were modelled as random effects to 

account for inter-subject variations in initial accuracies and changes in accuracies over time due 

to learning or habituation. The mixed effect model was structured so that “session” was nested 

in “subject”. All model parameters were estimated using maximum likelihood estimation. A p-

value was obtained by a likelihood ratio test of the full model against the model without the 

effect in question (method of BCI control). This analysis revealed that the method of BCI control 

(independent variable) did not have a significant effect on the classification accuracies (χ2 = 

2.31, p = 0.128). 

It should be noted that there is an inherent learning bias, which may affect the accuracies 

achieved. It is possible that if participants had continued using mental tasks instead of 

transitioning to self-regulation, higher accuracies may have been achieved. However, since self-

regulation is meant to follow learning, this bias cannot be easily separated from the analysis. In 

order to predict whether an increase in accuracy would have likely occurred with continued 

mental task use, changes in mental task accuracies over the six online mental task sessions 

were analyzed. A linear mixed effect model was run with “session” as a fixed effect, and the 

intercept for each subject and the slope of session over subject as random effects. The mixed 

effect model was structured so that “session” was nested in “subject”. All model parameters 

were estimated using maximum likelihood estimation. The likelihood ratio test revealed no 
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differences in accuracy over time during the mental task sessions (χ2 = 0.820, p = 0.365). 

Extrapolating this analysis, it appears that the change in achievable classification accuracies 

would have been minimal had users continued using mental tasks. Based on this finding, it is 

likely that the comparison between mental task and self-regulation sessions is minimally 

affected by the learning bias.  

5.4.5 Can mental task data be used to classify self-regulation sessions? 

It is possible that the classifier training for self-regulation could be improved or the offline 

training time reduced by utilizing the training data collected during mental task performance. To 

determine the suitability of using mental task data for classifying self-regulation sessions, two 

post-hoc offline data analyses were conducted using a pseudo online approach. First, the 

classification accuracies achievable using a classifier trained with only mental task data (all data 

collected during sessions 4-10) and tested on all data collected during each of the participant’s 

self-regulation sessions (sessions 11-15) were evaluated. Second, the classification accuracies 

achievable when using both mental task and the first block of self-regulation data for classifier 

training were evaluated. For this latter analysis, the classifier was trained using all mental task 

data (sessions 4-10) and session 11, block 1 self-regulation data and tested on the remaining 

self-regulation sessions (session 11, block 2 to session 15). Figure 27 (A) and (B) show the 

accuracies achieved in the two scenarios mentioned above. 

 
Figure 27. Average accuracy and 95% CI profile for (A) using only mental task data (sessions 4-10) to train 

the classifier and self-regulation sessions 11 to 15 for testing, and (B) using all mental task data (sessions 4-
10) and session 11 block 1 self-regulation data for training the classifier and self-regulation sessions 11 

block 2 to 15 for testing.  
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Under both classification schemes, all participants with the exception of participant 7 achieved 

an average accuracy greater than chance, as calculated using the binomial test (two-tailed, α = 

0.05) (Mueller-Putz et al. 2008). Moreover, the average classification accuracy over all 

participants for each session, other than session 14, was above 70%. These results suggest 

that participants were able to elicit very similar changes in their haemodynamic activity during 

self-regulation as during their mental task sessions. 

Two linear mixed effect models were used to compare the accuracies achieved offline (shown in 

Figure 27 (A) and (B)), to those obtained initially (shown in Figure 26). In the full versions of 

these models, “training data type” and “session” were modelled as fixed effects, while the 

intercept and the slope of session over subject were modelled as random effects. In the first 

model, offline mental task data were compared to the original self-regulation data, while in the 

second model, offline mental task data and one block of self-regulation data were compared to 

the original self-regulation data. In both models, the intercept and slope were modelled as 

random effects to account for inter-subject variations in initial accuracies and changes in 

accuracies over time due to learning or habituation. The mixed effect models were structured so 

that “session” was nested in “subject”. All model parameters were estimated using maximum 

likelihood estimation. A p-value was obtained by a likelihood ratio test of each full model against 

the corresponding model without the effect in question (training data type). The accuracies 

achieved using only mental task training data were significantly lower than the original 

accuracies (χ2 = 5.96, p = 0.0147). However, using both mental task data and one block of self-

regulation data for classifier training does not appear to significantly affect the accuracies 

achieved (χ2 = 2.25, p = 0.134). For comparison, it’s worth noting that using solely one block of 

self-regulation data - for example, data from session 11 block 1 - to train a classifier results in 

chance level accuracies in four of the participants, and an average accuracy of only 64 ± 3%. 

These results indicate that it may be possible to bridge the change from mental tasks to self-

regulation with limited offline self-regulation data collection (i.e. one offline block of self-

regulation). However, training with only one block of self-regulation data does not appear to be 

sufficient. 

5.4.6 Are users still performing their tasks? 

It appears that the changes in haemodynamic activity elicited during self-regulation sessions are 

very similar to those elicited during the mental task sessions. Although users were asked to stop 
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performing their mental tasks and instead use voluntary self-regulation, it would be reassuring to 

confirm that participants did in fact comply. In each post-session questionnaire, participants 

were asked how frequently they reverted back to performing their mental tasks. The self-

reported use of mental tasks is shown in Table 14. 

Table 14. Number of times participants reported using mental tasks during self-regulation sessions. 

Participant Session 
11 

Session 
12 

Session 
13 

Session 
14 

Session 
15 

P1 0 0 0 0 0 

P2 0 2 7 0 0 

P3 0 0 0 0 0 

P4 0 0 0 0 0 

P5 0 0 0 0 0 

P7 0 0 0 4 6 

P8 0 0 0 0 0 

P9 0 0 2 0 0 

P10 3 1 0 0 0 

Several of the participants (P1, P3, P4, P5, and P8) indicated that they never used their mental 

tasks during self-regulation sessions. Although a few of the participants (P2, P7, P9, and P10) 

did perform their mental tasks during self-regulation sessions, none performed their mental 

tasks for more than 10 of the 60 iterations per session. Additionally, other than participant 

seven, none of the participants indicated that they performed their mental tasks in session 14 or 

session 15. Furthermore, it appears that the number of times that participants reverted back to 

their tasks was not correlated with the initial tasks chosen (Table 13).  

From these self-report values and the classification results achieved, it is clear that most 

participants were able to effectively transition from mental task performance to complete self-

regulation while maintaining effective BCI control. 

5.4.7 Usability analysis 

The NASA Task Load Index for the final session of mental tasks (session 10) and the final 

session of self-regulation (session 15) are shown in Table 15.  

Table 15. NASA Task Load Index during mental tasks and self-regulation. 

NASA Task Load Index 

Participant Mental Task Self-Regulation 

P1 49.7 39.5 
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P2 10.5 13.8 

P3 55.7 41.5 

P4 48.0 16.8 

P5 41.2 25.2 

P7 40.3 36.2 

P8 3.0 0.0 

P9 43.3 42.8 

P10 17.0 19.0 

Average 34.3 ± 19 26.1 ± 15 

Seven out of the nine participants (P1, P3, P4, P5, P7, P8, and P9) reported a lower mental 

workload (i.e. lower NASA task-load score) when using self-regulation in comparison to using 

mental tasks in the final session of each control method. A two tailed paired t-test (α = 0.05) to 

compare the mental workload for the final session of mental tasks and self-regulation was 

conducted. The self-regulation paradigm resulted in a marginally-significant lower mental 

workload in comparison to the mental tasks paradigm (t = -2.24, p = 0.0556). Normality of the 

data was confirmed using the Shapiro-Wilk Test. 

Two linear mixed effect models were used to evaluate the change in subjectively-evaluated 

mental workload over the course of mental task and self-regulation BCI use. In the full versions 

of these models, “session” was set as the fixed effect, while the intercept and the slope of 

session over subject were modelled as random effects. The intercept and slope were modelled 

as random effects to account for inter-subject variations in initial subjectively-evaluated mental 

workload and changes in workload over time due to learning. The mixed effect models were 

structured so that “session” was nested in “subject”. All model parameters were estimated using 

maximum likelihood estimation. A p-value was obtained by a likelihood ratio test of each full 

model against the corresponding model without the effect in question (session). Although the 

NASA-TLX scores were not significantly different across the six mental task sessions (χ2 = 1.52, 

p = 0.217), there was a marginally significant decrease in the workload scores during the five 

self-regulation sessions (χ2 = 3.79, p = 0.0517), suggesting that control became more automatic 

with self-regulation, but not with mental task performance. 

By the last session of self-regulation, seven out of the nine participants reported on the post-

session questionnaire, that self-regulation was easier to perform than mental tasks (P2, P4, P5, 

P7, P8, P9, and P10), and seven out of the nine participants found self-regulation more intuitive 

than mental tasks (P1, P2, P4, P5, P7, P8, and P10). Furthermore, six out of the nine 
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participants indicated that they would prefer self-regulation over mental tasks (P2, P4, P5, P7, 

P8, and P10), while one participant did not have a preference (P1). 

To determine if there was a change in perceived intuitiveness and ease-of-use for either self-

regulation or mental tasks over time, two mixed effect models were run. The full versions of 

these models used the “session” as the fixed effect, while the intercept and the slope of session 

over subject were modelled as random effects. The mixed effect models were structured so that 

“session” was nested in “subject”. All model parameters were estimated using maximum 

likelihood estimation. A p-value was obtained by a likelihood ratio test of each full model against 

the corresponding model without the effect in question (session). Based on the mixed effect 

models there appears to be a significant increase in the perceived intuitiveness (χ2 = 6.79, p = 

0.00916) and ease-of-use (χ2 = 6.38, p = 0.0115) of self-regulation over time, but not for mental 

tasks.  

5.4.8 Feature selection analysis 

It was found that all four time windows (0-5s, 0-10s, 0-15s, and 0-17s), all three chromophores 

(Hb, HbO, tHb), and all nine channels were frequently chosen during features selection for each 

participant. All three chromophores were chosen a comparable number of times, as shown in 

Figure 28A.  



 

104 

 

 
Figure 28. Frequency of occurrence of each (A) chromophore (Hb, HbO, and tHb), (B) time window (0-5s, 0-

10s, 0-15s, and 0-17s), and (C) channel, among the selected features. The location of each channel is shown 
in Figure 22B. 

Overall, the 0-17 second time window was chosen most often, followed by, in descending 

frequency of selection, the 0-5, 0-15 and 0-10 second time windows, as shown in Figure 28B. 

This finding is aligned with those of Power et al. (S. Power, Kushki, and Chau 2011). The fact 

that the smallest and largest time windows were chosen most frequently could be attributed to 

the benefit of capturing both early and gradual changes in the haemodynamic signal. 

All channels were chosen frequently, with the channels in the bottom row (Ch2, Ch3, Ch4, and 

Ch6) being chosen more often than the channels in the middle (Ch1, Ch8, and Ch5) and top 

(Ch7 and Ch9) rows, as shown in Figure 28C. The location of each channel is shown in the 

source-detector diagram (Figure 22B). The increased frequency of ventral channel selection 

could be the result of dorsal-ventral prefrontal cortex variations in organization and activation. 

Such spatial variations have been observed by several researchers (Wager and Smith 2003; 

Etkin, Egner, and Kalisch 2011; O’Reilly 2010; Rahm et al. 2013). 
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Additionally, the trends in feature selection observed above (frequency of chromophores, time 

windows, and channels chosen) appear to be similar for both mental task and self-regulation 

sessions. 

5.5 Discussion 

5.5.1  Accuracy  

5.5.1.1 Self-regulation as a means of NIRS-BCI control 

With an average online accuracy greater than 70% achieved using self-regulation, the results of 

this study support that BCI users can indeed be weaned from mental tasks (the typical method 

of BCI control explored to date) and gain volitional control of their haemodynamic activity. This 

study adds to the expanding literature of online NIRS-BCI research. The accuracies achieved in 

this study are in line with those reached by Schudlo et al. (L. C. Schudlo and Chau 2014), and 

Coyle et al. (S. M. Coyle, Ward, and Markham 2007), and exceed the accuracies of other online 

NIRS-BCI studies, such as those by Chan et al. (Chan, Power, and Chau 2012), and Stangl et 

al. (Stangl et al. 2013).  

Only one of the 9 participants (P7) was not able to achieve classification accuracies significantly 

greater than levels of chance using self-regulation. However, given that an estimated 10 to 30% 

of individuals are BCI-illiterate (Gert Pfurtscheller, Allison, et al. 2010; Ahn et al. 2013), this is 

perhaps not an alarming finding. Although participant 7 did not achieve an average accuracy 

greater than chance using self-regulation, he was able to do so using mental tasks. Perhaps this 

individual needed a different feedback modality (e.g., auditory or tactile), alternative 

explanations of self-regulation or intermittent rather than continuous feedback. Indeed, 

contingency, procedural instructions and temporal contiguity have been identified as major 

factors affecting BCI learning (Sulzer et al. 2013). On the other hand, self-regulation may not be 

an appropriate method of control for all BCI-users. Methods of systematically selecting the most 

effective means of control for each NIRS-BCI user should be explored in future work. 

5.5.1.2 Self-regulation accuracies after a ten day break 

It appears that BCI users with accuracies over 70% are able to take a leave (10 days in this 

study) from BCI use without a significant decline in accuracy. Since a user may not use the BCI 
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every day, there is value in exploring the stability of accuracy over time. For example, from the 

perspective of the classification algorithm, there is a possibility that the haemodynamic patterns 

may change over the ten day break, thereby altering the features and negatively impacting 

accuracy. Conversely, our results serve as preliminary evidence that haemodynamic activity 

associated with a particular learned activity does not change greatly over a 10-day period. 

There is also potential for the user to “unlearn” how to control the BCI, with skill decay after a 

period of non-use (Arthur et al. 1998). However, our findings suggest that the participants were 

able to maintain their new skill of self-regulation for at least 10 days. This finding is similar to 

research showing that learned skills that have reached the stage of automatization are robustly 

retained and difficult to unlearn (Romano, Howard, and Howard 2010). 

5.5.2 Usability  

5.5.2.1 Ease-of-use, intuitiveness, and task load 

Overall, it appears that a BCI controlled by self-regulation results in a more intuitively-controlled 

BCI, an easier to use BCI, and a BCI that require less mental workload. All participants, with the 

exception of P3, found self-regulation superior to mental tasks for at least two of these 

measures.  

The self-regulation BCI appears to be a more flexible BCI, and could lead to greater user 

satisfaction. Lower effort and mental workload may eventually translate into prolonged, effective 

and minimally fatiguing BCI use. Various other studies allude to this potential. Sun et al. showed 

that perceived ease-of-use of an e-learning platform was positively correlated with satisfaction 

(Sun et al. 2008). Similarly, Roca et al., reported that intention of continuation of learning is 

positively correlated with satisfaction, which is in turn positively correlated to ease-of-use (Roca, 

Chiu, and Martínez 2006). Also, self-regulation has been linked to improvements in an 

individual’s mental health, for example, motor-skill self-regulation was found to be associated 

with sports confidence (Vealey et al. 1998).  

5.5.2.2 User skepticism 

Interestingly, most users did not initially find self-regulation more usable than mental tasks. After 

first being introduced to self-regulation, only one participant (P2) indicated that they would prefer 

using self-regulation for BCI control. Based on verbal and written comments, several users were 
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initially uncertain that self-regulation could be used effectively. Participant 4 was one of these 

participants. After achieving an online classification accuracy of 55% in his first online self-

regulation session (session 12), this participant indicated that he did not believe self-regulation 

was possible, and he was unsure about simply expressing a desire to increase or decrease their 

haemodynamic activity. However, after being encouraged to continue trying, this participant was 

able to increase his classification accuracies with each session, and changed his attitude 

towards self-regulation. By the last session of self-regulation (session 15), this participant 

achieved a 92% classification accuracy and was raving about how much easier and more 

intuitive self-regulation was in comparison to mental tasks.  

Since most of the participants changed their opinion of self-regulation after just a few sessions, 

the skepticism appears to be short-lived. However, the initial skepticism of using self-regulation 

for BCI control, which was common among users in this study, could present a barrier for future 

research exploring self-regulation in BCIs. Additionally, it is possible that user skepticism may 

also negatively affect self-regulation classification accuracies in the first few sessions. Further 

research into the effect of user attitude on classification results and how to manage initial 

skepticism would be beneficial. 

5.5.3 Operant conditioning, skill acquisition and learning 

Similar to previous EEG-BCI self-regulation results obtained by Wolpaw et al. (J. R. Wolpaw et 

al. 1997; J R Wolpaw et al. 1991) and Daly et al. (Daly and Wolpaw 2008), this study found that 

once the skill of controlling the neurofeedback is learned through operant conditioning, the skill 

becomes automated and mental tasks are no longer needed.  

In this study, skill acquisition commenced with resource dependency and ended in automaticity 

(Langan-fox et al. 2002). Three approximate phases to skill acquisition can be described: the 

novel phase, where users perform cognitively demanding tasks to achieve changes in the 

neurofeedback; the weaning phase, where the user reduces his or her reliance on the cognitive 

processes; and the voluntary control phase, where the user no longer needs to perform their 

mental tasks. These three phases follow closely the stages of skill acquisition which have been 

established by numerous researchers in the field of information-processing (Fitts and Posner 

1967; Anderson 1982; Shiffrin and Schneider 1977).  

While specific brain areas have been implicated in the acquisitoin of skills during certain tasks, 

such as motor tasks (Poldrack et al. 2005; Gobel, Parrish, and Reber 2011), reading 
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(Turkeltaub et al. 2003), and attentional expertise (Brefczynski-Lewis et al. 2007), there is a 

paucity of work on cortical plasticity relating to the acquisition of BCI control. 

5.5.4 Significance of study 

While self-regulation has been explored in EEG-BCIs (Kotchoubey et al. 1996; Andrea Kübler, 

Neumann, et al. 2001; J. R. Wolpaw et al. 1997; J R Wolpaw, McFarland, and Vaughan 2000; A 

Kübler et al. 1999), this is the first study, to the best of our knowledge, to explore the use of self-

regulation in an NIRS-BCI. NIRS fundamentally differs from EEG in terms of the measured 

physiological phenomenon and the method of measurement. Specifically, EEG systems 

transduce bioelectric manifestations of fast neuronal firing, while NIRS systems optically 

ascertain haemoglobin chromophore concentration changes related to slow haemodynamic 

cortical activity. While the bioelectric and haemodynamic phenomena are related by 

neurovascular coupling, EEG and NIRS methods require different signal processing pathways 

and generate different neurofeedback. Despite these differences and the haemodynamic delay 

inherent to NIRS, an average online self-regulation accuracy of 79 ± 13% was achieved by the 

final session of self-regulation. This accuracy exceeds the often cited threshold of 70% for an 

effective BCI (Andrea Kübler, Neumann, et al. 2001). Overall, a self-regulation NIRS-BCI 

appears to offer the same level of accuracy as mental task-driven NIRS-BCIs explored in 

literature to date, with the added benefits of intuitiveness, ease-of-use, and decreased mental 

workload. 

5.5.5 Study limitations and future directions 

This study was conducted over a relatively short period of time, with only five self-regulation 

sessions. It is possible that individuals gain further proficiency at self-regulation over a longer 

period of training. Conversely, they might habituate, in which case self-regulation becomes too 

easy, leading to possible decreases in accuracies. Further research into the long-term use of 

self-regulation is necessary. 

One of the limitations of a self-regulation BCI is that the user must focus some of their attention 

on the feedback. The attention required could pose difficulties in real-world applications since 

the user may be focusing on other parts of the interface that they are trying to manipulate. 

Testing should be conducted to determine how to best design the user interface for a self-

regulation BCI. It is important to explore various sizes and on-screen locations of the visual 
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feedback, as well as other types of feedback (e.g. audio and tactile). Additionally, the 

development of a user interface based on a vertically scrolling layout might be well-suited to 

haemodynamic self-regulation, since moving up and down would be matched well with 

increasing and decreasing haemodynamic activity. 

Finally, this study used a synchronous BCI paradigm that requires the user to always increase 

or decrease their brain activity. In this sense, a synchronous paradigm can be mentally 

demanding; future work should explore the possibility of supporting a no-control state to enable 

a system-paced paradigm (Mason and Birch 2000).  

5.6 Conclusions 

To the best of our knowledge, this is the first study to explore the use of self-regulation in an 

NIRS-BCI. Our findings suggest that users can shift from mental task-based to task-free 

modulation of prefrontal cortical haemodynamics while still maintaining effective BCI control. 

After 10 sessions of task-based training followed by five sessions of voluntary self-regulation, 

participants in this study were able to achieve an average online self-regulation classification 

accuracy of 79 ± 13%. Additionally, participants who achieved an average accuracy over 70% 

maintained their accuracies after a ten day break from BCI use. Compared to mental tasks, 

most users found self-regulation to entail a lower mental workload, while being more intuitive 

and easier to perform. Overall, this research provides an incentive for further exploitation of self-

regulation in NIRS-BCI studies.  
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Chapter 6: Client Study 
The entirety of this chapter is reproduced from the article: “Challenges of Implementing a 

Personalized Mental Task Near-Infrared Spectroscopy Brain-Computer Interface for a Non-

Verbal Young Adult with Motor Impairments”. This manuscript has been accepted for publication 

at Developmental Neurorehabilitation. 

6.1 Abstract 

Purpose: Near-infrared spectroscopy brain-computer interfaces (NIRS-BCIs) have been 

proposed as potential motor-free communication pathways. This paper documents the 

challenges of implementing an NIRS-BCI with a non-verbal, severely and congenitally impaired, 

but cognitively intact young adult. 

Methods: A 5-session personalized mental task NIRS-BCI training paradigm was invoked, 

whereby participant-specific mental tasks were selected either by the researcher or by the user, 

on the basis of prior performance or user preference.  

Results: Although the personalized mental task selection and training framework had been 

previously demonstrated with able-bodied participants, the participant was not able to exceed 

chance level accuracies. Challenges to the acquisition of BCI control may have included 

disinclination to BCI training, structural or functional brain atypicalities, heightened emotional 

arousal, and confounding haemodynamic patterns associated with novelty and reward 

processing. 

Conclusions: Overall, we stress the necessity for further clinical NIRS-BCI research involving 

non-verbal individuals with severe motor impairments. 
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6.2 Introduction 

6.2.1 Near-infrared spectroscopy brain-computer interfaces 

Individuals with severe motor impairments, resulting from conditions such as brain-stem injury, 

spinal cord injury, muscular dystrophy, amyotrophic lateral sclerosis, or other neurological or 

neuromuscular conditions, often have little or no voluntary muscle control. Despite exhibiting 

capable cognition, they are unable to express their intentions through conventional means of 

communication (Blain, Mihailidis, and Chau 2008). The establishment and maintenance of 

communication has been shown to greatly increase quality of life and autonomy in the face of 

severe motor impairments (Andrea Kübler, Kotchoubey, et al. 2001; Fenton and Alpert 2008; 

Bach and McDaniel 1993; Sitaram et al. 2007; Blain, Mihailidis, and Chau 2008; K. Tai, Blain, 

and Chau 2008).  

Brain-computer interfaces (BCIs) enable users to interact with their environment using only 

cognitive activities (J. Wolpaw et al. 2000; Niels Birbaumer and Cohen 2007). Specifically, near-

infrared spectroscopy (NIRS) can be used to measure haemodynamic brain activity and a 

computer can be trained to discriminate between changes in the hemodynamic response 

accompanying the performance of different mental tasks. Each task can then be mapped to a 

command to control a computer. NIRS-BCIs are safe and non-invasive (S. M. Coyle, Ward, and 

Markham 2007; Ayaz et al. 2007).  

6.2.2 NIRS-BCI studies involving individuals with motor impairments 

As emphasized by numerous researchers, despite the fact that BCIs have the potential to 

benefit patients with motor impairments, the vast majority of current research is still being 

conducted with able-bodied subjects. It is acknowledged that research on able-bodied 

individuals is important; however, the conclusions may not always transfer to the target 

population due, for example, to differences in brain structure, cognitive processing pathways, or 

psycho-behavioural predisposition. Therefore, studies on individuals with motor impairments are 

critical to further advance clinical BCI’s (Grosse-wentrup and Schölkopf 2013). 

Several electroencephalography (EEG) BCI studies have been conducted on individuals with 

motor impairments with very promising results (N. Birbaumer et al. 1999; A Kübler et al. 1999; G 

Pfurtscheller et al. 2003; Niels Birbaumer et al. 2000; Jonathan R Wolpaw and McFarland 2004; 

Andrea Kübler et al. 2009; Andrea Kübler, Neumann, et al. 2001; A Kübler et al. 2005; N. 
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Birbaumer et al. 1981; Holz et al. 2013). These EEG studies have largely conditioned adult 

patients to regulate slow cortical potentials or sensory motor rhythms or have exploited event-

related potentials. Little research has focused on cognitive task-driven BCIs, an approach that 

may promote more immediate control, specifically in a pediatric population for whom there is a 

paucity of EEG BCI research (Moghimi, Kushki, Guerguerian, et al. 2012). Moreover, since 

NIRS and EEG fundamentally differ in terms of their measured physiological phenomena, the 

findings from one modality cannot be directly extrapolated to predict the success of the other. 

To the best of our knowledge, only three NIRS-BCI studies that have been conducted with 

individuals with motor impairments (Naito et al. 2007; Sarah Dianne Power and Chau 2013; 

Gallegos-Ayala et al. 2014).  

In 2007, Naito et al. conducted a NIRS-BCI study over the prefrontal cortex (PFC) on 40 

patients with amyotrophic lateral sclerosis (ALS) between the ages of 22 and 80 years. 

Seventeen of the subjects had progressed to total locked-in state. Participants performed 

mental calculation or fast singing as a ‘yes’ response, and number counting, sheep counting, 

slow singing or landscape imagining as a ‘no’ response. Naito et al. reported an average 

sensitivity of 75.7% and specificity of 83.5%; however, the study excluded 14 of the 40 

participants (35%) because their data were deemed ‘not separable’ based on initial analyses 

using both the training and testing samples. We note that the numbers of training and testing 

samples used in this study were very small, with only five data points in each class for testing. 

Given this small sample size, the upper limit of chance is very high at 76.2% (for a significance 

threshold of  = 0.05 and n = five samples per class) (Mueller-Putz et al. 2008). Based on these 

calculations, the average sensitivity reported of 75.7% is actually below the upper limit of 

chance. Other methodological details, such as data splitting into training and testing sets, 

variations in the number of training samples, and procedure for selecting the increase and 

decrease tasks for each participant were omitted from the manuscript (Naito et al. 2007). 

In 2013, Power et al. conducted an offline NIRS-BCI study over the PFC of a 20 year-old male 

with Duchenne muscular dystrophy. Using mental arithmetic and a natural baseline state, he 

achieved an offline classification accuracy of 71.1%, which exceeded chance levels of 63.6%, 

over two sessions with 24 samples per class in each session. Each session was classified 

separately and the average of both sessions was presented (Sarah Dianne Power and Chau 

2013). 
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In 2014, Gallegos-Ayala et al. conducted a study on one 67 year-old woman with amyotrophic 

lateral sclerosis in the completely locked-in stage. Functional activations of the cerebral cortex 

to auditory processing of correct or incorrect statements were assessed with NIRS. The patient 

was instructed to think ‘yes’ or ‘no’ after each sentence. Response intervals lasted 25 seconds 

after each question. Online feedback was given as ‘your answer was recognized as yes’ or ‘your 

answer was recognized as no’. The sensorimotor cortex and temporal areas were interrogated 

by NIRS. Average prediction accuracies were above chance levels and ranged from 71.67-

76.3%. This work serves as preliminary evidence that a locked-in individual can attain control 

over an NIRS-BCI (Gallegos-Ayala et al. 2014). Despite the promise of these early clinical 

studies, a broader array of clinical investigations are required to fully ascertain the practical 

merits and limitations of NIRS-BCIs usage by individuals with various motor impairments. 

6.2.3 Objectives 

The purpose of this study was to better understand the challenges associated with acquiring 

control over an NIRS-BCI, i.e. produce machine-discernible haemodynamic changes, in the face 

of severe congenital motor impairments. The context of our study is a cognitively capable, but 

severely physically impaired young adult using personalized mental tasks in a five session task 

selection and training paradigm previously demonstrated in young adults.  

6.3 Methods 

6.3.1 Participant profile 

The participant was a male in his early 20’s with an undiagnosed congenital muscular condition 

that results in severe general hypotonia. The participant has control of eye movements, some 

facial muscles, as well as very limited leg and upper arm control. All muscle control, including 

eye movements, deteriorates with fatigue, making muscle-based access difficult. The participant 

is dependent on a manual wheelchair and is non-verbal, but has reliable ‘yes’ and ‘no’ 

responses using one or two tongue clicks, respectively. The participant also uses a hummer for 

access to a computer (T. H. Falk et al. 2010). The participant is very bright, and has completed 

his high-school diploma. 

6.3.2 Instrumentation 

NIRS data were collected using a multi-channel frequency-domain NIRS system (Imagent 

Functional Brain Imaging System from ISS Inc., Champaign, IL (ISS Inc. 2012)). The NIRS 
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system was used to measure the blood oxygen content from the PFC (Ogata, Mukai, and Yagi 

2007; Gao et al. 1990). A headband with five light sources (emitting 690 nm and 830 nm light) 

and three photomultiplier tube detectors was centered on the participant’s forehead with 

reference to the nose, and placed directly above the eyebrows, as illustrated in Figure 29. The 

sources and detectors were separated by a distance of 3 cm and arranged in a trapezoidal 

shape. With this separation distance, the light has been shown to reach the outer layer of the 

cerebral cortex (Bauernfeind et al. 2008; Haeussinger et al. 2011; E. Okada et al. 1997). The 

source-detector configuration allowed for the interrogation of nine discrete locations, between 

each set of lights sources and detectors (Naito et al. 2007; Sarah D. Power, Falk, and Chau 

2010; S. Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Bauernfeind et 

al. 2008; Sarah D. Power, Kushki, and Chau 2012; Weyand et al. 2015; Weyand, Takehara-

Nishiuchi, and Chau 2015a; Weyand, Takehara-Nishiuchi, and Chau 2015b). Each point of 

interrogation (channel) represents one location where we can estimate the change in the 

concentration of oxygen in the blood. A schematic diagram of the optode configuration and 

points of interrogation is shown in Figure 29. 

 
Figure 29. Source-detector placement on forehead. The solid circles represent detectors; the open circles 

represent light source pairs; the x’s represent points of interrogation (channels); and the starred areas 
represent the approximate FP1 and FP2 positions of the international 10-20 EEG system. 

6.3.3 Experimental protocol 

The experimental protocol emerged from studies conducted on able-bodied participants. For 

more information, please refer to (Weyand, Takehara-Nishiuchi, and Chau 2015a; Weyand et al. 

2015; Weyand, Takehara-Nishiuchi, and Chau 2015c). Briefly, two personalized task selection 

approaches were invoked: (1) a user-selected approach that has yielded increased ease-of-use 

when compared to prescribed tasks (Weyand, Takehara-Nishiuchi, and Chau 2015c; Weyand et 

al. 2015), and (2) a researcher-selected alternative that has previously led to increased 
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accuracies when compared to prescribed tasks (Weyand, Takehara-Nishiuchi, and Chau 

2015c).  

The participant took part in five NIRS-BCI sessions, each on a separate day over the span of 

one and a half months. In each session, the participant was positioned in front of a computer in 

a dimly lit room. Each session started with a short warm-up period during which the participant 

familiarized himself with the user interface. Following the warm-up, the participant completed 

three data collection blocks. During each data collection block, the participant completed 18 

(sessions one to three) or 20 (sessions four and five) iterations of mental tasks (described 

below). Each task was performed for 20 seconds, and was punctuated with a 15-second rest. A 

schematic of the study, session and block structure is shown in Figure 30. 

 
Figure 30. Study, session, and block structure.  

6.3.3.1 User interface 

Two forms of neurofeedback were provided during each session: 1) a trapezoidal topographic 

image showing the real-time changes in blood oxygenation levels over the PFC and 2) a ball 

that rose and fell with the average change over the entire interrogation area. The participant 

was informed that the red colour on the feedback represented an increase in hemodynamic 

activity, while the blue colour represented a decrease in hemodynamic activity. For more 

information on the neurofeedback, please refer to (Weyand et al. 2015; Weyand, Takehara-

Nishiuchi, and Chau 2015a; Weyand, Takehara-Nishiuchi, and Chau 2015c). A screenshot of 

the interface is shown in Figure 31.  
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Figure 31. User interface. 

6.3.3.2 Session structure 

Sessions one to three: The first three sessions were used to collect data on a variety of tasks 

before personalized tasks were chosen (Weyand, Takehara-Nishiuchi, and Chau 2015a; 

Weyand, Takehara-Nishiuchi, and Chau 2015c). Specifically, the participant was asked to 

perform six different mental tasks. The six mental tasks were: mental math, word generation, 

counting slowly, happy thoughts, focusing on the feedback, and unconstrained rest. Each of the 

six tasks is briefly described in Table 16; for more details about each task, please refer to 

(Weyand et al. 2015; Weyand, Takehara-Nishiuchi, and Chau 2015c; Weyand, Takehara-

Nishiuchi, and Chau 2015a). 

Table 16. Six mental tasks performed by the participant. 

Task Description 

Mental math The participant was asked to repeatedly subtract a one digit number (between two 
and nine) from a three digit number (Ang, Yu, and Guan 2012; Naito et al. 2007; 

Herff, Heger, Putze, et al. 2013; Sarah D. Power, Falk, and Chau 2010; S. Power, 
Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Ogata, Mukai, and 

Yagi 2007; Bauernfeind et al. 2008; Sarah D. Power, Kushki, and Chau 2012; 
Utsugi et al. 2007; L. C. Schudlo and Chau 2014). 

Word generation The participant was asked to think of as many words as possible that start with a 
prompted letter (Ogata, Mukai, and Yagi 2007; Utsugi et al. 2007; Faress and Chau 

2013). 

Counting The participant was asked to slowly count in his head while relaxing (Naseer and 
Hong 2013a). 

Happy thoughts The participant was asked to think about the details of a past event in his life that 
made him very happy (Kelly Tai and Chau 2009; Koshino et al. 2011). 

Focusing on the 
feedback 

The participant was asked to relax and focus on the feedback (K. Izzetoglu et al. 
2011). 

Rest 
 

The participant was asked to relax and let his mind wander (Ang, Yu, and Guan 
2012; Ayaz et al. 2007; Naito et al. 2007; Herff, Heger, Putze, et al. 2013; S. 

Power, Kushki, and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Sarah D. 
Power, Kushki, and Chau 2012; Naseer and Hong 2013a; L. C. Schudlo and Chau 

2014). 
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The participant performed each of the six tasks three times per block in a random order. By the 

end of the third session, the participant had performed each task 27 times (three sessions x 

three blocks/session x three task iterations/block). At the end of each block, the user was asked 

to rate each of the six tasks in terms of the ease-of-use and desirability for BCI control on a 

scale of one to five.  

At the end of the third session, the participant chose the mental tasks to be used for controlling 

the BCI in session four. To inform his choice, the participant was provided with his average 

ease-of-use rating for each task. In addition, for each task, the participant was presented with 

two performance metrics: pair-wise accuracy rankings (PWARs) and weighted slope scores 

(WS-scores). PWARs consisted of a ranked list of task pairs based on their discriminability. The 

accuracies were calculated after session three using one-iteration of four-fold cross-validation 

with four selected features for each of the possible pair-wise combinations of the six mental 

tasks (6 choose 2 = 15). The pairs of tasks were then ranked from highest to lowest.  WS-

scores measure the tendency of each task to elicit a consistent increase or decrease in 

hemodynamic activity. WS-scores were calculated by taking the mean of all hemodynamic 

slopes for a task and dividing by the corresponding standard deviation. The participant was 

presented with a ranked list of tasks that tended to increase hemodynamic activity and a ranked 

list of those that tended to decrease hemodynamic activity. For more information on these 

selection metrics, please refer to (Weyand, Takehara-Nishiuchi, and Chau 2015c).   

Session four: In session four, the participant performed the two user-selected tasks chosen at 

the end of session three, as in (Weyand, Takehara-Nishiuchi, and Chau 2015c; Weyand et al. 

2015). 

Session five: In session five, the participant performed the two researcher-selected tasks, 

which were those with the highest PWAR, as in (Weyand, Takehara-Nishiuchi, and Chau 2015c; 

Weyand, Takehara-Nishiuchi, and Chau 2015a). 

6.3.4 Data analysis 

6.3.4.1 Accuracies  

The NIRS data were filtered using a digital low-pass third-order Chebyshev infinite impulse 

response (IIR) cascade filter with a pass-band from 0 to 0.1 Hz, a transition band from 0.1 to 0.5 

Hz, a stop-band from 0.5 Hz onwards, and a pass band ripple of 0.1. This filter has been used in 
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several previous NIRS BCI studies to mitigate the effect of various sources of physiological 

noise (Faress and Chau 2013; S. Power, Kushki, and Chau 2011; Sarah Dianne Power and 

Chau 2013; Weyand, Takehara-Nishiuchi, and Chau 2015c; Weyand et al. 2015; Weyand, 

Takehara-Nishiuchi, and Chau 2015b; L. C. Schudlo, Power, and Chau 2013; L. C. Schudlo and 

Chau 2014). 

After filtering the data, the changes in concentrations of oxygenated hemoglobin (HbO), 

deoxygenated hemoglobin (Hb), and total hemoglobin (tHb), were calculated using the modified 

Beer-Lambert’s Law (S. M. Coyle, Ward, and Markham 2007; J. Wolpaw et al. 2000; Niels 

Birbaumer and Cohen 2007; Kelly Tai and Chau 2009). In this study, the wavelengths, λ, were 

690nm and 830nm; the specific extinction coefficients of deoxygenated and oxygenated 

hemoglobin were 690nm,Hb = 2.1382 mM-1cm-1 (Cope 1991), 830nm,Hb = 0.7804 mM-1 cm-1 (Cope 

1991), 690nm,HbO = 0.3123 mM-1 cm-1 (Cope 1991), 830nm,HbO = 1.0507 mM-1 cm-1 (Cope 1991); 

the differential path length factors were DPF690nm = 6.51 (A Duncan et al. 1995), and DPF830nm = 

5.86 (A Duncan et al. 1995); and the geometric distance between the emitter and detector was r 

= 3cm.  

Next, features were extracted over four time windows (0-5s, 0-10s, 0-15s, and 0-20s). Features 

included the temporal changes in the three chromophores (Hb, HbO, and tHb) at each of the 

nine points of interrogation (108 features) and the spatiotemporal features of the zero to fourth 

order discrete orthogonal Chebyshev image moments (180 features), as in (L. C. Schudlo, 

Power, and Chau 2013; Weyand, Takehara-Nishiuchi, and Chau 2015a; Weyand, Takehara-

Nishiuchi, and Chau 2015b; Weyand et al. 2015; Weyand, Takehara-Nishiuchi, and Chau 

2015c).  A fast correlation based filter (FCBF) was used to select a subset of eight features from 

the total feature set for classifier training (Weyand, Takehara-Nishiuchi, and Chau 2015a; 

Weyand, Takehara-Nishiuchi, and Chau 2015c; Yu and Liu 2003). 

Offline accuracies were estimated using ten iterations of ten-fold cross validation (Refaeilzadeh, 

Tang, and Liu 2009). Three ensemble linear discriminant classifiers were trained: one 

exclusively with temporal features, a second exclusively with spatiotemporal features, and a 

third using a combination of temporal and spatiotemporal features. The majority vote of the 

classifiers was used as the class prediction (Weyand, Takehara-Nishiuchi, and Chau 2015a; 

Weyand, Takehara-Nishiuchi, and Chau 2015c). 
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6.3.4.2 Ease-of-use 

The nine ease-of-use ratings were averaged for each task over the first three training sessions. 

6.3.4.3 Survey  

A post-session questionnaire was completed at the end of each session. The participant 

evaluated the following subjective statements on a seven-point Likert-type scale ranging from 

‘Strongly Agree’ to ‘Strongly Disagree’: ‘I was tired before the session’ (after sessions one to 

five), ‘I found it easy to concentrate during the session’ (after sessions one to five), ‘I liked 

having the activation feedback’ (after sessions one to three), ‘It was easy to perform the six 

tasks’ (after sessions one and two), ‘It was easy to pick/perform my first task’ (after sessions 

three to five), ‘It was easy to pick/perform my second task’ (after sessions three to five), ‘The 

feedback was motivating’ (after sessions four and five), and ‘The feedback was frustrating’ (after 

sessions four and five). 

6.4 Results 

6.4.1 Tasks-chosen 

Based on PWAR, WS-scores, and average ease-of-use ratings, the user-selected tasks were: 

mental math and relaxing while focusing on the feedback. Interestingly, these are very similar to 

the tasks most commonly chosen as prescribed tasks by BCI researchers for able-bodied 

individuals, i.e. mental math and rest (Sarah D. Power, Falk, and Chau 2010; S. Power, Kushki, 

and Chau 2011; L. C. Schudlo, Power, and Chau 2013; Sarah D. Power, Kushki, and Chau 

2012; Ang, Yu, and Guan 2012; L. C. Schudlo and Chau 2014). Moreover, one of the three 

previous clinical NIRS-BCI studies by Power et al. (Sarah Dianne Power and Chau 2013), used 

very similar prescribed tasks (mental math and unconstrained rest). 

Based on PWAR, the researcher-selected tasks were: word generation and slow counting. 

Although these tasks did not result in particularly high accuracies after the first three sessions, 

they were the highest ranked. 

6.4.2 Chance level accuracies 

Based on a binomial distribution with α = 0.05, number of trials = 60, and two classes, the upper 

confidence limit of chance-level accuracy for sessions four and five was 62.3%. Neither the 
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user-selected tasks (session four; 45.9%) nor the researcher-selected tasks (session five; 

54.6%) yielded accuracies significantly greater than chance. 

6.4.3 Ease-of-use 

The average ease-of-use rating for each task is shown in Table 17. It is evident that the 

participant enjoyed some tasks more than others. Specifically, the participant favored 

performing happy thoughts and relaxing while focusing on the feedback. On the other hand, the 

participant strongly disliked performing slow counting and rest. 

Table 17. Average ease-of-use ratings for each of the six tasks. 

Tasks Rating 

Counting 1.0 

Rest 1.8 

Mental math 3.6 

Word generation 4.1 

Focusing on the feedback 4.9 

Happy thoughts 5.0 

6.4.4 Survey results 

The subjective responses of the participant for each of the survey questions is shown in Table 

18. Questions that were not posed in a given session are labelled as not applicable (NA). 

Table 18. Post-session responses to survey questions. Legend: 1 = strongly agree, 2 = agree, 3 = somewhat 
agree, 4 = neutral, 5 = somewhat disagree, 6 = disagree, and 7 = strongly disagree. NA = not applicable. 

Statement Session 1 Session 2 Session 3 Session 4 Session 5 

I was tired before the session 2 7 2 7 1 

I found it easy to concentrate during 
the session 

1 1 1 1 1 

I liked having the activation feedback 1 1 1 NA NA 

It was easy to perform the six tasks 2 1 NA NA NA 

It was easy to pick/perform my first task NA NA 
1 (picked 

math) 
1 (math) 1 (words) 

It was easy to pick/perform my second 
task 

NA NA 
1 (picked 
focusing) 

1 
(focusing) 

7 
(counting) 

The feedback was motivating NA NA NA 1 1 

The feedback was frustrating NA NA NA 6 7 

6.4.5 Study observations 

The participant was very enthusiastic about participating in the research study. During the initial 

explanation of the study, the participant vocalized to show excitement numerous times and 

delight was evident in his facial expressions. The participant continued to show enthusiasm and 
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excitement throughout the study. He was eager to start all of the subsequent sessions and 

rarely wanted to take breaks between blocks. Additionally, when the visual feedback revealed 

large hemodynamic changes, the participant vocalized to show his excitement and would often 

look at the researcher and smile. Despite being encouraged to remain calm and focused on the 

computer, vocalizations and gaze shifting occurred several times in each of the blocks during all 

five sessions. The participant’s parent, who was present at every session, also commented on 

several occasions about the participant’s eagerness to participate in the study.  

6.5 Discussion 

6.5.1 Effectiveness of five-session personalized mental task selection 
and training 

This research is the first NIRS-BCI clinical case study of personalized mental task selection and 

training for a user with severe motor impairments. The protocol used in this study has been 

previously demonstrated with able-bodied individuals (Weyand, Takehara-Nishiuchi, and Chau 

2015a; Weyand, Takehara-Nishiuchi, and Chau 2015c; Weyand et al. 2015). All of the 

classification accuracies for the able-bodied participants in these studies (n = 19) exceeded 

chance levels. 

The participant recruited for this study was not able to gain control over the BCI and achieve 

accuracies greater than chance levels using either user- or researcher-selected tasks in a five 

session training paradigm. The participant’s inability to control the BCI could be the result of 

numerous factors; however, we postulate four plausible reasons: 1) disinclination to BCI training 

(often referred to as the users being ‘BCI illiterate’; however, we note that this term is not ICF-

compliant); 2) structural or functional brain differences as a result of chronic motor impairments; 

3) heightened affective arousal; and 4) contaminant PFC haemodynamic patterns associated 

with novelty or reward induced activation. 

6.5.1.1 Disinclination to BCI training 

Some literature has reported that an estimated 10 to 30% of individuals cannot acquire control 

over a BCI via existing paradigms (Gert Pfurtscheller, Allison, et al. 2010; Ahn et al. 2013). The 

participant in this study may resemble the fourteen in Naito et al. for whom control was not 

achieved (Naito et al. 2007). The reasons for a negative predisposition to BCI training are not 

well understood in the literature. We postulate this disinclination in individuals with severe motor 
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impairments could be attributable to unfamiliarity with mastery-oriented environments and a 

feeling of helplessness. The participant in this study is likely inexperienced with situations where 

he is able to effectively control his environment. Although this individual has yes/no responses 

and hummer access to a computer, his experience in modulating his environment is limited and 

is likely accompanied by frequent incorrect interpretations of his intentions. As a result, the 

participant may have, over time, gravitated towards the ‘helplessness’ quadrant of the goal 

orientation-confidence plane (Leung, Brian, and Chau 2013; Koegel and Mentis 1985). In 

literature, it is suggested that a feeling of helplessness and low motivation may occur when 

individuals with disabilities are exposed to frequent failures (Koegel and Mentis 1985). This 

state may have obfuscated the effort required and what it means to control the BCI, i.e., the 

individual may not have fully appreciated the need to sustain task performance to demonstrate 

control.  

The methods used in this study (mental tasks) are very similar to those in most NIRS-BCI 

studies. It is possible that a different training scheme, such as self-regulation (Weyand, 

Takehara-Nishiuchi, and Chau 2015b), or a different access modality, such as EEG, may better 

facilitate skill acquisition in this individual. Indeed it has been shown that inability to gain control 

using one BCI access modality does not preclude successful control of other types of BCIs 

(Weyand, Takehara-Nishiuchi, and Chau 2015b; Gert Pfurtscheller, Allison, et al. 2010).  

6.5.1.2 Participant-specific brain differences 

Brain differences secondary to chronic motor impairment may have also contributed to the lack 

of BCI control. Specifically, there may be atypical cortical structures or haemodynamic activities. 

Despite the fact that individuals with motor impairments are considered cognitively capable and 

aware, the function and structure of the brain in these individuals may differ from that of most 

able-bodied individuals (Neary, Snowden, and Mann 2000; Lillo and Hodges 2010; D’Angelo 

and Bresolin 2006; Quijano-Roy et al. 2006). Although neuromuscular disorders have 

traditionally been considered to only affect the motor cortex, recent studies of cognition and 

behaviour indicate that changes in the prefrontal cortex and other areas of the brain are often 

present in these individuals (Neary, Snowden, and Mann 2000; Lillo and Hodges 2010; 

D’Angelo and Bresolin 2006; Quijano-Roy et al. 2006). It has been estimated that up to 50% of 

patients with motor neuron disease develop some degree of frontal dysfunction relating to 

attention, working memory, letter fluency, and planning (Lillo and Hodges 2010; Neary, 

Snowden, and Mann 2000). Moreover, Quijano-Roy et al. showed that four out of six patients 
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with congenital muscular dystrophies and intact cognitive function have cortical and sub-cortical 

atrophy in the frontal lobe (Quijano-Roy et al. 2006). Additionally, these patients were also found 

to have enlarged frontal sinuses (Quijano-Roy et al. 2006). This could be a particularly damning 

problem for NIRS measurements over the PFC as it decreases the volume of gray matter 

penetrable by light (Haeussinger et al. 2011). Perhaps, functional brain imaging may be 

required to identify candidate cortical regions and associated personalized tasks for non-

invasive BCI control. Conceivably, future BCI protocols should be developed exclusively with 

the clinical population, rather than with able-bodied individuals. 

6.5.1.3 Participant excitement and social validation 

It is likely that the participant was hyper-aroused by the feedback to the point that his attention 

to the task was diminished. From the survey responses and observations made during the 

study, it was apparent that the participant was satisfied with the sessions and perceived his 

performance to be excellent. For example, he reported the feedback to be very motivating and 

not frustrating (Table 18). In fact, the participant appeared to interpret any change in the 

feedback as positively rewarding, and thus perceived control over the feedback even though the 

low classification accuracies would suggest random behaviour of the feedback. This erroneous 

interpretation of the feedback may be attributable in part to the pre-study explanations or the 

participant’s overwhelming desire to achieve control over the computer. It is possible that for 

individuals with no physical ability to effect change in their environment, any independent control 

or perception thereof can be extremely exciting and empowering. Conversely, Leung et al. 

showed that perception of no control over an access technology can be extremely upsetting and 

demotivating for a participant (Leung, Brian, and Chau 2013). Perhaps more thorough 

explanation of the feedback or protocol could help mitigate this problem. 

Moreover the participant may have been subconsciously seeking social validation, i.e., the 

researcher’s ‘approval’ for what he was doing. It is evident from the researcher’s observations 

that despite being instructed to maintain attention on the computer, the participant’s attention 

often shifted to the researcher. This shift in attention likely distracted the participant from 

performing the task at hand. Indeed the need for social validation has been shown in numerous 

literature (Albrecht, Burleson, and Sarason 1992) and appears to be important for individuals 

with disabilities (McColl and Skinner 1995; Schulz and Decker 1985).  
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6.5.1.4 Novelty or reward induced activation 

Finally, it is possible that prefrontal activation due to perceived novelty or reward contaminated 

the task-induced haemodynamic activity. Indeed, the PFC has been shown to be activated as a 

result of novel stimuli (Daffner et al. 2000; Weierich et al. 2010). Perhaps the novelty of the 

feedback resulted in activations that were greater than those by the tasks.  

The PFC has also been shown to be part of the brain’s reward network (Aluja et al. 2015; 

Rogers et al. 1999; Smith et al. 2011). Literature shows greater startle reflex in the PFC for 

those who have a higher sensitivity to rewards (Aluja et al. 2015). In a study conducted by 

Rahimi-Golkhandan et al., it was found that children with developmental coordination disorder 

have a heightened sensitivity for reward compared to matched controls which is hypothesized to 

be the result of receiving fewer rewards in real-life settings (Rahimi-Golkhandan et al. 2014). 

Similarly, it is possible that the participant in this study also has a heightened sensitivity to 

rewards, and therefore reward-related PFC activations may have masked the underlying task-

induced activity.  

6.5.2  Limitations and future directions 

We urge researchers to consider the pitfalls discussed in this paper when conducting further 

research on implementing NIRS-BCIs with individuals with severe motor impairments. Firstly, to 

better gauge the user’s instantaneous disposition, we suggest the addition of physiological and 

observational measures of the participant’s excitement and arousal throughout the study.  

Secondly, where feasible, anatomical brain data ought to be collected or referenced to ascertain 

the presence of frontal lobe cortical atrophy or enlarged sinuses. Thirdly, we recommend 

conducting studies with more than five sessions and with varied session frequency, task 

durations, or session length. It is possible that with more sessions, novelty would subside and 

the participant would be able to focus more intently on the task at hand. Moreover, changes in 

the frequency of sessions, task durations, and session length could alter fatigue levels (Mak and 

Wolpaw 2009; Weyand, Takehara-Nishiuchi, and Chau 2015a), mood (Nijboer et al. 2008; 

Weyand, Takehara-Nishiuchi, and Chau 2015a), and attention (Hammer et al. 2012; Weyand, 

Takehara-Nishiuchi, and Chau 2015a), which are known to influence BCI performance. 

Fourthly, this study only used signals from the PFC. It is possible that the incorporation of other 

brain regions may unveil more discernible task-related activations. Finally, in this study, a limited 

task set was developed, drawing largely from literature on able-bodied participants. 
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Conceivably, unconventional tasks that are more truly personalized to one’s disability 

experience may result in more robust haemodynamic changes. Future studies should seek the 

input of individuals with motor impairments prior to task development. 

6.6 Conclusions 

The acquisition of NIRS BCI control can be extremely challenging for a severely impaired 

individual despite capable cognition. Potential barriers include disinclination to BCI training, lack 

of familiarity with a mastery-oriented environment, structural or functional brain differences, 

heightened emotional arousal and contaminant prefrontal haemodynamic patterns associated 

with novelty or reward processing. In this study, a combination of these factors likely limited the 

NIRS BCI accuracies of a young adult with severe motor impairments to chance levels, despite 

invoking previously proven user- and researcher-selected task selection paradigms. We call for 

future research on NIRS-BCI training paradigms with individuals with disabilities. 
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Chapter 7: Conclusions 
7.1 Summary of Contributions 

This thesis makes several original contributions to the field of biomedical engineering. 

Specifically, in this thesis I have: 

1. Conducted the first offline NIRS-BCI study that explored user-selected and researcher-

selected personalized mental tasks. Manuscript published in Journal of 

Neuroscience Methods (Weyand, Takehara-Nishiuchi, and Chau 2015c). 

a. Demonstrated the benefit of personalized mental task frameworks. Specifically, it 

was shown that user-selected personalized tasks resulted in an easier to use BCI 

compared to prescribed tasks, while researcher-selected personalized tasks 

resulted in increased accuracy compared to prescribed tasks.  

b. Showed the potential of two user-selected personalized mental task frameworks 

(WS-scores and PWAR). When comparing the personalized task selection 

methods, it was concluded that the use of PWARs minimizes the amount of data 

that needs to be collected, while the use of WS-scores maximizes user 

satisfaction, and minimizes computational time. 

c. Provided further evidence that there is high inter-subject variability in 

haemodynamic responses and mental task preferences.  

2. Determined the average researcher-selected offline cross-validation accuracies for the 

2-, 3-, 4-, and 5-class BCIs to be 78.4 ± 5.7%, 60.5 ± 6.6%, 46.7 ± 5.7%, and 37.2 ± 

5.4%, respectively. Manuscript published in Frontiers in Human Neuroscience 

(Weyand, Takehara-Nishiuchi, and Chau 2015a). 

a. Showed that two participants were able to exceed an accuracy of 70% for the 3-

class problem.  

3. Showed that accuracy was strongly positively correlated (Pearson’s) with perceived 

ease of session ( = 0.653), ease of concentration ( = 0.634), and enjoyment ( = 

0.550), but strongly negatively correlated with verbal IQ ( = -0.749). Manuscript 
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published in Frontiers in Human Neuroscience (Weyand, Takehara-Nishiuchi, and 

Chau 2015a). 

4. Conducted the first online NIRS-BCI study that explored user-selected personalized 

mental tasks. Manuscript published in Neurophotonics (Weyand et al. 2015).  

a. Verified using an online two group experimental design that a user-selected 

personalized mental task framework provides heightened usability and a more 

user-centered design, without sacrificing accuracy. 

b. Provided further evidence that there is high inter-subject variability in 

haemodynamic responses and mental task preferences.  

5. Conducted the first study to explore the use of self-regulation in an NIRS-BCI. 

Manuscript published in IEEE Transactions on Neural Systems and Rehabilitation 

Engineering (Weyand, Takehara-Nishiuchi, and Chau 2015b).  

a. Demonstrated that users can be weaned off mental tasks to achieve voluntary 

self-regulation.  

b. Achieved an average online self-regulation classification accuracy of 79 ± 13%. 

c. Showed that participants can maintain their accuracies after a ten day break from 

BCI use.  

d. Showed that most users found self-regulation to entail a lower mental workload, 

while being more intuitive and easier to use than mental tasks.  

6. Documented the challenges of implementing an NIRS-BCI framework with a severely 

congenitally impaired, but cognitively intact young adult. Manuscript accepted at 

Developmental Neurorehabilitation (Weyand and Chau 2015). 

a. Found that a client with an undiagnosed motor impairment could not achieve 

accuracies significantly greater than chance levels. 

b. Postulated that chance-level findings could be due to a combination of factors, 

including: disinclination to BCI training, lack of familiarity with a mastery-oriented 

environment, structural or functional brain differences, heightened emotional 
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arousal, or contaminant prefrontal haemodynamic patterns associated with 

novelty or reward processing.  

7.2 Future Work 

Several suggestions for future work are described within Chapters 2-6. Overall, we believe the 

most pressing future research is to continue studies involving clients with severe motor 

impairments. As this is the target population who currently stand to benefit the most from BCI 

research, studies investigating the use of various frameworks (specifically, the personalized 

mental task and self-regulation frameworks described within this thesis) with clients with motor 

impairments are of utmost importance.  

Additionally, we suggest future research explore the use of an initial task set of only four mental 

tasks. In our personalized mental task studies, we started with either eleven or six mental tasks, 

and then usually chose the best two tasks for each individual. The benefit of starting with fewer 

tasks is that each task can be performed more times in each session. Specifically, we suggest 

starting with mental math, word generation, happy thoughts, and focusing on the feedback. 

These tasks were chosen often as both user-selected and researcher-selected tasks (Table 2, 

Table 6, Figure 13, and Figure 18), often resulted in consistent and strong changes in 

haemodynamic activity (Figure 19), and tended to have high ease-of-use ratings (Figure 7 and 

Table 17).  
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