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The demand for Magnetic Resonance Imaging (MRI) in Ontario has been increasing annually, re-

sulting in longer wait times for patients. This big data study links multiple administrative data sets to

characterize and explore drivers of growth in MRI imaging in Ontario between 2008 and 2017. Our retro-

spective population-based big data study shows an increasing trend in the use of MRI scans, outpacing

capacity. Demand increased the greatest amongst family physicians, and there were also wide varia-

tions in MRI referral rates among this group. Subgroup analysis demonstrates that family physicians

practicing sports medicine ordered more extremities and spine MRIs. Multiple physician characteristics,

including years of practice and physician demographics, also impacted the use of MRIs. Overall, 8%

family physicians were consistent higher testers, who contributed to nearly 25% of extremities, spine,

and brain MRI tests. These findings may help better target interventions to reduce variations in care

and overuse.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI), an alternative to the traditional ionizing diagnostic techniques, is

widely used in the diagnosis of several diseases, such as different forms of cancer, and neurological and

cardiac disorders [61]. MRI utilizes a powerful magnetic field and radio waves to generate detailed

pictures inside the body, facilitating the diagnosis of disease or the monitoring of its treatment [90].

An MRI scanner is a large tube that contains powerful magnets. During the MRI exam, the patient

lies down inside the tube (Figure 1.1a), stays still, and communicates with the MRI technician via the

intercom [105]. After the scan, the radiologist examines the images (Figure 1.1b), and prepares a report

for the referring physician to discuss with the patient [105]. MRI has several advantages compared to

other radiological modalities (e.g., computerized tomography (CT)), including lack of ionizing radiation

and excellent ability to identify problems in the joints, soft tissues, ligaments, and tendons [89, 109].

Because of its advantages over traditional radiological modalities, MRI scans are increasingly being

ordered, sometimes leading to major bottlenecks in the timely diagnosis of the potential disease [83]. In

Ontario, the demand for MRI scans has been increasing annually, outpacing the supply and resulting in

longer wait times for patients. Our project is a big data study that links multiple administrative data

sets to characterize and explore drivers of growth in MRI imaging in Ontario, between 2008 and 2017.

In our study, we first analyze the overall MRI utilization trend, and by patient-specific characteristics.

We then examine MRI referral patterns by physician specialties. Lastly, we focus on family physicians

in year 2017, and conduct utilization analysis on individual physicians within the group.

(a) Patient undergoing a brain MRI scan [100] (b) MRI image of the brain [10]

Figure 1.1: Representative pictures of an MRI scan

1
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1.1 Increased MRI usage and wait times

Numerous reports have indicated a significant increase in the use of MRI imaging tests both nationally

and internationally [1, 61]. Between 2003 and 2007, MRI usage in the United States (US) Medicare

population increased at a rate of 10.6% annually [1]. In Canada, completed MRI tests reached 1.4

million in 2010, doubling the number of MRIs performed in 2003 [21]. Our data shows that in Ontario,

between 2008 and 2017, there was an 80% increase in the number of MRI scans. Annual growth in

demand (12%) outpaced growth in capacity (7%) between 2012 and 2017.

There are a variety of reasons for the high usage of MRI imaging tests [115]. One reason is “defensive

medicine”, meaning that physicians order diagnostic measures in order to safeguard against possible

accusations of malpractice, rather than to benefit the patients [43]. Another reason is “supply-induced

demand”, the increase of demand associated with the recent increases in MRI scanners [115]. For

example, according to an interview with family physicians, several physicians remarked that because

of the increase in scanners, they were ordering scans for minor head injuries more frequently and in

a broader spectrum of patients than in the past [115]. A third reason is the remarkable variations in

practicing groups; physicians have different decision-making behaviours, and some might overuse MRI

scans [114, 115]. Moreover, the sheer number of received requisitions prevents radiologists from discussing

the appropriateness of requested MRI tests with referring physicians [115]. As such, it is unrealistic for

radiologists to act as gatekeepers for every requested MRI referral.

One of the consequences of the increased MRI demand is longer wait lists [74]. “Wait list” is viewed

as a proxy for access to medical care, and the timely accessibility is one of the essential tenets of Canada

Health Act [53]. In 2004, the Ontario Ministry of Health and Long Term Care announced Ontario’s

Wait Time Strategy, with the goal to improve access to healthcare services by reducing the wait times

for MRI/CT scans [50]. In the context of this strategy, the Wait Time Information System (WTIS) was

introduced by the government to collect and publish the time between arrival date of a scan requisition

and scan completition date by hospital [50]. This wait time is illustrated as the Ontario Wait Time

(WT2) in Figure 1.2.

The Ontario Ministry of Health has set four priority levels for radiologists to triage patients with

a wait time target for each level: priority 1 (emergency, with the target wait time within 24 hours),

priority 2 (urgent, with the target wait time within 2 days), priority 3 (semi-urgent, with the target

wait time within 10 days), and priority 4 (non-urgent, with the target wait time within 28 days) [75].

These targets are set at the 90th percentile, meaning 90% of patients are expected to receive their scan

within the target wait time [75]. However, as of January 2020, only 35% of patients were scanned within

the target times [80]. The average wait time for non-urgent MRI scans (priority 4 scans) in Ontario

was 62 days, significantly longer than the current 28-day target [80]. The abnormally long wait time

for necessary medical treatment may have serious consequences for patients, including extended periods

of physical and psychological pain, loss of productivity, deteriorating quality of the life, and even death

[6, 94]. The negative impact of a long wait time is even worse for patients with tumors; a study of non-

small cell lung cancer demonstrated that due to the exponential growth rate of lung tumors, lengthy wait

times delay timely diagnosis, and this delay can be prevented with improved patient flow and reduced

wait times [12].

In an effort to mitigate the long wait times in Ontario, supply-side interventions have been carried

out, i.e., more diagnostic imaging devices have been produced in order to meet the increasing demand.

However, demand continues to surpass capacity, so that the supply cannot catch up with demand at
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(A)	Physician	visit

Initial	diagnosis
MRI	referral	to	a	hospital

(B)	MRI	order	received	in	hospital	

Decision	on	priority	level
Patient	added	to	MRI	wait
list	

(C)	MRI	scan	performed	in	hospital

MRI	scan	complete
Detailed	report	prepared	by	the
radiologist	

(D)	Result	discussion

Appointment	with	the
referring	physician	on
imaging	result

Consult	Wait	Time	(WT1) Ontario	Wait	Time	(WT2) Result	Discussion	Wait	Time	(WT3)

Figure 1.2: Timeline for patients in need of MRI scans

current rate. Simply increasing the capacity will not effectively reduce the waiting list in the MRI orders

due to supply-induced demand [57, 67, 94]. Other approaches to reduce the wait time include demand-

side interventions, e.g., organizations that help clinicians and patients engage in conversations about

unnecessary tests including Choosing Wisely [55, 56] and Right Care [14, 93]. In addition, in 2012, the

government of Ontario removed the insurance coverage of diagnostic imaging for uncomplicated lower

back pain from the Schedule of Benefits [76]. However, this policy change only resulted in a short-lived

reduction in the ordering of single-segment MRI of the spine for both family physicians and specialists

[38]. In order to identify additional demand-side interventions, we need to fully understand the MRI

utilization patterns in the province. As a result, all the findings in our retrospective study help better

target demand-side interventions to reduce variations in care and overuse.

1.2 Related studies

There have been different data-driven approaches to understand the use of MRI and other diagnostic

imaging tests both domestically and globally. These studies considered hospital- and patient-specific

characteristics. One 2002 study by the Institute for Clinical Evaluative Sciences (ICES) used admin-

istrative data in Ontario to conduct some preliminary analyses of MRI scans in Ontario from 1992 to

2001 [53]. They found temporal trends in MRI utilization by body part, as well as (1) considerable age-

and gender-adjusted regional variations across the province, (2) high frequency of repeat MRI scans,

and (3) variations in MRI referral rates by specialties. This study suggested that it is possible to use

multiple administrative data sets to evaluate the correlation of patients, physicians, and system factors

with the likelihood that a patient will receive an MRI [53]. Another study by Scheinfeld et al. examined

the increasing trend of MRI at a high-volume urban pediatric emergency department [95], finding that

MRI use had increased most notably in females, on weekdays, and after hours [95]. A third study was

conducted by the research team from National Yang-Ming University and Taipei City Hospital, who

examined hospital and diagnosis characteristics with repeat MRI usage within 90 days [18]. Their find-

ings suggested that the repeat use of MRI scans was related to both hospital characteristics and disease

types. Specifically, the medical centers had the highest repeat scans, followed by regional hospitals and

community centers [18]. Also, repeat CT or MRI was commonly performed for patients with brain or

spinal injuries [18]. This knowledge should aid in the review of healthcare policies so that guidelines for

repeat scans may be tailored to different hospitals and diseases [18].

Other than the aforementioned hospital- and patient-specific studies, there are other related studies

which investigated physicians referral patterns for the diagnostic imaging tests. The most relevant study

was conducted by Hall et al. from Queen’s University in Ontario, who found that high variation existed

in the ordering of imaging tests among Ontario family doctors, and the patients of higher testers were
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diagnosed with more thyroid and prostate cancers [42]. The second study, from National Yang-Ming

University, suggested that repeat scans are related to physician’s specialty, age, sex and type of practice

[17]. Specifically, male physicians, physicians aged 41-50 years and internal medicine physicians were

associated with more repeat scan referrals [17]. They therefore proposed to set different monitoring

standards for repeat scans according to different physician characteristics [17]. A third study was a

population-based interrupted time series analysis study conducted by Fine et al., who examined the

impact of restricting diagnostic imaging reimbursement for uncomplicated lower back pain in Ontario

[38]. They compared physician referral patterns using a time frame of 3 years before and after the

policy change, and suggested that the restriction had a stronger impact on family physicians than on

specialists, and was more sustained in the use of lumbar spine radiography and CT than spine MRI [38].

Our study is distinct from the existing work in that we examine a variety of recent administrative

data sources, including patient, imaging test, and provider data elements. Because of the size and quality

of the data sources available, we are able to perform a comprehensive big data analysis on both patient-

and physician-specific characteristics associated with the MRI use. The most recent utilization trends

and referral patterns in our findings could provide an evidence base for future policy interventions.

1.3 Physician profiling

To understand the variations in MRI utilizations within a physician group (i.e., family physicians), we

employ a physician profiling method that compares physicians against their MRI referral rates. Physician

profiling is a method that analyzes practice patterns on a specific healthcare service [111]. The practice

pattern of a single physician or a group is expressed as a rate: a measure of the use of healthcare

resources during a defined period for the population served [52]. The resulting profile of each physician

can be compared with a norm that is either based on practice (profiles of other physicians) or based on

standards (practice guidelines) [111]. Findings in physician profiling analysis help reduce the variation

in performance among physicians and lead to improvements in quality of healthcare [34].

1.3.1 Risk adjustment methods

Current literature suggests that health outcome measures are meaningful only when adequately adjusted

for confounding factors, and hence must be risk-adjusted before making comparisons among physicians

[26]. A confounding variable is a risk factor associated with the outcome measure [84], and it will cause

bias in physician comparison analysis if not removed. Examples of confounding factors include physician

practice types and distributions of age/sex of the patient population. There are two major ways to deal

with confounding variables at the data analysis stage: stratification and regression [84].

Stratification divides data into strata and layers based on the confounding variable [45]. Data are

stratified and analyzed in each stratum [45]. For example, Hall et al. used stratification in their physician

test utilization analysis [42]. In their study, they calculated the observed-to-expected (O/E) ratio for

each physician, using the entire population as the standard population. For each physician, the observed

count was the number of tests he/she referred in the study period, and the expected count was the

number of tests that the physician would have referred based on their case mix, if his/her referral

behaviour was identical to that observed in the entire population. To obtain the expected count for each

physician, they first calculated the global referral rate in each of 14 age/sex strata (e.g., male 40-44)

based on the entire study population, then estimated each physician’s expected count for each stratum
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based on his/her size of patient population, and finally summed up the expected count for each stratum

as the expected count for that physician during the study period. They categorized physicians into

lower, typical, and higher testers based on the O/E ratio. Stratification is effective when dealing with

dichotomous confounding variables [45], but has several limitations . First, stratification is more difficult

for continuous variables, such as a specific age or a tumor size [84]. Second, stratification is not able

to deal with multiple confounding factors simultaneously [45]. If multiple confounding factors are taken

into consideration, each stratum will be very small or disappear (i.e., no patients in the stratum) [84].

Regression analysis helps to resolve the aforementioned two limitations existing in stratification. This

method uses all the study data and examines many variables simultaneously, including either continuous

or dichotomous variables [72]. Multivariate regression analysis is regarded as the most powerful tool to

deal with confounding factors [84], and is the most commonly used method to deal with confounding

factors in the medical literature due to its flexibility [84]. There are many types of regression models, and

the choice of any particular model depends on the characteristics of the outcome variable, and how the

outcome variable is mathematically related to the explanatory variables [33]. The two common regression

types for risk adjustment are Poisson regression and logistic regression [33]. In logistic regression, the

outcome variable is a binary variable that could be either 0 or 1 [85]. Poisson models are commonly

used to model small counts or person-year rates [7]. One example of using regression analysis for risk

adjustment comes from a study that compared in-hospital mortality following coronary artery bypass

grafting (CABG) among 28 hospitals [26]. In the study, the researchers used the entire patient population

to develop a logistic regression model which evaluated the probability of death for a specific patient given

their age, gender, comorbidities and their previous heart operation history as risk factors [26]. Then,

for the hospital i, with ni patients, the expected number of post-CABG deaths in the hospital was

calculated as [26]

Ei =

ni∑
j=1

Pij (1.3.1)

where Pij is the probability of death for patient j in hospital i given the values of all risk factors, according

to the prediction of the logistic regression [26]. Likewise, the observed hospital-specific number of deaths

was calculated as [26]

Oi =

ni∑
j=1

Yij (1.3.2)

where Yij is a binary variable indicating whether patient j in hospital i was dead following CABG [26].

The researchers then used the O/E ratio for hospital comparison [26], the same measurement used in

the study by Hall et al.. One limitation of the regression analysis is that it can only assess a limited

number of factors when there is a small number of observations [72]. To deal with this limitation, only

variables that are likely risk factors for the outcome of interest should be included [72].

1.3.2 Generalized linear models (GLMs)

Both logistic and Poisson regressions belong to the generalized linear models (GLMs) family. In statistics,

GLM is a flexible generalization of ordinary linear regression, which allows response variables to have

distributions other than the normal distribution [2]. GLMs were developed by John Nelder and Robert

Wedderburn as a way to unify multiple statistical models, including linear regression, logistic regression,
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Table 1.1: Common distributions with typical use and link functions

Distribution Typical uses Link function Link name

Normal Linear-response data X>β = µ Identity
Bernoulli Count of single yes/no occurence X>β = ln( µ

1−µ ) Logit

Binomial Count of # of “yes” occurences out of N
yes/no occurences

X>β = ln( µ
1−µ ) Logit

Poisson Count of occurences in a fixed amount of
time

X>β = ln(µ) Log

and Poisson regression [73]. The general form of GLM is defined as

g(E(Y )) = g(µ) = β0 + β1X1 + ...+ βpXp = X>β (1.3.3)

where E(Y ) is the expected value of the response variable Y , X>β is a linear combination of unknown

parameters β, and g is the link function. The link function provides the relationship between the linear

predictor and the expected value of response variable, and the choice of the link function depends on the

distribution of the dependent variable in the analysis. Table 1.1 lists the commonly used exponential-

family distributions and the types of data for which they are typically used, along with the link functions.

For logistic regression, the response variable follows a Bernoulli distribution with the Logit link function

to the GLM; for Poisson distribution, the response variable follows Poisson distribution with the Log

link function to the GLM.

A set of parameters, β, are often estimated using maximum likelihood estimation (MLE) [65]. In

statistics, MLE is a method of estimating the parameters by maximizing a likelihood function [91], a

measure of the goodness of fit for a statistical model given a sample of data available. The vector in the

parameter space that maximizes the likelihood function is called the maximum likelihood estimate [91],

and is chosen as the final parameters fitted to the model. If the likelihood function is differentiable, the

maximum likelihood estimate can be determined from the first order conditions, and can be expressed

as a closed-form solution. However, for logistic and Poisson regressions, there is no explicit expression

for the maximum likelihood estimators, and numerical methods are necessary to find the maximum of

the likelihood function. The two common iterative numerical solution methods are the Newton-Raphson

algorithm [117] and Fisher’s scoring algorithm [60]. Newton-Raphson method is a root-finding algorithm

which produces successively better approximations of the roots (zeros) [117]; Fisher’s scoring is a hill-

climbing algorithm for getting better results through iterations [60].

1.4 Big data analytics frameworks

Big data analytics is the process of examining large and varied data sets, or big data, to uncover

information and drive insights [104]. The term “big data” has been applied to data sets whose size

are so large that they become difficult to work with using traditional database management systems

[35]. Due to its large size, commonly used software tools are unable to store, manage, and process these

data within a tolerable time [51]. Scaling is the ability of a system to handle and process large amount

of data [102]. In order to resolve the limitations existing in the current software tools, there are two

scaling types for big data computing. The first scaling type is called “vertical scaling” (scaling up),
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Figure 1.3: Difference between vertical and horizaontal scaling [48]

in which the data resides on a single machine and the scaling is done by adding more processors (e.g.,

multi-cores) to that single machine [98]. An example of vertical scaling is adding graphics processing

units (GPUs) to the local machine to increase the processing power. However, vertical scaling requires

a huge amount of financial investment; to manage future workloads, one always needs to add additional

resources or upgrade hardware [102]. Another scaling type is “horizontal scaling” (scaling out), which

involves distributing the workload across many servers in clusters [62]. It allows for the distributed

processing of large data sets across clusters of computers using simple programming models. Figure 1.3

illustrates the difference between the two scaling types.

The big data analytics frameworks that allow horizontal scaling have evolved over time. Apache

Hadoop a horizontal scaling framework that uses a MapReduce programming model to process huge data

sets across multiple machines [31] (Figure 1.4). A MapReduce program consists of a map procedure,

which performs filtering and sorting tasks in each worker of the cluster, and a reduce procedure, which

performs a summary operation over all workers. Apache Spark is another horizontal scaling framework

which has a programming model similar to MapReduce, but extends it with a data-sharing abstraction

called “Resilient Distributed Datasets”, or RDDs [118]. RDD enables Spark to perform in-memory

computations, which guarantees faster speed in data processing; Spark may be up to 100 times faster

than Hadoop’s MapReduce [8].

For our study, all the data sets are stored in the Medical Operations Research Laboratory (morLAB)

cluster and they in total take up over 660 GB of storage. We deploy a Spark Standalone cluster with 15

workers that enables distributed processing of data sets. The detailed steps of Spark cluster deployment,

parallel data processing mechanism, and data file conversion are in Appendix A.
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Figure 1.4: An example of Hadoop’s MapReduce procedure to sort and count letters [103]
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Data

This study is a retrospective population-based study from 2008/01/01 to 2017/12/31 using records from

a variety of administrative data sources in Ontario, Canada. We utilize the data holdings obtained

from Ontario Health (Cancer Care Ontario). These data holdings contain data on a range of healthcare

activities for the patients in Ontario during the study period, as described below. The data sets are all

administrative data sets that have already been collected.

2.1 Data sources

We use the following administrative data sources in our study. The data elements used along with their

descriptions are shown in Table 2.1.

1. Wait Time Information System (WTIS) contains data on all completed scans in Ontario

between 2008 and 2017, and all requested scans between 2012 and 2017.

2. Ontario Health Insurance Plan (OHIP) contains data on all physician visits and includes

billing codes as well as diagnosis information between 2008 to 2017.

3. Registered Persons Database (RPDB) contains demographic information of all Ontario res-

idence that have received a health card for the province’s single-payer health coverage with the

most current residence information (as of 2018).

4. Corporate Providers Database (CPDB) contains sociodemographic and specialization infor-

mation of registered and active Ontario physicians.

5. Postal Code Conversion File (PCCF+) contains geographic information such as income quan-

tile, Local Health Integration Networks (LHINs, representing regional health planning and funding

units in Ontario), Census Subdivision (CSD), and immigration tercile. It was pre-linked to RPDB

based on three-digit forward sortation area (FSA).

6. Discharge Abstract Database (DAD) contains hospitalization information history of each

patient between 2008 and 2017.

7. National Ambulatory Care Reporting System (NACRS) contains information of Emer-

gency Department (ED) visits of each patient between 2008 and 2017.

9



Chapter 2. Data 10

Since the data holdings contain confidential patient information, several confidentiality protection

procedures were employed. First, all data released to the research team are stripped of Protected Health

Information (PHI) by de-identifying Health Insurance Numbers (HINs) as well as truncating postal codes

and date of birth data. Second, the data is stored on morLAB cluster, a private cluster in a local physical

room with restricted cluster access and restricted directory access. Third, all results and findings in our

study are presented at an aggregate level without revealing the information of the individual patient.

2.2 Data linkage

We link different data sources to perform analysis. Figure 2.1 shows the flowchart of the data linkage.

Firstly, we link OHIP to RPDB using patient’s de-identified HIN, which helps us obtain each patient’s

age, gender, and other sociodemographic characteristics (e.g., income quntile, immigration tercile) of

the residing area. Secondly, we extract all the claims for MRI scans from OHIP data sets between 2008

and 2017, according to the OHIP billing codes. MRI OHIP billing codes are available for head, neck,

thorax, abdomen, breast, pelvis, extremities, and spine. For each body part of the MRI scan, a base

code for multi-sequence and its corresponding repeat codes are both available. Since the repeat sequence

codes as well as the additional MRI-related procedures (cardiac gating, gadolinium, and 3D imaging)

are accompanied by a base multi-sequence code [53], these codes are excluded to avoid double-counting

referred scans. Also excluded are the claims for biopsies (0.1%) because it is important to focus only

on diagnostic studies that required physician’s judgment [54]. We additionally exclude the rejected and

duplicated MRI claims (5%), according to the OHIP explain code. We link MRI claims in OHIP with

CPDB by physician number. As such, we are able to obtain each referring physician’s specialty, gender,

years of practice, and geographic information. Lastly, we link the MRI claims in OHIP with WTIS data

according to the MRI performance date and patient HIN. This linkage helps us retrieve service details

and the wait time for each patient record. For the patients who had multiple scans within a day, we

match WTIS and OHIP records according to the billing codes (in OHIP) and scanned body parts (in

WTIS). Table 2.2 specifies the base codes in OHIP and the corresponding body parts match in WTIS.

In order to find the patient population associated with each referring physician on a yearly basis,

for each year, we merge linked data C in Figure 2.1 with linked data G based on referring physician

number (in C) and physician number (in G). As such, for each referring physician, we get all claimed

patient-physician interactions with complete patient- and physician-specific information.

2.3 Feature extraction

We retrieve a variety of patient- and physician-specific characteristics based on the merged data available.

Physicians who do not have a matching record in CPDB (<5%), who did not refer any MRIs during

the year, and who had less than 200 interacted patients during the year are excluded from our study.

Patients who do not have a matching record in RPDB (<5%) and who did not interact with any referring

physicians during the year are excluded from the study.
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Table 2.1: Data elements and descriptions

Data Source Variable Name Description

WTIS HIN De-identified patient health card number

Wait2 Wait time from the order received date to actual
perform date (in minutes), after substracting DART
days

ServiceDetail2 Body part of MRI scan

PriorityLevel The priority level for the consultation used to iden-
tify similar patients in need of care

AccessTarget The maximum recommended wait time in days for
the priority level

OrderReceivedDate The date the MRI facility receives the request to
book a procedure for a patient

ActualServiceDate The date the service was performed

TotalDART Total Dates Affecting Readiness to Treat (DART)
days

OHIP SERVICE DATE Date on which OHIP service was performed

HIN De-identified patient health card number

EXPLAIN CODE Indicator of accepted/rejected claims

HSP PHYSICIAN NUMBER Physician number

REFERRING PHYSICIAN NUMBER Referring physician number

BUS EFFECTIVVE DATE Business effective date - Date the business informa-
tion comes into effect

FEE CODE OHIP fee code

RPDB HIN De-identified patient health card number

DateOfBirth Birth date

Sex Person sex

Dauid Dissemination area unique identifier

CSZEMIZ Community size and metropolitan influence zones

CSDuid Census subdivision unique identifier

ImmTer Immigration (foreign-born) tercile

QAIPPE Neighbourhood income quintile

CPDB HSP PhysicianNumber Physician number

Sex Physician gender

HSP SPECIALTY KEY Physician specialty key

HRename LHIN name

DAD HIN De-identified patient health card number

DateofAdmit Date of admission to hospital

DiagnosticCode 1 Main diagnostic code

NACRS HIN De-identified patient health card number

DateOfRegistration Date of visit

DiagnosticCode 1 Main diagnostic code

DiagnosticCode 2-9 Other diagnosted codes
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OHIP 
2008 - 2017

(A)

RPDB
2018
(B)

A.HIN = B.HIN

MRI-related 
Linked Data

(D)

WTIS
2008 - 2017

(F)

CPDB 
2017
(E)

C.REFERRING_PHYSICIAN_NUMBER =
E.HSP_PHYSICIAN_NUMBER;

C.HIN =  D.HIN; 
C.SERVICE_DATE = D.ActualServiceDate

MRI-related 
Linked Data

(G)

Exclusion of non-MRI related and 
rejected claims

Linked Data
(C)

Linked Data
(C)

C.HSP_PHYSICIAN_NUMBER =
G.REFERRING_PHYSICIAN_NUMBER

Patient Population
Linked Data

(H)

Figure 2.1: Flow chart of data linkage
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Table 2.2: Base codes in OHIP and corresponding body parts in WTIS

OHIP Code Definition Body part in WTIS

X421 Head Head (brain)/ head and neck

X431 Neck Head and neck

X441 Thorax Thorax / cardiac

X451 Abdomen Abdomen

X446 Breast Breast

X461 Pelvis Pelvis

X471 Extremities or joint(s) – one extremity and/or one
joint

Extremities / peripheral vascular

X488 Extremities or joint(s) – two or more extremities,
and/or two or more joints same extremity

Extremities / peripheral vascular

X490 Limited spine Spine

X493 Intermediate spine Spine

X496 Complex spin Spine

For each patient, the following features are obtained:

1. Age and sex are retrieved based on the date of birth and sex columns in RPDB. For each record,

patient age is calculated from the year of birth to the year of service.

2. Rurality is based on PCCF+ and reported by Metropolitan Influence Zones (MIZ). Table 2.3 shows

the community size classification, with MIZ.

3. Neighbourhood income quintile (QAIPPE) is based on PCCF+ at Dissemination Area (DA) level,

according to the household-size-adjusted household income per person within the area. Table 2.4

shows the QAIPPE and corresponding explanations.

4. Immigrant (foreign-born) tercile (IMMTER) is based on PCCF+, dividing the immigrant (and

non-permanent residence) population into three approximately equal parts. Table 2.5 shows the

IMMTER and corresponding explanations.

5. Comorbidity is estimated using Charlson Comorbidity Index (CCI) [16] based on hospital discharge

and emergency visits data (DAD and NACRS) with look back of 2 years. Patients with higher

scores are associated with greater comorbidities. Appendix B gives an introduction of the CCI,

and the pseudo-codes for calculating CCI.

6. For each patient who had an MRI scan between 2008 and 2017, priority level, scanned body part,

and the wait time are retrieved based on WTIS. Since 95% of the wait time entries are empty

in WTIS, we manually calculate the wait time by calculating the time interval (in days) between

order receive date and actual performance date, and then subtracting the total dates affecting

readiness to treat (DART) days.
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Table 2.3: Community size classification, with MIZ [13]

Community size classification Description

1 1,500,000 +

2 500,000 - 1,499,999

3 100,000 - 499,999

4 10,000 - 99,999 (any census metropolitan areas
<100,000)

5 Rural; Strong MIZ

6 Rural; Moderate MIZ

7 Rural; Weak / No MIZ

8 unknown MIZ

9 Missing

Table 2.4: Neighbourhood income per person equivalent [13]

Neighbourhood income Description

1 Lowest quintile

2 Medium-low quintile

3 Middle quintile

4 Medium-high quintile

5 Highest quintile

9 Missing

Table 2.5: Immigrant (foreign-born) tercile [13]

Immigrant tercile Description

1 Lowest tercile of foreign-born population

2 Middle tercile of foreign-born population

3 Highest tercile of foreign-born population

9 Missing
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Figure 2.2: Assignment of 14 LHINs under the five Interim Regions [71]

For each physician, the following features are obtained:

1. Specialty, sex, years of practice, and working regions are based on the information in CPDB. Year

of practice is calculated from the business effective year to the year of service. Each physician’s

working region is one of the five “Ontario Health Interim and Transitional Regions” assigned by

Ontario Health based on LHINs, the health authorities responsible for regional administrative of

public health services. Figure 2.2 shows how the existing 14 LHINs are organized under the five

Interim Regions.

2. Yearly paneled patients are defined as the unique patients who have seen the physician during a

year, and are based on the physician-patient interactions in OHIP. Given the fact that we do not

have any data holding that explicitly identifies the physician’s rostered patients, we identify the

patients who interacted with the physician in OHIP during the year as a proxy of that physician’s

rostered patients.
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2.4 Limitations and assumptions

Several limitations exist in our data linkage process. First, since OHIP only includes completed MRI

scans, when linking it with WTIS, the resulting merged data set is a subset of all the demanded scans.

Second, for the completed scans, we linked OHIP and WTIS data sets based on the service date (in

WTIS) and the service date (in OHIP). However, there are still some instances (<5%) with mismatching

OHIP service dates and WTIS actual service dates. Among these mismatching instances, most of them

have a difference of ±2 days, and some of them do not have corresponding instances in OHIP at all.

These instances are not included in our merged data set. Third, when the combination scan (i.e., more

than one body part were scanned in onr MRI procedure) was performed, only one instance with arbitrary

picked body part was recorded in WTIS. However, the combination scan instances only account for <1%

of the total MRI scans. Fourth, the physicians who do not have a matching record in CPDB (<5%)

and the patients who do not have a matching record in RPDB (<5%) are excluded in our analysis. Our

assumption is that the MRI utilization patterns and physician referral patterns in our merged data set

is a legitimate representation of the overall demand patterns, and the absence of these missing instances

does not affect the analysis results.

There are additional limitations in the data extraction process. First, there is no explicit data set that

provides each physician’s rostered patients. Specifically, previous studies used Client Agency Program

Enrolment (CAPE) to identify rostered patients to each primary care physician [42, 59]. However, this

data set is unavailable in our study, and instead, we identify all patients who interacted with a physician

within a year in OHIP (defined as paneled patients), and assume that the paneled patients are a proxy of

that physician’s rostered patients. Second, RPDB data contains only one record per HIN with the most

current residence information (as of 2018). As a result, the information may not be accurate at the time

of the patient’s healthcare service. Our assumption is that the patient’s residence information does not

change over time between 2008 and 2017. Third, the CCI for each DAD record should be determined

based on the all 25 diagnostic codes. However, only the main diagnostic code is available in our data

set, resulting in an underestimation of the CCI per record. Our assumption is that this underestimation

do not affect our key findings when comparing family physicians’ uses of MRI with the comorbidities of

their patient population.
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Historical trend analysis in Ontario

With our linked data set, we first perform a thorough historical trend analysis of MRI utilizations in

Ontario, between 2008 and 2017. Our historical trend analysis is divided into three parts. First, we

analyze the overall MRI utilization trend and wait times over the study period. Second, we look deeper

into the MRI utilization trends by patients’ body parts, age, sex, and residing regions. Third, we

investigate physicians’ referral patterns by specialties over the study period. We use this analysis to

target specific subgroups and time ranges for further investigation.

3.1 Overall MRI wait times and utilizations

For MRI wait times, as mentioned earlier, the patient who will have an MRI is triaged into one of the

four different priority levels, and Ontario has different wait time targets for different priority levels. We

derive the mean (with standard deviation (stdev)), median, 25%, 75%, and 90% percentiles of wait times,

and the percent of scans within the target time of different priority levels over the decade. For overall

MRI utilization, we derive the total number of MRIs performed and its cumulative percent of change

over the decade. Between 2012 and 2017, we also compare the cumulative increase of MRI requisitions

and MRI demand to see to what extent the demand outpaced the supply over the most recent five years

in our study.

3.2 MRI utilization by patient characteristics

To investigate MRI utilization by patient characteristics, we first derive the number of MRIs performed

by the patient’s body part (e.g., brain, head and neck, spine, extremities) along with the cumulative

percent of change over the decade. This analysis helps us determine the most frequent types of MRI

scans, and the ones with the highest rate of increase. Next, we focus on MRI utilizations by age and

sex. Age is aggreagated into 10-year age groups. We compare age- and sex-specific utilization rates per

10,000 population in year 2008 and 2017, using the Ontario population from Statistics Canada as the

rate denominator.

We investigate MRI scans by patients’ residing regions using small area variation analysis (SAVA)

methods. SAVA is a method widely used in health care services research to describe how rates vary

across geographic regions [29]. To perform the SAVA analysis, we first aggregate patients’ dissemination

17
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areas (DAs) to 49 census divisions (CDs) in Ontario, using the 2016 dissemination area boundary file

from Statistics Canada. In Canada, DAs are the smallest standard geographic areas for which all census

data are disseminated; CDs are larger units of area representing intermediate geographic areas between

the province/territory level and the municipality. We then calculate age-standardized utilization rates

per 10,000 population in 2017. The Ontario population in RPDB is used as both the rate denominator

and the standard in the adjusted rate calculation. Some of the SAVA statistics are derived to describe

the extent of variations in utilization rates across regions. These statistics include extremal quotient

(EQ) [30], coefficient of variation (CV) [30], the Chi-squared statistic [112], and systematic component

of variation (SCV) [112]. EQ is the ratio between the largest and smallest rates [30], which describes

the magnitude of difference between these two extremes. CV is the ratio of the standard deviation to

the mean, and shows the extent of variability in relation to the mean utilization rate. The Chi-squared

statistic is a testing method with the null hypothesis that there was no significant variation across regions

[112]. SCV is another measurement of variation across regions [112]. SCV > 3 is considered significant

variation across regions, SCV up to 10 is considered high variation, and SCV > 10 is considered very

high variation [4]. Detailed elaboration on the SAVA analysis and the formulas for SAVA statistics is

shown in Appendix C.

3.3 Physician referral patterns by specialties

To examine the physicians’ referral patterns by specialties, we first count the total number of referred

MRIs by specialties to see which physician specialties referred the most MRIs. Second, we obtain each

referring physician’s referral rate per 1,000 patients. The referral rate per physician is calculated by

dividing the total number of referred MRIs by the size of paneled patients. We compare the average

referral rates among specialties to see which physician specialties had the most referral rates. Last,

to assess inter-physician group variance, we compare the dispersion of referral rates among physician

specialties using the quartile coefficient of dispersion [9], a descriptive statistic which measures dispersion

and is used to make comparisons between groups of data sets. This statistic is computed using the first

(Q1) and third (Q3) quartiles for each group, and is expressed as (Q3−Q1)/(Q3 + Q1) [9]. The referral

patterns help us identify the specialties with high MRI referrals and inter-physician variance, which

merit further investigation.

3.4 Results

A high-level review of the data shows that the demand for MRIs consistenty increased year-over-year

during the 2008-2017 timeframe in the data set, and there are significant variations in MRI referral rates

by physician specialties. Detailed analysis is provided for (1) overall MRI utilization and wait times, (2)

patient characteristics associated with MRI referrals, and (3) physician specialties associated with MRI

referrals.

3.4.1 Overall MRI wait times and utilzations

Based on the urgency of MRI scans, Ontario has set different MRI wait time targets for different priority

levels: 1 day for priority 1 (emergency) patients, 2 days for priority 2 (urgent) patients, 10 days for
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Figure 3.1: 90th percentile of MRI wait times for priority 1-4, 2008-2017

priority 3 (semi-urgent) patients, and 28 days for priority 4 (non-urgent) patients. Figure 3.1 illustrates

the 90th percentiles of the wait time along with the targets for each priority level, from 2008 to 2017.

Additional detailed statistics of the wait times at each priority level each year is shown in Appendix D.

As shown from Figure 3.1, for urgent MRI scans (priority 1 and 2), the wait times had improved over

the decade. In 2017, more than 80% of the scans had wait times within the target (94% for priority 1

and 81% for priority 2, 2017). However, for non-urgent MRI scans (priority 3 and 4), the wait time first

had an overall improvement from 2008 to 2013, but it started to increase in 2014. In 2017, only 54%

and 30% priority 3 and 4 patients were scanned within the target times, respectively, and 90% of the

priority 4 scans were completed within 130 days, significantly longer than the current 28-day target.

Figure 3.2a shows the total number of MRI scans along with the cumulative percent change over

the years. There was a steady increase of MRI scans over the years, with a higher increasing rate from

2013 to 2017. Overall, the MRI scans increased by nearly 80% from 500,000 in 2008 to 880,000 in 2017.

Figure 3.2b shows the cumulative increase of MRI requisitions versus completed scans between 2012 and

2017. Demand increase for MRI scans outpaced the capacity growth; since 2012, the number of scan

requisitions received per year had grown 12% annually on average, while the number of completed scans

per year had only grown 7% per year.

3.4.2 MRI utilizations by patient characteristics

Figure 3.3 presents the number of scans by body parts between 2008 and 2017. The most frequent MRI

scans were for head (brain), extremities, and spine (30%, 25%, and 25% of all scans, respectively, in

2017). There was a short-lived decrease for spine MRI scans between 2012 and 2013, but the MRI scans

for spine started to increase afterwards. MRI scans for pelvis and abdomen had the greatest cumulative

increase during the years (185% and 160% percent change from 2008 to 2017, respectively), but they
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(a) Completed scans, 2008-2017
(b) Cumulative increase in demand and
supply, 2012-2017

Figure 3.2: Completed and requested scans

merely accounted for a small proportions of all MRI scans (4% and 8%, respectively).

Age- and sex-specific MRI utilization rates per 10,000 population in year 2008 and 2017 are shown

in Figure 3.4. In general, MRI utilizations across all age groups increased over the years for both males

and females in Ontario. Females had higher utilization rates compared to males across all age groups,

except for a slightly lower MRI utilization rate at ages of 70+. The heat maps of age- and sex-specific

utilization rates per 10,000 population by body parts in 2017 are shown in Appendix E . Overall, females

had higher MRI utilization rates than males for all body parts except for extremities. At ages 20-49,

males had higher males had higher utilization in extremities than females.

Figure 3.5 presents the heat map of age-standardized utilization rates per 10,000 population by the

49 census divisions in Ontario, 2017. Although central Ontario (Toronto, Peel, York) had most frequent

MRI scans, their utilization rates per 10,000 population were lower than those in northern Ontario

(Cochrane, Thunder Bay, Algoma). According to SAVA statistics, the EQ is 2.8, the CV is 0.15, the

SVC is greater than 10, and the p-value for the Chi-squared statistic is less than 0.001 (χ2 = 15,818, df

= 48). The statistics indicate a significant variation in the use of MRI across regions in Ontario.

3.4.3 Physician referral patterns by specialties

The distributions of referred MRI scans by specialties between 2008 and 2017 are shown in Figure 3.6.

MRI scans were mainly referred by family physicians, neurologists, and orthopaedic surgeons (50%, 11%,

and 6% in 2017, respectively). These specialties accounted for 67% total MRI referrals in 2017.

Figure 3.7 shows the comparison of family physicians and specialists on the cumulative increase rate

for physician numbers and referred MRI scans, between 2008 and 2017. As illustrated in Figure 3.7a, the

number of specialties had a faster increase than that of family physicians; however, Figure 3.7b indicates

a greater rate of increase in MRI referrals for family physicians over the decade, especially between 2014

and 2016. Between 2014 and 2017, half of the MRI scans were referred by family physicians.

The mean (with stdev), 25%, 50%, and 75% percentiles of MRI referral rates by physician specialties

in 2017 are shown in Table 3.1. We combine the specialties with < 0.1% contributions to MRI refer-

rals as “Others”. These specialties include Cardio-thoracic surgery, dermatology, nurse practitioners,

pathology, clinical immunology, nuclear medicine, and community medicine. Neurosurgery, neurology,

and therapeutic radiology were the top 3 specialties with highest mean referral rates (346.39, 179.54,
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Figure 3.3: Number of MRI scans by body part, 2008-2017

Figure 3.4: MRI utilization rate by patient gender, 2008 and 2017
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Figure 3.5: Age-standardized MRI rates per 10,000 population by census division, 2017
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Figure 3.6: Proportion of MRI referrals by specialties, 2008-2017

(a) Cumulative increase of physicians (b) Cumulative increase of referred MRIs

Figure 3.7: Comparison between family physicians and specialists, 2008-2017
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Figure 3.8: Quartile coefficient of dispersion for referral rates, 2008-2017

and 123.46 per 1,000 patients in 2017, respectively). However, they together accounted for a smaller

proportion of referred MRIs (16% in 2017) compared to MRI scans referred by family physicians. In

addition, although the mean referral rate for family physicians was moderate compared with that for

other specialties, it increased by 65% from 13.88 per 1,000 patients in 2008 to 22.9 per 1,000 patients in

2017.

Figure 3.8 shows the inter-physician referral rates variance in terms of quartile coefficient of dispersion,

among the three types of physicians (family physicians, neurologists, and orthopaedic surgeons) who

contributed most to referred MRI volumes. As illustrated in Figure 3.8, the referral rates variance among

family physicians had a constant growth from 2008 to 2017, and by the year 2017, family physicians had

over 50% higher variance compared with neurologists and orthopaedic surgeons.

3.5 Discussion

In Ontario, between 2008 and 2017, there was an 80% increase in the number of MRI scans. Despite

ongoing efforts and multiple government interventions taken place in Ontario, demand increase for MRI

scans still outpaced the capacity of growth. Since 2012, the number of scan requisitions per year had

grown 13% annually on average, while the number of completed scans per year had only grown 7%.

Given the current growth rate, it is likely that the demand will continue to outpace the capacity. As

for the wait times, based on the significant disparity of wait times among different priority levels, it is

critical to prioritize MRI requests effectively so that the most-in-need patients will be scanned in time.

According to a survey study of public MRI facilities in Canada, less than half of the facilities had explicit,

documented criteria to guide the triage process, and the prioritization was usually implicitly assessed

by radiologists using a handwritten requisition submitted by the referring physician [36]. Therefore,

it is critical to develop a decision support system that generates standardized and reproducible triage

decisions. In addition, the wait times for non-urgent patients significantly lagged behind the provincial
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Table 3.1: MRI referral rates by specialties per 1,000 patients, 2017

Specialty Mean (stdev) 25% 50% 75%

Neurosurgery 346.39 (272.86) 164.83 273.78 443.84

Neurology 179.54 (177.68) 75.11 138.67 210.12

Therapeutic Radiology 123.46 (183.78) 28.77 62.85 135.35

Medical Oncology 75.82 (74.06) 35.62 58.68 88.09

Physical Medicine 63.23 (88.89) 18.84 40.57 76.60

Orthopaedic Surgery 60.22 (53.08) 24.88 45.54 79.09

Rheumatology 56.54 (48.87) 24.30 44.44 73.84

Thoracic Surgery 53.27 (35) 25.31 48.20 83.19

Otolaryngology 31.55 (30.3) 13.92 24.03 39.66

Haematology 29.34 (35.3) 6.53 16.98 44.61

General Surgery 28.54 (46.16) 6.89 14.39 28.15

Gastroenterology 26.69 (34.31) 9.95 18.26 32.20

Paediatrics 24.39 (76.48) 2.42 6.06 15.60

Geriatrics 23.28 (24.75) 6.19 15.72 31.88

Family Practice and General Practice 22.37 (26.07) 6.15 15.83 30.12

Internal Medicine 22.36 (38.79) 3.13 10.30 27.89

Endocrinology 16.6 (30.73) 4.87 9.78 16.28

Infectious Disease 14.92 (16.4) 5.17 11.04 17.96

Urology 12.61 (13.53) 3.82 8.79 16.35

Anaesthesia 10.42 (26.63) 1.33 3.50 9.84

Others 10.32 (23.15) 0.70 2.10 10.55

Psychiatry 10.25 (17.78) 2.40 4.34 9.53

Nephrology 9.85 (16.41) 2.62 5.95 11.07

Emergency Medicine 8.94 (17.13) 2.44 4.62 8.38

Diagnostic Radiology 8 (30.94) 0.12 0.33 1.72

Plastic Surgery 7.04 (6.74) 2.40 4.88 10.10

Obstetrics and Gynaecology 6.81 (9.85) 1.80 3.66 6.91

Ophthalmology 6.63 (12.86) 1.06 2.54 6.18

Vascular Surgery 6.45 (6.86) 2.04 3.85 7.97

Respiratory Disease 6.18 (15.14) 1.01 2.62 5.47

Cardiology 5.54 (10.07) 1.07 2.42 5.57
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standard over the years, with less than half of the patients scanned within the Ontario target. When

doing a deeper utilization analysis at the next stage, we need to focus on the utilizations of these

non-urgent patients.

The MRI utilizations by the patient’s body part, age, sex, and residing region between 2008 and 2017

were consistent with the patterns in Ontario reported by ICES between 1992 and 2001 [53]. The most

common MRI scans were for extremities, spine, and brain. It is worth noting that spine MRI scans had a

slight decrease in 2012, and then increased from year 2013. This change in spine MRI scans validates the

claim that the restriction of spine imaging tests in year 2012 was associated with a short-lived reduction

in ordering of spine MRIs [38]. In terms of the patient’s age and sex, females had higher MRI utilizations

across all age groups below 70 years old. MRI utilization was highest for females with ages between 40

and 69, and this group of patient also contributed most to the growth of MRI use.

When examining the MRI utilization by patients’ residing regions, we find that while Greater Toroto

Area (City of Toronto, Peel, York, Durham, Halton) had greatest number of MRI scans, they had

lower utilization rates per 10,000 population compared to the rates in northern part of the province

(Cochrane, Thunder Bay, Subdury). One of the possible factors leading this geographic difference is

the disparity in access to MRI services. It was previously reported by ICES that regions with the most

MRI scanners per million population were among the ones with the highest utilization, while the areas

with lowest number of scanners per million population were among the ones with the lowest utilization

[53]. However, the correlation between the regional MRI utilizations and available scanners cannot be

validated in our study, since we do not have the information on the number of available scanners in each

hospital. Other factors that may cause the regional variance include the patient’s severity of illness,

patient’s health-seeking behaviours and physician’s decision-making behaviours [114].

When examining the physician referring patterns by specialties, we find that the specialties with

the highest MRI referral rates were neurosurgeons, neurologists, and therapeutic radiologists. However,

they together accounted for less than 20% referrals in year 2017. On the other hand, family physicians

referred approximately half of MRI scans each year, contributed most to the growth of yearly MRI

referrals, and had large inter-physician variance. The finding of high variance in MRI referrals among

family physicians is consistent with previous studies. Specifically, a study on diagnostic tests among

primary care providers suggested that there were wide variations in the use of diagnostic imaging tests

by Ontario family physicians [42]; another study suggested that primary care physicians see patients with

wide range of clinical conditions and certainly face challenges in following all related imaging guidelines

[116]. The other two studies provided an evidence of the overuse of MRI tests among family physicians,

especially in the use of lumbar spine MRIs [37, 82]. Our findings along with the current literature suggest

that we need to further investigate family physician’s test utilization patterns.
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3.6 Conclusion

Our population-based historical trend analysis shows a consistently increasing use of MRI in Ontario

between 2008 and 2017. The wait times for non-urgent patients significantly lagged behind the provincial

standard over the years, with less than half of the patients scanned within the Ontario target. The most

frequent scans were for extremities, spine, and brain, and middle-aged women with ages 40-69 had

the highest MRI utilizations. Although having a moderate average referral rate per 1,000 patients

compared with other specialties, family physicians had the highest MRI referrals and high within-group

variance. Based on our findings, it is important to conduct a deeper analysis on family physicians, and

on the non-urgent (priority 3 and 4) patients. As a result, for the next steps, we conduct a physician

utilization analysis on individual family physicians over a year, for non-urgent and most referred MRI

scans (extremities, spine, and brain). We aim to understand what physician characteristics (e.g., years

of practice, region) can cause the variance among this group.



Chapter 4

Family physician test utilization

In Chapter 3, we determine that the most frequent MRI scans were for extremities, spine, and brain,

and non-urgent patients with priority levels 3 and 4 had average wait times significantly longer than

the Ontario wait time targets. In addition, family physicians had the highest MRI referrals and high

within-group variance. We therefore perform a family physician test utilization analysis on non-urgent

scans for uncomplicated extremities, uncomplicated spine, and brain MRI tests, during the time period

between 2016/07/01 and 2017/07/01. The OHIP billing codes for the selected tests are X471, X490,

X493, and X421 in Table 2.2. This investigation includes 11,644 family physicians along with over 10

million patients. The objective is to determine whether the variations in the use of MRI tests were

associated with the variations in physician characteristics, and in referred patients’ subsequent follow-up

visits within six months after their MRI scans. We profile family physicians on their use of MRI scans,

and categorize them into low, typical, and high testers according to risk-adjusted referral rates. We then

compare tester levels against multiple physician characteristics and patients’ subsequent visits.

4.1 Poisson-based risk adjustment models

Before making comparisons among family physicians, we need to first build up risk adjustment models,

which help produce the expected number of referral rates per physician based on multiple relevant risk

factors. Current literature suggests that risk adjustment models can be built at either an individual

or an aggregate level [20]. Most risk adjustment frameworks calculate the risk adjusted score for each

individual in a population, and then sum up these predictions to an aggregate level [20]. For example,

in a study comparing coronary artery bypass grafting (CABG) among 28 hospitals, the researchers used

the logistic regression to predict the probability for each patient’s death in a hospital, and summed up

the predictions as the expected number of post-CABG deaths in that hospital [26]. However, this level of

disaggregation is often not easily available [20], in which case aggregate-level risk adjustment models are

built. For example, a study that compared bloodstream infection rates among hospitals stated that due

to the unavailability of attribute data on individual patients, they built hospital-level risk adjustment

models that directly calculate the expected infection counts for each hospital [107]. Another study

conducted by Buajitti et al. also used population-level prevalence estimates rather than individual-

level features as risk factors in their risk adjustment models, in order to compare regional variations

of premature mortality in Ontario [11]. Even if only aggregate-level information is available, aggregate

28
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models are still useful in adjusting risk and making a fair comparison among providers [20]. In our study,

we only have physician-level information on MRI referrals (i.e., number of referrals per 1,000 patients)

without explicit patient-level information (i.e., whether a patient was referred an MRI by the physician

during a visit). We therefore apply aggregate-level risk adjustment models which calculate the expected

referral rate per physician, based on his/her patient population and practice types. The traditional

approach to model rates is to use the computed rate for each aggregate unit as a dependent variable

in an ordinary least-squares (OLS) regression [81]. However, when the rates are computed from small

number of events, this OLS approach should be replaced by the Poisson-based regression, a statistical

approach to analyze aggregate rates that solves the problem arising from small populations and low rates

[81]. In our study, since the referral rates to be modelled are small with highly skewed distribution, we

use Poisson-based regressions as our risk adjustment model type. The candidate Poisson-based models

in our study include the basic Poisson regression model and negative binomial (NB) regression model.

4.1.1 The basic Poisson regression model

In statistics, the Poisson regression models belong to GLMs with the logarithm as the link function, and

are used to model counts or small rates. Poisson regression assumes the dependent variable, Y , has a

Poisson distribution, and the logarithm of its expected value can be expressed by a linear combination

of unknown parameters. The basic Poisson regression for counts is expressed as

ln(λi) = X>i β (4.1.1)

P (Yi = yi) =
e−λiλyii
yi!

(4.1.2)

Equation 4.1.1 is a regression equation that relates the natural logarithm of mean (expected) number of

events for case i, ln(λi), to the sum of explanatory variables, X>i , multiplied by regression coefficients,

β. Equation 4.1.2 indicates the probability that yi, the observed number of events for case i, follows the

Poisson distribution with the mean (expected) number of events, λi, from Equation 4.1.1. The role of the

natural logarithm in Equation 4.1.1 is comparable to the logarithmic transformation of the dependent

variable, a transformation method commonly used in analysis of aggregate rates [81].

Since in our study, our interest is in the MRI referral rates rather than the counts of MRI referrals

of each physician, we alter the basic Poisson regression so that it models the referral rates rather than

counts. In this case, if λi is the expected number of MRI referrals for a given physician, then λi/ni

would be his/her corresponding referral rate per 1,000 patients, where ni is the patient population size

(in thousands) for that physician. We can thus derive a variation of Equation 4.1.1 to model referral

rates, which is expressed as

ln

(
λi
ni

)
= X>i β (4.1.3)

ln(λi) = ln(ni) + X>i β (4.1.4)

ln(ni) is the natural logarithm of the population at risk, which is also called an offset to the regression

model in Equation 4.1.1. By giving the offset a fixed coefficient of one, Poisson regression becomes a
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model for rates, rather than for counts of MRI referrals.

4.1.2 Overdispersion and NB regression model

The basic Poisson model is appropriate only if the probability model of Equation 4.1.2 matches the data,

which requires that the residual variance be equal to the fitted values, λi. To meet this requirement,

one assumption of the Poisson model is that λi is the true rate for each case, and the explanatory

variables account for all of the meaningful variations among the aggregate units. If not, the differences

between the fitted and true rates will inflate the residual variance. However, it is very unlikely that this

assumption will be valid, as the Poisson regression will not explain all of the variations in MRI referral

rates. Residual variance will also be greater than λi if the assumption of independence among MRI

referrals is violated. In our case, we cannot guarantee that the MRI referrals are independent, as one

patient can have multiple MRI scans referred by the same physician. The dependence would increase

the variability in referral rates beyond λi. Due to these two reasons, “overdispersion” in which residual

variance exceeds λi is unavoidable, and applying the basic Poisson regression to such data can produce

inaccurate expected rate for each physician.

There are different ways to solve the problem of overdispersion. NB regression is the best known and

most widely available Poisson-based regression model that allows for overdispersion [81]. NB regression

combines the Poisson distribution in Equation 4.1.2 with a gamma distribution of the unexplained

variations in the expected event counts, λi. This combination produces the NB distribution, and replaces

the initial Poisson distribution. The formula for the NB distribution is expressed as

P (Yi = yi) =
Γ(yi + φ)

yi!Γ(φ)

φφλyii
(φ+ λi)φ−yi

(4.1.5)

where Γ is the gamma function (a continuous version of the factorial function), and φ is the reciprocal

of the residual variance [40]. In NB regression, the GLM regression form remains the same as the basic

Poisson model, with Equation 4.1.1 for counts of MRI referrals and Equation 4.1.4 for MRI referral

rates. Therefore, although the response probabilities associated with the fitted value differ from the

basic Poisson regression model, the interpretation of regression coefficients remains the same.

4.1.3 Interpretation of model coefficients

In Poisson-based model, the coefficient estimates can be interpreted in terms of the rate ratio, or relative

risk. For example, consider a comparison of two univariate Poisson models - one for a given explanatory

variable x, and one after increasing x by 1. The two models can be expressed as

ln(λ1) = β0 + β1x (4.1.6)

ln(λ2) = β0 + β1(x+ 1) (4.1.7)
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where λ1 in Equation 4.1.1 is the expected count/rate for model 1, and λ2 in Equation 4.1.7 is the

expected count/rate for model 2. The difference between the logarithm of λ1 and λ2 is expressed as

ln(λ2)− ln(λ1) = β1

ln

(
λ2
λ1

)
= β1

λ2
λ1

= eβ1

(4.1.8)

The derived result suggests that by exponentiating the coefficient, we can obtain the multiplicative factor

by which the mean response changes. The quantity of change, eβ1 in Equation 4.1.8, is referred as a

rate ratio or relative risk, and represents a percent change in the response for one unit change in the

explanatory variable x.

4.1.4 Methods of standardization

Standardization is a method used to compare rates of a given disease/outcome by removing the influence

of factors that may confound the comparison [108]. There are two major standardization methods; one

is used when the available “standard” is the structure of a reference population (direct method) and

the other one is used when the “standard” is a set of expected rates (indirect method) [108]. Direct

standardization can be used only when the stratification is chosen as the risk adjustment method. The

SAVA analysis in Appendix C is an example of direct standardization, by which the age-adjusted MRI

utilization rate in each CD is interpreted as the rate that the CD would have if they had the same age

distribution as the overall population. Indirect standardization can be used when applying either the

stratification or regression as the risk adjustment method. The studies performed by Hall et al. [42]

and DeLong et al. [26] introduced in Section 1.3.1 both used indirect standardization, by which they

calculated the expected rates using stratification [42] and regression [26], and compared each provider’s

observed value against what was expected. In our study, since we use the regression as our risk adjustment

method to produce the expected referral rate for each physician, we apply indirect standardization that

compares each physician’s observed and expected referral rates in order to identify low- and high-ordering

physicians.

4.2 Multi-class logistic regression

In statistics, the logistic regression is a regression model that uses a logistic function to model binary

dependent outcome. Mathematically, a binary logistic regression has a dependent variable with two

possible values labelled as “0” and “1”. The logarithm of odds (log-odds) for the value labelled “1”,

is a linear combination of one or more independent variables; the independent variables can be either

categorical or continuous variables. The logistic regression for binary outcomes is expressed as

P (Yi = 1|Xi) = π (4.2.1)

ln

(
π

1− π

)
= X>i β = η (4.2.2)
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π(η) =
eη

1 + eη
(4.2.3)

Equation 4.2.1 defines π as the probability of the outcome being labelled “1”, given all the explanatory

variables. Equation 4.2.2 is a regression equation that relates the log-odds for the value labelled “1”,

ln( π
1−π ), to a linear predictor, η, defined as the sum of explanatory variables, X>i multiplied by regression

coefficients, β. Equation 4.2.3 defines the logistic function, which finds the probability, π, by inverting

equation 4.2.2. The logistic function is an S-shaped sigmoid function with horizontal asymptotes at 0

and 1, allowing the logistic function to vary between 0 and 1.

In a binary logistic regression model, the dependent variable has two levels of either “0” or “1”. If

the outcome has more than two classes, the data can be modeled as multinomial logistic regression,

or ordinal logistic regression if the multiple categories are ordered (e.g., the outcome of low, medium,

or high). Multinomial logistic regression is an extension of binary logistic regression that allows for

more than two categories of the dependent variable [99]. It creates multiple binary logistic regression

analyses (i.e., M −1 regression analyses for modelling the outcome with M categories), one for each pair

of outcomes. In multinomial logistic regression, one category of the outcome is selected as a baseline

comparison group that is later compared against each of the other categorical groups. One assumption

of the multinomial logistic regression is that the categories are nominal, meaning that there is no order

to the categories of the outcome variable. The downside is that the ordering information is lost when

using this approach. If the outcome is ordered, an alternative approach to model the multi-class outcome

would be the proportional odds ordinal logistic regression (also called ordered logistic regression) [64].

The ordered logistic regression is an ordinal regression that models for ordinal dependent variables [64].

It is also an extension of the logistic regression model, allowing for more than two ordered response

categories. However, the model only applies to data that meet the proportional odds assumption, the

meaning of which can be exemplified as follows. Suppose fitting an ordered logistic regression model for

the data with outcome of 1 (lowest), 2, or 3 (highest). The ordered logistic regression creates two binary

models with events of y > j v y 6 j, j = 1, 2. The logistic function can then be written as [113]

P (Yi > j) =
eαj+X>

i β

1 + eαj+X>
i β
, j = 1, 2 (4.2.4)

The proportional odds assumption requires that the β’s (but not the α’s) be the same for all values

of j [113]. In other words, the effect of the predictors on the odds of being (1) (2 or 3) v 1 and (2) 3 v

(2 or 1) are the same. This assumption is often violated in the real-world data sets.

In logistic regression, the coefficient calculated for each predictor determines the adjusted odds ratio

(OR) for the outcome associated with a 1-unit increase, when other predictors are being controlled

[106]. The coefficient of each predictor provides a measure of magnitude of its influence on the outcome

of interest [106]. Specifically, considering a binary logistic regression model with the form

ln

(
π

1− π

)
= logodds(Y=1) = β0 + β1X1 + ...+ βpXp (4.2.5)

Let w be the odds that Y = 1 based on X1,...,Xp, then

w = e(β0+β1X1+...+βpXp) (4.2.6)

The interpretation of β1 is illustrated as follows. By holding X2, ..., Xp fixed, the adjusted OR that
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Y = 1 at X1 = a to X1 = b is

wa
wb

= eβ1(a−b) (4.2.7)

From Equation 4.2.7, if X1 increases by 1 unit and holding all other X’s constant, the odds that Y = 1

changes by a multiplicative factor of eβ1 .

4.3 Goodness-of-fit evaluation

There are two popular fit statistics, Akaike’s Information Criteria (AIC) [3] and Schwarz’s (Bayesian

Information) Criteria (BIC) [96] that combines log-likelihood with a penalty, and are useful for comparing

different types of models with the same response and same data. In a statistical model, let k be the

number of estimated parameters in the model, and let L̂ be the maximum value of the likelihood function

for the model. Then the AIC value of the model is expressed as [3]

AIC = 2k − 2 ln(L̂) (4.3.1)

Given a set of candidate models for the data, the model with the minimum AIC value is preferred. The

rule of thumb in AIC is that (1) one model fits better than another if the difference in AIC > 10, and

(2) one model is essentially equivalent to another if the difference in AIC is < 2. Similarly, the BIC is

expressed as [96]

BIC = k ln(n)− 2 ln(L̂) (4.3.2)

where n is the number of observed data. Like AIC, the model with the lowest BIC is preferred. The

BIC generally penalizes additional parameters more strongly than the AIC, though the goodness-of-fit

also depends on the size of n and relative magnitude of n and k.

4.4 Analysis pipeline

Our family physician test utilization analysis is divided into five parts. First, we develop physician-level

risk adjustment models that adjust for physician’s case-mix, and physician’s practice type. We use the

risk adjustment models to produce the expected referral rate per physician, and compute indirectly

standardized rates as observed divided by expected rates. Second, we use the observed-to-expected

(O/E) ratio to categorize physicians into low, typical and high testers. Next, we compare physician tester

levels against multiple physician-level characteristics to identify any difference in these characteristics

among the physician groups. Moreover, we compare tester levels against patients’ subsequent visits to

see whether higher testers were associated with fewer patients’ subsequent visits. Last, we conduct a

counterfactual analysis to see how many MRI referrals would have been decreased if all higher testers

had referred at typical levels. Figure 4.1 shows the flowchart of the analysis pipeline.

4.4.1 Risk adjustment models

Before making comparisons among individual family physicians on extremities, spine, and brain MRI

referrals, we first build up physician-level risk adjustment regression models that calculate the expected
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Select MRI scans for uncomplicated exrremities
(X471), uncomplicated spine (X490, X491) and

brain (X421)

Extremities and spineYes

Group physicians into sports medicine and
non sports medicine practitioners

Sports medicine
practitioners

 For each MRI test, calculate indirect standardized referral rate
(O/E ratio) for each physician, adjusting for (1) age distribution
of patient population, (2) sex distribution of patient population,
(3) proportion of sports medicine FPA claimed over the year

 For each MRI test, calculate indirect standardized referral rate
(O/E ratio) for each physician, adjusting for (1) age distribution
of patient population, (2) sex distribution of patient population 

NoYes

No

For each MRI test, assign tester levels
 (lower, typical, higher)  

Re-assign tester levels according to all three
tests

(consistent lower, mixed, consistent higher)

Compare tester levels against multiple
physician characteristics

Compare tester levels against subsequent
patient visits, controlled for other patient and

physician-level characteristics

Univariate analysis with
statistical testings

Multivariate analysis with
multinomial Logistic regression

Multivariate Poisson regression
that controls for other

confunding factors

Counterfactual analysis on the number of MRIs
that would have been reduced if higher testers

had ordered what was expected

Figure 4.1: Family physician tests analysis pipeline



Chapter 4. Family physician test utilization 35

Select MRI scans for uncomplicated
exrremities (X471), uncomplicated spine

(X490, X491) and brain (X421)

 For each MRI test, calculate indirect
standardized referral rate (O/E ratio) for

each physician, adjusting for age and sex for
his/her case mix

For each MRI test, compare top billing codes
from OHIP data set, to identify any difference

in physicians' practice patterns 

For each MRI test, assign tester levels
 (lower, typical, higher)  

Figure 4.2: Identification of family physicians’ practice type differences

referral rate for each physician on each test. At the first stage, we only adjust for patients’ case-mix

distribution of age and sex, and compare the OHIP billing codes among low, typical, and high testers

to identify any difference in physicians’ practice types (Figure 4.2, and refer to Appendix G for analysis

details). OHIP billing codes are indicators of specific services insured by OHIP and claimed by physicians

who provided the service [77]. Our findings show a different practice pattern in high-ordering physicians

for extremities and spine. Specifically, high testers for extremities and spine MRIs tended to claim

more sports medicine focused practice assessment (FPA) services. Sports medicine FPA (billing code

of A917) is a special code claimed by family physicians granted with sports medicine focused practice

designation, which requires an additional training and/or experience in sports medicine [78]. As a

result, for the model development of extremities and spine MRIs, the physicians are further stratified

as sports medicine practitioners and non sports medicine practitioners, based on their claimed billing

codes through the year. We identify the physicians as sports medicine practitioners if they claimed at

least 30 sports medicine FPA billing codes, and as non sports medicine practitioners otherwise.

We use two types of Poisson-based regression models, basic Poisson regression model and NB regres-

sion, to model physicians’ referral rates by adjusting for relevant risk factors. We use the AIC value

for model comparison, and select the models with smaller AIC as our final risk adjustment models. To

model extremities and spine MRI referral rates, we fit the regression models in each stratified group;

for brain MRI referral rates, we fit the regression models in the whole family physician population. We

use each physician’s paneled patients as his/her patient population. In each model, the measure of

MRI referrals is the number of complete MRI scans referred by the physician over the study period.

The measures of the explanatory variables are based on the physician’s patient population and practice

types. These explanatory variables include (1) the proportion of patients in each sex group; (2) the

proportion of patients in each age group; and (3) the proportion of sports medicine FPA billing codes
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over all claimed billing codes through a year, for sports medicine practitioners and for extremities and

spine MRI tests. Table 4.1 lists all the risk factors and corresponding levels for each factor. For each risk

factor, one of the levels is dropped as the reference to avoid multicollinearity (correlation of explanatory

variables). All proportions are normalized into z-scores as final input features to risk adjustment models.

For patient population’s age and sex distribution, the normalization is based on the distribution across

all physicians; for proportion of sports medicine FPA, the normalization is based on the distribution

across all sports medicine practitioners. For each physician and each feature, the formula for z-score

normalization is expressed as

Znorm =
proportion− µ

σ
(4.4.1)

where µ is the mean value and σ is the stdev of the proportions. Also included in the model input is the

size of each physician’s patient population in thousands, which is the population at risk for MRI referrals.

For each selected test, we report the percentage of variance explained by the risk adjustment model in

terms of R2. R2 is a statistical measure that represents the proportion of the variance for a dependent

variable (i.e., referral rate in our case) that is explained by independent variables in a regression model.

R2 equals 1 if the predicted values exactly fit into actual values, and equals 0 if the predicted value is

just the mean [68]. Real-world risk adjustment models typically fall between 0 and 1 [68].

We choose regression-based risk adjustment over conventional stratification due to the following four

reasons. First, it is evident from the literature that compared to stratification, Poisson regression models

have several advantages [24]. Not only does the method saves time, but it also provides more reliable

estimates than the ones obtained by stratified analysis [24]. Moreover, Poisson regression solves the

problem of which external standard distribution to use, since the parameters are estimated internally

from the study population [24]. With this method, the choice of one population against another does

not affect the size of differences obtained with stratified analysis [24]. Thus, Poisson regression can be

considered as a serious alternative to stratified analysis when comparing rates across physicians [24].

Second, for extremities and spine, the risk adjustment models for sports medicine practitioners include

more than two relevant risk factors, in which case regression is preferred rather than stratification.

Third, the coefficients of Poisson regression models can be interpreted as rate ratios, which help us

understand what risk factor(s) significantly impact the outcome measures. Last, while stratification

only provides a single summary measure (adjusted rate) for each physician, Poisson regressions are able

to generate referral rate estimates with 95% confidence intervals (CIs), which help us more accurately

identify the physician outliers whose O/E ratios are significantly above or below the thresholds. Section

4.4.2 elaborates in detail on how the O/E ratios are calculated, and how the physician outliers are

identified.

4.4.2 Family physician test utilization

We use the fitted models to create risk-adjusted physician-specific referral rate estimates, adjusting for

multiple relevant risk factors. From these models, we obtain the expected referral rates (number of MRI

referrals per 1,000 patients) at physician level, and compute indirectly standardized rates as observed

divided by expected rates, which are also known as O/E ratios. For each physician and each MRI test,

the O/E ratio measures the extent to which his/her actual referral rate deviates from the expected rate.

The observed rate is the physician’s actual referral rate, calculated as number of complete MRI scans
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Table 4.1: Risk factors and levels for risk adjustment models

Risk factor Level

Patient population age group (%) 0-19

20-39

40-59

60-79

80+ (reference)

Patient population sex group (%) Male

Female (reference)

Proportion of sports medicine FPA practices

(for extremities and spine)

referred divided by the size of his/her paneled patients (in thousands); the expected rate is the referral

rate if his/her utilization is identical to that observed in the stratified group (for extremities and spine)

or in the entire physician population (for brain). We extract the 95% CI of the expected referral rate

in order to derive 95% CI for the O/E ratio, and assign all physicians into lower, typical and higher

testers. For each MRI test, we classify those physicians with CI of O/E entirely above 1.5 as higher

testers, those with CI of O/E entirely below 0.5 as lower testers, and those with CI of O/E spanning

between 0.5 and 1.5 as typical testers. The thresholds are based on the assumption raised by Hall et al.

that a 50% increase or decrease in the ordering of routine tests would be of clinical significance [42].

We then use Venn Diagrams to show the overlappings of lower, typical and higher testers among the

three MRI tests. We re-assign those family physicians into “consistent lower testers” if they were lower

testers for all tests, into “consistent higher testers” if they were higher testers for all tests, and identify

the remaining physicians as “mixed testers”.

4.4.3 Comparison among tester groups

After assigning tester levels based on all three selected tests, we compare tester groups against multiple

physician characteristics to identify possible sources of variations. The analysis unit is physicians, with

physician-level characteristics (years of practice, region, rurality, immigration, income, patient popula-

tion comorbidity) as the key independent variables of interest, and each physician’s re-assigned tester

level (consistent lower, mixed, consistent higher) as the key dependent variable. We aggregate patient-

level rurality, immigration, income, and comorbidity index into physician-level categories based on each

physician’s patient population; for each physician and each characteristic, we calculate the average index

of his/her patient population, and categorize the physician as low/moderate/high based on our observa-

tion of the histograms. Appendix F shows the histograms of the four characteristics at physician-level,

and table 4.2 provides the thresholds for categorization. Patients with missing/unknown indices are

excluded from our calculation. For our analyses, years of practice is treated as a continuous variable;

region, rurality, immigration, income, and patient comorbidity are described as categorical variables.

We first perform a univariate analysis to see how each variable of interest individually affected a

physician’s tester level. In each level of categorical variables, we derive the prevalence of physicians in

each tester group to notice any difference in distributions. All physician characteristics are compared
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Table 4.2: Thresholds for categorization

Physician characteristic Level Range of average index

Rurality Low <2.5

Moderate 2.5-4

High >4

Immigration Low <1.5

Moderate 1.5-2.5

High >2.5

Income Low <2.5

Moderate 2.5-3.5

High >3.5

Comorbidity Low <0.15

Moderate 0.15-0.25

High >0.25

amongst tester levels using one-way analysis of variance (ANOVA) for the continuous variable, and

Chi-squared Test of Independence for categorical variables. ANOVA is a statistical test to analyze the

differences among group means with the null hypothesis that there is no difference among groups. It

computes the F statistic as the ratio of between-group variance and within-group variance. If the p-value

of F statistic is below the significance level (typically 0.05), the null hypothesis is then rejected and there is

evidence supporting the significant differences amongst groups. The Chi-squared Test of Independence

is used to determine if there is a significant relationship between two categorical variables. The null

hypothesis assumes that there is no association between the two variables. Hypothesis testing for the

Chi-squared Test of Independence is similar to ANOVA, where a test statistic (i.e., Chi-squared statistic)

is computed and the p-value is compared to a significance level and the degrees of freedom. If the observed

Chi-squared test statistic is below the significance level, the null hypothesis is rejected, supporting the

association between two variables. After our univariate analysis, we then perform a multivariate logistic

regression analysis to explore the adjusted relationship between physician’s characteristics and the tester

levels. Since our outcome variable is ordered and multi-class, the data can be fitted into both multinomial

logistic regression and ordinal logistic regression models. We thus try both model types and select the

optimal type based on AIC values. We use adjusted OR with 95% CIs to interpret how each independent

variable influences the outcome.

In addition, we want to determine whether variations in the use of MRI tests were associated with

variations in patients’ subsequent visits. Our hypothesis is that higher testers might be ordering more

inappropriate tests, and therefore be potentially associated with fewer patients’ follow-up visits per

referred MRI scan. To test out our hypothesis, we retrieve all referred scans for extremities, spine, and

brain, and the count of patients’ subsequent visits within six months after their MRI scans. We again

use the Poisson-based regression model to control for other patient and physician-specific features that

may influence the subsequent visits. Each data point fitted into the regression model represents an MRI

scan history of one of the three MRI tests for a specific patient. In the regression model, the outcome is

the number of visits within 6 months after an MRI scan; the exposure variable (variable of interest) is
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the tester group of the referring physician, and the confounders are other patient and physician-specific

characteristics. Table 4.3 lists all the input features for the regression model. We use the rate ratios

with 95% CIs from the model to interpret how tester groups impact the patients’ subsequent visits.

4.4.4 Counterfactual analysis

Our counterfactual analysis consists of two “what-if” scenarios. First, we perform the analysis on

individual selected tests to understand if those 20% higher testers had ordered what was expected, how

many MRI referrals in each test would have been decreased. To perform this analysis, in each test, we

use the predicted referral rates (with 95% CI) to calculate the expected number of MRI referrals for

those physicians who are identified as higher testers. We then calculate the expected total MRI referrals

if those higher testers had ordered what was expected, while the total referrals for typical and lower

testers remain unchanged. We report the number and percentage of decrease of MRI referrals compared

with the actual volumes. Second, we want to understand if only those 8% consistent higher testers had

ordered what was expected, how many total MRI referrals would have been decreased. In this case, we

use the predicted rates (with 95% CI) for to calculate the expected number of MRI referrals in each test

only for those consistent higher testers. Similarly, we then calculate the expected total MRI referrals

and report the number and percentage of decrease.

4.5 Results

Our family physician test utilization analysis shows different referral patterns of family physicians based

on their practice types, and there are several physician characteristics that impact the use of MRIs. De-

tailed analysis is provided for (1) MRI referral rates distribution, (2) model selection and interpretation,

(3) physician O/E ratios and tester groups, (4) comparison among tester groups, and (5) counterfactual

analysis. The Poisson-based statistical models and multi-class logistic regressions are fit in R version

3.2.3 [88]. We use package MASS [110] to call the NB regression and ordered logistic regression functions.

We use package glm2 [63] to call the Poisson regression function. We use package mlogit [23] to call the

multinomial logistic regression function. All statistical tests are two-sided with 0.05 as significant level.

4.5.1 MRI referral rates distribution

Figure 4.3 shows the histograms of the crude referral rates per 1,000 patients by practice types for the

three tests. We can see highly skewed distributions across all tests, with the majority of physicians

having low rates. The highly skewed distribution suggests that Poisson-based risk adjustment models

are preferred against OLS regression for modelling referral rates.

The pointplots of referral rates by practice types for extremities and spine are presented in Figure

4.4. Table 4.4 provides detailed statistics on mean (with stdev) and IQR of referral rates in each group

and each test. Sports medicine practitioners were associated with higher MRI referrals for extremities

and spine. Family physicians practicing sports medicine referred more extremities (64.1 v 6.6 exams /

1,000 patients) and spine (14.5 v 6.4 exams / 1,000 patients). Such subgroup differences suggest that

practice-type-stratified models are necessary for risk adjustment.
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Table 4.3: Explanatory variables for patients’ subsequent visits

Explanatory variable Level

Exposure

Referring physician tester group Consistant lower (reference)

Mixed

Consistant higher

Counfounder

Physician characteristics

Region Central (reference)

West

North

East

Toronto

Years of practice

Sex Male (reference)

Female

Patient characteristics

Age group 0-19

20-39

40-59

60-79

80+ (reference)

Sex Male (reference)

Female

Income index 1 (lowest, reference)

2

3

4

5 (highest)

Immigration index 1 (lowest, reference)

2

3 (highest)

CCI index 0 (lowest, reference)

1

2

>2
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(a) Extremities (b) Spine (c) Brain

Figure 4.3: MRI referral rates (per 1,000 patients)

(a) Extremities (b) Spine

Figure 4.4: Mean MRI referral rates (per 1,000 patients) with 95% CI

Table 4.4: Descriptive statistics by body part and physician sub-group

Referral rate statistics

Body part Physician sub-group No. of physicians Mean (stdev) IQR

Extremities non sports medicine 11,517 6.58 (8.18) 1.16-9.16

sports medicine 127 64.12 (61.26) 24.05-89.29

Spine non sports medicine 11,517 6.44 (8.12) 4.98-14.62

sports medicine 127 14.51 (20.48) 4.55-15.24

Brain - 11,644 4.21 (5.71) 0.68-5.71
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Table 4.5: Comparison of basic Poisson and NB Models

Akaike information criterion (AIC)

Extremities Spine Brain

Poisson NB Poisson NB Poisson NB

Non sports medicine group 155,863 74,056 147,530 74,875 111,885 65,808

Sports medicine group 6,042.6 1,318.6 2,510.2 986.68 - -

4.5.2 Model selection and interpretation

For our two types of risk adjustment models, basic Poisson regression and NB regression, we use AIC

to compare the goodness-of-fit. Table 4.5 presents the AIC of models for each stratified group and each

body part. NB models have consistently better performance compared with basic Poisson models for

all subgroups. Therefore, we choose NB models as our final risk adjustment models for calculating the

expected referral rates. The results from NB models in terms of rate ratios with 95% CI are presented

in Appendix H. The impact of each risk factor on referral rates varied across subgroups. In general,

physicians who interacted with more female, middle-aged-to-elderly patients (ages 40-79) tended towards

more MRI referrals. For extremities, sports medicine practitioners who interacted with more male and

patients ages 20-39 tended towards more MRI referrals. Proportions of engagement in sports medicine

FPA practice had significant impact on MRI referrals; physicians with higher proportions with sports

medicine FPA practices tended to refer more extremities and spine MRIs. Specifically, for extremities

MRIs, 1 stdev of increase in proportion of sports medicine practice increased the referral rate by 51%

(95% CI 33%-72%); for spine MRIs, 1 stdev of increase in proportion of sports medicine practice increased

the referral rate by 53% (95% CI 30%-81%).

4.5.3 Physician O/E ratios and tester groups

Table 4.6 lists the mean (with stdev), maximum, and IQR values of the O/E ratios, and the percentage

of variance explained by risk adjustment models. There was little difference in terms of mean and IQR of

O/E ratios among selected tests. The maximum O/E ratio for extremities was the highest; the extreme

outlier(s) for extremities referred over 40× as expected. The risk adjustment models explain 36.55%,

5.82% and 6.77% of the referral rates variance for extremities, spine, and brain, indicating that after

controlling for physician’s case-mix and practice types, there still existed high variance of MRI referrals

among family physicians. Figure 4.5 shows the distribution of physician tester groups (lower, typical,

and higher) along with their contributions to total MRI scans. 20.5%, 21.1%, and 20.3% physicians were

identified as higher testers for extremities, spine, and brain MRIs, who contributed to 47.5%, 50.8%, and

56.5% MRI referrals, respectively. On average, higher testers referred 30% more MRI tests than typical

testers, and lower testers referred 80% fewer MRI tests than typical testers.

Figure 4.6 presents the overlapping of lower, typical, and higher testers among all selected tests

in Venn diagrams. After re-assigning the tester levels, we have 2,507 (21%) consistent lower testers,

904 (8%) consistent higher testers, and 8,253 (71%) mixed testers. Those 8% consistent higher testers

contributed to 23.8% total MRI referrals of the selected tests. Multiple physician-level characteristics

are later compared against the tester levels.
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Table 4.6: Descriptive statistics of O/E ratios and % variance explained for selected tests

Body part Mean (stdev) Max IQR % Variance explained

Extremities 1.02 (1.5) 43.62 0.21-1.39 36.55%

Spine 1.03 (1.34) 37.31 0.24-1.39 5.82%

Brain 1.00 (1.31) 24.82 0.21-1.34 6.77%

(a) Extremities (b) Spine (c) Brain

Figure 4.5: Distributions of lower, typical and higher testers and their contributions to MRI referrals

(a) Lower (b) Typical (c) Higher

Figure 4.6: Venn diagrams of lower, typical and higher testers
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4.5.4 Comparison among tester level groups

We compare physician-level characteristics among tester groups. Table 4.7 shows for each level of

characteristics, the distributions of consistent lower, consistent higher, and mixed testers. Consistent

higher testers had slightly fewer years of practice (mean of 8.93 v 10.28 for consistent lower testers,

p < 0.001), were more likely to work in northern Ontario (12.10% v 6.97% on average in other parts

of Ontario, p < 0.001), in high-income areas (7.25% v 4.62% in low-income areas, p < 0.001), and

in low-immigration areas (9.05% v 3.01% in high-immigration areas, p < 0.001). On the other hand,

consistent lower testers were more likely to work in urban settings (23.90% v 18.88% in high-rurality

areas, p < 0.001), in low-income areas (29.41% v 16.54% in high-income areas, p < 0.001), and in high-

immigration areas (35.44% v 19.53% in low-immigration areas, p < 0.001). There was no clear pattern

on the relationship between tester levels and comorbidities of their patient population.

We use the model output from multinomial logistic regression to interpret the multivariate analysis

result, since it better fits our data set (AIC of 17,238 v 17,576 for ordered logistic regression), potentially

indicating that our data set may violate the proportional odds assumption illustrated in Section 4.2.

In addition, although our outcome has three levels, we focus more on how the explanatory variables

influence the odds of being a consistent higher v consistent lower tester, in which case the multinomial

logistic regression gives us the desirable interpretation. The multivariate regression analysis is shown in

Table 4.8, showing the same pattern as our univariate analysis. The findings include (1) a 5-year increase

in years of practice decreases the odds of being a higher v lower tester by 0.06 (95% CI 0.05-0.07); (2) a

change of rurality level from low to high increases the odds of being a higher v lower tester by 0.9 (95%

CI 0.39-1.6); (3) a change of income level from low to high increases the odds of being a higher v lower

tester by 0.45 (95% CI 0.1-1.1); (4) a change of immigration level from low to high decreases the odds

of being a higher v lower tester by 0.79 (95% CI 0.66-0.87); and (5) a change of region from Toronto

to North increases the odds of being a higher v lower tester by 2.17 (95% CI 1.01-4). The influences of

these factors on the odds of being a mixed v lower tester are similar to that for being a higher v lower

tester, but overall, to a smaller magnitude.

Figure 4.7 shows the pointplot of patients’ subsequent visits referred by tester groups, where we

see that subsequent visits decreased as the tester level goes from consistent lower to consistent higher.

Based on the NB regression, when controlling for other patient and physician factors, the subsequent

visits of patients referred by consistent higher testers were 10.7% (95% CI 9.26%-12.14%) lower than

that for lower testers; the subsequent visits of patients referred by mixed testers were 7.3% (95% CI

5.87%-8.71%) lower than that for lower testers. Rate ratio estimates and CIs from the basic Poisson

regression are similar to the NB regression output.

4.5.5 Counterfactual analysis

Table 4.9 shows the counterfactual analysis result for scenario 1, in which case 20% higher testers for

each body part had ordered what was expected. The number of MRI referrals by higher testers were

60,884 (47.5%), 22,994 (50.8%), and 41,216 (56.5%) for extremities, spine, and brain, respectively. In

each of the selected test, if the 20% higher testers ordered what was expected, the MRI referrals would

have been reduced by 37,196 (29%) for extremities, 35,815 (31%) for spine, and 26,365 (36%) for brain.

Overall, the total MRI referrals of the three tests combined would have been reduced by 99,376 (31%).

Table 4.10 presents the counterfactual analysis result for scenario 2, in which case only 8% consistent
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Table 4.7: Physician characteristics by tester groups

Overall

n = 11,644

Lower

n = 2,507

(21.49%)

Mixed

n = 8,253

(70.76%)

Higher

n = 904

(7.75%)

p-value

Years of practice <0.001

Mean (stdev) 9.47 (8.23) 10.28 (8.94) 9.28 (8.11) 8.93 (7.07)

Median 7 8 7 7

IQR 3-12 3-17 3-12 4-10

Region <0.001

Central 3,519 716 (20.34%) 2,524 (71.72%) 279 (7.92%)

East 2,880 593 (20.59%) 2,100 (72.91%) 187 (6.49%)

North 842 142 (16.86%) 598 (71.01%) 102 (12.10%)

Toronto 1,414 381 (26.94%) 977 (69.08%) 56 (3.96%)

West 2,948 654 (22.18%) 2,014 (68.31%) 280 (9.50%)

Immigration level <0.001

Low 6,547 1,264 (19.31%) 4,684 (71.54%) 599 (9.15%)

Moderate 4,101 890 (21.70%) 2,936 (71.58%) 275 (6.70%)

High 996 353 (35.44%) 613 (61.52%) 30 (3.01%)

Income level <0.001

Low 1,275 375 (29.41%) 841 (65.95%) 59 (4.62%)

Moderate 8,066 1,751 (21.71%) 5,637 (69.88%) 678 (8.40%)

High 2,303 381 (16.54%) 1,755 (76.20%) 167 (7.24%)

Rurality level <0.001

Low 6,407 1,518 (23.69%) 4,465 (69.68%) 424 (6.62%)

Moderate 3,280 642 (19.57%) 2,339 (71.31%) 299 (9.11%)

High 1,957 347 (17.73%) 1,429 (73.01%) 181 (9.24%)

Patient comorbidity level <0.001

Low 3,843 877 (22.82%) 2,735 (71.16%) 231 (6.01%)

Moderate 3,842 490 (12.75%) 2,944 (76.72%) 408 (10.62%)

High 3,959 1,140 (28.80%) 2,554 (64.50%) 265 (6.69%)
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Table 4.8: Multinomial logistic regression analysis of the tester levels

Mixed v Lower Higher v Lower

Adjusted OR (95%CI) p-value Adjusted OR (95%CI) p-value

Years of practice 1 0.95 (0.95-0.96) <0.001 0.94 (0.93-0.95) 0.008

Region

Toronto (reference) 1 - 1 -

Central 1.34 (1.15-1.56) <0.001 2.53 (1.83-3.5) <0.001

East 1.09 (0.91-1.31) 0.364 1.39 (0.96-2.02) 0.085

North 1.22 (1.04-1.42) <0.001 3.17 (2.01-5) <0.001

West 0.8 (0.66-0.97) 0.024 1.55 (1.06-2.27) 0.025

Rurality

Low (reference) 1 - 1 -

Moderate 1.57 (1.33-1.85) <0.001 1.29 (0.99-1.68) 0.060

High 2.21 (1.81-2.69) <0.001 1.9 (1.39-2.6) <0.001

Income

Low (reference) 1 - 1 -

Moderate 1.06 (0.91-1.23) 0.491 1.42 (1.04-1.94) 0.027

High 1.4 (1.16-1.71) <0.001 1.45 (1.1-2.1) 0.047

Immigration

Low (reference) 1 - 1 -

Moderate 0.99 (0.84-1.17) 0.922 0.75 (0.57-0.98) 0.038

High 0.52 (0.42-0.65) <0.001 0.21 (0.13-0.34) <0.001

Patient comorbidity

Low (reference) 1 - 1 -

Moderate 1.72 (1.51-1.95) <0.001 2.43 (1.98-2.98) <0.001

High 0.52 (0.46-0.59) <0.001 0.49 (0.39-0.62) <0.001

Figure 4.7: Mean subsequent visits per scan within 6 months with 95% CI
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Table 4.9: Counterfactual analysis for scenario 1

Body part

Extremities Spine Brain

No. total MRI referrals 128,131 115,718 72,946

No. referrals in higher group 60,884 58,809 41,216

No. expected referrals in higher group

(95% CI)

23,689

(22,416-25,081)

22,994

(22,072-23,987)

14,852

(14,278-15,452)

No. expected total MRI referrals

(95% CI)

909,35

(89,663-92,328)

799,03

(78,982-80,896)

46,581

(46,008-47,182)

No. total referrals reduced

(95% CI)

37,196

(35,803-38,468)

35,815

(34,822-36,736)

26,365

(25,764-26,938)

% total referrals reduced

(95% CI)

29%

(28%-30%)

31%

(30%-32%)

36%

(35%-37%)

Overall - No. total referrals reduced (95%CI) 99,376 (96,389-102,142)

Overall - % total referrals reduced (95%CI) 31% (30%-32%)

higher testers had ordered what was expected. The number of MRI referrals by those 8% consistent

higher testers were 28,821 (22.5%), 27,627 (23.9%), and 19,016 (26.1%) for extremities, spine, and brain,

respectively. If only the consistent higher testers had ordered what was expected and other family

physicians had remained unchanged, the overall MRI referrals would still have been reduced by 59,582

(18.8%).

4.6 Discussion

This family physician investigation reveals several insights about patterns of referrals among family

physicians. First, the distributions of MRI referrals for extremities, spine, and brain were highly skewed,

with the majority of physicians having small referral rates (less than 10 referrals per 1,000 patients).

Extremities and spine referral rates were predictable based on the level of engagement in sports medicine

FPA, a designation granted to physicians with specialized service in sports medicine. Specifically, sports

medicine practitioners referred nearly 10× the number of extremities MRIs per 1,000 patients and over

2× the number of spine MRIs per 1,000 patients. This finding is consistent with the claim that sports

medicine practitioners have a clear interest in radiology, and MRI is particularly useful in identifying

bone stress, which occurs in a wide variety of sports injuries [66]. In addition, based on the policy and

program overview of the FPA group [78], sports medicine practitioners tend to be interacted with more

patients with lumbar strain and lumber sprain, increasing their likelihood of referring spine MRIs.

Second, even after controlling for relevant risk factors, there still exited high variations among family

physicians; the risk adjustment models could help explain the variations to some extent, but there is still a

large proportion of variance that the model could not explain. Individual physicians are exposed to other

unpredictable factors related to medico-legal concerns, pressure from patients, and marked variations

in their inherent ordering behaviours [115]. After assigning lower, typical, and higher tester levels to

1The adjusted OR estimate is for a 5-year increase in the parameter of interest
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Table 4.10: Counterfactual analysis for scenario 2

Body part

Extremities Spine Brain

No. total MRI referrals 128,131 115,718 72,946

No. referrals in

consistent higher group
28,821 27,627 19,016

No. expected referrals in

consistent higher group (95% CI)

6,154

(5,802-6,550)

5,793

(5,560-6,045)

3,935

(3,786-4,090)

No. expected total MRI referrals

(95% CI)

105,464

(105,112-105,860)

93,884

(93,651-94,136)

57,865

(57,716-58,020)

No. total referrals reduced

(95% CI)

22,667

(22,271-23,019)

21,834

(21,582-22,067)

15,081

(14,926-15,230)

% total referrals reduced

(95% CI)

17.7%

(17.4%-18.0%)

18.9%

(18.7%-19.1%)

20.7%

(20.5%-20.9%)

Overall - No. total referrals reduced (95%CI) 59,582 (58,779-60,316)

Overall - % total referrals reduced (95%CI) 18.8% (18.6%-19.0%)

family physicians on each selected test, our finding shows that overall, only 20% physicians were higher

testers, who contributed to nearly 50% MRI scans. On average, higher testers referred 30% more MRI

tests than typical testers, and lower testers referred 80% fewer MRI tests than typical testers. After re-

assigning the tester levels according to all three tests, we have 21% consistent lower testers, 8% consistent

higher testers, and 71% mixed testers. Those 8% consistent higher testers contributed to nearly 25%

total MRI referrals of the selected tests. Several physician-level characteristics were associated with the

variations in family physician’s MRI test utilizations. First, physicians with fewer years of practice had

a higher chance of being a high tester. Previous research has found that less experienced physicians

order relatively more diagnostic tests [43, 58, 70], and are associated with more inappropriate imaging

referrals [116]. Second, physicians who worked in the northern regions of Ontario had a higher chance

of being a high tester. According to an interview study of Ontario family physicians, they complained

about the long wait time for specialist consultation, saying that it would be much faster to get an MRI

scan than to see a specialist [115]. This situation was exacerbated in northern Ontario, where family

physicians sometimes refer an MRI to obviate the need for the specialist referral [114]. Third, physicians

who worked in rural areas had a higher chance of being a high tester. This observation is aligned with a

study which shows that due to shortage of local specialists and travel challenges for patients within these

communities, rural family physicians tend to provide a variety of specialty services [15, 101]. Therefore,

rural family physicians may prefer more diagnostic imaging tests that facilitate their diagnoses. Fourth,

physicians who worked in high-income areas tended to refer more MRIs. The rationale is that people in

higher socioeconmic status (SES) groups may be more likely to have a regular family physician, to be

better educated about sophisticated imaging technologies, and to be more assertive healthcare consumers;

while poorer health status in lower SES groups may disproportionately affect the utilization of routine

radiography procedures [27]. Fifth, physicians working in low-immigration areas tended to refer more

MRIs. There is no study that explicitly explains such association, but from a survey result in Statistics
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Canada, immigrants in Canada had difficulty in accessing the healthcare services [22]. Another study

concludes that new immigrants are much less likely to have a regular doctor [25]. Certain immigrants

may prefer having healthcare professionals of their own ethnicity or who speak their language; such

preferences may potentially explain some delay in finding a regular doctor [97]. These factors may

disproportionately affect immigrants’ utilization in MRI tests.

Moreover, after comparing the subsequent patients’ visits within 6 months after their MRI scans, we

find that the subsequent visits of patients referred by typical and consistent higher testers were 7.3% and

10.7% lower than that for consistent lower testers. This finding validates our assumption that higher

testers might be ordering more inappropriate tests, and therefore be potentially associated with fewer

patients’ follow-up visits per referred MRI scan. However, since there is no explicit indication on whether

an MRI referral is appropriate or not in our available data sets, the number of follow-up visits only act

as an proxy to the appropriateness of MRI referrals.

Last, our counterfactual analysis indicates that placing restrictions on the higher testers can largely

reduce the total MRI referrals. Specifically, when the 20% higher testers in selected test ordered what

was expected, the total MRI referrals of the three tests combined would have been reduced by over 30%.

Even if we only place restrictions on those 8% consistent higher testers who contributed to approximately

25% of each MRI test, the total MRI referrals would have still been reduced by nearly 20%. However,

our counterfactual analysis is only a rough estimate with the assumptions that there are no other risk

factors associated with such high MRI referrals.

4.6.1 Strengths and limitations

Our family physician investigation uses a large data set representative of the family physician popu-

lation and their patient population in Ontario. The results expand on those of previous studies that

relied on older data, using a rich data set that allows the comparison of tester levels against multi-

ple physician-related characteristics. However, there still exists certain limitations. First, when doing

provider profiling, several previous studies conducted individual patient-level risk adjustment and then

aggregated to physician-level estimates [26, 86]. Such patient-level information is unavailable in our

study, leading us to conduct physician-level risk adjustment. Therefore, the estimated referral rate for

each physician may be less accurate than the estimates from individual-level risk adjustment. This

problem is similar to modifiable areal unit problem [39], a problem that affects the statistical results

when point-based measures of spatial phenomena are aggregated into districts with summary values

(e.g., rates, proportions). Second, when doing physician profiling, we compare each physician’s observed

rate to a practice-based norm, an expected rate if his/her utilization is identical to that observed in

the population. Practice-based norms do not necessarily reflect appropriate care [52]. For example, the

mean MRI referral rate for family physicians may be too high or low. Although standards-based norms

reflect appropriate care based on sound practice guidelines [52], such a standard guideline is unavailable

in our study. Third, there are no data on the appropriateness of MRI referrals made by each physician.

We have no information on either patient symptoms and reasons for MRI referrals, or any indication on

the results of MRI tests. The information gaps prevent us from conclusively stating whether a higher

MRI referral rate leads to better diagnoses and subsequent patient treatment. Last, when doing counter-

factual analysis, our assumption is that the relevant risks are well-considered and there are no other risk

factors for high MRI referrals. In reality, there might be specific reasons for such high referral rates. In

a case study by Lasker et al. about physician profiling on diagnostic imaging tests, the authors provided
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several possible reasons for physician outliers who had much higher diagnostic imaging referrals com-

pared to their peers [52]. The potential reasons include (1) they had the wrong specialty designation;

(2) they provided imaging tests in their offices whereas most of other physicians in their peer group refer

patients who need the tests to a radiologist; and (3) they saw more patients with symptoms that requires

diagnostic tests than other physicians in their peer group [52]. Therefore, our counterfactual analysis

only provides a rough estimate on potential MRI referrals being reduced when placing restrictions on

higher testers.

4.6.2 Recommendations for policy and interventions

Based on our findings and the information gaps, we propose several recommendations for policy and

interventions. First, for family physicians, the crude referral rate may not be an appropriate way to

measure quality or identify outliers, especially for extremities and spine, where sports medicine practi-

tioners had significantly higher referral rates than other physicians. Therefore, the appropriateness of

MRI use may be a more representative measure of quality. Second, based on the high proportion on

MRI referrals and high inter-physician variance within family physician group, a restriction might be

necessary to reduce the MRI use for this group, however, such restriction’s threshold need to be tailored

for physicians with different practice types and different case-mix. Third, there still exits wide variations

among family physicians even after controlling for the known risk factors associated with the imaging

use. Thus, it is recommended to inform physicians who were consistent higher testers in their peer

group, and ask them to provide written responses on the rationale of high volume of MRI referrals.

Moreover, the information gaps in our study prevent us from addressing key policy-relevant questions.

These information gaps include (1) the unavailability to retrieve patient symptoms and reasons for MRI

use, and (2) the unavailability to retrieve clear MRI test results and their impacts on the subsequent

treatment of patients. Therefore, we recommend to electronically use a standard form across the province

to collect the patient symptoms and reasons for MRI referrals. The collected information would facilitate

the development and implementation of clear criteria for appropriate MRI use, as well as the identification

of most common symptoms that require MRI scans. We also recommend to collect the information on

MRI scan results and subsequent patient treatments, which would help to develop a clear criteria on the

appropriateness of MRI scans.

Finally, we provide several recommendations once the above information are collected across the

province. First, rather than using handwritten ordering systems, we recommend a web-based computer-

ized physician ordering entry system (CPOE) along with clinical decision support system (CDSS) that

guides decision-making and decrease unnecessary MRI referrals. CPOE is a web-based ordering system

with standardized requisition form that allows physicians to electronically write full range of orders [19];

CDSS is an analytical tool that converts raw data into useful information to offer safety alerts when

potentially inappropriate orders take place, helping clinicians make better decisions [47]. Evidence-based

CPOE with embedded point-of-care decision support has been identified as an effective method to ensure

appropriate decision at the time of ordering [19, 49, 92]. When specific interventions such as CPOE and

CDSS are taken place, we recommend to perform quality improvement studies to assess whether such

interventions could reduce practice pattern variations and imporve patient care.
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4.7 Conclusion

Our investigation into family physicians’ referral rates for extremities, spine, and brain MRIs shows

that there were significant variations in family physician’s use of MRI, even after controlling for the

physician’s case mix and practice type. For each selected test, 20% physicians are identified as higher

testers, which contributed to 50% MRI referrals. On average, higher testers referred 30% more MRI

tests than typical testers, and lower testers referred 80% fewer MRI tests than typical testers. Consistent

higher testers had slightly fewer years of practice, worked in rural, low-immigration, and high-income

areas. Our counterfactual analysis shows that if the 20% higher testers in each test had ordered what

was expected, the total MRI referrals would have been reduced by 31%; even if only the 8% consistent

higher testers ordered what was expected, the total referrals would have still been reduced by nearly

20%. One limitation in our study is that there is no explicit indication of the appropriateness for each

MRI referral, which prevents us from addressing key policy-relevant questions. We therefore recommend

to electronically collect the symptoms and results of MRI scans, and implement a web-based physician

ordering entry system embedded with clinical decision support to reduce practice pattern variations and

improve patient care.
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Conclusion

MRI is an alternative to traditional ionizing diagnostic techniques, and is widely used in diagnosis of

several diseases such as cancer, and neurological and cardiac disorders. In Ontario, Canada, completed

MRI tests reached 880,000 in 2017, nearly doubled the number of MRI performed in 2008. One con-

sequence of such an increase in MRI requests is the longer wait time; current average wait times for

non-urgent MRI scans are significantly longer than the Ontario target of 28 days. In order to identify

appropriate demand-side interventions, we need to fully understand the MRI utilization patterns in the

province at both patient- and provider-level. Our research is a retrospective population-based study

that focuses on completed MRI scans in Ontario between 2008 and 2017, to investigate how the MRI

increased over time, and how different patient and physician groups are contributing to the growth. We

contribute to the literature by presenting a comprehensive trend and practice pattern analysis using a

variety of recent administrative data sources in Ontario. We link multiple administrative data sources

and use merged data sets to perform a series of analysis. Our analysis can be divided into four sections.

First, we analyze the overall utilization and wait times over the last decade. Second, we look deeper

into the MRI utilization trends by scan body part and patient demographic characteristics. Third, we

review physician referral patterns by specialties. Finally, we focus on family physicians and perform a

more detailed referral pattern analysis within the group.

Our results show that in Ontario, from 2008 to 2017, there was an 80% increase in the number

of completed MRI scans. The most common MRI scans were for extremities, spine, and brain. MRI

utilization was the highest for women aged 40 to 69, and this patient group also contributed most to the

growth of MRI use. Family physicians had both high MRI referrals and inter-physician variance, and

contributed most to the MRI growth, which lead us to perform a deeper investigation into the group

for the three referred body parts (extremities, spine, and brain), and for non-urgent patients. We find

that physicians who were more engaged in sports medicine FPA referred more extremities and spine

MRIs. When controlling for physicians’ case-mix and practice type, for each body part, we identify 20%

physicians as higher testers, which contributed to 50% MRI referrals. Out of all the physicians, 8% were

consistent higher testers, who contributed to nearly 25% MRI referrals for all the three tests. Higher

testers had slightly fewer years of practice, and worked in rural, low-immigration, and high-income

areas. Our counterfactual analysis shows that if the 20% higher testers in each test had ordered what

was expected, the total MRI referrals would have been reduced by 31%; even if only the 8% consistent

higher testers ordered what was expected, the total referrals would have still been reduced by nearly
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20%.

Several recommendations on policy and interventions are proposed based on our analysis results.

First, based on the significant disparity of wait times among different priority levels, it is critical to

prioritize MRI requests so that most urgent patients will be served in time. Second, due to the large

volume of MRI referrals and high inter-physician variance within family physician group, interventions

might be necessary to restrict MRI use for the group. Such restrictions should be tailored for physicians

by practice focus (i.e., sports medicine focus or not) and case-mix. Third, the crude referral rate may not

be an appropriate way to identify physician outliers, since variations in the use of MRI is clearly multi-

factorial. Fourth, we recommend informing physicians who were consistent higher testers in their peer

group, and asking them to provide written responses on the rationale of high volume of MRI referrals.

Finally, because of the existing information gaps to evaluate the appropriateness of MRI referrals, we

recommend to collect the patient symptoms and reasons for MRI referrals, as well as the MRI results and

subsequent patient treatment. The collected information would facilitate a web-based decision support

system that guides decision-making and decrease unnecessary MRI referrals.

Moving forward, there are several potential future research directions. First, since the current study

focus is MRI use rather than wait times, we only perform a high-level analysis on MRI wait times. In

the future, we could perform more detailed exploratory analyses and predictive tasks for wait times.

The analyses could include, but are not limited to the following: (1) analyze wait times by patient

characteristics, such as age, sex, body part, and residing regions; (2) perform a data envelopment analysis

(DEA) at the hospital level, using wait time as one of the evaluation metrics; (3) predict long or short

wait times according to the patient- and physician-level characteristics, as well as the waiting system

characteristics; and (4) investigate how wait time changes in hospitals would impact the likelihood of

physicians referring patients to those hospitals. Second, we can examine the repeat use of MRI scans

associated with physician, hospital, and diagnosis characteristics. In particular, we can examine whether

higher testers were associated with the higher usage of repeat scans. Third, we can perform a deeper

analysis on how tester levels influence the patient treatment. Specifically, we can choose a specific test

and look into the impact of the test on patients’ subsequent referrals and treatments. It was reported

that some MRI scans are ordered as “gatekeepers” for other treatments; most Canadian spine surgeons

(84%) require imaging studies to accompany all spine-related referrals [46]. Therefore, we can examine

whether the patients referred by higher testers of spine MRIs were associated with more spine surgeons.

For extremities, similarly, we can examine whether the patients referred by higher testers of extremities

MRIs were associated with more orthopedic surgeons. Finally, once the patient symptoms, the reasons

for MRI referrals, and the MRI results are electronically collected, we can further build a decision support

system that provides in-time evaluation on the appropriateness of MRI referrals and inform physicians

if a potential inappropriate referrals are being made.
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Handling of Big Data

Due to the size and confidentiality of the data holdings in our study, we store them in the morLAB

cluster with restricted cluster access and restricted directory access. The morLAB cluster, named Netu,

is a CentOS Linux cluster [69]. It has 15 nodes with four quad-core AMD2354 Opteron processors for

a total eight cores per node [69]. Storage is provided by a 36 TB storage component [69]. For our

study, the data holdings take up over 660 GB of the storage. We deploy a Spark standalone cluster

that enables the distribution of the workloads over 15 nodes. Apache Spark is a unified engine for big

data processing with a programming model similar to MapReduce, but extends it with a data-sharing

abstract called “Resilient Distributed Datasets”, or RDDs [118]. Using this extension, Spark is able to

perform different implementations over a common engine, making them easy and efficient to compose.

The implementations enabled by Spark includes SQL, streaming, machine learning, and graph processing

(Figure A.1) [5, 41, 119]. The sections below provide a detailed illustration of how we use Apache Spark

framework to handle big data. Specifically, we introduce how we connect the Spark standalone cluster

with Python and Jupyter Notebook, how we use Spark data objects and packages to process data, how

Spark uses the “lazy operation” to optimize the processing efficiency, and how we convert the data into

a Spark-supported columnar format to speed up queries.

Figure A.1: Apache Spark software stack and implementations over the core engine [120]
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Figure A.2: Workflow of task distribution by Spark Cluster manager [32]

A.1 Setting up Pyspark environment

Spark executors work as independent processors on a cluster, coordinated by the SparkContext object in

the main program [32]. Specifically, to perform a task on a cluster, the SparkContext object connects to

the cluster manager, which allocates resources across workers (nodes). Once connected, Spark acquires

executors on nodes in the cluster. The executors in each node act as processors that store the partitioned

data and run the assigned task. Figure A.2 shows the workflow of how the task is distributed by Cluster

manager. Spark currently supports three cluster managers: Standalone, Apache Mesos and Hadoop

YARN [32]. Since Standalone is a simple cluster manager that is easy to set up, we choose to install

this type of cluster manager on our multi-node MorLAB cluster. Each worker in the Spark cluster has

8 cores (1 executor per core) with 30 GB of memory. In total, there are 120 cores (executors) and 450

GB in use.

In Spark, the implementation of the tasks is enabled through an Application Programming Interface

(API) in Scala, Java, Python, and R, where users can simply pass local functions to run on the cluster

[120]. Python API in Spark, also called PySpark, is a flexible, robust, and easy-to-learn language that is

preferred by many of the data scientists, despite of its relatively low processing speed compared to Scala.

Jupyter Notebook is a popular application that enables editing, running and sharing Python code into

a web view. It is a great tool for data scientists to analyze the data and visualize results. For our study,

we enable Python API in Spark and connect it to Jupyter Notebook by adding a function to the bash

configuration file of the cluster (Figure A.3). Under the“snotebook” function shown in Figure A.3: part

A specifies the Spark path; part B configures PySpark driver by updating Pyspark driver environment

variables; part C specifies the Python path; part D specifies the URL of Spark Master as well as the

in-use memory for each working when running Spark applications. Once this function is called from

the terminal, it will launch the Jupyter Notebook with the Pyspark environment embedded. To run

Jupyter Notebook on a remote server, we start an SSH Tunnel and input the following command: ssh

-N -L 8888:localhost:8888 suting@remote, where -L binds the local address: port 1 to a remote address:

port 2, and -N specifies not to execute a remote command. On the local computer, we navigate to

localhost:8888 and get access to the remote port.
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Figure A.3: “snotebook” function in bash configuration file

A.2 Spark data objects and libraries

There are three types of data objects in Spark: Resilient Distributed Datasets (RDDs), dataframes

and SQL tables. RDD is a resilient and distributed collection of records that spread over one or many

partitions. After reading the data file on disk, Spark driver creates the RDD, divides the RDD into

partitions, and distributes the partitions across nodes. Dataframes in Apache Spark prevails over RDD

but contains the features of RDD as well. Unlike an RDD, the dataframe is organized into named

columns with a clear schema, like a table in relational database. SQL tables are SQL views similar

to dataframes, but these tables enable us to execute SQL queries. We use dataframes and SQL tables

in our study. Specifically, we load the data files as Spark dataframes, and perform basic Dataframe

operations (e.g., join, count, groupby, print schema). We then convert the dataframes into SQL tables

and perform more complicated queries (e.g., Online Analytical Processing (OLAP) analysis) to obtain

the desired analysis results. In Spark, there are four specialized processing libraries: Streaming, SQL,

Machine Learning and Graph. We use two of the four libraries: SQL and Machine Learning libraries

in our study. We use SQL library to perform complicated queries over SQL tables, and use Machine

Learning library to perform feature engineering and feature normalization.

A.3 Spark operations

There are two operations performed on Spark RDDs: transformation and action. Transformation is a

function that produces the new RDD from the existing RDDs. Filter(), sort(), groupby() operations are

examples of transformation operations. After the transformation when new RDDs are created, we use

the action function to work with the actual dataset. Count(), show(), write() operations are examples

of action operations. In Spark, the operations are performed using a “lazy evaluation” strategy, meaning

that Spark will not execute the tasks until we trigger any action (Figure A.4). Using “lazy evaluation”,

it combines all transformations into a single transformation and executes them together. Spark’s “lazy

evaluation” strategy has several advantages. First, it saves the computation and increase the processing

speed, since only necessary values get compute once the action is triggers. Second, it reduces both

time and space complexities, since we do not execute every operation, and the action is triggered only

when the data is required. Third, it provides optimization by optimizing the sequence of execution. For

example, if a set of transformations include filter() and when an action is triggered, Spark performs

filter() first, and then executes other queries on a much smaller data set.
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Figure A.4: “Lazy execution” in Spark

Table A.1: Data file sizes before and after parquet conversion

Data holding csv file size (GB) parquet file size (GB)

RPDB 2.22 1.3

NACRS 17.7 4

WTIS 19 0.6

OHIP 2008 54 12

OHIP 2009 59 12.8

OHIP 2010 61 13.1

OHIP 2011 60 12.8

OHIP 2012 67 15

OHIP 2013 60 12.8

OHIP 2014 57.9 14

OHIP 2015 60 13.5

OHIP 2016 62 13.6

OHIP 2017 62 13.3

A.4 Parquet format conversion

Apache Parquet is a special storage format supported by Spark. Parquet stores the data in a column-

oriented way, where the values of each column are organized so that they are all adjacent, enabling

better compression. This format is especially good for queries which only read particular columns from

a “wide” table since only needed columns will be read. Compared to a traditional approach (e.g., csv

files) where the data is stored in row-oriented way, parquet format is more efficient in terms of both

storage and performance. In our study, all the data holdings obtained are originally in csv format. We

convert all the csv files into parquet files, which largely reduces the file size and improves the processing

speed. Table A.1 shows the the size of each data file (in GB) before and after the parquet format

conversion. In total, parquet files reduce the file size by almost 5 times.
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Charlson Comorbidity Index (CCI)

The Charlson Comorbidity Index (CCI) is a method of indicating the comorbidities of patients based on

the International Classification of Disease (ICD) diagnosis codes which can be found in the administrative

data of hospitalization, including Discharge Abstract Database (DAD) and National Ambulatory Care

Reporting System (NACRS) [79]. Each comorbidity category is associated with a weight (from 1 to 6)

based on the relative risk of the comorbidity, and use in healthcare resources [79]. The original CCI was

developed with 19 categories [16], but has been modified to 17 categories [28]. Table B.1 shows each

category of the CCI, its corresponding ICD-10 codes in DAD and NACRS diagnostic codes, and the

weight associated. The algorithm of calculating the CCI for a patient in a given time period (e.g., 2

years) has two stages. At the first stage, for each hospitalization claim of a patient, a binary indicator

(0 or 1) for each CCI category is determined based on all diagnostic codes associated with the claim

(Algirthm 1). At the second stage, comorbidity indicators and weighted scores are summarized per

patient to get patient-level CCI for the given time period (Algorithm 2).
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Table B.1: Categories of Charlson Comorbidity Index

Group Comorbidity Conditions ICD-10 Codes [87] Weight

1 Myocardial infarction I21.x, I22.x, I25.2 1

2 Congestive heart failure I09.9,I11.0, I13.0, I13.2, I25.5, I42.0,
I42.5-I42.9, I43.x, I50.x, P29.0

1

3 Peripheral vascular disease I70.x, I71.x, I73.1, I73.8, I73.9, I77.1,
I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8,
Z95.9

1

4 Cerebrovascular disease G45.x, G46.x, H34.0, I60.x-I69.x 1

5 Dementia F00.x-F03.x, F05.1, G30.x, G31.1 1

6 Chronic pulmonary disease I27.8, I27.9, J40.x-J47.x, J60.x-J67.x,
J68.4, J70.1, J70.3

1

7 Rheumatic disease M05.x, M06.x, M31.5, M32.x-M34.x,
M35.1, M35.3, M36.0

1

8 Peptic ulcer disease K25.x-K28.x 1

9 Mild liver disease B18.x, K70.0-K70.3, K70.9, K71.3-
K71.5, K71.7, K73.x, K74.x, K76.0,
K76.2-K76.4, K76.8, K76.9, Z94.4

1

10 Diabetes without chronic complication E10.0, E10.l, E10.6, E10.8, E10.9,
E11.0, E11.1, E11.6, E11.8, E11.9,
E12.0, E12.1, E12.6, E12.8, E12.9,
E13.0, E13.1, E13.6, E13.8, E13.9,
E14.0, E14.1, E14.6, E14.8, E14.9

1

11 Diabetes with chronic complication E10.2-E10.5, E10.7, E11.2-E11.5,
E11.7, E12.2-E12.5, E12.7, E13.2-
E13.5, E13.7, E14.2-E14.5, E14.7

2

12 Hemiplegia or paraplegia G04.1, G11.4, G80.1, G80.2, G81.x,
G82.x, G83.0-G83.4, G83.9

2

13 Renal disease I12.0, I13.1, N03.2-N03.7, N05.2-N05.7,
N18.x, N19.x, N25.0, Z49.0-Z49.2,
Z94.0, Z99.2

2

14 Cancer C00.x-C26.x, C30.x-C34.x, C37.x-
C41.x, C43.x, C45.x-C58.x, C60.x-
C76.x, C81.x-C85.x, C88.x, C90.x-
C97.x

2

15 Moderate or severe liver disease I85.0, I85.9, I86.4, I98.2, K70.4, K71.1,
K72.1, K72.9, K76.5, K76.6, K76.7

3

16 Metastatic solid tumor C77.x-C80.x 6

17 AIDS/HIV B20.x-B22.x, B24.x 6
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Algorithm 1: Assigning indicators of CCI groups per claim over all his/her claims

input : Each claim in DAD/NACRS in a given time period
output: Indicators of CCI groups for the claim
/* array for individual CCI group counters */

set Array CC GRP(1) - CC GRP(17) ;
/* Initialize all CCI group counters to zero */

for i = 1 to 17 do
CC GRP(i) = 0 ;

end
/* Check each patient record for the diagnosis codes in each CCI group */

for i = 1 to 17 do
if any diagnostic code in ICD-10 codes for CCI group i then

CC GRP(i) = 1 ;
else

CC GRP(i) = 0;
end

end

Algorithm 2: Calculation of CCI per patient in a given time period

input : n× 17 matrix of CCI group indicators over all n claims for a patient in a given time
period, with row vectors indicating the CCI group indicators per claim

output: weighted CCI score for the patient
/* array for summarized CCI group counters */

set Array total GRP(1) - total GRP(17) ;
/* Initialize total CCI group counters to zero */

for i = 1 to 17 do
total GRP(i) = 0 ;

end
/* Check indicators over all claims in each CCI group */

for i = 1 to 17 do
if any indicator has 1 for CCI group i then

total GRP(i) = 1 ;
else

total GRP(i) = 0;
end

end
/* If both diabetes flags are 1, keep the highest severity */

if sum(total GRP(11),total GRP(10))=2 then
total GRP(10) = 0 ;

end
/* If both liver disease flags are 1, keep the highest severity */

if sum(total GRP(9),total GRP(15))=2 then
total GRP(9) = 0 ;

end
/* If both cancer flags are 1, keep the highest severity */

if sum(total GRP(14),total GRP(16))=2 then
total GRP(14) = 0 ;

end
/* use Charlson weights to calculate a weighted score */

wgtcc = sum(of total GRP(1)-total GRP(10)) + total GRP(11)*2 + total GRP(12)*2 +
total GRP(13)*2 + total GRP(14)*2 + total GRP(15)*3 + total GRP(16)*6 +
total GRP(17)*6;



Appendix C

Small Area Variance Analysis

(SAVA)

The small area variance analysis (SAVA) method is used when we compare the utilization rates across

regions in Ontario. This Appendix provides an in-depth elaboration on how we calculate the age-

standardized utilization rates across regions, and the formulas we use to derive different SAVA statistics.

First, to calculate the age-standardized utilization rates in each census division, we aggregate age into

10-year age groups (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70+), and calculate the utilization rate

in each age group stratum, using the population in each census division and each age group from RPDB

as the rate denominator. Next, we use the entire population in RPDB as the standard population, and

calculate the proportion (weight) of population in each age group using the entire population. Finally,

for each census division, we derive the direct age-standardized rate by applying the age-group specific

rates to the standard population. The age-standardized rate is a weighted average with weights taken

from the standard population, and reflects the rate if the population had the same age distribution as

the standard.

Next, we derive the extreme quotient (EQ) and coefficient of variation (CV) using the direct age-

standardized rates for each i-th Healthcare Area, denoted by DSRi, for i = 1, ..., 49. The EQ is expressed

as [44]

EQ =
max(DSRi)

min(DSRi)
(C.0.1)

The CV is expressed as [44]

CV =

√∑
(DSRi −DSR)2/(49− 1)∑

DSRi/49
with DSR =

∑
DSRi
49

(C.0.2)

The remaining two statistics, the Chi-squared statistic and systematic component of variance (SCV),

use the observed and expected cases per census division. For the Chi-squared test, the null hypothesis

is that there was no significant variation across regions, and is tested using a χ2 test with k-1 degrees of

freedom (k = number of areas analysed, that is 49) [112]. The χ2 value is expressed as [112]

χ2 =
∑ (yi − ei)2

ei
≈ χ2

k−1 (C.0.3)

61



Appendix C. Small Area Variance Analysis (SAVA) 62

where yi is the observed of MRI scans and ei is the expected number of MRI sans in each area, based

on age-specific MRI utilization rates for the whole population. The age-specific utilization rates for the

whole population are calculated using the population in RPDB as the standard population.

Lastly, the SCV is another measurement of variation across regions [112], and is expressed as [44]

SCV =
1

k
(
∑ (yi − ei)2

ei
−
∑ 1

ei
) (C.0.4)

SCV > 3 is considered significant variation across regions, SCV up to 10 is considered high variation

and SCV > 10 is considered very high variation [4].



Appendix D

Descriptive Statistics of Wait Times,

2008-2017

D.1 Priority 1 (target of 1 day)

Year Mean (stdev) 25% 50% 75% 90% % within target
2008 2.45 (19.56) 0 0 1 3 84.24
2009 1.42 (10.88) 0 0 1 2 85.40
2010 1.73 (14.26) 0 0 1 2 87.24
2011 1.51 (12.52) 0 0 1 2 88.59
2012 1.01 (8.09) 0 0 0 1 90.90
2013 1.42 (15.28) 0 0 0 1 92.78
2014 1.32 (12.89) 0 0 0 1 92.71
2015 1.25 (8.49) 0 0 0 1 92.11
2016 0.86 (5.50) 0 0 1 1 91.30
2017 0.60 (4.36) 0 0 0 1 93.90

D.2 Priority 2 (target of 2 days)

Year Mean (stdev) 25% 50% 75% 90% % within target
2008 10.04 (26.55) 0 2 8 28 55.91
2009 5.81 (21.11) 0 1 4 12 66.74
2010 4.50 (16.50) 0 1 3 9 69.91
2011 4.01 (16.05) 0 1 3 7 72.39
2012 2.93 (14.09) 0 1 2 5 77.20
2013 2.32 (10.09) 0 1 2 4 78.68
2014 2.28 (9.56) 0 1 2 5 78.68
2015 2.46 (9.81) 0 1 2 5 77.59
2016 2.37 (10.47) 0 1 2 4 80.69
2017 2.07 (10.28) 0 1 2 4 81.20
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D.3 Priority 3 (target of 10 days)

Year Mean (stdev) 25% 50% 75% 90% % within target
2008 32.68 (50.32) 6 16 36 79 36.83
2009 32.38 (52.63) 6 15 36 81 39.93
2010 24.39 (41.45) 5 12 27 57 47.46
2011 26.63 (42.49) 6 13 32 65 45.29
2012 24.53 (46.91) 5 11 24 51 48.98
2013 18.55 (33.85) 5 10 20 38 52.27
2014 21.38 (33.78) 5 12 26 48 46.35
2015 23.68 (37.38) 5 11 27 62 47.69
2016 22.18 (39.31) 4 9 23 56 53.01
2017 22.32 (39.70) 5 10 23 56 53.60

D.4 Priority 4 (target of 28 days)

Year Mean (stdev) 25% 50% 75% 90% % within target
2008 56.99 (64.48) 20 39 70 116 36.99
2009 61.86 (63.12) 22 49 81 120 31.58
2010 64.17 (62.40) 23 49 87 133 31.46
2011 58.46 (62.56) 21 44 74 116 33.48
2012 53.11 (63.93) 17 36 66 106 40.38
2013 44.32 (58.46) 16 30 50 84 47.87
2014 51.66 (59.90) 22 37 64 92 36.32
2015 59.73 (62.14) 24 46 77 111 30.48
2016 63.38 (66.60) 24 46 81 132 30.93
2017 63.91 (66.82) 25 48 77 130 29.58
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Age- and Sex-specific MRI

Utilization Rate by body parts, 2017

E.1 Male
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E.2 Female
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Histograms of Average Index for

Rurality, Immigration, Income, and

Comorbidity
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Appendix G

Physician Practice Patterns Analysis

At the first stage of our physician profiling analysis, for all three selected tests, we perform risk adjustment

only on age and sex distributions of the physician’s case mix, and investigate the differences in practice

patterns across tester groups. For each test, we retrieve the top 50 billing codes in OHIP claimed by

higher testers, and compare them with those claimed by typical and lower testers. Our finding shows

similar practice patterns for brain MRIs across tester levels. On the other hand, for extremities and spine

MRIs, high-ordering physicians were associated with more sports medicine Focused Practice Assessment

(FPA) practices. Table G presents for each test, the difference of sports medicine FPA practices across

tester groups, in terms of claims per physician (total billing claims divided by total number of physicians

within the group).

Table G.1: Difference in sports medicine FPA practices across tester groups

Billing Code Explanation Claims per physician

Lower Typical Higher

Extremities

A917 Sports Medicine Focused Practice Assessment (FPA) 0.21 0.54 52.29

Spine

A917 Sports Medicine Focused Practice Assessment (FPA) 3.11 8.78 27.28
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Outputs for Risk Adjustment

Models

H.1 Extremities

Table H.1: Risk adjustment model output, extremities

Rate ratio (95% CI) 1

Non sports medicine practitioners Sports medicine practitioners

Intercept 5.8 (5.68-5.92) 24.79 (19.75-31.11)

Patient sex

Male (%) 0.91 (0.89-0.93) 1.22 (1.02-1.47)

Patient age (%)

0-19 1.45 (1.4-1.5) 4.83 (3.07-7.59)

20-39 1.28 (1.22-1.34) 8.55 (4.73-15.45)

40-59 1.52 (1.48-1.56) 3.89 (2.8-5.41)

60-79 2.08 (1.96-2.2) 10.15 (5.21-19.74)

80+ (reference) 1 1

Sports medicine engagement (%) - 1.51 (1.33,1.72)

1All risk ratio estimates are for 1 stdev increase in the parameter of interest

71



Appendix H. Outputs for Risk Adjustment Models 72

H.2 Spine

Table H.2: Risk adjustment model output, spine

Rate ratio (95% CI)

Non sports medicine practitioners Sports medicine practitioners

Intercept 6.1 (5.98-6.21) 11.61 (8.79-15.34)

Patient sex

Male (%) 0.9 (0.89-0.92) 0.98 (0.79-1.22)

Patient age (%)

0-19 1.14 (1.1-1.17) 1.19 (0.69-2.02)

20-39 0.96 (0.92-1) 1.22 (0.6-2.49)

40-59 1.34 (1.31-1.37) 1.29 (0.87-1.92)

60-79 1.55 (1.48-1.63) 1.67 (0.76-3.66)

80+ (reference) 1 1

Sports medicine engagement (%) - 1.53 (1.3,1.81)

H.3 Brain

Table H.3: Risk adjustment model output, brain

Rate ratio (95% CI)

Intercept 4.07 (3.97,4.18)

Patient sex

Male (%) 0.83 (0.81-0.85)

Patient age (%)

0-19 1.16 (1.1-1.22)

20-39 1.05 (0.98-1.12)

40-59 1.23 (1.19-1.28)

60-79 1.64 (1.52-1.76)

80+ (reference) 1
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