
Hardware Acceleration of Biophotonic Simulations

by

Tanner Young-Schultz

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright 2020 by Tanner Young-Schultz



Abstract

Hardware Acceleration of Biophotonic Simulations

Tanner Young-Schultz

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2020

The simulation of light propagation through tissue is important for medical applications like diffuse

optical tomography (DOT), bioluminescence imaging (BLI) and photodynamic therapy (PDT). These

applications involve solving an inverse problem, which works backwards from a light distribution to the

parameters that caused it. These inverse problems have no general closed-form solution and therefore

are approximated using iterative techniques. Increasing the accuracy of the approximation requires

performing many light propagation simulations which is time-consuming and computationally intensive.

We describe algorithmic techniques to improve the performance, accuracy and usability of the fastest

software simulator for forward light propagation, FullMonteSW. Additionally, we explore two acceler-

ation methods using a GPU and an FPGA. Our results show that the GPU and FPGA accelerator

improve the performance by 4-13x and 4x, respectively, over the software baseline. We give insight

for improving the performance and usability of the GPU- and FPGA-accelerated simulators for various

medical applications.
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Chapter 1

Introduction

1.1 Motivation

The use of light in medical applications has increased in prominence due to its safety for patients,

generally low cost and relatively simple monitoring options. Light can be directed using external light

sources or fibre optic probes that are inserted into the patient. In medicine, light has therapeutic,

diagnostic and imaging use cases, some of which will be discussed in this thesis to provide context and

motivation for the work.

Light is used in diffuse optical tomography (DOT) and bioluminescence imaging (BLI) to diagnose

and image diseased tissues. In DOT [13], external light of a particular wavelength is used to illuminate

the tissue in question. The light travels through the tissue and is partially transmitted, scattered and

reflected. The light detected at the exterior surface can be used to infer an image of the underlying

tissue. Many light simulations with different tissue optical properties are performed to determine the

underlying tissue structure that gives the best match for the detected light. In BLI [47], cells are

selectively transfected with a virus that alters the genes of the cell and causes it to emit light. The light

emitted at the exterior surface can be quantified, but many simulations are required to determine the

size and location of the collection of light-emitting cells based on the detected light distribution. This

method is currently being used in a laboratory setting to track the size and location of cancerous tissues

in pre-clinical treatment studies [47].

Photodynamic therapy is a targeted and minimally-invasive treatment that can selectively kill dis-

eased cells, such as cancer cells and bacterial infections. The patient is given a non-harmful photosensi-

tizer (PS) either topically, orally or by injection that accumulates preferentially in highly proliferating

tissues, like tumours. Both the light and the inactive PS are safe for the patient on their own, but when

photons interact with the PS, the PS activates and causes surrounding oxygen to become reactive. Re-

active oxygen damages the PS containing cells and, after sufficient damage is accumulated, cause tissue

apoptosis or necrosis. The overall goal of PDT is to cause enough damage to a specific tissue, typically

a tumour or bacterial infection, to destroy it while minimizing the damage to the surrounding healthy

tissue [63].

Given information about the light sources and the geometry and optical properties of the tissues,

determining the propagation of light through the tissues is called a forward problem. DOT, BLI and

PDT treatment planning all require solving what is called an inverse problem. That is, given a measured

1



Chapter 1. Introduction 2

or desired distribution of light, what parameters would create it. As discussed later, none of these inverse

problems have known closed-form solutions and therefore must be approximated using iterative methods.

The accuracy of the approximation is proportional to the number of forward light propagation simulations

that can be completed in an acceptable time. The need for inverse solvers to run many forward light

propagation simulations motivates the development of an accurate, fast and flexible light propagation

simulator.

As will be discussed later in Section 2, there are various techniques for simulating the propagation of

light through tissue, each with different complexity-accuracy tradeoffs. For our simulator, we choose to

use a Monte Carlo light propagation technique with a tetrahedral mesh model. This allows our simulator

to be highly accurate at the expense of computational complexity. The need for a fast light propagation

simulator motivates the user of hardware acceleration.

1.2 Contributions

In this work, we enhance the fastest published tetrahedral-mesh Monte Carlo software simulator, Full-

MonteSW [21]. Based on input from medical professionals, we develop two new light source models that

allow the simulator to be more usable and accurate for BLI and PDT. We also improve the performance

of the simulator using various advanced algorithmic and data structure optimizations. We implement

FullMonteSW on an NVIDIA GPU to achieve a 4-13x speedup and produce the fastest GPU simula-

tor of its kind. We also create the first complete and verified FPGA-accelerated implementation of a

tetrahedral-mesh Monte Carlo biophotonic simulator, and achieve up to a 4x speed improvement and

11x energy-efficiency improvement over the highly optimized FullMonteSW, while using only a fraction

of the FPGA resources. The principle contributions of this thesis can be summarized as follows:

• The implementation of two new lights sources to allow FullMonte to more accurately represent

real clinical scenarios in BLI and PDT treatment planning

• A performance and usability improvement of the best-in-class software simulator via algorithm and

data structure enhancements

• The creation of the fastest and most flexible GPU-based tetrahedral-mesh Monte Carlo biophotonic

simulator

• The creation of the first complete and verified FPGA-based tetrahedral-mesh Monte Carlo biopho-

tonic simulator

1.3 Organization of Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides a more thorough review of the

relevant medical applications, the physics of how light interacts with materials (particularly with bodily

tissues), a brief introduction to the compute resources we used in this work and the current state of the

art in relevant simulators. Chapter 3 discusses our implementation of the two new light source models

and their benefit to the accuracy and usability of the simulator for medical applications like BLI and

PDT. Chapter 3 also discusses a significant performance improvement we made to the FullMonteSW

simulator using a spatial sorting data structure. Chapter 4 is broken into two major sections that
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describe how the FullMonteSW algorithm is accelerated using a GPU and FPGA. Finally, Chapter 5

concludes the work and provides suggestions for future work to extend and improve the performance of

both the GPU- and FPGA-accelerated simulators.



Chapter 2

Background

This chapter provides relevant information for the research presented in the remainder of this thesis.

We begin with a discussion on tissue optics and give a high-level description of how light interacts

with tissues. Next, we define biophotonic inverse problems, why they are computationally difficult to

solve and how to approach approximating their solutions using many iterations of a forward problem,

which is solved by the simulators developed in our work. Next, we discuss a few diagnostic, imaging

and therapeutic applications of light. We introduce the two main models for solving light propagation:

finite element with diffusion theory approximation and Monte Carlo simulation. We justify our decision

to use a Monte Carlo based model and provide a more formal definition of the forward Monte Carlo

light propagation problem solved by our simulator. We discuss how the 3D geometry is discretized for

simulation and how we model actual medical light emitters in simulation. This chapter ends with a brief

introduction to the different computing technologies used in our work and a summary of the relevant

state-of-the-art light propagation simulators.

2.1 Tissue Optics

This section provides a brief introduction to the behavior of light in tissues or tissue-like media within the

medical optical window (roughly between 630nm-1060nm). Jacques [35] gives a more detailed discussion

of tissue optics and experimental values for different tissue types at various wavelengths.

Tissues have several attributes that determine how light propagates through them. The absorption

coefficient (µa) of a material measures the fraction of light (of a particular wavelength) that is absorbed

per unit length travelled. Tissues are also turbid, meaning they scatter light. This is represented by a

scattering coefficient (µs) and an anisotropy factor (g). The scattering coefficient of a material represents

the average number of times a photon will scatter per unit length travelled, while the anisotropy factor

represents the typical amount of forward direction retained after a scattering event. Materials with a g

value of 0 are isotropic, meaning they scatter light equally in all directions. Additionally, when light is

travelling through heterogeneous media, photons may cross an interface between two materials (tissues

with different refractive indices, n) and the physics involving internal reflection, Fresnel reflection and

refraction are considered.

The attenuation coefficient (or the transport Mean Free Path) (µt) of a material is defined as the

probability of a scattering or absorption event per unit length travelled. Since the probability of scat-

4



Chapter 2. Background 5

tering and absorption are both exponentially distributed independent variables, we can compute the

attenuation coefficient by summing them (µt = µs + µa). In addition, the albedo (α) of a material is

the probability that an event (absorption or scattering) is a scattering event (α = µs

µs+µa
). A material

with a high albedo has a much larger scattering coefficient than absorption coefficient (µs >> µa) and

therefore photons passing through it scatter many times before they are absorbed. In the optical window

we consider, scattering typically occurs 10-100x more often than absorption.

2.2 Inverse Problems

In the context of light propagation simulations, there are two main problems one wishes to solve. The

first is called the forward problem. Here, the parameters of the simulation are given and the simulator

determines the distribution of light that these parameters produce. Examples of these parameters are:

the geometry description; the optical properties of the regions in the geometry and the number, type,

position, orientation and intensity of the light sources. The second, and arguably more interesting

problem, is the inverse problem. Here, the distribution of light (or a desired distribution) is given and

we wish to find the parameters that caused (or would cause) this result. For example, a desired light

distribution may be given along with the geometry description and optical properties and the inverse

problem would determine the light source parameters that could produce this distribution (this specific

technique will be explained further in Section 2.3.3). For the general case in complex geometries, these

inverse problems do not have closed-form analytical solutions. Therefore, it is necessary to approximate

the solution to the inverse problem using many iterations of the forward problem with different light

source parameters. The many iterations required to solve the inverse problem places emphasis on the

need for a fast and accurate solution to the forward problem in order to sufficiently explore the large

solution space.

2.3 Medical Applications of Light

2.3.1 Diffuse Optical Tomography (DOT)

Diffuse optical tomography (DOT) is a medical imaging technique that uses mathematical tomographic

techniques to reconstruct 3D images of tissues by measuring the light interaction between pairs of

sources and detectors [13]. DOT is often used as a complement to functional MRI (fMRI) by providing

similar information but using different mechanisms with a different quality-cost tradeoff (lower quality

and lower cost compared to fMRI). DOT shows significant potential for continuous monitoring of brain

oxygenation, for example with premature infants in neonatal intensive care and stroke victims [39]. In

these scenarios, MRI is not suitable due to its cost, size and patient comfort concerns, resulting in an

advantage for light-based techniques. A DOT setup uses several sources of light operating at multiple

wavelengths with detectors placed around the area of interest, as shown in Fig 2.1. The light is emitted at

various wavelengths from the sources, propagates through the tissue and is received at the corresponding

detectors. The major difficulty with this imaging technique is that the light can be scattered many times

before arriving at a detector. Determining the structure of the underlying tissue that caused the light

scattering is an inverse problem with no closed-form solution. Therefore, many forward simulations with

different tissue parameters (size, location and optical properties) are required to find the best match to
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the experimental results. The quality of DOT is strongly correlated with the accuracy and quantity of the

forward light propagation simulations. The feasibility of this technique depends on the computational

ability of the underlying simulator and therefore motivates the development of a fast and accurate light

propagation simulator.

Figure 2.1: High-Resolution Diffuse Optical Tomography (HR-DOT) setup [28]

2.3.2 Bioluminescence Imaging (BLI)

Bioluminescence Imaging (BLI) [47] is another interesting application of light for medical imaging. BLI

is currently being used in a laboratory setting to track the size and location of cancerous tissues in

pre-clinical small animal treatment studies. An example of this is shown in Fig 2.2. In BLI, a cell type

presenting a specific disease is transfected with a virus that changes its genes and causes it to create a

protein that produces light without the application of an external energy source. This allows the cells

to be monitored using a low-light camera. When these cells duplicate, they retain the light emitting

gene. Most current BLI work is qualitative by tracking the progression and spread of the diseased cells.

A more modern technique known as Quantitative BLI (qBLI) [42] reconstructs a geometric model of

the volume of interest using knowledge of the underlying anatomical structure and optical properties.

This information provides constraints for an inverse solver that tries to minimize the difference between

the simulated and experimental light pattern by running many light propagation simulations. A fast

forward light propagation simulator allows more simulations to be run and thereby increases the quality

of the reconstructed structure.

2.3.3 Photodynamic Therapy (PDT)

Photodynamic therapy is a light-based therapy used to kill diseased tissues, such as cancer cells and

bacterial infections. In PDT, the patient receives a photosensitizer (PS), either topically, orally or by

injection. The PS accumulates preferentially in tissues with rapidly dividing cells, like tumors, and

absorbs light of a specific wavelength. Physicians administer the light using either external (e.g. light

irradiating the skin) or internal (e.g. needle-sized fiber optic probe) sources. Both the inactive PS and

light are harmless on their own, but when enough photons interact with the PS it activates and causes

the surrounding oxygen to become reactive. The reactive oxygen species damage the cells and, given

sufficient damage, cause tissue death by either apoptosis or necrosis. The goal of PDT is to inflict enough

damage to kill the target tissue while minimizing the damage to healthy tissue [63].
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Figure 2.2: From left to right: Reconstructed BLI image, CT scan, PET scan and dissection photograph
of mouse with a tumor (reproduced from [44])

Interstitial PDT (IPDT) is the use of PDT within the body using fiber optic probes that are inserted

into the patient using needles. IPDT complicates treatment planning since it has many more degrees

of freedom; however it has the potential to treat more vital organs inside the body. There are many

factors which affect the outcome of PDT including the light distribution, PS concentration and tissue

oxygenation. The most controllable factors are the light source parameters (i.e. number, type, position,

orientation and power).

PDT has two main uses for a light propagation simulator. The first is for treatment planning

verification, where the light source parameters and PS concentrations are known and the simulator is

used to determine if a given plan is good (i.e. there is sufficient target tissue coverage and acceptable

damage to the healthy tissue). These simulations are online, meaning the patient has already been

administered the PS and the fiber optic probes have been injected. In this case, it is important to have

a fast simulator which can determine the safety and effectiveness of the imminent treatment quickly and

therefore reduce the time the patient spends in the operating room. The device used to perform the

simulations will need to be portable as it may need to move between operating rooms. This type of

simulator requires a low power design that can be performed on-site. The second use of the simulator

is for PDT treatment plan development, which uses many offline simulations. In this case, instead of

determining the quality of an existing treatment plan, the simulator is used to solve the inverse problem

(discussed previously in Section 2.2) of creating a treatment plan with the goal of reducing the damage

to healthy tissue. As already discussed, the most controllable factors for PDT treatment planning are

the light source parameters. Hence, PDT treatment planning involves determining the type, quantity,

position and power of the light sources that minimizes healthy tissue damage while still eliminating

the target tissue. This inverse problem has no closed-form solution and requires iterative techniques

to approximate the optimal solution. The performance bottleneck of existing PDT treatment planning

tools is the amount of time spent running forward light propagation simulations [65, 66]. Developing a
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fast simulator for the forward problem could allow inverse solvers to finish in minutes rather than hours

or improve the treatment quality by running more simulations in an allocated time.

2.4 Simulation Models for Light Propagation

The forward problem solved by light propagation simulators requires the following problem description:

1. A description of the 3D geometry that divides it into one or more regions, where each region is

generally a tissue type

2. A set of material properties for each of the different regions in the geometry

3. A list of light sources

4. The type of output data to be collected

The following sections will discuss the problem description in more detail and the section will conclude

with a discussion on models for solving the light propagation given the description.

2.4.1 Geometry Description

There are a number of ways to describe a geometry when modelling light propagation, each with its

own accuracy-complexity tradeoffs. In general, geometries consist of a set of elements. No matter how

the geometry is described, each element has a boundary with a defined surface normal (n̂), a set of

material optical properties (µs, µa, g and n) and a set of neighbouring elements. The geometric element

description must support the following functions:

• Determining whether a point is within the element

• Determine the point on the boundary with another element where a ray intersects

• Calculating the volume of the element

• Finding the elements directly adjacent to the current element

In general, sets of elements are used to discretize the continuous regions of the 3D geometry. For example

in Fig 2.3, the 2D region is discretized using pixels (squares) in the middle and triangles on the right.

The analogous shapes in 3D are voxels (cubes) and tetrahedrons, respectively. The following sections

will discuss different geometric representations for 3D volumes and their respective accuracy-complexity

tradeoffs. This discussion will also justify the choice of a tetrahedral geometry for our work as it enables

the most general light propagation simulator.

Infinite

The simplest geometry description is an infinite homogenous medium. Here, the 3D geometry is modelled

as a single infinite homogeneous element. This model has no external boundaries (infinite) and no

material boundaries (homogeneous). These simplifications allow models using this geometry to have an

exact analytical solution using diffusion theory (discussed later in this section). The simplicity of this

geometry results in high computational performance, but at the cost of flexibility and practicality since

few real-life medical cases can be reduced to this geometry.
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Figure 2.3: 2D slice of a curved surface (left) modelled using voxels (middle) and tetrahedrons (right) -
the arrows represent the estimated surface normal n̂

Planar

The first widely used simulators model the geometry with planes (or layers) of infinite width and height

but finite depth (called semi-infinite), as shown in Fig 2.4. Describing this geometry requires only the

depth and material properties of each layer. Detecting boundary intersections is slightly more difficult

than the infinite case, since now the photon can reflect or refract when moving between layers with

different material properties. However, the calculation can be simplified since the normal of every layer

is parallel to the z-axis. Planar geometries are practical for skin related diseases since the geometry

maps well to the problem. However, for general clinical models with many regions and curved surfaces,

the planar geometry is far too restrictive.

p

layer 1

layer 2

..
.

layer n

Figure 2.4: Layered geometry with normal-incident pencil beam light source p

Voxelized

More complex 3D geometries can be discretized by using many voxel (cube) elements. While this

approach can model a much wider variety of geometries than the infinite and planar elements described

earlier, it cannot accurately represent curved surfaces and can result in very inaccurate surface normals,
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as shown in Fig 2.3. Moreover, the voxel model’s inaccuracy in representing surface normals does not

improve even as the number of voxels is increased (and hence the size of each voxel decreases). Binzoni

et al. [11] provide a more detailed examination of the shortcomings of voxels in representing the normals

of curved surfaces. As discussed later in this section, in heterogeneous media the accuracy of the surface

normal is crucial in simulating the reflection and refraction of photons that cross material boundaries.

Tetrahedral

3D geometries can also be discretized using tetrahedrons (triangular based prisms) instead of voxels,

at the cost of additional complexity. Compared to voxels, tetrahedrons provide a more accurate repre-

sentation of the 3D geometry, especially at curved surfaces and material boundaries, as shown in Fig

2.3. The surface normals are much more closely approximated, and, unlike with voxels, the accuracy of

surface normals increases as the tetrahedron size shrinks. This allows for the choice of more accuracy

when needed, at the cost of more tetrahedra. However, this increased accuracy comes at the cost of

increased complexity and computation; tetrahedrons lack the regularity of cubic voxels and therefore

have more complex ray intersection and point containment calculations. A more detailed discussion of

tetrahedral meshing can be found in Computational Geometry written by O’Rourke [52]. The work in

this thesis is intended to be highly accurate for general medical applications and therefore we decided

to use a tetrahedral mesh to represent the 3D geometry.

2.4.2 Light Source Descriptions

There are various types of real-life medical light sources with different shapes and emission profiles that

need to be modelled in the light propagation simulation. A subset of these light sources are listed below

and illustrated in Fig 2.5.

• Isotropic point

• Cylindrical diffuser

• Fiber cone

Figure 2.5: Example light sources with emission profiles [2]
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Previous simulators may not support all the source types due to restrictions from design simplifica-

tions or a development choice not to include them. Diffusion theory solutions (discussed in Section 2.4.4)

only support isotropic sources since the diffusion approximation is not compatible with any concept of

directed light. It is also possible to create more complex profiles by using a sum of simpler point sources.

2.4.3 Output Data

When solving light propagation in turbid media, the Radiative Transfer Equation (RTE) for a specific

wavelength is the conservation relation that must be solved [53]. The RTE is a complex partial differential

equation, shown in Equation 2.1, that sets the conditions for a function, L(x, Ω̂), to describe the radiance

at a point x in direction Ω̂. This equation is made up of components that account for light emittance

(s(x, Ω̂, t)), scattering (µs(x, Ω̂
′ → Ω̂)) and absorption. Biophotonic simulations are often concerned

with the fluence Φ, which is the integral of radiance at a specific point x, as shown in Equation 2.2.

1

v

∂

∂t
L(x, Ω̂, t) + Ω̂ · ∇L(x, Ω̂, t) + µt(x)L(x, Ω̂, t) = s(x, Ω̂, t) +

∫
Ω

L(x, Ω̂′, t)dµs(x, Ω̂
′ → Ω̂)dΩ̂′ (2.1)

Φx =

∫∫
Ω

L(x, Ω̂)dΩ̂dt (2.2)

As discussed in Section 2.4.1, we discretize the problem geometry into finite sized elements Ri with

homogeneous optical properties. The average fluence in a region of finite volume VRi
can be calculated

using Equation 2.3. For generality, in this section we will use the term element to refer to the 3D shape

(e.g. planar slab, voxel, tetrahedron) used to discretize the geometry. Later, we discuss our choice of

tetrahedral elements for our simulator.

ΦRi =
1

VRi

∫
Ri

ΦxdV (2.3)

Our simulator tracks the photon absorption within each volume, which is proportional to energy ERi .

Since each mesh element has homogeneous optical properties, Equations 2.2 and 2.3 allow us to derive

an equation for the average fluence ΦRi in a finite sized element, shown in Equation 2.4.

ΦRi =
ERi

VRi
µa

[Jcm−2] (2.4)

This allows us to calculate the average fluence for each mesh element using the tracked photon

absorption energy in the element ERi , the element volume VRi and the absorption coefficient assigned

to the element µa. To track the absorbed energy during the simulation, we maintain one entry in an

array for each element. Every time an absorption event occurs, the simulator reads from the array, adds

the absorbed value to the read value and then writes it back into the same array entry; we call this a

read-accumulate-write operation.

Other applications, like BLI and DOT, are interested in surface fluence emittance; the fluence escap-

ing specific regions within the 3D geometry, or the 3D geometry itself. For a discrete element Si that has

ESi
photon energy passing through it and area ASi

, the average surface fluence ΦSi
can be calculated

using Equation 2.5. The shape of the surface Si depends on the element chosen to discretize the 3D

geometry. As visualized in Fig 2.3, if tetrahedrons were used, Si would be a triangle; if voxels were used,
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Si would be a rectangle. Tracking these values during the simulation requires an array with an entry per

element face (bounded above by 4 ∗ |elements|, since one face is shared between two elements, unless it

is on the surface of the geometry). Post-processing techniques can be used to determine which faces are

on the surface between two regions in the geometry or which faces are on the surface of the geometry.

ΦSi =
ESi

ASi

[Jcm−2] (2.5)

2.4.4 Numerical Solutions

Since the RTE is a complicated partial differential equation, it only has analytical solutions for extremely

simple homogenous cases and approximations. Analytical methods break down at the interfaces between

materials, the external boundaries of a model and at the sources and sinks of light [40, 41]. For these

reasons, two numerical solutions are often employed to approximate the resulting light distribution: the

Finite Element Method (FEM) or the Monte Carlo method (MC). Both methods discretize the problem

and numerically approximate the RTE, but in different ways.

Finite Element Method (FEM)

Finite Element Method (FEM) solutions for diffuse light propagation model the light by assuming it

is diffusing across a concentration gradient, similar to heat transfer or chemical diffusion. Jacques and

Pogue [36] provide a more in-depth discussion on FEM solutions for diffuse light propagation. The

restrictions placed on the problem definition for accurate FEM solutions are summarized in the list

below:

1. All materials must have a high albedo (α ≈ 1 =⇒ µs >> µa)

2. There are no non-scattering voids in the geometry (µs > 0, for all regions)

3. All light sources are isotropic

4. Results are typically invalid within a few mean free paths of a light source

5. All materials have a uniform refractive index

These restrictions reduce the problem to solving a large sparse matrix, for which there are many fast

and accurate techniques. However, these restrictions can make the solution unusable for practical ap-

plications. For example in PDT, it is typical to use diffusing cylinder and cut-end fiber light sources;

these are inherently non-isotropic and therefore not supported by FEM solutions due to restriction 3.

Additionally, light sources in PDT are usually placed very close to or within the diseased tissue and

therefore the accuracy of the simulation near these light sources is crucial; this is not supported in FEM

solutions due to restriction 4. Finally, in many practical medical applications, the complex anatomy will

have many material interfaces with vastly different refractive indices and possibly cavities of air where

light is not scattered (e.g. the oral cavity, the lungs and the bladder); this breaks restrictions 2 and 5.

As discussed in the next section, the Monte Carlo method does not introduce any of the aforementioned

restrictions. In this work, we wish to develop an accurate and general light propagation simulator and

therefore choose to use the Monte Carlo method for approximating the RTE.
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Monte Carlo Method

Monte Carlo (MC) methods for simulating light propagation do so by tracking individual photons using

random numbers sampled from the statistical distribution of interaction event probabilities, such that the

expected behaviour of the photon is physically and statistically accurate. Millions of these photons are

simulated and after a sufficient number of individual simulations, the output converges to a statistically

accurate result. Since the path of a single photon has no effect on the path of any other photon, the

photons are mutually exclusive and therefore the MC algorithm is highly parallelizable.

In this work, we use the popular hop-drop-spin method first proposed by Wilson and Adam [62].

Prahl et al. [55] refined the algorithm in 1989 by adding roulette and anisotropic scattering (discussed

later in this section). More recently, Wang et al. [61] based their work, MCML, on the hop-drop-spin

method for layered geometries. The following sections give a brief overview of the refined hop-drop-spin

algorithm used in this work, which is visualized in Fig 2.6. A more detailed description can be found in

the original MCML paper [61].

launch draw step hop

drop

interface

spin exit

dead

Figure 2.6: The refined hop-drop-spin algorithm used in this work

Launch The launch stage initializes the photon packet with an initial position p, direction d̂ and

weight w. Tracking the path and weight of photon packets as they are gradually absorbed is more accu-

rate and computationally efficient than simulating individual photons [34], which would be completely

absorbed by the tissue at their first absorption event.

Draw Step As discussed in Section 2.1, the attenuation coefficient (µt) defines the average number of

interactions (scattering and absorption) per unit length travelled. In the draw step stage, a random

step length s is generated using Equation 2.6 where µt is the attenuation coefficient of the material

in which the packet currently resides, and r is a uniformly distributed random number in the range

[0, 1) (i.e. U0,1). Taking the −log of a uniformly distributed number gives an exponentially distributed

random number. For us, this represents the exponentially decaying probability of travelling a distance s
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in Equation 2.6. Once the step length has been calculated, the packet then proceeds to the hop stage.

s = − log(r)

µt
, r ∈ U0,1 (2.6)

Hop Given a step length s, the hop stage moves the packet along the current direction vector d̂ by the

step length s to the position p′ = p + sd̂. If the packet remains in the same tetrahedron after moving

from p to p′, then the hop stage is finished and the packet moves to the drop stage. However, if the

packet crosses a tetrahedral boundary, it is moved to the interface stage to handle potential boundary

condition logic.

Interface The interface stage handles boundary conditions when a packet moves from one tetrahe-

dron T to an adjacent tetrahedron T ′ during the hop stage. If the packet exits the mesh (T ′ is outside

the mesh), then computation for this packet ceases. If the user chose to track surface emittance, then

we accumulate the current packet weight into the variable tracking emittance for that tetrahedral face.

If the packet does not exit the mesh, then the intersection point on the shared tetrahedral face and

incident angle θi are determined using ray tracing calculations. If the refractive indices (n and n′) of

the tetrahedrons differ, then the packet crosses a material boundary and the interface stage performs

reflection and refraction calculations.

Snell’s law states that if sinθi >
n
n′ , then light incurs total internal reflection (TIR). Otherwise, light

is partially refracted and reflected (Fresnel reflection). To model the partial reflection and refraction in

simulation, we randomly choose one or the other with appropriate probability. Equation 2.7 is the average

of two Fresnel reflection coefficients and the result R is the average probability of Fresnel reflection. We

model the probability of a photon incurring Fresnel reflection as a Bernoulli random variable of R. That

is, we generate a uniformly distributed random number x ∈ U0,1, and if R > x, the packet undergoes

Fresnel reflection, otherwise the packet’s direction angle is refracted using Equation 2.8.

R =
Rs +Rp

2
=

1

2

[∣∣∣nicosθi − ntcosθt
nicosθi + ntcosθt

∣∣∣2 +
∣∣∣nicosθt − ntcosθi
nicosθt + ntcosθi

∣∣∣2] (2.7)

θt =
n

n′
sinθi (2.8)

In the case of both reflection and refraction, the packet’s direction vector d̂ is updated based on the

resulting angle θt. Next, the step length s from the hop stage is reduced by the distance the packet

travelled to reach the boundary of the two tetrahedrons, giving a remaining step length of s′. In addition,

if the attenuation coefficients of the tetrahedrons differ, then the step length is updated using Equation

2.9 where µt and µ′t are the attenuation coefficients of the previous and current tetrahedrons, respectively.

Finally, the packet goes back to the hop stage with an updated step length s′′ and potentially a new

direction vector.

s′′ = −µt
µ′t
s′ (2.9)

Drop Once the entire step from the draw step stage is complete, the drop stage deposits some of

the packet’s energy into the current tetrahedron to model photon absorption. As discussed in Section

2.1, the albedo α is the probability that an event is a scattering event (as opposed to an absorption
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event). Therefore, 1− α is the probability that an event is an absorption event. To correctly model the

behaviour of photons using a photon packet, a packet with weight (i.e. energy) w deposits a fraction of

its weight (1 − α)w into the current tetrahedron and continues to the next stage with a new weight of

w′ = αw. The deposited weight is accumulated into the array entry tracking the absorbed energy for

the tetrahedron in which the packet currently resides. The energy accumulated in each tetrahedron is

used at the end of the simulation to calculate the fluence using Equation 2.4.

Once the fraction of weight has been removed from the packet, the packet enters the roulette sub-

stage. If the packet’s new weight w′ is greater than a threshold (wmin), then the roulette sub-stage

does nothing. If the weight is below wmin, then the packet is given a 1-in-p chance of surviving with an

increased weight of pw′ (due to energy conservation). If the packet loses roulette, it is marked as dead

and its execution ceases. As a packet propagates and loses more weight due to repeated absorption

events, its contribution to the overall energy accumulation declines rapidly. Thus, the purpose of the

roulette phase is to avoid wasting computation on increasingly insignificant packets [21]. If the packet’s

weight was above the roulette threshold or if it survived roulette, it moves to the spin stage.

Spin As discussed in Section 2.1, biological tissues are generally turbid, which means they scatter

light. This is accounted for in the spin stage. In this stage, the packet’s direction vector d̂ is changed

by an angle θ which is calculated from a random sample of the Henyey-Greenstein scattering function

(Equation 2.10) where the variable g is the anisotropy factor of the material in which the packet currently

resides. Once the packet has been spun, it moves back to the draw step stage where the entire process

repeats.

cosθ =
1

2g

[
1 + g2 −

(
1− g2

1− gq

)2
]
, q ∈ U−1,1 (2.10)

2.5 Computing Platforms

Due to the slowing of Moore’s law and the end of Dennard scaling, developers can no longer rely on

an automatic performance increase with the release of new computing technology. Large scale designs

require large cooling and power considerations, which influences developers to consider different com-

puting methods to achieve high performance while minimizing power and space. This work focuses on

three implementations of the same FullMonte algorithm, each using a different computing platform:

Central Processing Units (CPUs), Graphics Processing Units (GPUs) and Field Programmable Gate

Arrays (FPGAs). Each platform presents significantly different strengths and weakness, with different

abstractions to the programmer. The following sections will give a brief overview of these computing

platforms.

2.5.1 Central Processing Unit (CPU)

CPUs consist of fixed computing hardware that exposes a predefined instruction set that allows a

developer to implement desired functions. The fundamental paradigm that CPUs use is for a central

data processing unit to move data in from storage, execute some operations on the data and write the

result back to storage. In general, significantly more area and power is used moving data compared to

the actual computation [29]. Therefore, the high-level goal of the developer creating an application for
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a CPU is to minimize data transfer.

Modern CPUs contain multiple cores, i.e. multiple copies of the central data processing unit men-

tioned before. This allows mutually exclusive computations to be performed in parallel by utilizing the

multiple CPU cores. In addition, the cores in modern CPUs often support simultaneous multithreading

(or hyperthreading). This techniques allows a single CPU core to execute two computations simulta-

neously by leveraging idle execution units and reducing the overhead involved with context switching

[58]. Modern CPUs also support vector instructions, which are also called single instruction multiple

data (SIMD) operations. As the SIMD name suggests, these instructions perform a single operation to

a set (vector) of data in parallel using special central data processing units. Each of the multiple cores

in modern CPUs support both hyperthreading and vector instructions. This causes a multiplicative

increase in performance when using multiple hyperthreaded cores for processing. In Section 2.6, we

briefly discuss the performance effect that multithreading, hyperthreading and vector instructions have

on our CPU baseline simulator, FullMonteSW.

2.5.2 Graphics Processing Unit (GPU)

GPU Architecture

A GPU consists of an array of streaming multiprocessors (SMs) with a set of scalar processors (SPs)

laid out like the left of Fig 2.7. The number of SMs and SPs depends on the specific GPU device.

For example, the NVIDIA Quadro P5000 GPU has 16 SMs that each have 128 SPs [22]. The memory

hierarchy of GPUs is also illustrated in Fig 2.7. The largest memory in the GPU is global memory which

is used to transfer data between the CPU and GPU. Global memory is the only memory with enough

capacity to store the tetrahedral-meshes used in our work but the access times are slow, as shown in

Table 2.1. However, the GPU contains smaller and faster memories that can be used to improve the

latency and throughput of accesses. The L2 cache of the entire GPU provides device managed caches

for global memory. In addition, each SM contains memory that the developer can use to create custom

caches including constant cache, shared memory and registers, as indicated in the right of Fig 2.7. The

constant cache can only be read by the SPs, so it is often used for storing computational constants, such

as the material properties in our case. Shared memory and registers can be read from and written to

by all SPs in an SM, and can be used for explicitly managed caches. In our work, we use both of these

to cache absorption events locally to avoid excessive accesses to the much slower global memory. Table

2.1 summarizes the relative access latency and capacity of these GPU memories [49].

Table 2.1: NVIDIA GPU Memories [49]

Memory Cycle latency (relative) Size

Registers 1 63-255 per thread

Local 8-21x 512kB per thread

Shared 8x 48-96kB per block

Constant 8-34x 64kB

Texture 8-34x 12-64kB

Global 34x 64MB-32GB



Chapter 2. Background 17

Figure 2.7: A high-level depiction of the GPU streaming multiprocessor (left) and scalar processor (right)

Compute Unified Device Architecture (CUDA)

The Compute Unified Device Architecture (CUDA) is NVIDIA’s development interface that provides a

high-level view of the GPU architecture making it easy for developers to program. CUDA is a C-style

programming interface consisting of host code that runs on the CPU and device kernels that run on the

GPU [49]. The general flow for the CUDA host program is illustrated in Fig 2.8. The host code loads

the data, copies it to the GPU, launches the kernel on the GPU, waits for the GPU to finish, copies the

output data back from the GPU and finishes execution. The CUDA kernel code represents the execution

of a single thread of computation. When launching the GPU kernel, the host code is responsible for

specifying the number of threads to use, and these threads are run in groups called blocks. To define

the number of threads, the user specifies the number of threads per block and the total number of

blocks (total threads = threads per block * total blocks). Each block is assigned to a single SM and, once

assigned, all of the threads in the block run exclusively on that SM until completion. When a block

is assigned to an SM its threads are automatically divided into groups of 32 called warps [49]. The

threads in a warp execute in lock step on multiple SPs in one SM, where each SP is executing the same

instruction on different data.

GPU programming using the NVIDIA CUDA development platform

Efficiently accelerating an algorithm using a GPU requires knowledge of the underlying hardware and

development platform. For more information, the reader is directed towards the NVIDIA Programming

Guide [49] and Best Practices Guide [48] which discuss extensively the GPU architecture, CUDA de-

velopment platform and best methods for programming NVIDIA GPUs. Previous works [4, 5, 43, 70]

discuss these concepts in the context of MC light propagation simulations.

Three significant challenges arise when implementing our algorithm on a GPU. First, the tetrahedral

meshes used to represent realistic models require a large amount of memory (∼gigabytes). Modern GPUs

can fit these large meshes into global memory but, as discussed in the previous sections, the access times

are slow. Moreover, due to the random behaviour of MC simulations, the tetrahedrons are accessed
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Application Start

Load data into
CPU memory

Copy data from
CPU to GPU

Launch
GPU kernels

Wait for GPU
to finish

Copy data from
GPU to CPU

Application End

GPU runs kernels

Figure 2.8: The general flow of a CUDA program. Squares states are run on the CPU and the purple
oval is run on the GPU.

irregularly, making them difficult to cache effectively. Thus, we expect a GPU implementation of the

algorithm to be memory bound, meaning that kernels will often stall waiting for memory accesses. Second,

MC simulations require many blocks of code that may or may not execute depending on the state of the

simulation. This conditional code does not map well to the GPU and can cause significant performance

degradation due to the lock step execution of threads in a warp; this is called thread divergence [15].

Lastly, when many photon packets are being simulated simultaneously in multiple threads, it is possible

that multiple packets can drop weight into the same tetrahedron at the same time. The developer must

account for this by ensuring that simultaneous absorptions into a tetrahedron are handled accurately

and efficiently.

2.5.3 Field Programmable Gate Array (FPGA)

FPGA Architecture and Design

Both CPUs and GPUs execute a set of sequential instructions to perform a specific task. This is a simple

model for developers as it is similar to algorithmic thinking: “First do A, then do B, then do C, done”.

FPGAs take a different approach by performing computations spatially. At a high level, an FPGA is

an array of programmable logic and specific processing elements including memory blocks, arithmetic

blocks (multiplication and addition) and registers all connected by programmable routing that moves

inputs and outputs to and from the different blocks. FPGAs are reprogrammable by loading a bitstream

onto the device which specifies what functions the elements implement and how the inputs/outputs of

these elements are wired together. This allows memory and computation elements to be intermixed
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and therefore be stored closer together. As discussed in the previous CPU section, this can reduce the

energy expended to move data between computation units. Applications that present pipeline parallelism

are typically good candidates for FPGA acceleration. Exploiting pipeline parallelism involves chaining

together large sets of dependent computations into a pipeline for processing. The maximum operating

frequency (Fmax ) of a circuit is the inverse of the longest combinational logic delay between two registers.

When many pieces of data are being pushed through a pipeline, the initiation interval (II ) is the number

of cycles the pipeline must wait before starting a new computation. The performance of a pipeline is

dependant on the circuit’s Fmax and the II. Given input data of size N and a pipeline with a latency

of L, the number of cycles (C) to perform the entire computation is given by Equation 2.11 and the

computation time (t) is given by Equation 2.12. As shown in Equation 2.11, minimizing the II is crucial

to the performance of the pipeline for large values of N (i.e. large problem sizes).

C = L+ II ∗ (N − 1) (2.11)

t = C ∗ 1

Fmax
(2.12)

FPGA Programming

Typically, FPGA designs are described using a Register Transfer Level (RTL) Hardware Description

Language (HDL) like Verilog or VHDL. HDL code is a low-level description of the circuit to be imple-

mented on the FPGA and requires the developer to manually manage which functions are performed

in each clock cycle. Writing custom RTL code gives the hardware developer extreme design flexibility

and careful optimizations can result in a design that is highly efficient in performance, area and power.

However, RTL descriptions are extremely verbose and require a cycle-by-cycle description of the algo-

rithm. Historically, this has made FPGA designs error-prone, time consuming and expensive to develop,

difficult to debug and tedious to extend to new devices, architectures and applications. In addition,

developing a complete system that interacts with a host CPU for data input and output is difficult as it

usually involves creating or using low-level programming interfaces and drivers to transfer data between

the CPU and FPGA.

High Level Synthesis (HLS) provides a generalized abstraction to the hardware by allowing developers

to use sequential languages, like C/C++, or explicitly-parallel languages, like OpenCL. HLS languages

(e.g. Intel HLS and Vivado HLS) relieve the burden of describing the cycle-by-cycle description of

an algorithm by writing instead allowing the developer to write sequential code, which the HLS tool

then automatically schedules to determine which operations occur in each clock cycle. Unfortunately,

this reduces the flexibility of the design since the user has less control over the instantiated circuit,

especially when using the FPGA’s hard blocks (e.g. RAMs and DSPs), which can significantly affect the

performance and area of the design. Most HLS tools work by compiling sequential functions into RTL IP

cores. When using HLS, the user must often manually connect these IP cores using a system integrator.

Similar to RTL designs, HLS designers must determine how to transfer data between the CPU and

FPGA when creating a full system, which usually includes low-level driver code that is time-consuming

to create and use.

Both Intel and Xilinx provide an OpenCL SDK for developing FPGA applications using the OpenCL

parallel programming language. OpenCL is very similar to CUDA, which was discussed in the previous
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GPU section. The thread structure and host/kernel interactions are nearly identical. When programming

FPGAs, OpenCL shares many of the same advantages and disadvantages as C/C++ HLS; it sacrifices

flexibility for ease-of-development. Unlike C/C++ HLS, the OpenCL standard contains methods for

interfacing with the device (in our case, an FPGA), which includes transferring data between the CPU

and FPGA and querying device kernels while they run. The manufacturer of the board creates a board

support package (BSP) that is used by the OpenCL compiler to abstract the host-accelerator interactions

[32]. This makes developing a full FPGA-accelerated system generally much simpler and faster than both

RTL and C/C++ HLS, as the CPU-FPGA communication is specified at a higher and standardized level.

In Section 4.1, we justify why we use OpenCL HLS for our application over C/C++ HLS and traditional

HDL. In Section 4.7.2 we discuss the strengths and weakness of OpenCL that we encountered in our

work.

2.6 Previous Implementations

Table 2.2 summarizes some of the published MC simulators using CPUs, GPUs and FPGAs. The fol-

lowing sections give a brief description of each simulator and provide some strengths and weaknesses

compared to the FullMonte approach. In Chapter 4, we compare our GPU- and FPGA-accelerated

simulators to a subset of the simulators in this list. It is important to note that, in most cases, hardware

accelerated simulators benchmark their performance against a CPU baseline. We have discovered that

these baseline CPU implementations exhibit various levels of optimization, which can make comparing

relative performance results for hardware accelerated versions difficult and confusing. We have found

that multithreaded implementations show linear performance scaling with the number of CPU cores as

well as significant improvement using simultaneous multithreading (described in Section 2.5). There-

fore, multithreaded implementations using modern CPUs with six cores are inherently ∼9x faster than

single-threaded implementations [58]. We also found that hand-coded vector instructions (described in

Section 2.5) provided an additional speedup of ∼8x [58]. In summary, this shows that unoptimized

single-threaded implementations can be ∼72x slower than optimized multithreaded imple-

mentations on modern CPUs. This fact should be kept in mind when reading the next sections that

describe previous MC simulator implementations and their performance numbers.

MCML

The MCML algorithm, originally developed by Wang et al. [61], remains a widely-used MC simulator

for turbid media. It uses a planar (i.e. layered) geometry with a normally-incident pencil beam light

source. The main drawbacks of this approach are the limited number of light sources and the restrictions

of the planar geometry that is not capable of representing the 3D curved surfaces of general biological

tissues. CUDAMC was an initial attempt at accelerating the MCML algorithm using a GPU [5]. It uses

a single, semi-infinite, planar slab that does not absorb photons. The reported 1000x speedup over the

single-threaded CPU code likely reflects the absence of absorption events and limiting the geometry to a

single planar slab. CUDAMCML [5] is a more complete implementation of the MCML algorithm which

achieves a 100x speedup over the original single-threaded MCML code. The 10x difference relative to

CUDAMC is likely attributable to the increased complexity of multiple absorbing layers. More recent

work by Alerstam and Lo [4] and Lo et al. [43] called GPU-MCML achieved a 600x speedup over

the original MCML code. This incremental improvement on CUDAMCML was achieved by caching
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Table 2.2: A subset of existing MC light propagation simulators

Implementation Geometry Acceleration Type

MCML Planar

CUDAMC Semi-infinite planar GPU

CUDAMCML Planar GPU

GPU-MCML Planar GPU

FBM Planar FPGA

tMCimg Voxel

MCX Voxel GPU

Dosie Voxel GPU

MCxyz Voxel GPU

Hung et al. Voxel FPGA

Afsharnejad et al. Voxel FPGA

TIM-OS Tetrahedral Vector (automatic)

MMCM Tetrahedral Vector (manual)

MOSE Tetrahedral GPU

Powell and Leung Tetrahedral GPU

MCtet Tetrahedral GPU

Cassidy et al. Tetrahedral FPGA

FullMonteSW Tetrahedral Vector (manual)

FullMonteCUDA Tetrahedral GPU

FullMonteFPGACL Tetrahedral FPGA

absorption around the directed beam light source and by using a modern GPU architecture. In the same

work as GPU-MCML, Lo et al. also created FBM [43] an implementation of MCML on an Altera Stratix

III FPGA. They constrained the model to 10 layers and a limited number of accumulation elements.

With these constraints, they achieved and advantage of 45x in speed and 700x in energy-efficiency over

the single-threaded, unoptimized CPU code. However, CUDAMC, CUDAMCML, GPU-MCML and

FBM are all still restricted by the original MCML limitations.

tMCimg and MCX

tMCimg [14] was one of the first open-source, voxelized MC simulators. tMCimg was developed specifi-

cally to model the human head and brain for DOT. tMCimg is single-threaded because it was developed

at a time when multi-core machines were scarce. MCX [26] is a GPU-accelerated version of tMCimg

and therefore has the same geometrical and use-case limitations. MCX reports a 75-300x speedup over

the single-threaded tMCimg software implementation depending on the simulation options. Yu et al.

[69] extended and improved the implementation of MCX using OpenCL which, compared to the CUDA

implementation, allowed them to more easily target a heterogeneous computing platform. Their opti-

mizations allowed them to achieve up to a 56% improvement on AMD GPUs, 20% on Intel CPUs/GPUs

and 10% on NVIDIA GPUs [69].
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Dosie

Beeson et al. developed Dosie [8], which calculates light transport and photokinetics for PDT in mouse

models. Dosie uses a voxel-based geometry and internal or external light sources. The authors do not

compare their work against other simulators, but report an absolute runtime of 21 seconds for 2× 106

packets in a cube model with 106 voxels. The developers of Dosie acknowledge that tetrahedral models

can fit curved surfaces better than voxel models [11].

MCxyz

MCxyz [33] is an open-source, single-threaded, voxel-based MC simulator. It uses the same hop-drop-spin

method as FullMonte but only supports emission from a single isotropic point source. MCmatlab [45]

extended the MCxyz algorithm to include a finite-element heat diffusion and Arrhenius-based thermal

tissue damage simulator with a MATLAB interface. MCmatlab is roughly 17x faster than the single-

threaded unoptimized baseline MCxyz [45]. Dupont et al. [24] extended MCxyz to specifically simulate

the cylindrical diffusers used in IPDT. They accelerated MCxyz using an NVIDIA GPU but only provide

performance results for a simple homogeneous cube model. They report a 745x improvement over the

unoptimized, single-threaded MCxyz code for this model [24].

Hung et al.

Hung et al. [30] described the MCML algorithm using OpenCL and targeted both an NVIDIA GTS 450

GPU and Intel Stratix V FPGA. In this work, they used the same OpenCL code to target both the GPU

and FPGA. As discussed later in Chapter 4, we found it necessary to write completely different OpenCL

code for the FPGA than a GPU to achieve reasonable performance. The authors reported that the GPU

and FPGA provided a speedup of 64x and 21x, respectively, over the unoptimized and single-threaded

MCML code for layered models.

Afsharnejad et al.

Afsharnejad et al. [1] implemented a voxel-based simulator on a Xilinx Kintex Ultrascale FPGA using the

Vivado HLS design suite. They report a 3x speedup over FullMonteSW (which uses tetrahedral elements)

for the TIM-OS cube 5med model and a 3.7x improvement in energy-efficiency. The simulations are

limited to isotropic point sources and 8000 voxel elements. However, as discussed in Section 2.4.1, voxels

have simpler intersection calculations but cannot accurately represent the curved surfaces in realistic

medical models.

TIM-OS

Before FullMonteSW, TIM-OS [59] was the fastest tetrahedral-mesh MC simulator. TIM-OS is highly

optimized software that uses automatic compiler vectorization (i.e. the compiler tries to replace conven-

tional instructions with vector instructions whenever possible). TIM-OS greatly exceeds the performance

of MCML on simple layered models, while also supporting more complex tetrahedral models [20]. TIM-

OS does not support tracking fluence through surfaces which makes it unsuitable for BLI and DOT.
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MMCM

MMCM is a widely used, multithreaded, tetrahedral-mesh, MC simulator written in C [25]. It can use

meshing shapes other than tetrahedrons, but the authors do not present any significant benefit of that

feature. Fang and Kaeli [27] extended MMCM to use manually-coded vector instructions (SSE) with

support for multiple ray tracing algorithms. With these optimizations, they report an overall speedup

of up to 26% over the baseline (non-SSE) implementation.

MOSE

The Mouse Optical Simulation Environment (MOSE) [38] was developed for optical imaging techniques,

such as fluorescence molecular tomography and bioluminescence tomography. Ren et al. [56] created

gpu-MOSE, a GPU-accelerated version of the software targeting an NVIDIA GPU. Both MOSE and

gpu-MOSE were validated against MCML and gpu-MOSE achieved a speedup of up to 10x over the

single-threaded MOSE code.

Powell and Leung

Powell and Leung [54] developed a GPU-accelerated MC simulator to model the acousto-optic effect in

heterogeneous turbid media for imaging and optical property measurement. The simulator was validated

against MCML for various models and benchmarked against MMCM. Their GPU-accelerated simulator

achieved a 2x speedup over the multithreaded MMCM code.

MCtet

MCtet [70] is a GPU-accelerated, tetrahedral-mesh MC simulator. It does not claim to support flu-

ence tracking through surfaces making it unsuitable for BLI and DOT. It was validated against three

benchmark models: two MCML layered models and a TIM-OS cube model similar to cube 5med [59].

However, MCtet’s performance was only benchmarked using the two MCML layered models; the authors

do not provide performance comparisons against TIM-OS for any of the three models.

Cassidy et al.

Cassidy et al. [19] implemented FullMonteSW on an Altera Stratix V FPGA using the Bluespec Sys-

temVerilog (BSV) language. The simulator only supports homogeneous meshes which are limited to 48k

tetrahedrons. The authors do not provide raw performance numbers as the combined hardware-software

system was not functionally complete. The performance estimates were based on simulations and hard-

ware reports. They estimate a 4x speed improvement and 67x energy-efficiency improvement over the

optimized and multithreaded FullMonteSW.

FullMonteSW

FullMonteSW [21] is the baseline we use for the validation and performance benchmarking of our hard-

ware accelerated implementations. FullMonteSW is the fastest and most full featured tetrahedral-mesh

MC biophotonic simulator written in software. It uses multithreading, hyperthreading and hand-coded

vector instructions to achieve high performance. FullMonteSW has been validated and benchmarked
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against state-of-the-art simulators TIM-OS and MMCM, achieving a speedup over them of 1.5x and

2.42x, respectively [20]. Chapter 4 discusses how we accelerated FullMonteSW using a GPU and FPGA.



Chapter 3

Software Optimizations

This section discusses additions and optimizations made to the existing software simulator, FullMonteSW,

that improve its performance, accuracy and usability. The first section discusses two new light sources

that make the simulator more accurate at representing the real light sources used in PDT and BLI.

The second section discusses an optimization technique that improves the performance of the simula-

tor and common post-processing queries made by applications that use the simulator to perform more

complicated tasks, like PDT treatment planning.

3.1 Representing Medical Light Sources in Simulation

As discussed in Section 2.3.3, PDT treatment planning often uses complex light sources, like cut-end

fibers and cylindrical diffusers. In BLI, the source of light is a collection of light-emitting cells, which

translates to a region of elements in the 3D mesh. Representing these real light sources in simula-

tion requires non-trivial mathematics and intelligent programming to maintain high performance. The

following sections discuss how we implement these light sources and their respective use-cases.

3.1.1 Cylindrical Diffuser Light Source

In IPDT, cylindrical diffusers are commonly used to produce light. The cladding of the fiber optic probe

is stripped away such that light emits from the surface of the cylindrical probe but not out of the ends,

as shown in Fig 2.5. This process is not perfect, which causes light to emit with a higher probability

normal to the surface and the probability shrinks as the angle becomes more parallel to the surface.

This is represented by a Lambertian distribution, as shown in Fig 3.1. To increase the accuracy of PDT

treatment planning, it is important to accurately represent these cylindrical diffusers in simulation. To

achieve this, we developed code for a cylinder light source that emits light similarly to the cylindrical

diffusers. The cylinder light source is defined by the endpoints, radius, power and theta distribution.

The theta distribution is the range of angles, with respect to the cylinder surface, that an emitted

photon can have. The user has three options, as depicted in Fig 3.1: normal to the surface, a uniform

distribution on the unit hemisphere or a Lambertian distribution. Fig 3.2 illustrates how we randomly

generate a vector in a hemisphere centered on an arbitrary plane (a 2D representation is shown, but the

concepts are the same for 3D). Algorithm 1 describes how the cylinder source randomly emits photon

packets. Fig 3.3 illustrates the emission profile of the cylinder source using a surface normal emission

25
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(top) and Lambertian emission (bottom). We created these images by placing a cylindrical light source in

a homogenous cube with high absorption and low scattering; the darker red represents a higher fluence.

Figure 3.1: Planar theta angle distribution options for surface light sources

Figure 3.2: Generating a random vector (d̂) in a hemisphere centered on the z-axis (left) and rotating
this vector to be centered on a plane’s (F ) normal (middle and right).
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Algorithm 1: Emitting Light from Virtual Cylindrical Diffuser

Data: The cylinder information

Result: An initial position p and direction d̂ for the packet

p← randomly choose a point on surface of the cylinder (excluding the circular ends)

ĉ← the normal vector at point p on the cylinder surface

if theta distribution is NORMAL then

d̂← ĉ

else

// this section is illustrated in Fig 3.2

// generate d̂
′
assuming the plane normal is oriented on the positive z-axis

φ← U0,2π

if theta distribution is HEMISPHERE then

θ ← arccosU−1,1

else if theta distribution is LAMBERTIAN then

θ ← arccos
√
U0,1

// convert to cartesian coordinates. Absolute value of z-component gives a

hemisphere rather than a sphere

d̂
′
← (sinθsinφ, sinθcosφ, |cosθ|)

// Rotate the hemisphere (and the random point) by centering the z-axis along

the cylinder surface normal

d̂← rotate d̂
′

vector to align with ĉ

3.1.2 Mesh Region Light Source

As discussed in Section 2.3.2, BLI involves transfecting a group of diseased cells, like a tumor, with a

virus that alters their genes and causes them to emit light. Since the transfected cells are the sources

of light and also part of the mesh (a region or regions in the mesh), supporting BLI requires creating

an arbitrary light source from volumetric regions of the mesh. In IPDT, light sources are implanted

into the patient and therefore, in reality, have their own region in the mesh with optical properties that

can affect the light propagation. The sources in Section 2.4.2 passively emit light in the simulation;

they are not part of the geometry and therefore do not affect the propagation of the light once it is

emitted. Therefore, to explore the effect of light emitters with their own region and optical properties,

it is necessary to include them as regions in the mesh and emit light from the volume or surface of that

region.

A 2D illustration of the mesh region light source is shown in Fig 3.4. The user selects the region

of the mesh to emit light from and we perform pre-processing steps to determine the tetrahedrons that

belong to that region and which have faces on the surface of the region. For example, in Fig 3.4 four

faces of the triangles are on the surface of the square shaded region. The user can choose whether

to emit light from only the surface of the region (Fig 3.4, middle) or from within the region (Fig 3.4,

right). If the user chooses to emit from the surface of the region, they can choose one of the three theta

angle distributions discussed in the previous section, as shown in Figure 3.1. Algorithm 2 describes

how we emit light isotropically from the volume of a region in the mesh, while Algorithm 3 describes

the more complicated method of emitting light from the surface of a region using different theta angle
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Figure 3.3: The side (left) and top (right) view of a virtual cylinder source with surface normal emission
(top) and Lambertian emission (bottom)

distributions. Fig 3.5 shows an example of the mesh region light source. The left image shows the two

regions in the mesh (grey cylinder within a red square) and the right image shows the resulting fluence

distribution using a method similar to that in the previous section (high absorption in the surrounding

square).

Algorithm 2: Emitting from Mesh Region Volume

Data: List of tetrahedrons in region R

Result: An initial position p and direction d̂ for the packet

T ← randomly choose a tetrahedron in the region R distributed by volume

p← generate a random point inside the volume of T

d̂← generate a direction vector with isotropic distribution
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Figure 3.4: Illustration of a mesh region light source with the mesh on the left, the isolated surface light
source in the middle and the isolated volume light source on the right

Algorithm 3: Emitting from Mesh Region Surface

Data: List of tetrahedrons in region R

Result: An initial position p and direction d̂ for the packet

F ← randomly choose a tetrahedral face on the region R distributed by surface area

p← generate a random point on F

if theta distribution is NORMAL then

d̂← the normal vector of F

else

// this section is illustrated in Fig 3.2

// generate d̂
′
assuming the plane normal is oriented on the positive z-axis

φ← U0,2π

if theta distribution is HEMISPHERE then

θ ← arccosU−1,1

else if theta distribution is LAMBERTIAN then

θ ← arccos
√
U0,1

// convert to cartesian coordinates. Absolute value of z-component gives a

hemisphere rather than a sphere

d̂
′
← (sinθsinφ, sinθcosφ, |cosθ|)

// Rotate the hemisphere (and the random point) by centering the z-axis along

the cylinder surface normal

d̂← rotate d̂
′

vector to align with the normal vector of F

3.2 Improving the Performance of Tetrahedral Mesh Queries

A common operation in both the light propagation simulation itself and post-processing queries for

applications like PDT treatment planning involves determining which tetrahedron element in the mesh

contains a given point p. For example, finding the tetrahedron containing the random point generated

on or in the 3D volume of the cylindrical diffuser described in Section 3.1 is necessary to launch a

photon packet in simulation. These operations can be expensive, especially for real medical applications

with large meshes. In this work, we optimized this query for the general case by using an RTree data
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Figure 3.5: A mesh region light source with the regions (left) and the emission profile using a surface
normal distribution (right)

structure. The following section provides a brief discussion on how this data structure works and how

it is used in the context of our work to improve the performance of the simulator.

3.2.1 Point to Containing Tetrahedron Lookup using RTrees

The goal of the query is simple: given a point p inside the boundaries of the mesh, find the tetrahedron

that contains it. Given a tetrahedron T , the normal vector of each of its faces n̂i (which by convention,

are directed towards the inside of the tetrahedron) and a constant point ci anywhere on each face, we

can determine if p is within T using Algorithm 4. The height hi, is the distance from 2D plane made by

the ith tetrahedral face to the point p. Since each face normal vector n̂i points towards the inside of the

tetrahedron, if the distance (hi) from the face to the point p is positive for all faces, we know the point

is within the tetrahedron. Contrarily, if the distance is negative for any face, then the point is outside

of the tetrahedron. An example of both cases is illustrated in Fig 3.6 for a single face of a triangle.

Algorithm 4: Check if point is inside tetrahedron

Data: Tetrahedron T defined by face normals and constants (n̂i, ci) and query point p

Result: Whether p is within the tetrahedron T

for i← 0 to 3 do

hi ← n̂i · (p− ci)

return true if hi ≥ 0,∀i ∈ [0, 3], otherwise false

The trivial solution for finding the tetrahedron containing a point is to check every tetrahedron in

the mesh, performing Algorithm 4 for each. This query can be performed millions of times during

a simulation (e.g. every time a new photon packet is launched) and also when implementing more

complicated applications like light source placement in PDT treatment planning. In this work, we

significantly improved the performance of this query by using an RTree datastructure.

The RTree datastructure hierarchically partitions a set of objects to reduce search time. In our case,

the space is R3, over which we wish to partition the tetrahedrons. This changes the time complexity of

the query from linear (O(n)) to logarithmic (O(logn)), where n is the number of tetrahedra in the mesh;

that is, we only consider a logarithmic number of tetrahedrons, rather than checking every tetrahedron.

An example RTree structure for R2 is shown in Fig 3.7. The left figure shows the spatial view of the

partitioning, while the right figure shows an instance of the RTree datastructure. If we wish to find
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Figure 3.6: Plane-to-point distance calculation for a point inside (left) and outside (right) of a triangle.

the object containing some point, we move down the tree on the right of Fig 3.7 and check if the point

is contained in each of the partitions until we find the object (or a set of possible objects) that could

contain the point (L in Algorithm 5). For example, if the query point is the star in Fig 3.7, the RTree

would return the list L = {C,E}, since the point is contained in both rectangles. In our application, L

contains all of the tetrahedra whose bounding boxes contain the query point. However, being contained

in the bounding box of a tetrahedron does not mean the point is in the tetrahedron itself. To find

the tetrahedron that contains the query point, we do a linear search over the relatively small (∼10-100

tetrahedra) list L and determine which tetrahedron contains the point using Algorithm 4. Algorithm 5

summarizes how we use the RTree to find the tetrahedron containing point p.

Figure 3.7: 2D object partition (left) and corresponding RTree (right)
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Algorithm 5: RTree Query

Data: Set of tetrahedrons T , RTree R and query point p

Result: The tetrahedron containing p

L← query R for point p

t← linearly search L for tetrahedron containing p (uses Algorithm 4)

return t

Our RTree approach results in checking significantly less tetrahedrons when performing the query.

To verify the RTree’s accuracy and measure its performance, we randomly generate a set of 200 points

in a mesh with ≈1.1M tetrahedrons, which is a typical number from our benchmark meshes. For each

random point, we perform both a linear and RTree lookup and ensure that both queries return the same

tetrahedron (the linear query has already been rigorously verified). To benchmark performance, we

measure the latency of each query. In total, the 200 linear and RTree queries take 18427ms and 115ms,

respectively. The average linear query latency is 92ms while the average RTree query latency is 0.4ms.

In summary, the RTree query achieves over a 230x speedup over the linear query. Due to Amdahl’s

law [6], the RTree’s effect on the overall performance of a simulation depends on the total time spent

launching packets (the only place where the point-to-tetrahedron lookup is used), which can vary across

models and simulation parameters. To quantify the RTree’s effect on the simulators performance, we

use a realistic model with 21 million tetrahedra and a single cylinder light source. We found that the

RTree lookup resulted in a 10x speedup in total simulation time over the naive linear lookup.
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Hardware Acceleration

In this chapter we discuss two methods for accelerating the FullMonteSW simulator using a GPU and

FPGA: FullMonteCUDA and FullMonteFPGACL, respectively. We begin this chapter with some mo-

tivation for exploring different acceleration methods. We then provide a high-level discussion on the

design choices for hardware acceleration, in particular, how to integrate the accelerated simulator into

the existing project. Next, we discuss how we validate the accuracy of our hardware accelerated simula-

tors using the software simulator as a baseline. The final sections describe the details of our accelerated

implementations and compare the performance against other state of the art simulators.

4.1 Motivation

Improving the performance of our software simulator further can improve the quality of automated PDT

treatment planning [66] or the quality of the images created by BLI and DOT by running more simula-

tions in an allocated amount of time. As discussed briefly in Section 2.6 and in [20, 21], FullMonteSW

utilizes multithreading, hyperthreading, optimized datastructures and hand-coded vector instructions.

These optimizations make FullMonteSW the fastest and most full-featured MC biophotonic light prop-

agation simulator written in software [20]. Additional software optimizations show diminishing perfor-

mance improvements, which influences the investigation of other acceleration techniques. The following

sections discuss the motivation for using a GPU and FPGA for hardware acceleration.

Why a GPU?

As discussed in Section 2.5, a typical CPU contains a small number (∼1-12) of fast and flexible computing

cores that operate independently. In comparison, GPUs contain many (∼700-4000) simpler computing

cores with subsets that work in lock-step. The cost of the simplicity and massive parallelism in a GPU

is that a single core operates slower than a single CPU core. However, for applications, like ours, that

have significant data parallelism (i.e. perform the same operation on many pieces of data), the GPU

can improve throughput. These factors influence us to accelerate the algorithm on a GPU for two main

reasons. First, we hypothesize that the development difficulty will be much lower than other acceleration

techniques, like an FPGA. We also hypothesize that creating an initial prototype will be relatively simple

since the CPU and GPU code will be very similar in structure. We believe that most of the programming

effort will be abstracting the acceleration properly to make it transparent to the user and making GPU

33
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specific optimizations to improve performance. Second, as discussed in Section 2.4.4, the Monte Carlo

algorithm is highly parallel since the path of a packet has no effect on the path of any other packet.

Therefore, packets may be launched completely in parallel, even on different devices (i.e. a cluster of

GPUs), so long as the energy accumulation arrays are summed together once the simulations finish. This

characteristic of the algorithm maps naturally the GPU architecture: each thread is assigned a single

packet to propagate through the mesh until it loses roulette or exits the mesh.

Why an FPGA?

As discussed in Section 2.5.3, the FPGA uses a different computation technique than CPUs and GPUs.

The spatial computation performed by FPGAs can be more difficult for the developer to describe than

the computation for CPUs and GPUs. Along with the relatively difficult programming paradigms for

FPGAs, we believe that implementing the algorithm on an FPGA will be a more difficult task than

the GPU. However, the algorithm has various attributes that make FPGAs an attractive choice for

acceleration. As discussed in the previous section, there is ideal data parallelism in the Monte Carlo

algorithm and packets may be launched completely in parallel. In addition, the packets exhibit significant

pipeline parallelism, since the stages in the computation are mutually exclusive between packets. In Fig

2.6 each circle could be a pipeline stage connected by logic that moves packets from one stage to another.

For example, one packet could be in the draw step stage, another in the hop stage and another in

the drop stage and these operations could be performed and the packets moved to the next stage in

parallel since they are mutually exclusive. In this simple example, we are computing the propagation of

three packets at the same time. As will be discussed in Section 4.7, we plan to construct a pipeline like

this but at a much finer level with significantly more pipeline stages to extract even more parallelism.

This technique will allow for a deep pipeline with no stalls and a high operating frequency that will

increase packet throughput and therefore the simulation performance. In addition, given sufficient

FPGA resources, we can duplicate this pipeline to fill the FPGA and, due to the various degrees of

parallelism, simulate even more packets in parallel.

Another decision for the FPGA design is the programming language we use to describe the algo-

rithm. We considered using Verilog HDL, C++ HLS and OpenCL HLS to describe the algorithm. As

discussed previously in Section 2.5.3, each choice has its own productivity-performance tradeoffs. Based

on experiences and difficulties with implementing the algorithm in lower-level RTL languages, we will

use the Intel FPGA SDK for OpenCL (version 18.1). The challenge with using OpenCL is describing

the algorithm in a way that the compiler (AOC in the case of the Intel OpenCL SDK for FPGAs) is

able to generate a functioning pipeline without sacrificing substantial performance and area. Section 4.7

will discuss the strengths and weakness we found with using the FPGA SDK for OpenCL and how it

could be enhanced to better support applications like ours.

Table 4.1 summarizes the compute architectures used in this work. We tried to the best of our

abilities to fairly compare our implementations against one another, and against other simulators, by

accounting for the differences in the hardware (e.g. process generation, price, power, etc).

4.2 Design Choices

Before developing the hardware accelerated simulators, we set some design goals which are summarized

in the following list:
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Table 4.1: The different compute architectures used in this work
Hardware Brand/Name Year Process Node Details

CPU Intel Core i7-6850 2016 14nm Clock Rate: 3.8 GHz
Cores: 6 (12 threads)
RAM: 32GB
Vector instructions?
AVX2
TDP: 140W

GPU NVIDIA Quadro P5000 2016 16nm Clock Rate: 1.607GHz
SMs: 20
SPs/SM: 128
Board Memory: 16GB
TDP: 180W

GPU NVIDIA Titan Xp 2017 16nm Clock Rate: 1.405GHz
SMs: 30
SPs/SM: 64
Board Memory: 12GB
TDP: 250W

FPGA Terasic DE10-Pro (Stratix 10) 2019 14nm LEs: 2800K
DSPs: 5760
RAMs: 229 Mbits
DDR (on board): 32GB

1. Give statistically correct results across various benchmarks

2. Make the acceleration transparent to the user

3. Gather the same output data as the software simulator

4. Support all light sources supported by the software

5. Achieve a 4x performance improvement or better

These goals require important decisions to be made about the design of the simulator and careful

planning before implementation. The next section will discuss our method of validating the accuracy of

the hardware accelerated simulation results. The software simulator is comprised of complex and efficient

C/C++ code that is inherently difficult to use, modify and extend. The simulator is used predominately

by medical researchers who may lack the knowledge or time to use complex C/C++ APIs. Therefore,

to simplify the usage of the simulator without limiting its flexibility, we create a TCL scripting interface

[58, 20]. The hardware accelerated simulators should be supported by this scripting interface and the

hardware acceleration should be made transparent to the user by ensuring inputs from and outputs to

the user are the same (or as similar and simple as possible) as the software simulator. This requires

additional pre- and post-processing steps to convert the input data to target the specific acceleration

device and gather the output data from the device and process it accordingly. A major limitation of

existing hardware accelerated simulators [1, 19] is the lack of support for complex light sources. As

discussed in Section 2.3, accurately representing the complex light sources in simulation is vital to the

accuracy of DOT, BLI and PDT. Therefore, our goal is for the hardware accelerated simulators to support

the same set of light sources as the software. Lastly, we wish to achieve at least a 4x speed improvement

over the already highly optimized software simulator, thereby matching the estimated acceleration of
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the RTL implementation [19]. This would exceed the hypothetical performance improvement estimated

in [19] and the performance achieved by [1] on voxel geometries.

4.3 Validation of Output

FullMonteSW uses the TinyMT random number generator (RNG) [57] which is pseudorandom; that

is, given the same simulation parameters (mesh, material optical properties and number of packets to

simulate), multiple runs of the simulation will produce identical output. However, even when these

simulation parameters are kept constant, it is still possible for differences in the outputs to arise. For

example, a different initial RNG seed, number of threads or underlying compute architectures cause

discrepancies between simulations with the same parameters. This means that the output from our

accelerated simulators may be different than the output of the software baseline, even though the simu-

lation parameters are identical. Therefore, we must develop a method to accurately compare the output

from our accelerated simulators against the output from the software baseline.

The normalized L1-norm (|x̂|1) of two simulations, A and B, can be computed using Equation

4.1, where ΦA(i) and ΦB(i) are the fluences in tetrahedron i from simulations A and B, respectively.

To compare our accelerated simulators against the software baseline, we first perform two software

simulations with different RNG seeds and compute the normalized L1-norm. Since the only parameter

changing is the RNG seed, this gives us a measure of the random noise for the specific simulation. Next,

we perform the same simulation using one of our accelerated simulators and compute the normalized L1-

norm, where simulation A is one of the software simulations, and B is that from the accelerated simulator.

We then compare the two normalized L1-norm values; if these numbers are similar, we can conclude that

the difference between the software simulation and accelerated simulation is comparable to random noise.

If the difference between our accelerated simulations and the baseline is comparable to random noise,

then our accelerated simulators are producing statistically correct output since the software simulator

has already been validated [20]. Tables 4.4 and 4.9 summarize the normalized L1-norm values of the

various benchmarks from Table 4.2 to validate the accuracy of our accelerated simulators.

|x̂|1 =

∑
i |ΦA(i)− ΦB(i)|∑

i |ΦA(i)|
(4.1)

4.4 Packet Launch

Our goal for the hardware accelerated simulators is to support every light source supported by the

software simulator. This can be achieved one of two ways: by implementing the complex packet launching

code in the hardware accelerators or by using the already existing software code, generating the launched

packets in the CPU and transferring the launched packet data to the hardware accelerator. As shown in

Fig 2.6, a packet is launched once during the simulation (the launch stage) and undergoes thousands

of scattering and absorption events before either dying in roulette or exiting the mesh. Thus, the

acceleration of the launch stage is not crucial to the performance of the simulator, due to Amdahl’s law

[6]. Therefore, for the hardware accelerated versions, we compute the launching of packets in software

before starting the simulation and have the launch stage in the hardware accelerated simulators read

the packet from memory. This allows the hardware accelerated versions to instantly support all the light
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Table 4.2: Models used for the validation and benchmarking of accelerated simulators

Model Tetrahedrons Light Sources Materials
(µs[mm

−1], µa[mm−1], g, n)2

HeadNeck1 1088680 Isotropic Point,
Pencil Beam,
Fiber Cone

tongue (83.3, 0.95, 0.93, 1.37)
tumour (9.35, 0.12, 0.92, 1.39)
larynx (15, 0.55, 0.9, 1.36)
teeth (60, 0.99, 0.95, 1.48)
bone (100, 0.3, 0.9, 1.56)
tissues (10, 1.49, 0.9, 1.35)
fat (30, 0.2, 0.78, 1.32)

HeadNeckTumour1 8944 Isotropic Point air(0.0, 0.0, 0.0, 1.0)
tumour (9.35, 0.13, 0.92, 1.39)

Bladder1 1706958 Isotropic Point,
Pencil Beam,
Volume,
Ball,
Line,
Fibre Cone

air (0, 0, 0, 1.37)
urine (0.1, 0.01, 0.9 1.37)
surround (100, 0.5, 0.9, 1.39)

cube 5med [59] 48000 Isotropic Point mat1 (20, 0.05, 0.9, 1.3)
mat2 (10, 0.1, 0.7, 1.1)
mat3 (20, 0.2, 0.8, 1.2)
mat4 (10, 0.1, 0.9, 1.4)
mat5 (20, 0.2, 0.9, 1.5)

FourLayer [59] 9600 Pencil Beam layer1 (10, 0.05, 0.9, 1.3)
layer2 (30, 0.1, 0.95, 1.5)
layer3 (10, 0.05, 0.9, 1.3)
layer4 (30, 0.1, 0.95, 1.5)

1 Material optical properties extracted from literature [7, 9, 10, 17, 23, 51, 60, 64]
2 Material properties: scattering coefficient (µa), absorption coefficient (µs), anistropy (g) and refractive

index (n)

sources already implemented in software and reduces the development time and effort required to add

new light sources or modify existing ones. Sections 4.6 and 4.7 will describe the specifics of how this was

done for the GPU and FPGA accelerated versions, respectively.

4.5 Hardware Accelerator Integration

To achieve our goal of transparent acceleration, we integrate the hardware accelerators into the existing

software project using the method shown in Fig 4.1. The user can either allow the simulator runtime to

choose which hardware to use, or request for the simulation to be run on a CPU, GPU or FPGA using

a set of TCL scripting commands. This method of integration results in maximal code reuse. As shown

in Fig 4.1, the code to process input, start the simulation and produce output is shared across each

implementation. The accelerators have a small amount of pre- and post-processing code to convert to

and from a format suitable for the specific device. As discussed in the previous section, this also allows

each simulator to use the same code for launching packets (part of the generic pre-processing step in Fig

4.1).
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Figure 4.1: Integration of FullMonteCUDA and FullMonteFPGACL into existing software project.

4.6 GPU Implementation: FullMonteCUDA

This section discusses how we implement the FullMonteSW algorithm using an NVIDIA GPU. Specif-

ically, we used both an NVIDIA Quadro P5000 and NVIDIA Titan Xp GPU in this work. For the

software baseline and GPU host code we used an Intel Core i7-6850 3.8GHz CPU with 6 physical cores

(12 virtual cores with hyperthreading), vector instructions enabled and 32GB of RAM. This section

begins with a discussion of how the FullMonteSW code was translated to a GPU kernel and various

optimizations we made to better tailor the algorithm to the GPU architecture. We then discuss the

accuracy and performance results of our GPU accelerated simulator, FullMonteCUDA. We conclude this

section with an analysis of the GPU code to identify the performance bottlenecks.

4.6.1 Design Overview

Since FullMonteSW is a multithreaded application, it is not complex to convert it to GPU code. The

software code has a function which performs the simulation for a single packet. To implement the GPU

kernel code, we first copy this function (and all sub-functions) nearly line-for-line to CUDA code. This

conversion is simple since CUDA is a C++ based parallel programming language. We also create the

CUDA host code that coordinates the GPU accelerator. The software uses a small number of threads

(N ≈ [1 − 24]) to perform the computation of many packets (P ≈ [106, 107]). Thus, each software

thread is assigned dP/Ne packets to simulate. In comparison, each thread in the GPU kernel simulates

one packet. However, the GPU has limits on the maximum number of threads per simulation [49].

Therefore, launching all photon packets may require multiple invocations of the kernel based on the

maximum number of threads and global memory size of the GPU. To improve the usability, the GPU

accelerator automatically determines the number of packets to launch and makes multiple asynchronous

kernel invocations until all of the packets have been launched. After all of the GPU kernels have been

launched, the host can either wait for them to finish or continue performing other computation. Once
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Parse input

Generate GPU
data structures

Create launch
packets
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GPU kernel

Done all packets Wait for GPU
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GPU runs kernels

no
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Figure 4.2: The host code of FullMonteCUDA

all of the kernels have finished executing in the GPU, the CPU host code copies the output data from

the GPU memory into its own memory and generates the output files using the same methods as the

software simulator.

The host logic for a single simulation is shown in Fig 4.2. The integration of FullMonteCUDA into

FullMonteSW was crucial for various reasons. As discussed earlier in this chapter, the integration allowed

the GPU accelerator to automatically support all of the light sources implemented in the software. More

generally, since the input parsing, output producing and light source code is shared with the software

simulator, any modifications, additions and optimizations to this code are instantly usable by both the

CPU and GPU simulators. This drastically improves the usability, code readability and development

productivity of the GPU accelerator.

Optimizations

In the ideal scenario all GPU threads are constantly performing computations and therefore the device

is running at maximum capacity. However, this ideal case is almost never attained as threads are

sometimes stalled waiting for data to be ready. For FullMonteCUDA, the most significant reasons

for stalls are memory dependencies and execution dependencies. A memory dependency occurs when

accessing memory, causing the GPU to stall until the request is complete. The length of such a stall can

vary depending on where the memory resides, as shown in Table 2.1. An execution dependency occurs

when an instruction depends on the result of a previous instruction, causing the GPU to stall until the
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first instruction is finished.

We use the NVIDIA Visual Profiler (NVVP) to identify bottlenecks in the code and more accurately

measure the impact of optimizations. Fig 4.3 shows profiling results for the final implementation of the

algorithm on the HeadNeck mesh from Table 4.2 using 106 packets. The chart illustrates the distribution

of reasons for kernel stalls and helps pinpoint latency bottlenecks [50]. It shows that the largest number

of stalls in the fully optimized implementation are due to memory dependencies. This is typical for

applications like ours that have large datasets and unpredictable memory access patterns. In Fig 4.3,

the other kernel stalls can be caused by issues like instruction fetching, instruction issuing, memory

throttling and more. For more information see NVIDIA’s NVVP User Guide [50].

other
15%

execution dependency
27%

memory dependency
58%

Figure 4.3: NVVP PC Sampling data for the final GPU implementation using the Titan Xp NVIDIA
GPU [67]

The naive implementation of the GPU kernel described in the previous section, which was nearly

identical to the software code, achieved a speedup of 2x over the software but performed sub-optimally

on the GPU. We implement a series of optimizations which better tailor the algorithm to the GPU

architecture. Table 4.3 summarizes the performance results for some of these optimizations and the

following sections discuss them in more detail.

Table 4.3: Performance increase for each FullMonteCUDA optimization over FullMonteSW using the
NVIDIA Titan Xp GPU

Optimization Incremental Speedup
Naive 2x
CUDA vector datatypes and math operations 2.5x
Materials constant cache 1.6x
Thread local accumulation cache 1.3x
Total 10.4x

Launching packets in the host FullMonteSW supports a wide range of light sources which require

many conditional statements. As discussed previously, we chose to compute packet launches in the CPU

host and send the data to the GPU kernel before starting the simulation. For the GPU specifically, this
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decision was made for two reasons. First, it allows the same complicated light emitter code to be used

whether GPU-acceleration is being used or not. This reduces the development time and effort required

to add new sources or modify existing ones. Second, the code that launches packets is highly divergent,

which does not map well to GPUs [15]. This would result in increased thread divergence and decreased

performance.

Vector datatypes and math operations CUDA provides native vector datatypes (e.g. float2,

float4, uint4, etc.) [49] which are similar to the vector datatypes used in the software simulator.

These are C-style structs with specific memory alignment requirements. The alignment and support

in the GPU for these special datatypes make them particularly efficient when accessing the entire vector

at once. Therefore, we group logical sets of data, for example positions, direction vectors and material

optical properties, into vector datatypes to improve memory performance.

As discussed in Section 2.4.4, the hop-drop-spin algorithm performs many complicated calculations

that rely heavily on the use of floating-point mathematical operations (e.g. recip, cos, sin, dot, cross).

Therefore, we investigated the use of variants and approximations to these functions and various CUDA

compiler flags to improve their performance. When modifying the functions and flags, we monitor the

change in performance and ensured the accuracy of the result using the method discussed earlier in

Section 4.3. We determine that it is safe to use the use fast math flag to turn on all CUDA fast-

math approximations without sacrificing accuracy. Together, the use of vector datatypes and fast math

approximations results in a ∼2.5x speed improvement, as shown in Table 4.3.

Constant materials caching Typical medical applications have a small number of materials in the

model (≈ 5) and these properties do not change over the course of the simulation. Therefore, we store

them in the constant memory of the GPU (Table 2.1) to improve their read latency. A single set of

material properties requires 72 bytes of storage, which we pad to 128 bytes to align them to a 128

byte boundary (the cache line size of the GPU) to further improve memory performance. Therefore,

the maximum number of materials supported by FullMonteCUDA is bounded by the size of the GPU’s

constant cache. All of the currently supported NVIDIA GPUs have a 64kB constant cache which can

store up to 500 materials. This is sufficient for most practical medical applications. Table 4.3 shows

that the storage of material properties in the constant cache improves the performance by almost 2x.

This performance improvement is due to a significant reduction in the number of memory and execution

dependency stalls, as shown in Fig 4.4.

Local accumulation buffers During the drop stage of the propagation algorithm (Fig 2.6), the

packet drops some of its weight into the tetrahedron it currently resides in. A read-accumulate-write

operation is performed for that tetrahedron entry in the accumulation array to model photon absorption.

To preserve data consistency, this accumulation uses an atomic operation to read the current energy in

the tetrahedron, add to it and then write it back. However, atomic operations can be computationally

expensive as they will stall other threads trying to update the same tetrahedron, which stalls the entire

warp the thread belongs to. In the draw step stage, the generated step length depends on the attenu-

ation coefficient of the material the packet currently resides in, as shown in Equation 2.6. Depending on

the granularity of the mesh (i.e. the size of the tetrahedrons) relative to the attenuation coefficient (and

therefore the range of step lengths generated by Equation 2.6), packets may take several steps within

a single tetrahedron before moving to the next. We use this information to create a custom cache for
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each thread to store accumulations locally and avoid excessive atomic read-accumulate-write operations

to global memory. We implement this by using the local memory of the GPU to store an array of

tetrahedron IDs and the currently accumulated energy for that tetrahedron, for each thread. When a

packet drops energy into a tetrahedron, the local accumulation array is scanned for the current tetra-

hedron using the ID. If the value is currently cached in local memory, then the accumulation happens

locally, otherwise the least recently used entry in the cache is written back to global memory and the

current tetrahedron replaces it in local memory. We tested caches of size 1-32 entries and found that all

configurations improved performance but a single-entry is optimal. This is because the time to linearly

scan the cache and perform LRU eviction logic outweighed the benefit of a slightly higher hit rate. We

also tried implementing a directed mapped cache with up to 32 entries. For our application, the single

entry cache performed better than the directed mapped cache, for similar reasons as the LRU cache.

The single entry cache results in an ∼30% speed improvement, as shown in Table 4.3. This is caused by

a significant reduction in the number of memory dependency stalls, as shown in Fig 4.4.
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Figure 4.4: The number of execution and memory dependency stalls reported by NVVP before the
constant material cache, before the accumulation cache and the final implementation with both the
constant cache and the 1-entry accumulation cache [67]

4.6.2 Results

To validate the output from our FullMonteCUDA, we use the method described earlier in Section 4.3.

Table 4.4 compares the normalized L1-norm values between two differently seeded software simula-

tions and between a software and GPU-accelerated simulation. This table validates the output of our

GPU-accelerated simulation by showing that the difference in output between FullMonteSW and Full-

MonteCUDA is comparable to random noise. Figure 4.5 shows the fluence plots for the cube 5med model

using 108 packets with FullMonteSW (left) and FullMonteCUDA (right).

We benchmarked FullMonteCUDA against another GPU-accelerated tetrahedral-mesh light propa-

gation simulator, MCtet. To do so, we used the same layered MCML models described in [70], as these

are the only models for which MCtet’s authors provide performance data. The results, summarized in

Table 4.5, show that FullMonteCUDA achieves a speedup of 11x over MCtet. Even though FullMonte-
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Table 4.4: Normalized L1-norm values for the models from Table 4.2 using 108 packets for two differently
seeded CPU simulations (row 1) and a GPU and CPU simulation (row 2)

HeadNeck Bladder cube 5med FourLayer
FullMonteSW-FullMonteSW 0.0027 0.0322 0.0028 0.0012
FullMonteCUDA-FullMonteSW 0.0026 0.0342 0.0031 0.0020

(a) (b)

Figure 4.5: Output tetrahedral fluence plots of the cube 5med model (Table 4.2) for FullMonteSW (a)
and FullMonteCUDA (b) using 108 packets.

CUDA was designed for far more complex geometries than these layered models, it still outperforms

CUDAMCML which is tailored specifically for layered geometries.

Table 4.5: Performance results for CUDAMCML, MCtet and FullMonteCUDA using the MCML layered
models from [70]

Model CUDAMCML (s) MCtet (s)
FullMonteCUDA (s)

Quadro P5000 Titan Xp
1-layer 27.1 103.4 23.7 16.8
3-layer 83.8 433.8 75.8 40.9

We also benchmarked FullMonteCUDA against state-of-the-art software simulators using more com-

plex tetrahedral models, for which it was designed. We extended the performance analysis from [20]

using the same compiler, compiler settings and models to compare FullMonteCUDA against TIM-OS,

MMCM and FullMonteSW. We validated the output for 106 packets using the method described in Sec-

tion 4.3 and found that the results from FullMonteCUDA agree with those from the other simulators.

The results, summarized in Table 4.6, show that FullMonteCUDA achieves a 12x speedup over MMCM,

up to 19x over TIM-OS and up to 11x over FullMonteSW. As discussed in [20], we were unable to repro-

duce the MMCM results for the Colin27 mesh due to a reported bug in MMCM for the combination of

simulation options necessary to accurately compare MMCM and FullMonteSW/FullMonteCUDA. Since

FullMonteSW is 2.5x faster than MMCM on small meshes, we conservatively estimate that this will scale

linearly to larger meshes. As discussed in the next paragraph, we measure FullMonteCUDA to be ∼10x

faster than FullMonteSW on large meshes. Thus, we expect FullMonteCUDA to be ∼25x faster than

MMCM on large meshes.

To further benchmark FullMonteCUDA against FullMonteSW, we use the complex geometry models
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Table 4.6: Performance results for TIM-OS, MMCM, FullMonteSW and FullMonteCUDA

Model TIM-OS (s) MMCM (s) FullMonteSW (s)
FullMonteCUDA (s)

Quadro P5000 Titan Xp
Colin27 [25] 34.1 — 19.8 2.7 1.8
Digimouse [59] 4.7 9.4 3.8 0.9 0.8

in Table 4.2 with packet counts ranging from 106 to 108. The results, summarized in Tables 4.7 and

4.8, show that FullMonteCUDA achieves a performance improvement between 4-13x across the various

benchmark models. For each case, we verify the accuracy of the output using the method described in

Section 4.3.

As shown in Tables 4.7 and 4.8, FullMonteCUDA performs better when simulating more packets.

As illustrated in Fig 4.2, FullMonteCUDA has the additional overhead of transferring data between the

CPU and GPU. To quantify this, we use the HeadNeck model from Table 4.2 and measure the overhead

time and runtime change when launching more packets. We define the overhead time as the time required

to calculate all the launch packets on the CPU and transfer the launch packet and tetrahedral mesh

data from the CPU memory to the GPU memory. We find that the total runtime for 106 packets is 1.2

seconds. We measure the overhead time to be 0.1 seconds - roughly 8% of the total runtime. When the

number of packets is increased 100x to 108, the runtime jumps to 31.8 seconds while the overhead time

increases to only 0.15 seconds - roughly 0.5% of the total runtime. For inverse solvers, this overhead

can be amortized across the thousands of simulations since the mesh, which represents nearly all of the

memory being transferred, typically remains constant across the many forward simulation iterations and

therefore only needs to be transferred to the GPU memory once.

Our results indicate that the GPU is capable of handling the large and complex tetrahedral meshes

required for general clinical models. Moreover, as Table 4.2 and the performance results indicate, the

GPU achieves equivalent or greater speedups for the larger mesh sizes. This shows that FullMonteCUDA

is able to scale up to large and realistic clinical models and highlights the value of our GPU memory

optimizations from Section 4.6.1.

Table 4.7: Performance comparison of FullMonteCUDA against FullMonteSW using 108 packets

Model FullMonteSW (s)
FullMonteCUDA (s) Speedup

Quadro P5000 Titan Xp Quadro P5000 Titan Xp
HeadNeck 412.4 66.4 31.8 6x 13x
Bladder 1838.3 357.8 215.8 5x 9x
cube 5med 486.5 121.6 69.1 4x 7x
FourLayer 187.9 46.3 24.7 4x 8x

Table 4.8: Performance comparison of FullMonteCUDA against FullMonteSW using 106 packets

Model FullMonteSW (s)
FullMonteCUDA (s) Speedup

Quadro P5000 Titan Xp Quadro P5000 Titan Xp
HeadNeck 5.1 1.5 1.2 3x 4x
Bladder 18.3 10.0 3.7 2x 5x
cube 5med 5.0 1.3 0.9 4x 6x
FourLayer 2.0 0.5 0.4 4x 5x
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4.7 FPGA Implementation: FullMonteFPGACL

This section describes how we implement the FullMonteSW algorithm on a Terasic DE10-Pro board with

an Intel Stratix 10 FPGA (1SG280LU2F50E1VG) and 32GB of external board memory. For the software

baseline and FPGA OpenCL host code we use an Intel Core i7-6850 3.8GHz CPU with 6 physical cores

(12 virtual cores with hyperthreading), AVX2 enabled and 32GB of RAM. This section begins with an

in depth discussion on how the FullMonteSW code is translated into FPGA OpenCL kernels and various

optimizations to better tailor the algorithm to the FPGA architecture. We discuss the FPGA resource

utilization and the accuracy, performance and energy-efficiency of our final FPGA design. We conclude

the section with a discussion on the development productivity from using OpenCL for FPGAs compared

to other FPGA programming languages.

4.7.1 Design Overview

As we did for the GPU, we begin by performing a simple conversion from C++ CPU code to OpenCL

code. Again, this conversion is rather simple due to the similarities between C++ and OpenCL. However,

unlike the GPU, the software code does not map well to the FPGA and results in terrible performance on

the FPGA, with an II of 512 and an Fmax of 120MHz. Thus, we take a different approach to the problem

that breaks away from the typical OpenCL/CUDA programming paradigm, in which we re-coded the

hop-drop-spin algorithm to guide the compiler to re-create the coarse hardware pipeline structure that

we know is achievable. The pipeline in Fig 4.6 maps directly to the high-level hardware blocks of the

FullMonteFPGACL pipeline and is a slightly modified version of the pipeline depicted in Fig 2.6. This

section will describe how we implement the pipeline in Fig 4.6 on the Terasic DE10-Pro board. For the

random number generation, we use a version of the TinyMT RNG from Saito and Matsumoto [57] which

allows us to generate sixty-four 32-bit random numbers every clock cycle.

launch drawstep hop interface

dropspin exit

Figure 4.6: The core hop-drop-spin algorithm for FullMonteFPGACL

We implement the FullMonteSW algorithm by using OpenCL for FPGAs to describe a pipeline with

the same structure as Fig 4.6. At a high level, we create blocks of sequential logic to perform each of

the stages (the circles in Fig 4.6) and connect them with FIFO buffers to transfer data between the

stages (the arrows in Fig 4.6). Within each stage, we implement complex logic to perform the light

propagation calculations described in Section 2.4.4. We then create the CPU host code to parse inputs,

generate outputs, transfer data to and from the FPGA board and coordinate the start and end of the

simulation. Similarly to FullMonteCUDA, the integration of FullMonteFPGACL into the FullMonteSW
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project greatly simplifies this step as the complicated input parsing and output generation is already

implemented and we simply write code to convert to and from a format suitable for the FPGA. The

entire FullMonteFPGACL system (CPU host and FPGA kernels) is illustrated in Fig 4.7 where the

labelled arrows represent the following:

1. The CPU transferring simulation data to the FPGA.

2. The CPU signalling each of the kernels in the FPGA to start.

3. The launch kernel reading the pre-launched packets from the global memory of the board (this

is described later in this section).

4. The dropspin kernel writing the on-chip tetrahedral energy accumulation arrays to global memory

for the CPU to read.

5. The exit kernel on the FPGA signalling to the CPU when all of the packets have exited (i.e. the

simulation is finished).

6. The CPU reading the output tetrahedral energy accumulation arrays from the FPGA to produce

output.

Figure 4.7: Summary of the FullMonteFPGACL system. Large arrows represent CPU-BOARD and
FPGA-BOARD memory transfers, dotted arrows represent FPGA-CPU signals and circles represent
OpenCL kernels with the arrows between them representing unidirectional channels.

The code to support many light sources is complex, and new sources are regularly added based

on medical requirements and device advancements. As discussed in Section 4.4, we compute packet

launches in the CPU host and send the data to the FPGA kernel before starting the simulation. As an

emitted photon packet undergoes many interactions with the tissue before being terminated, most of
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the computation is in the other stages of the pipeline in Fig 4.6, rather than in the launch stage. We

therefore create an array of pre-launched packets in the CPU that is passed to the FPGA before the

simulation starts. The OpenCL standard makes this easy by allowing us to pass the array of pre-launched

packets as an argument to the launch kernel (arrow 1 in Fig 4.7). Launching packets from the launch

kernel is done by reading the data from global memory (arrow 3 in Fig 4.7) and moving the packet to

the draw step kernel. Keeping the complex conditional code required to implement the various sources

on the CPU avoids the significant area usage and potentially reduced performance that would have been

required to implement photon launching completely on the FPGA. Keeping the launching logic in the

CPU also allows our FPGA design to instantly support the same light sources as the software - avoiding

a major limitation of other high-performance FPGA implementations [1, 19].

Both Intel and Xilinx support OpenCL pipes, which are a method that allows data to be transferred

efficiently from one kernel to another. Pipes bypass the slow global memory traditionally used for

inter-kernel communication by using FIFO queues implemented in the on-chip RAMs of the FPGA, as

illustrated in Fig 4.8. The major limitation of pipes is that they do not support struct datatypes. This

makes moving complex pieces of data (like the definition of a packet in our case) difficult. To address

this, we use the Intel FPGA SDK for OpenCL channels extension [32]. Channels are specific to the

Intel FPGA implementation of the OpenCL standard (i.e. they are not part of the official OpenCL 2.0

standard [46]). They are similar to pipes and support the struct datatype, which makes moving more

complex pieces of data between kernels easier. For our design, each stage in Figure 4.6 is a separate

OpenCL kernel and the arrows represent a unidirectional channel that moves data from one kernel to

the next. The reading and writing of channels is illustrated in Code 4.1.
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Figure 4.8: Using global memory (top) and pipes/channels (bottom) for inter-kernel communication

As discussed in Section 2.4.4, the FullMonte algorithm contains many trigonometric, vector, matrix

and random number distribution functions. FullMonteSW [20] uses 32-bit floating point precision for
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these calculations, while previous FPGA versions [1, 19] use fixed-point values of various size and pre-

cision. In this work, use 32-bit floating-point precision in the OpenCL kernels. This allows portions of

complicated sequential logic to be translated from CPU C++ code to FPGA OpenCL code and therefore

greatly improves development productivity and code readability. As discussed later in Section 4.7.2, we

achieved good performance and area results using 32-bit floating-point representations. In Section 5.2.1,

we discuss the potential benefits and future work of using fixed-point representations in OpenCL for

FPGAs.

Aside from the launch kernel, where the number of loop iterations is known, the code in the shaded

kernels of Fig 4.6 is structured similarly to Code 4.1. Fig 4.7 shows that the number of times a packet

goes through the circular pipeline path consisting of the drawstep, hop, interface and dropspin

kernels is dependent on random factors (the RNG, the material optical properties, the light source

parameters, etc). This is represented by the infinite loop in the kernel skeleton from Code 4.1. OpenCL

code that is structured in this way creates a block of hardware on the FPGA that reads from an input

channel in a non-blocking fashion, performs the logic of the kernel if the data read from the channel is

valid, writes the data for the next kernel into the output channel and repeats indefinitely.

kernel kernel name ( /∗∗ k e rne l args ∗∗/ ) {
/∗∗ i n i t i a l i z a t i o n ∗∗/
while ( true ) {

i n da ta = read channel nb intel (IN CHANNEL, &va l i d ) ;

i f ( va l i d ) {
/∗∗ k e rne l l o g i c ∗∗/
write channel intel (OUTCHANNEL, out data ) ;

}
}

}

Code 4.1: Skeleton code for the shaded kernels in Figure 4.7

When designing FullMonteFPGACL, we focused on creating a pipeline that produces valid results

with good performance. Moreover, we wanted a design that could be easily debugged and extended

to new devices or different algorithms. The only limitation placed on the model being simulated by

FullMonteFPGACL is a maximum of 65k tetrahedral elements in order to fit the entire mesh in on-chip

memory. One restriction we found in OpenCL for FPGAs is that separate kernels cannot share local

memory. Both the drawstep and interface kernel from Fig 4.6 require access to the same read-only

tetrahedral mesh data. The ideal scenario would store one copy of the mesh in on-chip memory with

two read ports, one for each kernel. However, this is not possible due to the restrictions of the OpenCL

language. To move forward, we decided to simply duplicate the mesh memory in both kernels. In Section

5.2.1, we discuss a method to create a custom on-chip caching structure which could allow the mesh to

be stored in the large global memory of the board without decimating the performance of the simulator.

In our initial attempt to create the pipeline in Fig 4.6, the compiler generates a circuit with an Fmax

of 300MHz and is able to schedule our design with an II of 1 for all kernels except for the dropspin

kernel, which had an II of 29. While an II of 29 is not optimal, this is a substantial improvement

over the naive implementation that had an II of 600. We find that the double precision (i.e. double)

read-accumulate-write operation from Code 4.2, which models absorption in the dropspin stage, is the
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culprit for the high II. Through software profiling (discussed further in Section 5.2.1), we determine

that using a 64-bit floating-point to track tetrahedral absorption can be replaced by a 64-bit fixed-point

number (using a long datatype) without overflow or loss of significant precision. This optimization

lowers the II of the dropspin kernel from 29 to 2.

The remaining II of 2 is a result of the AOC detecting a potential dependency in the tetraEnergy array.

The compiler breaks apart and pipelines the read-accumulate-write operation into two stages: read and

accumulate-write. Thus, if consecutive iterations of the loop in Code 4.2 are to the same tetrahedron,

then the entire read-accumulate-write operation (the read and then the accumulate-write) of the first

iteration must be completed in its entirety before the next iteration reads from the same address, or else

accumulations could be lost. Since the AOC cannot determine at compile time (without an intervention

from the developer) if consecutive loop iterations will write to the same memory address (i.e. the

same tetrahedron), it conservatively assigns an II of 2 to the dropspin kernel and thus guarantees that

read-accumulate-write operations from consecutive loop iterations will not overlap.

local double tetraEnergy [MAX ONCHIP TETRAS ] ;

while ( true ) {
/∗∗ . . . ∗∗/
tetraEnergy [ packet . t e t r a i d x ] += packetWeightLoss ;

/∗∗ . . . ∗∗/
}

Code 4.2: Initial dropspin kernel snippet

To remove this dependency and achieve an II of 1, we create two instances of the accumulation array

and alternate read-accumulate-write operations on consecutive loop iterations. We use the compiler

pragma (ivdep) to tell the AOC how many consecutive loop iterations are guaranteed not to access

the same memory locations. Since we alternate the writes to two memories, we know that directly

consecutive loop iterations will write to different memories and the previously described dependency has

been removed. This optimization, illustrated in Code 4.3, achieves an II of 1 but results in a lower Fmax

of 150MHz.

local long tetraEnergy [MAX ONCHIP TETRAS ] [ 2 ] ;

#pragma ivdep s a f e l e n (2 )

while ( true ) {
/∗∗ . . . ∗∗/
tetraEnergy [ packet . t e t r a i d x ] [ cache idx & 0x1 ] += DOUBLE2FIXED(

packetWeightLoss ) ;

cache idx++;

/∗∗ . . . ∗∗/
}

Code 4.3: dropspin kernel snippet after removing the initial memory dependency

We now wish to increase the circuits Fmax, without causing the II of any kernels to increase. Using the

Quartus Timing Analyzer, we know that the critical path is from the output register of the tetraEnergy

memory, through a 64-bit adder and to the input register of the same memory. This shows that, with
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our previous change, the AOC is scheduling the read-accumulate-write into a single cycle which results

in a longer critical path and therefore a lower Fmax. To address this, we perform the same optimization

described previously, by again duplicating the accumulation arrays (from two to four), increase the loop

safe length from two to four using the ivdep pragma and manually insert pipeline registers between the

read, accumulate and write operations using the built-in AOC function fpga reg() [32]. This technique,

illustrated in Code 4.4, allows us to achieve an II of 1 and an Fmax of 312 MHz. This optimization

sacrifices an increase in FPGA resources for performance by using 4x more on-chip memory for the

accumulation arrays. However, a single accumulation array uses ∼8% of the Stratix 10 FPGA BRAMs

which, in our opinion, justifies our tradeoff decision.

local long tetraEnergy [MAX ONCHIP TETRAS ] [ 4 ] ;

#pragma ivdep s a f e l e n (4 )

while ( true ) {
/∗∗ . . . ∗∗/
long currVal = fpga reg ( tetraEnergy [ packet . t e t r a i d x ] [ cache idx&0x3 ] ) ;

long newVal = fpga reg ( currVal + DOUBLE2FIXED( packetWeightLoss ) ) ;

tetraEnergy [ packet . t e t r a i d x ] [ cache idx&0x3 ] = newVal ;

cache idx++;

/∗∗ . . . ∗∗/
}

Code 4.4: Final dropspin kernel snippet

With many FPGA resources remaining, as shown in Table 4.10, we explore the potential for pipeline

duplication. This would allow us to take advantage of both the pipeline and thread level parallelism

inherent in the algorithm using the FPGA. To duplicate the pipeline, we use code like that summarized in

Code 4.5 to instantiate multiple copies of the original kernel from Code 4.1. This includes the duplication

of channels used to pass data between the now duplicated kernels. We do this by using an array of

channels, one per pipeline instance, and access them by the pipeline index p. In the launch kernel, each

instance of the pipeline processes a fraction of the total photon packets requested. If Npkts is the total

number of packets requested, then each pipeline processes N = Npkts/NUM PIPELINES packets

with an offset of p ∗N into global memory. To simplify the pipeline duplication, we also duplicate the

on-chip tetrahedral geometry memory and energy accumulation arrays for each pipeline. Instantiating

PIPELINE N copies reduces the maximize size of the memory (and therefore the maximum number

of tetrahedrons that can be stored on chip) by a factor of NUM PIPELINES. Therefore, we only

instantiate two instances of the pipeline. This allows us to store 65k tetrahedral elements on-chip and

use some of the existing models from Table 4.2 for validation and benchmarking. Each pipeline is

responsible for half of the total packets requested and stores the energy accumulations in its own local

arrays. Therefore, after the simulation is finished but before being written back to global memory (arrow

4 in Figure 4.7), the accumulation arrays for each pipeline instance are summed together locally and then

written back to global memory. The reduction of the accumulation arrays could be done on the CPU

instead. However, doing the reduction on the FPGA requires a small number of FPGA resources (three

64-bit adders and a few pipeline registers) but reduces the amount of output data to be transferred from

the FPGA to the CPU by 4x.

The two pipeline design achieves an II of 1 and an Fmax of 285 MHz. The lower Fmax compared
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to the single pipeline is likely attributable to the increased FPGA routing complexity of the larger two

pipeline design. Section 5.2.1 discusses a more sophisticated method for scaling up the design with even

more pipeline instances and more complex on-chip and off-chip memory.

kernel kernel name ( /∗∗ k e rne l args ∗∗/ ) {
/∗∗ i n i t i a l i z a t i o n ∗∗/
while ( true ) {

#pragma un r o l l PIPELINE N

for ( int p=0; p<PIPELINE N ; p++) {
i n da ta = read channel nb intel (IN CHANNEL[ p ] , &va l i d ) ;

i f ( va l i d ) {
/∗∗ main ke rne l l o g i c ∗∗/
write channel intel (OUTCHANNEL[ p ] , out data ) ;

}
}

}
}

Code 4.5: Skeleton code for duplicating kernels

4.7.2 Results

Validation

Similar to the GPU-accelerated simulator, we validate FullMonteFPGACL using the method described

earlier in Section 4.3. Table 4.9 summarizes the normalized L1-norm values and proves the validity of

our FPGA-accelerated simulator. In addition, Fig 4.9 qualitatively shows the accuracy of our FPGA-

accelerated simulator.

Table 4.9: Normalized L1-norm values across the benchmark models using 106 packets for two differently
seeded CPU simulations and an FPGA and CPU simulation

cube 5med FourLayer Tumor
FullMonteSW-FullMonteSW 0.0322 0.0012 0.0027
FullMonteFPGACL-FullMonteSW 0.0342 0.0020 0.0026

FPGA Utilization

The hardware resources required for each kernel and the total design are summarized in Table 4.10.

The kernel total row shows the total resource utilization for the partition of the design dedicated to the

OpenCL kernels. The design total row shows the resource summary reported by the Quartus compilation

report. The extra resources make up the global interconnect for interacting with the DDR memory

controller, global memory caches for DDR accesses and OpenCL board interface logic. The RAM

utilization is high due to the on-chip caching of tetrahedrons. However, as mentioned in the footnote of

Table 4.10, when the tetrahedron data is not cached on-chip, only 10% of the total FPGA RAMs are

used. Reducing memory usage, removing the mesh element constraint and duplicating the pipeline to

scale up performance are discussed further in Section 5.2.1.
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(a) (b)

Figure 4.9: Output tetrahedral fluence plots of the cube 5med model (Table 4.2) for FullMonteSW (a)
and FullMonteFPGACL (b) using 108 packets.

Table 4.10: Stratix 10 resources for a single FullMonteFPGACL pipeline

Kernel ALM FF RAM DSP

rng 27187 59805 0 2

launch 3958.3 8008 0 0

drawstep 21100 43903 2173 11

hop 8573.3 25221 86 47

interface 27827.2 66669 2373 66

dropspin 20347.8 54563 996 59

exit 178.1 380 0 0

kernel total 109171.7 258549 5628 185

% of available 12% 7% 50%* 3%

design total 185208 406112 5866 185

% of available 20% 11% 52%* 3%
* 10% when compiled without the on-chip tetrahedron cache

Performance and Energy Efficiency

To benchmark the performance of FullMonteFPGACL, we use the three models from Table 4.2 with

less than 64k tetrahedrons (cube 5med, FourLayer and HeadNeckTumour) so that all tetrahedrons can

fit on-chip. We simulate these models with packet counts ranging from 106-107 (the typical range of

packets for most applications) using FullMonteSW and FullMonteFPGACL with a single and double

pipeline instance. FullMonteSW is configured to use 12 threads with AVX2 instructions enabled. The

performance results are summarized in Table 4.11 and show that FullMonteFPGACL achieves a speedup

of 2.1-3.9x over FullMonteSW. As with the GPU, the performance improvement depends on the mesh

complexity, with the highest speedups occurring on the most complex and realistic mesh, the HeadNeck-

Tumour. FullMonteFPGACL exceeds the performance of the simulator created by Afsharnejad et al.

[1] while being able to support a wider range of models and applications due to its integration into the

FullMonteSW project, usage of tetrahedral mesh elements (as opposed to voxels) and support of all the
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light sources supported by FullMonteSW (as opposed to only isotropic point sources). FullMonteFP-

GACL is 1-3x slower than FullMonteCUDA. However later in Section 5.2.1, we suggest future research

suggestions for reducing FPGA resource utilization, removing the mesh element constraint and scaling

up the FPGA design by filling the chip with up to 8 instances of the pipeline. With 8 instances of

the pipeline, we believe the FPGA should achieve a performance improvement of 8-16x and 1-4x over

FullMonteSW and FullMonteCUDA, respectively.

To investigate the energy-efficiency of FullMonteFPGACL, we compare the energy-efficiency (per-

formance per Watt) against FullMonteSW (CPU) and FullMonteCUDA (GPU). We estimate the power

of a single FPGA pipeline to be 30W using the Quartus PowerPlay Power Analysis post-synthesis vec-

torless power estimation with a 12.5% input toggle rate. Using the same method, we estimate a 45W

power usage for two instances of the FPGA pipeline. We attempted to use the OpenCL simulator to

generate input vectors to enable more accurate FPGA power estimations more accurate. However, after

substantial effort we were still unable to make the OpenCL simulator work for the OpenCL compiler

(version 18.1) on the Ubuntu 16.04 operating system. The Intel Core i7 CPU has a thermal design

power (TDP) of 140W and the NVIDIA Titan Xp GPU has a TDP of 250W. Both the GPU- and

FPGA-accelerated simulators require a CPU host to perform the pre- and post-processing, including

the computation of the launch packets discussed earlier in Section 4.4. This will add to the power of

both the GPU- and FPGA-accelerated simulators; however, since most of the simulation computation

is placed on the GPU- or FPGA-accelerator, the power overhead will be negligible, especially for simple

light sources. To compare energy-efficiency, we conservatively assume 85% of the CPU and GPU TDP

(119W and 213W, respectively). To compute the energy-efficiency, we use the performance numbers

from Table 4.11 and normalize by the power to compute the simulator’s performance per Watt. A single

FullMonteFPGACL pipeline is up to 10x and 4x more energy-efficient than the CPU and GPU, respec-

tively. The duplicated pipeline version achieves an 11x and 5x energy-efficiency improvement compared

to the CPU and GPU, respectively. If the single pipeline is duplicated to fill the FPGA, we expect to

achieve an energy-efficiency improvement of up to 17x and 7x over the CPU and GPU versions, respec-

tively. The improvement is due to amortizing the device static power overhead over more productive

pipeline units. The duplication of the pipeline is discussed further in Section 5.2.1.

Table 4.11: Runtimes for various benchmarks on a CPU, GPU and a single and duplicated FPGA
pipeline

Packets Model CPU (s) GPU (s)
FPGA (s)

1 pipeline 2 pipelines

106 cube 5med 5.0 1.3 3.5 2.3
FourLayer 2.0 0.4 1.3 0.8
Tumor 1.7 0.4 0.7 0.5

107 cube 5med 48.7 12.3 35.1 22.9
FourLayer 18.8 4.7 13.2 8.6
Tumor 17.9 3.7 7.2 4.6

The authors in [19] report an energy-efficiency of 67x over their baseline CPU (14W total). Our

lower energy-efficiency improvement over a CPU baseline can be explained by several factors. First, our

OpenCL design uses 32-bit floating-point precision which results in more area usage than the custom-

width fixed-point precision used in [19]. Second, the problem size is bigger since we allow for more

tetrahedrons to be stored in the FPGA RAM blocks. Lastly, as shown in Fig 4.10, FPGA power has



Chapter 4. Hardware Acceleration 54

increased with newer process generations, especially from 28 to 14nm. In addition, the power gap

between CPUs and FPGAs has been shrinking with newer process generations [3].
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Figure 4.10: The power draw of Intel CPUs and FPGAs (Stratix family) across process generations [3].

4.7.3 Development Productivity

In this work we use OpenCL for FPGAs over C++ HLS and HDL languages for various reasons, with

the most important being development productivity. As discussed in Section 2.5.3, some of the advan-

tages of using OpenCL over lower-level languages are: improvements in development productivity, code

maintenance, code extendibility and the ability to quickly create a full FPGA-accelerated system. This

section will, to the best of our ability, quantify the development effort and time across various hardware

acceleration implementations of FullMonteSW.

Table 4.12 provides a rough estimate of the single developer time required for the different hardware

acceleration implementations to both reach the prototype stage, as well as achieve a measurable per-

formance improvement over the baseline software implementation. In addition, Table 4.12 shows the

size of the designs in terms of number of files and lines of code, giving a measure of the readability and

extensibility of the design.

Earlier in this work we discussed FullMonteCUDA, which accelerated FullMonteSW using an NVIDIA

GPU and the CUDA SDK. Table 4.12 shows that the prototype took a single developer roughly a week to

create. This prototype achieved a 2x speedup over FullMonteSW and the final version achieved between

a 4-13x speedup depending on the model being simulated. The major factors in the fast and effective

development of the accurate and efficient simulator are:
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Table 4.12: Estimating the time for FullMonteSW hardware acceleration implementations to be pro-
totyped and to outperform the software by a single developer

Language
Source Code
(files, lines)

Time to (single developer):
Performance Increase over SW

Prototype Performance
CUDA (6, 1140) 1 week 1 week 4-13x
Bluespec (82, 17685) 6 months1 >3 years1 —1

Vivado HLS (35, 45888) unknown ∼4 months3 3x2,4

OpenCL for FPGA (11, 1400) 2 weeks 3 months 4x
1 The pipeline was incomplete and not fully validated
2 Supports only a subset of the features and light sources supported by FullMonteSW
3 It took four developers 2 months
4 Sacrifices accuracy by using voxels and not tetrahedrons

• The comprehensive and easy-to-follow NVIDIA documentation and example projects

• The wide spread usage of the the CUDA SDK, providing a plethora of online support

• The short compile times compared to FPGAs

• The similarity of CUDA to the CPU multithreading paradigm used in FullMonteSW

Cassidy et al. [19] targeted an Intel Stratix V FPGA using Bluespec SystemVerilog (BSV). The intent

of using BSV was to abstract from pure SystemVerilog RTL and improve development productivity

without substantially sacrificing area and performance. However, Table 4.12 shows that this was not the

case. The simulator only supports homogeneous models and, while the highly optimized pipeline stages

can be verified in simulation individually, when the entire pipeline is connected and tested the results

are inaccurate in both simulation and hardware. In addition, due to the complexity of the FPGA design,

only a subset of the features from FullMonteSW are supported.

Afsharnejad et al. [1] accelerated a modified version of FullMonteSW for voxel meshes using Vivado

HLS targeting a Xilinx FPGA. As shown in Table 4.12, the simplified design took four developers two

months to create and achieved a 3x speed improvement over FullMonteSW on one benchmark model.

The longer design time and increased design complexity (in terms of number of files and lines of code)

compared to FullMonteFPGACL is likely attributable to the use of C++ based HLS (Vivado HLS),

instead of OpenCL. As discussed in Section 2.5.3, using C++ HLS requires the developer, in addition

to creating a complex simulator, to compile the C++ code into blocks of FPGA logic, connect them

using a system integrator and find a way to transfer data to the external memory of the FPGA board.

These tasks can be error prone, tedious and time consuming, which we believe accounts for the increase

in development time and design complexity compared to our design.

In this work we created FullMonteFPGACL, which is an FPGA-accelerated version of FullMonteSW

using OpenCL for FPGAs. As shown in Table 4.12, it took a single developer around 2 weeks to create

a functioning prototype - similar to the time required for the GPU. This included creating the CPU-

FPGA system and verifying its functionality in emulation. Roughly another 2 months were required to

investigate the inefficiencies of the prototype and test various techniques that led to the optimizations

discussed in Section 4.7.1 and achieve a 4x performance improvement over FullMonteSW. The main

development productivity bottleneck was the long (∼8 hour) compile times for the FPGA, of which

the AOC front-end took roughly an hour and Quartus the remaining seven. The OpenCL emulator was

useful for verifying the functionality of small pieces of code. However, the validation of the entire pipeline

requires running in the range of 106-107 packets, which takes up to 8 hours in the emulator. Therefore,
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to validate the entire pipeline, we found it more productive to compile the entire design for the FPGA

(∼8 hours) and run it on the actual hardware (∼seconds), as it performed a more rigorous validation

of the pipeline and benchmarked the performance in a similar amount of time as using the emulator.

To debug performance bottlenecks, we attempted to use the new OpenCL Simulator (a wrapper around

ModelSim) developed by Intel. However, after many weeks of debugging the simulator we found that it

was not in a usable state at the time of this work. The OpenCL simulator would have been extremely

useful for us to find performance bottlenecks and create input vectors to increase the accuracy of the

power estimations from Section 4.7.2.

Using OpenCL significantly reduced the amount of written code (both for the FPGA and to com-

municate between the CPU and FPGA) compared to HDL languages and C++ HLS, as shown by the

data in Table 4.12. In addition, we found that the use of OpenCL drastically decreased the effort and

time involved in creating a complete heterogeneous CPU-FPGA system, by raising the abstraction level

of the CPU-FPGA communication. The OpenCL compiler was capable of optimizing and pipelining

the complex sequential code within each kernel. This made converting CPU code to target an FPGA

less cumbersome by allowing us, in many cases, to directly copy blocks of sequential C++ CPU code to

OpenCL for the FPGA.

The use of OpenCL was beneficial for development productivity; however it does not remove the

necessity for the developer to think like a hardware designer. As discussed in Section 4.7.1, simply copying

all the CPU code to OpenCL code for the FPGA (as we did for FullMonteCUDA) results in performance

over 500x worse than the CPU. We found it most effective for the developer to begin by considering

the hardware circuit they wish to create, then exploring alternative and sometimes counter-intuitive

methods to describe that circuit in OpenCL. We believe that OpenCL for FPGAs is not a method

for software developers to program FPGAs, but rather a method for increasing the productivity of a

hardware developer. This is made evident by the performance debugging we undertook and optimizations

we made to achieve the high performance for the FPGA. Specifically, some of these tasks included: the

investigation of hardware area and timing reports, identifying issues in the generated HDL and creating

a high-level solution in the OpenCL code. We found the most difficult parts of the design were: (1)

structuring the channel logic to communicate accurately and efficiently between kernels (2) correctly

unrolling OpenCL loops to create the duplicated pipelines (3) optimizing the performance for 64-bit

read-accumulate-write operations to the FPGA RAMs, as discussed in Section 4.7.1 and (4) dealing

with OpenCL’s inability to share local memory across kernels, as discussed in Section 4.7.1.
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Conclusions and Future Work

This chapter summarizes the contributions of this thesis and gives suggestions for future research to

extend this work.

5.1 Conclusions

The main contributions of this thesis advance the field of hardware accelerated biophotonic simulators by

creating the fastest GPU-accelerated simulator and first complete and verified FPGA-accelerated simu-

lator of their kind. These accelerators are fully integrated into the full-featured FullMonteSW simulator,

so they can be used with all the features of that software, while accelerating the most CPU-intensive

calculations. In addition, this thesis further enhanced FullMonteSW by making other improvements to

its performance, accuracy and usability.

Our addition of the cylindrical diffuser and mesh region light sources makes the simulator more

accurate in representing the light propagation in PDT treatment and BLI, respectively. In the future,

the addition of new light sources and processing techniques could extend the applicability of the simulator

to other applications in the medical field and even to applications outside of biophotonics where objects

need to be located in turbid media. Examples of potential applications include autonomous vehicles

navigating through light scattering fog or aquatic navigation when diving close to the seabed [12, 37].

The RTree data structure that we implemented in FullMonteSW improved the point to containing

tetrahedron query speed by over 230x. This query can happen millions of times in a single forward

simulation and even more when solving inverse problems. This query is not part of the key hop-drop-spin

loop that we hardware accelerate, and therefore its software performance can be vital to the performance

of the simulator and to inverse solvers which use it.

To this date, the GPU-accelerated simulator that we created, FullMonteCUDA, is the fastest tetrahedral-

mesh Monte Carlo biophotonic simulator. FullMonteCUDA is completely integrated with the Full-

MonteSW code, which allows the simulation acceleration to be transparent to the user. FullMonteCUDA

provides a 4-13x speed improvement over the fastest software simulator for this problem (FullMonteSW),

which can enable inverse solvers for complex medical applications, like DOT, BLI and PDT, to be more

accurate and feasible.

We also explored FPGAs as a means for hardware acceleration and developed FullMonteFPGACL:

the first complete and verified FPGA-accelerated simulator of its kind. FullMonteFPGACL achieved

57
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up to a 4x speed improvement over FullMonteSW and an 11x improvement in energy-efficiency. Similar

to FullMonteCUDA, FullMonteFPGACL is completely integrated with the FullMonteSW code, which

allows the acceleration to be transparent to the user. While FullMonteFPGACL trails FullMonteCUDA

in performance, we only use a fraction (∼20%) of the FPGA area for the two pipelines. In the next

section, we discuss an outline for future work that could remove its current constraint of storing at most

65k tetrahedra and scale up the performance of the FPGA design to achieve a 16x speed improvement

and 17x energy efficiency improvement over FullMonteSW, which would exceed the performance of

FullMonteCUDA.

5.2 Future Work

In this section we will discuss methods for improving the performance and usability of the FPGA and

GPU accelerators from this work.

5.2.1 FPGA

This section will discuss methods for reducing the FPGA resource utilization, removing the mesh element

size constraint and scaling up the design to increase performance.

Fixed-point Representation

Our design uses 32-bit precision integers (i.e. int and uint) for data not requiring decimal point

precision (e.g. tetrahedron and material IDs) and 32-bit precision floating point numbers (i.e. float)

for all data entries that require decimal point precision (e.g. positions, vectors, material properties,

lengths, etc), with the exception of the 64-bit fixed-point energy accumulation that was discussed in

Section 4.7.1. We performed software profiling (details of which can be found in [18]) to determine the

range and precision needs for different variables and the results are summarized in Table 5.1. Future

work could include using the arbitrary integer precision extension of the Intel FPGA SDK for OpenCL

[32] which allows the OpenCL design to easily use custom width and precision fixed-point integers. This

could result in up to a 2x reduction in RAM, DSP and ALM utilization for the OpenCL kernels. This

reduction in resources would allow for more throughput per device by instantiating even more pipelines

on the device, as discussed later in this section.

Table 5.1: FPGA precisions for various data determined by software emulation [18]
Data Total Bits Integer bits Fractional bits Range Precision
3D Unit Vector 18 1 17 [-1, 1] 8× 10−6

3D Position 18 4 14 [-8cm, 8cm] 6× 10−5cm
Step length 18 6 12 [0, 63] 1.2× 10−4

Packet weight 36 1 35 [0, 1] 3× 10−11

Tetrahedral absorption 64 29 35 [0, 2× 108] 3× 10−11

Tetrahedral ID 25 25 — [0, 3× 107] —
Material ID 4 4 — [0, 15] —
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Custom Memory Controller

Our design limits the size of the mesh to 65k tetrahedral elements. However, practical medical models

can contain more than 1 million tetrahedrons. The storage of data is broken down into two components:

read-only tetrahedral geometry data and read-write energy accumulation array data. We profiled the

memory access pattern and found that there is little temporal reuse of data and that a 4-8 entry LRU

cache for both the geometry and accumulation arrays could provide a hit-rate near 60%. Larger LRU

caches show poor trade-offs in terms of area and hit-rate increase. As hypothesized, the memory profiling

results across various benchmark models showed highly irregular access patterns. This access pattern

does not fit the typical cache architecture and eviction policies found in most CPUs and GPUs. However,

we found that, across all benchmarks, the access pattern has a Zipf-like distribution [16]. This means

that a high percentage of accesses are to a relatively small portion of the tetrahedrons.

In future work, the geometry and energy accumulation array data could be moved to the high-

capacity external memory of the board and the controller implemented using the FPGA RAMs. For

both the geometry and energy accumulation data, we would create a 4-8 entry LRU L1 cache backed by

a static L2 cache. To populate the L2 cache, we would simulate a small subset of packets pre-emptively,

sort the tetrahedrons based on the Zipf distribution (i.e. by access rate) and store the highest accessed

tetrahedrons in the static L2 cache. The overhead of running a subset of packets pre-emptively in this

manner would decrease the performance of a single simulation. However, this time could be amortized

when running many simulations with the same mesh, which is the typical case when solving PDT inverse

problems [66].

Multiple Pipeline Instances

In Section 4.7.1, we discussed how we instantiated two instances of the pipeline in the FPGA. This

section will discuss a more sophisticated approach that can utilize the memory controller discussed in

the previous section and decrease the FPGA RAM utilization when scaling the design up even further.

Based on the resource utilization from Table 4.10, the limiting factor for duplicating the pipeline is

RAM (50%). However, without the on-chip caching of tetrahedrons, the RAM usage of the kernels drops

to ∼10% per pipeline and the limiting factor becomes ALMs (12%). Thus, we believe that 8 copies of

the pipeline can fit on-chip, if the RAMs are managed properly.

A naive approach would be to duplicate the on-chip memory for each instance of the pipeline, as we

did for the current design. However, as the number of pipelines increases, the duplicated memory will

severely limit the amount of tetrahedrons that can be stored on chip. In this trivial approach, assuming

that the memory controller from the previous section is implemented, the L1 and L2 caches for both the

geometry and energy accumulation data would be duplicated. This would decrease the maximum size

of the static L2 caches for the memory controllers and therefore reduce the overall hit-rate. However, by

utilizing the two ports and multi-pumping support of the FPGA RAMs [31, 32], we can share a single

memory across multiple pipelines, thereby reducing the RAM utilization per pipeline and increasing the

size of the memories.

The energy accumulation arrays are read from and written to, meaning that the RAMs used to

implement their cache must have one port for reading and the other for writing. In addition, the

current Intel FPGA OpenCL documents [31, 32] only mention multi-pumping support for memory reads.

Therefore, the on-chip memory controller cache for the energy accumulation arrays must be duplicated
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for each pipeline instance.

The tetrahedral geometry data is read-only, meaning that multiple pipeline instances can share the

two read ports of the RAMs. In addition, each read port can be double or triple-pumped, allowing a

single cache to supply 2, 4 or 6 instances of the pipeline if configured using no multi-pumping, double-

pumping or triple-pumping, respectively. We hypothesize that we could fit 8 pipelines in the FPGA

and therefore the most logical configuration for this would use two copies of the static L2 cache and

double-pump the two read ports, as depicted in Figure 5.1. This configuration would allow the static

L2 geometry caches to store ∼4x more tetrahedrons than the naive configuration.

Figure 5.1: Proposed memory structure for duplicating FullMonteCL pipelines [68]

To estimate the performance of this design, we scale up the single-pipeline performance by a factor

of 8, which is similar to the performance scaling we experienced with 2 pipelines (Section 4.7.2) as well

as the use of more CPU cores [58]. To estimate the energy-efficiency of this design, we multiply the

core dynamic power (excluding I/O) by a factor of 8. This estimate is conservative since the global

board control logic and the shared on-chip RAM caches (and therefore their dynamic power) will not

scale linearly with the number of pipeline instances. This leads to an estimated 16x performance and

17x energy-efficiency improvement over FullMonteSW and a 1-4x performance and 7x energy-efficiency

improvement over FullMonteCUDA.

5.2.2 GPU

After creating the high performance GPU design, we used the NVIDIA Visual Profiler (NVVP) to

identify bottlenecks in the code. Fig 4.3 shows the profiling results for our design using the HeadNeck

mesh from Table 4.2 using 106 packets and a single isotropic point source. The chart in Fig 4.3 shows

the distribution of stall reasons for our kernel and lets us pinpoint the performance bottlenecks [50]. The
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chart shows that the largest number of stalls in our optimized design are due to memory dependencies,

which is typical for applications like ours with large datasets and unpredictable memory access patterns.

As we hypothesized, the tetrahedron intersection calculation was a major bottleneck consisting of

mostly memory dependencies. All memory dependency bottlenecks occur when accessing tetrahedral

data. Future work could investigate more advanced tetrahedron caching schemes in shared or constant

memory. For example, in the previous section we discussed that the tetrahedron access pattern has a

Zipf access pattern. Therefore, implementing a Zipf cache in shared or constant memory could reduce

this global memory bottleneck for tetrahedrons. Prefetching tetrahedrons may also decrease the global

memory bottleneck and improve the performance. When a packet resides in a tetrahedron, we know

it will move to one of the four adjacent tetrahedrons on the next step. Therefore, every time a packet

moves to a new tetrahedron, the kernel could prefetch the data of the four adjacent tetrahedrons while

other calculations are being performed. If the packet moves to the next tetrahedron, the request for the

tetrahedron memory will already be in-flight (or finished) and the global memory access latency may be

reduced.
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