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Chemical transport models such as GEOS-Chem simulate tropospheric CO-HOx-NOx-

O3 chemistry, which determines the oxidizing power of the atmosphere as well as the

abundance of tropospheric CO, NO2, and O3. Inverse modelling analyses to estimate

CO and NOx emissions traditionally rely only on observations of the species of interest,

neglecting chemical biases in the models employed in the analyses. However, top-down

estimates of CO and NOx emissions are sensitive to tropospheric OH and O3, respec-

tively. In this thesis, two approaches were used to mitigate the model biases to estimate

CO and NOx emission. First, we developed a multi-species data assimilation framework

using the GEOS-Chem 4D-Var data assimilation system. Satellite observations of CO,

NO2, O3, HCHO, and HNO3 were assimilated to optimize CO and NOx emissions, as well

as O3, HCHO and HNO3 initial conditions. After the assimilation, improved chemical

states were produced with CO, NO2, and O3 fields that were in closer agreement with

independent observations. The multi-species DA also provided a means of indirectly

constraining the tropospheric OH. The resulting global mean tropospheric OH was more

consistent with independent empirically derived OH estimates. We also examined the

a posteriori CO and NOx emissions. During the study period, my thesis showed the a

priori CO emissions were underestimated and the a priori NOx emissions were overes-

timated in the northern extratropics. The emission estimates in Europe, the Amazon,

and equatorial Africa were most sensitive to the multi-species information assimilated
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into GEOS-Chem. Second, we assessed the utility of a new OMI-minus-OSIRIS (OmO)

NO2 retrieval product for improving North American NOx emission estimates. We as-

similated the OmO data using the nested version of GEOS-Chem with assimilated O3

boundary conditions. The results suggested that both the anthropogenic and biomass

burning sources were significantly overestimated in the a priori. The changes in the a

posteriori NOx emissions inferred from the OmO data between 2008 and 2011 were found

to be in better agreement with the changes in independent NO2 observations than those

estimated from OMI data.
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Chapter 1

Introduction

Carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), nitrogen

oxides (NOx=NO2+NO), and ozone (O3) are environmentally important trace gases.

High concentrations of NOx and O3 lead to increases in premature mortality, reduction

in photosynthesis and other adverse effects on physiological functions in vegetation. O3

is also a greenhouse gas that affects the radiative forcing of the atmosphere. Many of

these chemical compounds that are directly emitted to the atmosphere, such as CO and

NMVOCs, are chemically removed by reaction with the hydroxyl radical (OH), which is

the key oxidant in the atmosphere. In turn, the abundance of these species also affect

OH, and thus the oxidative capacity of the troposphere. Background atmospheric CO

concentrations have increased to more than two times pre-industrial values (Haan et al.,

1996). During this period, the NO2 concentration has increased by a factor of 3-6 above

the pre-industrial level (Prather and Ehhalt , 2001). As result of the increase of CO

and NOx, tropospheric ozone has also exhibited a positive trend over the last 30 years

(Cooper et al., 2014). Since tropospheric chemistry involving CO and NOx is affected

significantly by human activities, good estimates of CO and NOx sources are essential

to develop reliable air quality control strategies and to predict future changes to global

tropospheric chemistry. In this context, there has been much effort during the past two

decades on inverse modelling emissions of CO and NOx.

Traditionally, inverse modelling studies have relied only on observations of the species

of interest, such as CO, and used an atmospheric model as a transfer function to relate

changes in the surface emissions of the species to changes in its the atmospheric abun-

dance. Implicit in this approach is the assumption that the models are free of chemical

and transport-related biases, and that any discrepancies between the model simulation

of the tracer and the observations are due to errors in the specified emissions of the

tracer in the model. In this way, discrepancies between the atmospheric observations

1
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and the model simulation can be used to obtain an improved estimate of the emissions.

However, the model biases can be large. In the case of CO, for example, discrepancies in

the modelled OH as well as the source of CO from the oxidation of methane (CH4) and

NMVOCs can significantly impact the modelled distribution of CO. Shown in Fig. 1.1

are the results from Shindell et al. (2006) of a comparison of the CO simulation in 26

different models with CO observations from MOPITT at 500 hPa. Although the specified

anthropogenic and biomass burning emissions were the same in all the models, there is a

large spread in the CO abundances between the models, mostly due to the modelled OH

fields and the differences in the treatment of the chemical oxidation of NMVOCs in the

models. In Fig. 1.1, the multi-model mean (solid black line in the left column) suggested

that the models significantly underestimated CO in the northern extratropics through-

out the year compared to MOPITT observations. In an inverse modelling context, this

would suggest that the a priori anthropogenic emissions in the models were biased low.

However, the GEOS-Chem model, which was one of the participating models, was one of

a small number of model biased high relative to MOPITT, due to low OH abundances.

Use of that version of GEOS-Chem for inverse modelling of CO emissions would have

suggested that the a priori emissions in the model were biased high. The results of Shin-

dell et al. (2006) highlight the importance of accounting for discrepancies in OH and in

the NMVOC source of CO when using models for inverse modelling.

The biases in the model chemistry can be mitigated by constraining modelled O3,

CO, NOx and OH simultaneously, which leads to improved top down CO and NOx

emission estimates. In a recent inverse modelling study, Jiang et al. (2015a) tried to

mitigate the impact of OH when estimating top down CO emissions. However, their

approach for correcting the potential impact of biases in modelled OH was fairly ad-

hoc. With more tropospheric composition monitoring instruments becoming available,

multi-species chemical data assimilation is able to adjust emissions and concentrations

simultaneously, and provide improved modelled states better characterizing the tropo-

spheric chemistry. Eibern and Schmidt (1999) found that four-dimensional variational

(4D-Var) approach is an effective smoother for obtaining chemically consistent modelled

states that best match the observations. However, before proposing this thesis project,

little work has been done to design an to design a multi-species chemical data assimilation

(MSA) framework using the 4D-Var scheme for constraining the tropospheric chemistry.

Considering all the issues and gaps addressed above, implementation and application of

MSA using 4D-Var approach will have practical benefits to improve the modelled CO

and NOx emission estimates via mitigating the modelled biases on OH and O3. The

focus of this thesis is to integrate the growing wealth of space-based observations, in an
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Figure 1.1: Annual cycle of CO (in ppbv) at 500 hPa in MOPITT observations and in
the models over 2000-2004. The left panel shows the multi-model mean (shown in solid
black) with its standard deviation and the MOPITT CO observations (shown in red).
The full list of all the participated models were available in Table 1 from Shindell et al.
(2006). The right panel shows the CO simulations from each individual model. Dashed
red line shows MOPITT CO observations in 2002 and 2003. Dashed black line shows
the model whose methane lifetime are outside of the IPCC Third Assessment Report
range. (Shindell et al., 2006)
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MSA framework to mitigate the chemical biases in the GEOS-Chem model. MSA is able

to adjust emissions and concentrations simultaneously, and provide improved modelled

states that better capture the tropospheric chemistry.

1.1 Tropospheric CO-OH-NOx-O3 chemistry

Figure 1.2: Mechanism for CO-OH-NOx-O3 chemistry cycle.

A general schematic of the key chemical processes in the CO-OH-NOx-O3 tropospheric

chemistry is shown in Fig. 1.2. Tropospheric OH is generated as a result of the photolysis

of O3 (at wavelengths less than about 325 nm), which produces excited atomic oxygen

that reacts with water vapour as follows:

O3 + hν → O2 + O(1D), (1.1)

O(1D) + H2O→ 2OH. (1.2)

O3 can also produce OH via reaction with HO2

O3 + HO2 → OH + 2O2. (1.3)

It should be noted that this reaction converts HO2 to OH. Because of the rapid intercon-

version of OH and HO2, they are typically grouped together as the HOx (= OH + HO2)

family. Thus, Reaction 1.3 is not a net source of HOx, unlike Reaction 1.2. OH can also

be recycled via reaction with NO

HO2 + NO→ NO2 + OH. (1.4)
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Under low NOx conditions, recent atmospheric chemistry laboratory or modelling stud-

ies (Rohrer et al., 2014; Lelieveld et al., 2016; Archibald et al., 2009) have identified

secondary OH production mechanisms through OH recycling via radical reaction chains.

For instance, Kang et al. (2004) proposed that HO2 is able to react with organic peroxy

radical (RO2) under low-NOx, high-NMVOC conditions:

RO2 + HO2 → RO + OH + O2. (1.5)

OH is primarily removed by reaction with CO, which accounts for 40% of the total OH

sink.

CO + OH→ CO2 + H, (1.6)

The H atom produced will then rapidly react with O2 to form HO2,

H + O2 + M→ HO2 + M. (1.7)

Quantifying OH abundances has been a long-term objective of the community since

it is important for understanding the changing oxidizing power of the atmosphere. Since

the production of OH relies on sunlight and water vapour, tropical regions have the

highest OH concentration (2 × 107 molec/cm3) in the free troposphere (Jacob, 1999) as

shown in Fig. 1.3. However, in regions under low NOx conditions such as the Amazon

and equatorial Africa, where OH is strongly titrated due to the presence of NMVOCs, the

GEOS-Chem simulation suggests much lower OH concentrations (1 × 105 molec/cm3).

CTMs such as GEOS-Chem have become standard tools for improving knowledge of

atmospheric chemical tracers and the physical and chemical processes that control them.

Near the surface in the model, high OH concentrations are distributed over northern

mid-latitudes in summer, which is associated with high levels of CO, NOx and NMVOC

emissions. Much lower OH concentrations are distributed over high latitudes in both

hemispheres, as well as regions with low NOx conditions such as the Amazon, equatorial

Africa, and Southeast Asia. It is noted that the lifetime of tropospheric OH is extremely

short, on the order of seconds. OH concentrations also exhibit an extreme diurnal cycle,

with the highest concentrations during the day and values close to zero at night.

As shown in Table 1.1, atmospheric CO is generated by surface emissions from incom-

plete combustion as well as from the oxidation of atmospheric hydrocarbons. The lifetime

of tropospheric CO ranges from one month (in the tropics and in the summer hemisphere)

to one year (in the winter hemisphere). The abundance of atmospheric CO will impact

the oxidative power of the troposphere (Shindell et al., 2003). A month-long lifetime sug-
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Figure 1.3: GEOS-Chem (version 9) simulated mass weighted mean OH concentrations
(in 105 molec/cm3) at the surface and 500hPa in 2016.

gests that the distribution of CO would be strongly influenced by atmospheric transport.

Hence, CO is also an ideal tracer to characterize atmospheric transport in models (Jiang

et al., 2015a). Oxidation of methane is the dominant hydrocarbon source of CO. Its

chemical oxidation starts with reaction with OH as follows:

CH4 + OH→ CH3 + H2O. (1.8)

The methyl radical CH3 then immediately reacts with O2,

CH3 + O2 + M→ CH3O2 + M. (1.9)

The methylperoxy radical (CH3O2) has similar chemical features as HO2 and reacts with

NO as follows:

CH3O2 + NO→ CH3O + NO2. (1.10)

The methoxyl radical (CH3O) then would react with O2,

CH3O + O2 → CH2O + HO2. (1.11)

Combining Reactions 1.8-1.11, formaldehyde (CH2O) is produced. In fact, NMVOCs

follow similar chemical reaction pathways as methane in producing CO and CH2O, but

with large uncertainties in the chemical schemes implemented in current CTMs (Shindell

et al., 2006). The oxidation of NMVOCs and CH4 accounts for 30% and 15% of the OH

sink, respectively. The remaining 15% of the sink is associated with the reaction of OH

with O3, HO2 and hydrogen gas (H2).

Ozone, as a precursor of tropospheric OH, is produced in the troposphere by the
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Table 1.1: Global budget of atmospheric CO (Tg CO/year). Sources are based on CO
emission estimates from the GEOS-Chem model (Duncan et al., 2007) and sinks are
based on the estimates from Jacob (1999).

Type Flux estimates
Sources: 2256-2689
Direct Emissions

Anthropogenic 391-411
Biomass burning 406-516
Biofuels 159

Photochemical oxidation of VOCs
Anthropogenic 72-76
Biomass burning 45-57
Biofuels 30

Biogenic NMVOCs
Isoprene 170-184
Monoterpenes 68-71
Methanol 95-103
Acetone 21
Oxidation of CH4 778-861
Oceans 20-200

Sinks: 2100-3000
OH oxidation 1400-2600
Soil uptake 250-640
Stratosphere transport 100

oxidation of CO and hydrocarbons in the presence of NOx (Jacob, 1999). When HO2,

formed in Reactions 1.7 and 1.11, reacts with NO in Reaction 1.4 to produce NO2, this

NO2 rapidly leads to O3 production as follows:

NO2+hν→ NO + O, (1.12)

and

O + O2 + M→ O3 + M. (1.13)

where M is a third body. The O(1D) produced in Reaction 1.1 can be quenched through

O(1D) + M→ O + M, (1.14)

producing atomic oxygen in its ground state, which can rapidly return to O3 through

Reaction 1.13.

It should be noted that the abundance of NOx and hydrocarbons can limit O3 produc-
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tion. When NOx concentrations are low, O3 production is limited by the abundance of

NOx so that O3 production increases linearly with NO concentration regardless of abun-

dance of hydrocarbons. This is called the NOx-limited regime. The NOx-limited regime

is typical in rural areas as well as urban areas without severe NOx pollution. When

NOx concentrations are very high, O3 production increases linearly with hydrocarbon

concentrations but varies inversely with NOx concentrations. That is to say, for regions

with severe NOx pollution, local O3 production could be low due to low abundances of

hydrocarbons. This refers to the hydrocarbon-limited regime.

Table 1.2: Global source estimates for tropospheric NOx (Tg N/year) (Jacob, 1999)

Type Flux estimates
Anthropogenic 21
Biomass burning 12
Lightning 3
Aircraft 0.5
Soil 6
NH3 oxidation 3
Stratosphere 0.1

As shown in Table 1.2, the dominant source of atmospheric NOx is from combus-

tion (including anthropogenic and biomass burning), which produce NO. The cycling

between NO and NO2 is fast since NO emissions are rapidly converted to NO2 through

Reaction 1.4, and the NO2 produced by this reaction will photolyze and generate NO

and O3 via Reaction 1.12 and 1.13 (Jacob, 1999). NOx is lost by either conversion into

its reservoir species temporarily or being removed permanently from the atmosphere.

Permanent removal of tropospheric NOx involves formation of nitric acid (HNO3) during

daytime,

OH + NO2 + M→ HNO3 + M, (1.15)

followed by removal of HNO3 from the atmosphere. Due to increasing NOx in the atmo-

sphere, HNO3 became one of the most harmful acidic air pollutants with concentrations

of up to 1 ppbv in polluted regions (Goldan et al., 1983). HNO3 is removed within a

few days by dry and wet deposition. In the upper troposphere, where the photolysis of

HNO3 occurs, its abundance is strongly affected by NO2 and O3.

Since the surface emissions of NOx are mostly due to anthropogenic and biomass

burning, regions with high emissions of NOx coincide with regions exhibiting high CO

emissions (Stavrakou and Müller , 2006) (see Fig. 1.4), suggesting strong spatial correla-

tion between CO and NOx emissions. Other than combustion sources, soil emissions also

contribute 13% of the total NOx emission budget (Table 1.2). Emissions from lightning
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(LNOx) refer to nitric oxide production during thunderstorms as a result of a lightning.

They are most abundant within the tropical and subtropical regions, such as over the

Amazon, equatorial Africa and Indonesia, where deep convection may occur frequently.

The NOx concentration in some NOx emission hotspots (e.g. East Asia) can be as

high as 50 ppbv (Lamsal et al., 2008). Since the lifetime of surface NOx only lasts for

hours, tropospheric NOx is not well mixed globally. The distribution of mid- and lower-

tropospheric NOx suggests high NOx concentrations are strongly confined to its source

regions. Moreover, tropospheric NOx is unable to be transported from surface to free

troposphere effectively. In the upper troposphere, NOx is mostly contributed by lightning

sources distributed in the intertropical convergence zone.

Figure 1.4: Mean NOx concentrations (in pptv) at the surface and at 500 hPa in 2016
from a simulation of the GEOS-Chem model (version 9).

1.2 Uncertainties on modelled OH

Tropospheric OH is extremely difficult to estimate due to its short chemical lifetime.

Steady state equilibrium is considered when computing the global tropospheric OH mean

concentration, [OH] (Jacob, 1999). The mathematical expression for [OH] is given by

[OH] =

∫
trop

na[OH]dV∫
trop

nadV
, (1.16)

where na is the number density of air, serving as the weighting factor in computation

of the mean, [OH] is the local OH concentration, and the volume integral is calculated

over the troposphere. The interannual trend in [OH] over the past two decades is largely

unknown compared to other trace gases (e.g. O3) because both OH sources (e.g. O3)

and sinks (e.g. CO) are changing (Montzka et al., 2011). Recent studies such as Naik
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et al. (2013) compared the OH benchmark from multiple chemistry and climate models

(CCMs), and suggested that there was a slight positive trend since 2000 in tropospheric

OH despite the large uncertainty in OH. In addition to the global mean OH, the inter-

hemispheric ratio (NH/SH) of OH serves as a key metric to investigate whether these OH

changes over the last two decades were caused by anthropogenic HOx precursors (which

are concentrated in the NH), hemisphere-specific processes, or global processes (such as

well-mixed, long-lived species).

Global OH abundances can also be characterized by the lifetime of OH-dependent

long-lived gases (Prinn et al., 1987). For instance, the main sink for methylchloroform

(CH3CCl3, informally referred to as MCF) is through reaction with OH in the tropo-

sphere. Since CH3CCl3 sources are only from anthropogenic activities, its lifetime inferred

from surface measurement of CH3CCl3 (obtained from the late 1970s to the early 2000s)

can be related to OH concentrations through the following equations (Jacob, 1999):

[OH] ≈ P − L
[CH3CCl3]

∫
trop

nadV
, (1.17)

τCH3CCl3 =
1

k[OH]
, (1.18)

where P and L are the production and loss rate of CH3CCl3 respectively, [CH3CCl3] is

the mixing ratio of MCF, k(T ) is the rate constant (temperature dependent) for MCF

oxidation by OH. L and [CH3CCl3] near the surface are obtained from in-situ observa-

tions. It is noted that the abundance of MCF has been decreasing since the 1990s as

a consequence of prohibition on MCF production under the legislation of the Montreal

protocol (Jacob, 1999). As a result, P is assumed to be negligible with [CH3CCl3] as-

sumed to be uniform within the troposphere. In this way, [OH] can be computed with the

measurement of MCF. In turn, the lifetime of MCF can be presented given temperature

and OH concentration profiles. Similar to MCF, the lifetime of CH4 can also be inferred

given temperature and OH information. According to Zhang et al. (2018), the lifetime

of well-mixed tropospheric methane due to OH oxidation can be expressed as

τCH4 =

∫
trop

na[OH]dV∫
trop

k(T )nadV
, (1.19)

where na, k(T ), V , [OH] are defined the same as Eq. 1.16 and Eq. 1.17. The only difference

between MCF and CH4 is the reaction rate constant with respect to OH oxidation, which

is based on various laboratory studies (e.g., Sander et al., 2003; Burkholder et al., 2015).

Before the 2000s, estimates of the global mean tropospheric OH inferred from MCF
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observations exhibited an uncertainty of 10% (Nicely et al., 2017). But since the 2010s,

there have been large uncertainties on MCF-based OH constraints because the MCF

abundance in the troposphere is now too low (Montzka et al., 2011). Recently, combina-

tions of hydrofluorocarbons (HFCs) have been used as an alternative to MCF to constrain

OH. However, the uncertainty of the inferred OH abundance was still large. Zhang et al.

(2018) proposed joint optimization of surface CH4 fluxes and global OH concentrations

using shortwave infrared (SWIR) and thermal infrared (TIR) CH4 observations as an

alternative method for characterizing global OH concentrations. The inferred NH/SH

OH ratio was 0.92, with an accuracy of less than 10%.

Alternatively, tropospheric OH can be estimated empirically by combining observa-

tions and models. Spivakovsky et al. (2000) estimated tropospheric OH based on the

observed distribution of a suite of OH-related chemical species (O3, NOx, NOy, CO,

hydrocarbons) as well as water vapour, temperature and cloud optical depth. The es-

timated annual global mean OH was 11.6×105 molec/cm3 with the hemispheric ratio

close to unity. Spivakovsky et al. (2000) conducted a sensitivity analysis and concluded

that in the absence of large changes in the tropospheric chemical mechanism, “it is dif-

ficult to contemplate errors in excess of ±15% in global and hemispheric climatological

averages for the abundance of OH, given our present knowledge of the distributions of

precursors and the limited sensitivity of computed concentrations of OH to changes in

their specification.” Since the estimates of both the global mean OH and the NH/SH ra-

tio from Spivakovsky et al. (2000) were well-matched with observation-based constraints

at the time, the 3D monthly mean climatology from Spivakovsky et al. (2000) is still

considered a good standard when evaluating modelled OH concentrations (Müller et al.,

2018).

Since the early 2000s there have been updated OH chemistry schemes implemented

in various CTMs and CCMs. Yantosca (2018) has tracked the evolution of GEOS-Chem

model one-year benchmark simulations of tropospheric OH abundances shown in Fig. 1.5.

As more chemical tracers and more reactions were implemented in the model, the global

mean OH benchmark varied significantly. Also, Naik et al. (2013) analyzed 17 global

models in the Atmospheric Chemistry and Climate Model Intercomparison Project (AC-

CMIP) and found a slight increase of 3.5±2.2% in the multi-model mean for present day

(2000) OH compared to OH in the 1980s. The multi-model mean, global mean OH was

11.1±1.6×105molec/cm3 with a NH/SH ratio ranging from 1.13 to 1.42.

Although the differences in [OH] among different CTMs and CCMs were smaller

than 15% (Nicely et al., 2017), such disagreements among model would lead to large

discrepancies on simulating key atmospheric substances such as methane, CO and O3.
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For instance, Voulgarakis et al. (2013) calculated the CH4 lifetime based on the OH profile

estimated from ACCMIP. The resulting multi-model mean of global mean CH4 lifetime

was 9.8±1.6 years, with even larger uncertainties associated with regional OH.

Figure 1.5: GEOS-Chem simulated mass weighted mean OH concentrations (in 105

molec/cm3) from 1-year benchmark simulations among various model versions (Yan-
tosca, 2018). GEOS-Chem v08-02-01 were more consistent with the MCF-based OH
constraints. The mean OH concentrations from simulations retrieved from v08 to v09 of
the model were also within the estimates (with slight overestimation) compared to Spi-
vakovsky et al. (2000).

The large regional OH uncertainties are caused by not only different CTM setups

(transport schemes and parameterizations), but also by discrepancies in the chemistry

scheme on regional scales. Strode et al. (2015) found that the low biases of CO in the

northern extratropics seen in Fig. 1.1 were related to high biases on the NH/SH ratio of

OH. For the NH, Patra et al. (2014) further explained that the OH could be overesti-

mated due to the overestimation of HOx-related species such as NOx. For the tropics and

SH, Rohrer et al. (2014) argued that regions with low-NOx, high-NMVOCs (e.g., South

America and Indonesia) had large OH uncertainties due to unrecognized OH recycling

mechanisms. Some missing mechanisms in the models are related to the peroxyl radical

reactions such as Reaction 1.5 (Rohrer et al., 2014). In fact, these unrecognized OH recy-

cling mechanisms would result in up to ten times more OH being produced than current

CTMs estimate in certain regions. They are dependent on the photochemical production

rate as well as the regional NMVOC and NOx abundances, which are difficult to simu-
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late using laboratory approaches (Rohrer et al., 2014). To improve the OH concentration

estimation, tropospheric chemistry mechanisms as well as OH measurement techniques

require further development. Since neither MCF-based OH constraints (e.g., Montzka

et al., 2000; Krol et al., 1998; Bousquet et al., 2005) nor CTMs (e.g., Naik et al., 2013)

suggest consistent information on global mean OH abundances or the NH/SH ratio, more

studies on providing tropospheric OH constraints such as assimilating CO, NOx and O3

observations are required.

1.3 Estimating CO emissions

Since CO plays a key role in determining the oxidative capacity of the atmosphere,

quantifying the CO budget within CTMs has become a new point of interest in recent

atmospheric carbon cycle studies. To simulate CO as a trace gas, most chemical trans-

port models rely on “bottom up” emission estimates that are based on regional and

international energy consumption statistics and CO emission factors for different energy

sectors. For instance, anthropogenic emission inventories such as the Emissions Database

for Global Atmospheric Research (EDGAR) (Olivier and Berdowski , 2001) use statistics

of international activity data, emission factors per activity and scaling factors accounting

for local meteorological and time variables to estimate gaseous and particulate air pollu-

tant emissions that are related to human activities. Biomass burning emission inventories

such as the Global Fire Emissions Database, version 3 (GFED-3) (Giglio et al., 2013)

use burned area, fuel loads, and combustion efficiency, together with scaling factors to

account for emissions that are related to wildfires. However, these emission estimates

may exhibit large uncertainties. Some emission types are also highly variable in time

and cannot be accurately represented using the heavily-averaged emission inventories.

In comparison, “top down” emission estimates relying on inverse modelling techniques

would produce emissions with improved spatial and temporal coverage. There are differ-

ent types of observations with different precision and spatiotemporal resolution, as well

as with different sensitivity to the vertical distribution of CO in the troposphere. In gen-

eral, surface and aircraft observations will have higher observation precision. However,

the surface observing network and aircraft campaigns have limited spatiotemporal cover-

age. They are mostly distributed in the regions with high social-economic activity, which

leaves large gaps in observational coverage in the tropics and polar regions (Rodgers ,

2000). Satellite measurements, in contrast, provide observations with higher spatial and

temporal coverage. For example, the current CO satellite observations from Measure-

ments Of Pollution In The Troposphere (MOPITT) and Infrared Atmospheric Sounding
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Interferometer (IASI) have measured atmospheric CO abundances globally over 20 years,

providing global CO coverage in 3 days for MOPITT, and twice daily for IASI.

CO inverse modelling studies have applied surface (e.g., Pétron et al., 2002; Pison

et al., 2009; Hooghiemstra et al., 2012), aircraft (e.g., Palmer et al., 2003a; Heald et al.,

2004) and satellite observations (e.g., Arellano et al., 2004; Stavrakou and Müller , 2006;

Jones et al., 2009; Kopacz et al., 2010; Jiang et al., 2013; Fortems-Cheiney et al., 2011)

to optimize global and regional CO sources. There are also long-term CO inversions

available (e.g., Miyazaki et al., 2015; Jiang et al., 2017) to study CO emission trends in

the past two decades. Many of these studies have suggested the existence of significant

biases in bottom up inventories. For instance, Kopacz et al. (2010) used GEOS-Chem

with CO observations from MOPITT, the Tropospheric Emission Spectrometer (TES),

and the Atmospheric InfraRed Sounder (AIRS). For anthropogenic sources, a significant

underestimation (up to 60%) was found in Europe, North America, and Asia. Such

underestimation was also confirmed in Jiang et al. (2013) and Fortems-Cheiney et al.

(2011). Moreover, most of the bottom up emission inventories did not consider strong

seasonal variations in northern mid-latitudes compared to the a posteriori (Kopacz et al.,

2010). For biomass burning sources, Jones et al. (2009) used GEOS-Chem with CO ob-

servations from TES and MOPITT to constrain tropical CO sources. They showed an

underestimation in equatorial Africa and Indonesia (up to 90%) in November 2004. The

biomass burning emission underestimation was also confirmed in Kopacz et al. (2010)

throughout 2004. To validate the CO emission estimates from inversions, Hooghiemstra

et al. (2012) compared the global and regional top down CO emission estimates among

many of the aforementioned studies. Despite the fact that the global CO emission esti-

mates were within 10%, the regional CO emission estimates for North America, Europe

and East Asia differed by 30-50%. This showed that the chemical sources and sinks of

atmospheric CO on regional scales were still poorly characterized.

Among constituents that are chemically related to tropospheric CO, NMVOCs and

OH both have large uncertainties that affect CO inversions. The chemical production of

CO by NMVOC oxidation accounts for 10-30% of the total atmospheric CO source and

is responsible for 50% of background CO (Duncan et al., 2007). Miyazaki et al. (2012a)

argued that modelled CO biases were partially due to poor characterization of hydro-

carbons. As the oxidation of NMVOCs generates formaldehyde (HCHO), there were

recent inverse modelling studies using satellite HCHO observations (e.g., Millet et al.,

2006; Hudman et al., 2008a; Marais et al., 2012; Barkley et al., 2013) to characterize

biogenic isoprene emissions. For instance, Marais et al. (2012) used GEOS-Chem with

OMI HCHO observations in western equatorial Africa. Overestimation of isoprene emis-
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sions by 24-48% was found in the Model of Emissions of Gases and Aerosols from Nature

(MEGAN) isoprene inventory used in GEOS-Chem. Moreover, 40-90% uncertainties of

biogenic CO emissions were found in the chemistry scheme of NMVOCs in low NOx

conditions (Marais et al., 2012). In fact, these HCHO inversions would help reduce the

uncertainty of NMVOCs, which would help to better constrain CO emission estimates.

In addition to biases in the chemistry, inverse modelling of CO emissions can also be

affected by model transport biases (e.g. in convection) and observation biases. If the

transport scheme used in a CTM exhibits large systematic biases, then the differences

between the modelled CO fields and observations are not totally due to biases in the

emission estimates. Sometimes model biases could lead to unrealistic emission adjustment

when assimilating column datasets (Qu et al., 2017). Jiang et al. (2015a) used GEOS-

Chem with Near Infrared (NIR) and TIR/NIR profiles of MOPITT version 5 retrievals.

Their CO emissions inferred from TIR/NIR profiles were larger than those inferred from

NIR profiles in India and Southeast Asia, suggesting that the strength of convection in

the GEOS-Chem model is too weak. In contrast, the profile inversion provided lower CO

emissions for North America and Europe, indicating that the boundary layer mixing in

these two regions tends to be too sluggish (Jiang et al., 2015a). Yan et al. (2014) used

the GEOS-Chem global model (at 2◦×2.5◦) with three nested domains (at 0.5◦×0.667◦)

covering Asia, North America, and Europe to interpret data from the High-Performance

Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole

Observations (HIPPO) campaign. They found less bias in the nested-grid models than

in the global model, suggesting that model performance could also be influenced by model

resolution. Improved CO emission estimates as a result of increased model resolution was

also confirmed in the North American regional inversion study by Jiang et al. (2015b).

1.4 Estimating NOx emissions

Estimating the modelled NOx budget is helpful for quantifying the modelled O3 burden,

which then indirectly determines the oxidative capacity of the modelled atmosphere.

Inverse modelling studies have used NOx in-situ aircraft measurements (e.g., Heland

et al., 2002) and satellite observations (e.g., Martin et al., 2003; van der A et al., 2008;

Boersma et al., 2008; Müller and Stavrakou, 2005; Miyazaki et al., 2012b) to estimate

NOx emissions. These emission estimates are important for both air quality and atmo-

spheric chemistry studies. Satellite observation of tropospheric NO2 began with Global

Ozone Monitoring Experiment (GOME), then continued with the SCanning Imaging

Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Ozone



Chapter 1. Introduction 16

Monitoring Instrument (OMI), GOME-2 and TROPOMI. To examine bottom-up inven-

tories, Martin et al. (2003) used GEOS-Chem with GOME NO2 column abundances.

They found that anthropogenic NOx emissions were underestimated in winter over most

regions in the Northern Hemisphere. Such findings were also confirmed by Miyazaki

et al. (2012a). Biomass burning emissions were overestimated in India, central Africa

and Brazil (Miyazaki et al., 2012a). Moreover, Jaeglé et al. (2005) argued that NOx

biomass burning emission inventories did not capture the seasonal cycle effectively. LNOx

emissions were estimated by Martin et al. (2007) by assimilating both tropospheric NO2

column from SCIAMACHY, O3 columns from OMI and Microwave Limb Sounder (MLS),

and upper tropospheric HNO3 from Atmospheric Chemistry Experiment-Fourier Trans-

form Spectrometer (ACE-FTS). Large enhancement (2-6×1014 molec/cm2) of NO2 in the

UTLS was found over the tropical Atlantic and Africa compared to the a priori profile.

In contrast, LNOx was 25-50% smaller over the tropical Pacific than the a priori (Martin

et al., 2007). They estimated the global LNOx emissions to be 6 ± 2 Tg N/year, which

dominated the total NOx emissions in the free troposphere during summertime.

Top down NOx emissions are affected by several factors. First, model resolution deter-

mines the representativeness of surface NOx emissions. Increasing the model resolution

could reduce the uncertainty of NOx emission estimates. Qu et al. (2017) used the nested-

grid GEOS-Chem model with NO2 columns from OMI. Many localized emission changes

were detected in the regional CTM, which could not be captured in global studies. Sec-

ond, the emission estimates can be affected by the observation error. The observation

error, depending on the retrieval algorithm, is large. The majority of the measurement

biases are associated with the stratosphere-troposphere separation (STS) algorithm. Full

details of the STS are further explained in Section 2.1.1. Zheng et al. (2014) compared

the standard OMI NO2 product (SP) and the Dutch OMI NO2 product (informally as

DOMINO or DP) and found that OMI-DP was 9% lower in summer but 13% higher in

winter compared to OMI-SP. These differences were mostly due to the difference in rel-

ative stratosphere and tropospheric contributions and in the air mass factor calculation.

The two products also exhibited large discrepancies for observations over heavily pol-

luted regions. Furthermore, the traditional STS techniques used in OMI-DP (Boersma

et al., 2008) and OMI-SP (Bucsela et al., 2006) assumed stratospheric NO2 contribution

interpolated from NO2 abundance from remote and unpolluted regions. Recently, Adams

et al. (2016) retrieved OMI-minus-OSIRIS (OmO) tropospheric NO2 columns based on

a limb-nadir matching technique, relying on the subtraction of the total nadir observed

NO2 column using non-coincident limb measurements. Details of the limb-nadir match-

ing techniques are further discussed in Section 2.1.1. The OmO tropospheric vertical
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column densities (VCDs) have shown consistency in background NO2 with both OMI-

SP and OMI-DP, with higher variability of stratospheric NO2 contributions inferred from

OSIRIS NO2 observations. Gu et al. (2014) argued that the difference among the OMI-DP

and OMI-SP retrieval products can lead to differences in the NOx emission estimates.

1.5 Uncertainties on modelled O3

According to the CO-HOx-NOx-O3 chemistry discussed in Section 1.1, CO and NOx con-

centrations will determine the abundance of tropospheric O3. In turn, model biases in

tropospheric O3 could impact CO and NOx inversion estimates. Müller and Stavrakou

(2005) found that inverse modelling using both CO and NOx observations could pro-

vide better CO estimates than assimilating CO observations alone. Jones et al. (2009)

explained that such CO estimation improvements could be caused by changing tropo-

spheric O3 and OH. Wild (2007) examined the impact of precursor emissions, lightning,

STE, wet and dry deposition, humidity, and model resolution on modelled O3 concentra-

tions. They found that increases in CO and NOx emissions would lead to enhancement of

lower tropospheric O3. O3 concentrations in the UTLS were sensitive to LNOx emissions,

which are poorly constrained in current CTMs. Some variability of O3 abundance can

be explained by the dry deposition and convection scheme used in the model. The rela-

tive importance among these factors depends on the analyzed regions. Wild (2007) also

showed that coarse model resolution leads to overestimation of STE, but underestimation

of dry deposition and convection.

To correct modelled O3 biases, previous inverse modelling studies have relied on com-

bining CTMs with satellite observations from GOME (e.g., Tellmann et al., 2004; Liu

et al., 2007), TES (e.g., Bowman et al., 2006; Jourdain et al., 2007; Nassar et al., 2009;

Parrington et al., 2008), IASI (e.g., Emili et al., 2014; Peiro et al., 2018) and MLS (e.g.,

Barré et al., 2012; Miyazaki et al., 2012a). For instance, Parrington et al. (2008) used

GEOS-Chem with CO and O3 observations from TES. They found that the mean dif-

ference between the model and the observed ozone reduced from about 30% to less than

5%. In order to characterize the uncertainty associated with STE, Barré et al. (2012)

used Modéle de Chimie Atmosphérique de Grande Echelle (MOCAGE, a CTM developed

by Meteo-France) to assimilate stratospheric O3 observations from MLS. They improved

the O3 profile in the UTLS, with the posterior O3 agreeing with independent ozonesonde

data to within 5%. Emili et al. (2014) and Peiro et al. (2018) assimilated IASI and MLS

observations, and found that the posterior O3 state in the free troposphere and lower

stratosphere followed the variability from IASI O3 observations, despite their O3 fields
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being driven by a simplified chemistry model. So far, these studies have shown that

the modelled chemical state of O3 and NO2 can be effectively improved via O3 assimila-

tion. However, some surface O3 biases still remain partially due to lack of observation

sensitivity in the boundary layer for the remote sensing instruments.

1.6 Multi-species chemical data assimilation

Considering the uncertainty on estimating modelled OH, CO, NOx, and O3, current in-

verse modelling studies have applied advanced data assimilation frameworks to provide

constraints on the CO-HOx-NOx-O3 chemistry. With the large suite of space-based mea-

surements of tropospheric composition, MSA offers a powerful means for simultaneously

optimizing different chemical species. For example, assimilation of O3, CO, NO2, and

HCHO could provide constraints on both the sources and sinks of OH.

In the past, various inverse modelling studies (e.g., Müller and Stavrakou, 2005; Chai

et al., 2006; Zhang et al., 2008a; Miyazaki et al., 2012a, 2015, 2017) have utilized ad-

joint, Ensemble Kalman Filter (EnKF), and four-dimensional variational (4D-Var) data

assimilation approaches to estimate CO and NOx emissions, and have shown improve-

ments on modelled CO, O3 and NO2 concentrations when comparing with independent

measurements. These studies have used advanced data assimilation techniques to opti-

mize multiple types of emissions and concentrations simultaneously. For example, Müller

and Stavrakou (2005) used the Intermediate Model of Global Evolution of Atmospheric

Species (IMAGES, a CTM) with an adjoint modelling technique optimizing CO and sur-

face NOx emissions. Observations of both CO observations provided by the National

Oceanic and Atmospheric Administration/ Climate Monitoring and Diagnostics Labora-

tory (NOAA/CMDL) ground-based measurements and tropospheric NO2 columns from

OMI were used. The uncertainties of CO and NOx emission estimates in the northern

extratropics are significantly reduced when assimilating both observations. Moreover,

they proposed that simultaneous inversions of the chemically active compounds would

be promising for further inverse modelling studies.

Miyazaki et al. (2012a) used the CHemical Atmospheric general circulation model

for Study of atmospheric Environment and Radiative forcing–Data Assimilation System

(CHASER-DAS, a CTM) with a Local ensemble transform Kalman Filter (LETKF) data

assimilation scheme to simultaneously optimize 35 tropospheric tracers as well as CO,

NOx and LNOx emissions. The experiments used observations of CO from MOPITT, O3

from TES and MLS, NO2 from OMI, and HNO3 from MLS (Miyazaki et al., 2012a). In

their experiments, optimizing emissions were effective to constrain tracers’ concentrations
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near the surface. Optimizing concentrations were effective to constrain the concentra-

tions in free troposphere. The a posteriori provided the most significant corrections over

the tropics for O3, OH, and LNOx, which showed large uncertainties in the bottom-up

inventories and background concentrations in this region. Meanwhile, significant increase

was obtained along northern midlatitudes for CO and NOx emissions. Reductions of both

residual bias (by 85%) and Root-Mean-Square Error (RMSE) (by 50%) were obtained

after the inversion, compared with independent station, aircraft and ozonesonde data.

This indicates that applying MSA is an effective method to reduce biases in assimilated

tracers and improve CO and NOx emission estimations (Miyazaki et al., 2012a).

More recently, Miyazaki et al. (2015) conducted a long-term LETKF-based chemical

reanalysis to reduce biases on modelled NO2 and O3, and to improved the seasonal

and interannual variability of CO and NOx emissions. In their tropospheric chemical

reanalysis, in addition to improving the modelled O3, NO2 and CO, Miyazaki et al. (2015)

also calculated the global mean OH and the NH/SH ratio of tropospheric OH, both of

which approached the MCF-based ratio estimates and fell in the range of the ACCMIP

multi-model mean estimates. This shows MSA as a decent solution to improve modelled

OH concentrations. The 4D-Var based MSA has been studied by Inness et al. (2015).

They obatined reductions in modelled CO and O3 biases through chemical feedbacks of

assimilating all species. Moreover, the chemical states assimilated by the 4D-Var scheme

were able to produce smoothed 3D fields that were consistent with all simulated chemical

species. The assimilation of multiple O3 datasets significantly improved the modelled O3

fields relative to the a priori, especially in the free troposphere and lower stratosphere.

They, however, found that assimilating the initial conditions of NO2 was not impactful

due to the short lifetime of NO2 compared to the 12-hour assimilation window. There

were also regional CTM inversion studies (e.g., Chai et al., 2006; Zhang et al., 2008b)

focused on O3, NOx and NOy by assimilating multiple chemical species using the 4D-

Var data assimilation scheme. Chai et al. (2006) found that the adjusted initial chemical

tracers improved NOy after simultaneously assimilating aircraft observations of O3, NO,

NO2, HNO3, PAN and lumped organic nitrates (RNO3). In Zhang et al. (2008b), they

also improved the chemical field of NO2 by adjusting the initial conditions of chemical

tracers after assimilating NO2 data from SCIAMACHY and O3 data from AirNow ground

level observations.
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1.7 The objectives and structure of the thesis

1.7.1 The objectives

The focus of this thesis is on implementing a 4D-Var based multi-species chemical data

assimilation framework to mitigate modelled chemical biases in the inverse modelling of

CO and NOx emission. In particular, I would like to improve tropospheric OH and its

precursor, O3, through data assimilation of multiple OH- and O3-related species, such as

CO, O3, NO2, HCHO, and HNO3. Several objectives were proposed at the beginning of

the research:

1. In the first phase, I was interested in designing an MSA framework for the GEOS-

Chem adjoint model. I used the GEOS-Chem adjoint model with the 4D-Var

data assimilation scheme to optimize CO, NOx emissions and O3 initial conditions.

Satellite observations of CO from MOPITT, O3 from both TES and OSIRIS, NO2

from OMI in November 2009 and July 2010 were assimilated. The two months were

chosen as a case study for seasonal contrasts. By combining all the observations

with the CTM, my objective was to improve tropospheric O3, and thus OH, in

order to provide better global estimates of CO and NOx emissions.

2. In the second phase, I improved the MSA framework and then conducted a one-

year chemical reanalysis to better constrain tropospheric OH based on the extended

MSA approach. Extension of the MSA will focus on better constraining the CO

sources due to the oxidation of NMVOCs as well as the LNOx source. Hence, I

assimilated CO profiles from MOPITT, HCHO and NO2 tropospheric columns from

OMI, O3 partial columns from IASI and OSIRIS, and HNO3 profiles from MLS.

The objective was to estimate annual CO emissions as well as indirectly constrain

tropospheric OH.

3. In the third (last) phase, I evaluated the utility of new satellite retrievals of tro-

pospheric NO2 for inverse modelling NOx emissions. I performed a regional NOx

inversion with O3 and NO2 data. It is noted that different from the joint assimila-

tions operated in phase one and two, observations of O3 and NO2 were assimilated

separately. The top-down summertime NOx emission estimates for North America

for 2008-2011 were obtained by assimilating the OmO data using the GEOS-Chem

nested grid model with the O3 assimilated boundary conditions.

The first and second thesis objectives have been presented in two papers. The study

in MSA phase one has been published in Journal of Geophysical Research: Atmosphere in
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January, 2019. The study in MSA phase two will be submitted to Journal of Geophysical

Research: Atmosphere. The title of the two papers are shown below:

1. Quantifying emissions of CO and NOx using observations from MOPITT, OMI,

TES,and OSIRIS.

2. Constraints on the oxidative capacity of the atmosphere: Implications for top-down

CO emission estimates.

1.7.2 The significance of this thesis

The two MSA studies are the first attempt using the GEOS-Chem model with 4D-Var

assimilation to conduct a chemical reanalysis to estimate CO, NOx, O3 and OH concen-

trations. Cost function scaling algorithm among different species is tested to account for

correlation among different chemical species in the MSA framework. Traditional single

instrument inversions can be compared with MSA to show the impact of assimilating

each observation to the posterior modelled states. Chemical coupling and adjoint model

sensitivity can also be examined. The posterior OH concentrations, CO emissions, and

O3 burden would reveal modelled biases on CO-OH-NOx-O3 chemistry. The assimilated

global mean OH can be used as an improved OH profile for other inverse modelling stud-

ies on OH-related species such as CH4. The regional NOx analysis is the first study using

OmO NO2 observations in the context of NOx inverse modelling. This regional study is

also innovative since the boundary condition for the nested-grid model uses the assim-

ilated concentrations, rather than forward model simulations only. Our posterior NOx

emission estimates can be compared with the top down estimates using OMI observa-

tions to examine whether stratospheric NO2 observations would impact surface emission

estimates.
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1.7.3 The structure of this thesis

The outline for remaining chapters in this thesis is shown as follows:

Chapter 2 introduces the datasets used for assimilation and validation. The instru-

mentation, retrieval and bias correction information are explained. I also depict

why I use each observation for certain purposes within my study. After that, the

GEOS-Chem model and the inversion methodologies are presented. I will go over

the most fundamental properties of GEOS-Chem, including its basic driven mete-

orological fields, chemical schemes as well as the employed bottom up inventories.

For inversion methodologies, optimal estimation for retrievals, strong-constraint

(traditional) 4D-Var, weak-constraint 4D-Var, and LETKF will be described to

illustrate the basic theory of all the inversions.

Chapter 3 investigates the results of the first phase of the MSA. Results from single

instrument assimilation (referred to as the single instrument run) will be compared

with those from MSA (referred to as the all instrument run). Validation on modelled

CO, NO2 and O3 fields against independent observations are explained. The top

down estimates using MSA are then investigated, followed by comparison with

other CO and NOx inverse modelling studies. In the end, I will include a discussion

on the impact of observation error and the assimilation window on the assimilated

results before a brief summary.

Chapter 4 looks at the results of the second phase of the MSA. I will also compare

the resulting OH concentration and O3 burden with other OH and O3 benchmark

studies (e.g., Spivakovsky et al., 2000; Gaudel et al., 2018). Validation of modelled

CO, O3 and OH fields against independent observations are explained. The top

down CO emission estimates for a full year chemical reanalysis will be compared

with other CO inversions. In the end, I will include a discussion on the difference

among all the experiments employed in the study as well as the OH sensitivity to

different assimilated species.

Chapter 5 analyzes results on the regional NOx inversion studies. I will highlight the

employed experiments, evaluate the optimized tracers against various independent

observations, and discuss the top down North American NOx emission estimates.

I will also include an uncertainty analysis and a summary at the end.

Chapter 6 summarizes the main findings of this thesis and proposes some future path-

ways for further MSA studies.
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1.8 Contributions

The analyses presented in the thesis were all performed by the author, but also assisted by

the contributions of many co-authors. All the authors have communicated and provided

feedback for all the projects. Their contributions for each project are as follows:

Chapter 3 was a collaboration with Dylan Jones, Martin Keller, Thomas Walker, Zhe

Jiang, Daven Henze, Helen Worden, Adam Bourassa, Doug Degenstein, and Yves

Rochon. The study was initially proposed by the author and Dylan Jones, moti-

vated by the initial MSA framework designed by Martin Keller. The GEOS-Chem

adjoint model was designed by Daven Henze. Observation operators for MOPITT

CO, TES O3, OMI NO2, and OSIRIS O3 were prepared by Zhe Jiang, Dylan Jones,

Martin Keller, and Thomas Walker respectively. Helen Worden, Adam Bourassa,

Doug Degenstein and Yves Rochon have provided some instructions on using MO-

PITT CO and OSIRIS O3 observations. The implementation of all the observations

in the MSA framework, design of the super-observation and cost function scaling

algorithm as well as the research analyses were all performed by the author.

Chapter 4 was a collaboration with Dylan Jones, Martin Keller, Kazuyuki Miyazaki,

Zhe Jiang, Daven Henze, Helen Worden, Adam Bourassa, Doug Degenstein, Cathy

Clerbaux, Debra Wunch, Steven Wofsy, and Anne Thompson. The study was

proposed by the author and Dylan Jones, motivated by the MSA phase one. Besides

the ongoing support from the co-authors mentioned in Chapter 3, Cathy Clerbaux,

Debra Wunch, Steven Wofsy and Anne Thompson have provided the data with

its bias correction updates for IASI O3, TCCON XCO, ATom measurements, and

SHADOZ O3 observations respectively. The CO and NOx emission estimates as

well as O3 and OH fields from Tropospheric Chemical Reanalysis version 2 (TCR-2)

dataset were provided by Kazuyuki Miyazaki. The top down CO emission estimates

according to Jiang et al. (2017) were provided by Zhe Jiang. The re-design of the

super-observation, further design of the observation operator for IASI O3, MLS

HNO3 and OMI HCHO, implementation of the updated MSA scheme as well as

the research analyses were all performed by the author.

Chapter 5 was a collaboration with Dylan Jones, Cristen Adams, Martin Keller, Adam

Bourassa, Doug Degenstein, Cathy Clerbaux and Daniel Jacob. The project was

proposed by the author and Dylan Jones, motivated by the successful retrieval on

OmO NO2 observations led by Cristen Adams. Martin Keller has designed the

weak constraint 4D-Var scheme in GEOS-Chem model. OmO NO2 observations
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were prepared by Cristen Adams, with the algorithm instruction provided by Adam

Bourassa and Doug Degenstein. The IASI data and its retrieval algorithms were

provided by Cathy Clerbaux. The ARCTAS data was made available from the

measurement team led by Daniel Jacob. The design of the observation operator for

OmO NO2, implementation of the regional NOx framework using the assimilated

boundary conditions as well as the research analyses were all performed by the

author.
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Methods

2.1 Observations

2.1.1 Assimilated satellite observations

MOPITT CO retrievals

MOPITT is a multi-spectral nadir instrument on the EOS-Terra satellite that was launched

in December 1999. The satellite is in a sun-synchronous orbit with a local equatorial cross-

ing time of 10:30/22:30. MOPITT measurement strategy consists of a 612 km cross-track

scan with spatial resolution of 22 km x 22 km at nadir, which achieves global observa-

tional coverage every three days. Figure 2.1 shows the global coverage for one day of

MOPITT observations. Tropospheric CO is retrieved from measurements at 4.7 µm in

the thermal infrared (TIR) region of the spectrum and at 2.3 µm in the near infrared

(NIR). The retrieved CO is estimated on 10 pressure levels (the surface, 900, 800, 700,

600, 500, 400, 300, 200 and 100 hPa) using the optimal estimation approach (Rodgers ,

2000). The cost function representing differences between the simulated and observed

radiances, and between the retrieved and a priori state vectors, is minimized by optimiz-

ing the state vector. The mathematical derivation of the optimal estimation approach

will be discussed in Section 2.4.2. The MOPITT CO retrieval (zMOP) can be written as:

zMOP = za
MOP + AMOP(z− za

MOP) + ε, (2.1)

where z is the true CO state (expressed in based 10 logarithm: log(COtrue)), za
MOP

(expressed in log(COap)) is the a priori MOPITT profile, which was obtained from simu-

lations from the Model for Ozone And Related Tracers version 4 (MOZART-4, a CTM), ε

is the retrieval error, and AMOP is the averaging kernel matrix, which represents the ver-

25
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tical sensitivity of the retrieval to the true CO state in the atmosphere. Figure 2.2 shows

the mean profiles for the normalized MOPITT averaging kernel observed over Toronto,

Canada, for the multi-spectral NIR+TIR retrievals. The total column averaging kernel

is indicated by the black solid line on the right, and peaks in the free troposphere. There

is less sensitivity near the surface and in the UTLS, suggesting greater contributions of

a prior information in the retrievals in these regions. Details of the MOPITT retrieval

are described in Worden et al. (2010) and Deeter et al. (2011).

Figure 2.1: Example of the MOPITT observational coverage for a given day. Shown are
the MOPITT V7J CO column densities (in 1017 molec/cm2) on 1 August 2016. (NCAR:
ACOM Science Team, 2016)

This study uses version 7 of the multi-spectral NIR+TIR retrievals (V7J), which

were validated by Deeter et al. (2017) using NOAA flask and HIAPER Pole-to-Pole

Observations (HIPPO) aircraft measurements. They found smaller biases in the V7J

retrievals compared to V6 data. I use only daytime profile retrievals located at altitudes

below 200 hPa and equatorward of 60◦. CO profiles are assimilated instead of CO column

abundances because the profiles provide information on CO vertical structure (Kar et al.,

2008). The degrees of freedom for signal (DOFS) for the retrieved profiles range from

0.5 to 2 within 60◦ (Heald et al., 2004), which is conducive to constraining both surface

emissions and free tropospheric CO.



Chapter 2. Methods 27

Figure 2.2: Normalized averaging kernel observed over Toronto, Canada, for MOPITT
CO V7J retrievals. (Buchholz et al., 2017)

TES O3 retrievals

TES is a Fourier-transform infrared (FTIR) spectrometer that was launched on the EOS

Aura satellite in July 2004 (Beer et al., 2001). It is in a sun-synchronous orbit at an

altitude of 705 km with an equatorial crossing time of 13:30 ± 15 minute for the ascending

node. The two modes operated by the instrument include a global survey mode where

observations are spaced about 2◦ along the orbit track, and a step and stare mode where

each observation is spaced about 40 km along the orbit. The spatial resolution of the

measurement is 8 km × 5 km. TES measures radiance spectra of Earth’s atmosphere at

wavelengths between 3.3 - 15.4 µm with a spectral resolution of 0.1 cm−1 (Verstraeten

et al., 2013). The instrument completes 14.5 orbits per day and achieves global coverage

every 16 days (Worden et al., 2007). An example of the observation coverage from one

day of observations is shown in Fig. 2.3. Details of the instrumentation are explained

in Beer et al. (2001). Tropospheric O3 is retrieved from measurements around 9.6 µm

(Jourdain et al., 2007).

The retrievals use a similar optimal estimation method as the MOPITT CO re-

trievals (Bowman et al., 2006). Details of the TES O3 retrievals are described in Bowman

et al. (2006). The retrievals are conducted with respect to the natural logarithm (ln) of

the volume mixing ratio on a 67-level vertical grid with a grid spacing of about 1 km.
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The TES O3 profile retrievals can be expressed mathematically as:

zTES = za
TES + ATES(z− za

TES) + ε, (2.2)

where za
TES is the TES a priori O3 profile, z is the true O3 state, ε is the retrieval

error, and ATES is the TES averaging kernel. Figure 2.4 shows the TES averaging kernel

observed over De Bilt, the Netherlands, on 14 July 2005. The vertical sensitivity for

retrieval below 400 hPa (shown in red solid curves) peaks around 600 hPa. The sensitivity

for 400-150hPa retrieval levels (shown in green solid curves) peaks around 200 hPa. None

of the retrieval levels are sensitive to the surface, suggesting the a priori information

dominates the surface O3 retrievals. In this thesis, TES O3 retrievals (Level 2 data) from

the version 4 product are used for the analysis in Chapter 3. This version of the data

has good agreement in the troposphere with later versions of the retrievals (Herman and

Osterman, 2014). TES O3 retrievals were evaluated by Nassar et al. (2008) and Boxe

et al. (2010). Both studies identified positive biases in TES O3 retrievals from the surface

to the upper stratosphere, with a strong dependency on altitude and latitude. In this

study, these spatially dependent biases are removed to improve the quality of the TES

retrievals. Typically, TES O3 profiles have 1-2 DOFS in the troposphere. In this thesis,

only retrievals equatorward of 60◦ with the Master quality flag, cloud fraction<15%, and

solar zenith angle<84◦ are assimilated. This vertically-resolved information is vital for

concentration (initial condition) optimization in this assimilation framework. However,

the TES global survey observations were phased out after 2011, so for later stages of the

work in this thesis (e.g. Chapter 4), O3 retrievals from IASI will be assimilated.

Figure 2.3: TES O3 on TES retrieval level 5 (approximately 5 km) on 2 November
2009. (TES Science Team, 2008)
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Figure 2.4: TES averaging kernels for retrievals over at De Bilt, the Netherlands, on 14
July 2005. (Verstraeten et al., 2013)

IASI O3 partial columns

The IASI instrument is a FTIR spectrometer onboard the Meteorological Operational

(Metop) Satellites, which include Metop-A (IASI-A), Metop-B (IASI-B), and Metop-C

(IASI-C). (Note that data from IASI-C are not used in this work.) Metop-A was launched

in October 2006. Metop-B was launched in September 2012. The instruments onboard

both satellites are still in operation. The Metop satellites are in a sun-synchronous orbit

at an altitude of approximately 817 km, with an equatorial crossing time of around 09:30

local time in the morning (and 21:30 in the evening). IASI is nadir viewing and measures

radiation emitted by the Earth’s atmosphere between 3.62 - 15.5 µm. Similar to TES, the

IASI instrument also completes around 14 orbits a day. But because the measurement

consists of a wide 2200 km swath, the instrument reaches global observational coverage

twice a day (see Fig. 2.5). Full details of the instrumentation are described in Clerbaux

et al. (2009). The O3 retrieval is carried out in the spectral range of 9.3 - 9.8 µm. The full

description of the Fast Optimal Retrievals on Layers for IASI (FORLI), which is based

on an optimal estimation approach, can be found in Hurtmans et al. (2012). As with

MOPITT and TES, the IASI O3 retrievals can be expressed as:

zIASI = za
IASI + AIASI(z− za

IASI) + ε, (2.3)
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where z is the true O3 partial columns, za
IASI represents a single IASI priori profile re-

trieved from long-term satellite limb observations and ozonesonde measurements (McPeters

et al., 2007), ε is the retrieval error, and AIASI is the averaging kernel matrix. Fig. 2.6

shows the IASI-A averaging kernels for Nassriya, Iraq, on 15 July 2014. Similar to TES,

the vertical sensitivity to tropospheric O3 peaks in the mid-troposphere (between 6 and

8 km). There is greater sensitivity to O3 near the surface in this retrieval than in the

TES retrieval shown in Fig. 2.4 because of the high thermal contrast at the surface for

this scene in Iraq.

Figure 2.5: IASI-B FORLI (v20151001) total O3 columns (in DU) on 1 August
2016. (IASI Science Team, 2017)

IASI-B O3 partial columns retrievals with averaging kernel information from the

FORLI v20151001 product are used in Chapter 4. In Chapter 5, since the regional NOx

study period covers 2008-2011 (before the launch of IASI-B), I use the FORLI v20151001

O3 retrievals from only the IASI-A instrument. The retrievals as well as the validation of

IASI-FORLI O3 data are described in Boynard et al. (2016). According to their study,

the differences between IASI-A and IASI-B O3 partial columns were within 2% over all

altitudes. The daytime data and the nighttime data are both useful. Based on their val-

idation against aircraft data and ozonesondes, the bias correction discussed in Boynard

et al. (2016) is applied to the data used in this thesis. Moreover, all observations either

with cloud fraction larger than 10% or with root mean square error (RMSE) of the spec-

tral fit larger than 3.4×10−8 W cm−2 sr−1 cm−1 are rejected in the analysis. Since the
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focus here is on optimizing tropospheric O3, I only assimilate IASI O3 partial columns at

latitude between 60 ◦S and 75 ◦N, altitudes below 300 hPa. Additional quality control

includes quality flag=0, solar zenith angle<80◦, cloud fraction<0.13, and DOFS>3.0. It

is an advantage using IASI data because the instrument provides consistent high data

density for each assimilation period; throughout 2016 there are more than 105 observa-

tions available daily. The O3 profile has total DOFS of 3.0-4.2 with two maxima located

within the troposphere (at 2 and 8 km), which is useful for constraining the modelled O3

concentrations in the lower- and mid-troposphere.

Figure 2.6: Averaging kernels for IASI(A)-FORLI O3 retrievals on 15 July 2014 over
Nassriya, Iraq. (Boynard et al., 2016)

OSIRIS O3 retrievals

The Canadian-made OSIRIS is a limb instrument onboard the Swedish Odin satellite

that was launched in February 2001. Odin flies in a polar, sun-synchronous orbit with

equator crossing time at 18:00 local time on the ascending track and 06:00 local time

on the descending track. The satellite provides year-round coverage in the tropics and

spring/fall hemisphere, but no coverage in the winter hemisphere. The satellite completes

15 orbits daily with an orbit period of 96 min. The OSIRIS observational coverage on

2 November 2009 is shown in Fig. 2.7. The OSIRIS spectrograph measures scattered

sunlight between 280 nm to 810 nm with a spectral resolution of 1 nm. Observations are
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made with cross track resolution of between 6 and 60 km and an along track resolution

from 500 to 1000 km, with a vertical resolution of 2 km (Llewellyn et al., 2004). In

normal operational mode, OSIRIS scans the limb from 7 to 70 km in tangent altitude.

The retrieval method of OSIRIS is the Multiplicative Algebraic Reconstruction Technique

(MART), which combines ozone absorption information in both the ultraviolet (UV) and

visible parts of the spectrum to retrieve number density profiles from 10 km (clear sky)

or cloud top to 60 km. The radiative transfer model is the SASKTRAN model designed

by Bourassa et al. (2012). Aerosol and NO2 are also retrieved along with O3. The full

retrieval algorithm is explained in Roth et al. (2007) and Degenstein et al. (2009)

Figure 2.7: Gridded O3 stratospheric columns on 2 November 2009 retrieved from mea-
surements from the OSIRIS instrument (Degenstein et al., 2009).

This thesis uses the O3 number density vertical profile retrieved from SaskMART O3

version 5 product. Bourassa et al. (2012) performed an error analysis on the retrieved

OSIRIS O3 concentrations and found that there was less than a 2% difference between

OSIRIS and Stratospheric Aerosol and Gas Experiment II (SAGE II) data between 18-53

km. However, much larger biases were found at levels below 18 km as well as at levels

above 53 km. As a result, only the data located between 18 and 53 km, with the obser-

vation error smaller than 1% of the observed O3 abundance, are used in my assimilation.

Without averaging kernels given in the retrievals, I use the mean O3 concentrations on

each model level interpolated from the OSIRIS retrieval levels. It is noted that the in-

strument’s performance has degraded recently. Despite that, there are sufficient (more

than 100) OSIRIS observations available daily to provide stratospheric O3 constraints for

my assimilation.
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OMI tropospheric NO2 columns

The OMI instrument shown in Fig. 2.8 is a push broom UV-visable (UV-vis) spectrograph

onboard the Aura satellite. The OMI measurement consists of cross track swath of 2600

km comprised of 13 km × 24 km pixels. This viewing strategy allows OMI to achieve

global coverage daily. However, since 2007, there has been a physical blockage of the

entrance optics, which has affected many measurements (the “row anomaly”). As a

result of this loss of data, OMI data now achieves the global coverage about every two

days. The instrument measures direct and scattered sunlight in the wavelength range

between 270 nm to 550 nm. The retrieval process for the standard tropospheric NO2

product (OMI-SP) is described in Bucsela et al. (2006). It should be noted that this

retrieval algorithm is different from that used for the other OMI retrieval products, such

as the Dutch OMI NO2 product (OMI-DOMINO) and OMI-minus-OSIRIS. The OMI-SP

is based on a two-step approach (Krotkov et al., 2017). First, an NO2 slant column (S) is

estimated by fitting earth-shine radiances in the wavelength range between 405 to 465 nm

using differential optical absorption spectroscopy (DOAS) technique (Sigrist et al., 1994).

Second, for each latitude, a reference sector correction is applied by choosing remote

areas where the total slant columns are dominated by their stratospheric contributions,

providing an estimate of the stratospheric NO2 slant columns at all longitudes for the

corresponding latitude. This inferred stratospheric slant column is then subtracted from

the total slant column to retrieve the tropospheric NO2 slant column. The tropospheric

NO2 vertical column is then computed using the tropospheric slant NO2 columns with the

air mass factor (AMF) computed by the Total Ozone Mapping spectrometer RADiative

transfer model (TOMRAD) (Bucsela et al., 2006).

In this thesis, I use the OMI-SP V003 tropospheric NO2 product, which was validated

by Krotkov et al. (2017). An example of the OMI NO2 data are shown in Fig. 2.9. High

concentrations can be observed over the eastern US, Europe, East Asia and equatorial

Africa. Uncertainties of the NO2 column abundance depend on air mass factors (AMFs)

and measurement locations. To reduce the potential adverse impact of poor quality

retrievals, I assimilate only retrievals equatorward of 60◦ with the following quality flag

controls: cloud fraction < 0.2, quality flag = 0, viewing zenith angle < 65◦, and solar

zenith angle < 75◦. Krotkov et al. (2017) validated the OMI-SP V003 data and found

that the slant column in V003 of the standard product is 10-40% lower than V002 and has

better agreement with independent satellite and in-situ measurements over unpolluted

areas (Krotkov et al., 2017). The column data, despite lack of vertical sensitivity, are

still used to constrain both surface NOx emissions as well as the NO2 concentration in

the free troposphere.
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Figure 2.8: The nadir field of view with retrieval pixel information for the OMI instru-
ment (Dobber et al., 2006).

OMI tropospheric HCHO columns

The HCHO (also noted as CH2O or H2CO) retrievals assimilated in this study are from

version 3 of the Smithsonian Astrophysical Observatory retrieval algorithm of OMI ob-

servations (OMI-SAO) product, which is described by González Abad et al. (2015). The

retrieval process involves a similar two step approach as for NO2. The first step is the

radiance fitting to retrieve slant column densities (SCDs) using the basic optical ab-

sorption spectroscopy (BOAS) method (Chance, 1998). The second step is the vertical

column density (VCD) calculation based on tropospheric SCDs and AMF information re-

trieved from Vector-based Linearized Discrete Ordinate Radiative Transfer (VLIDORT,

an RTM) version 2.4. Tropospheric slant columns were retrieved using the reference sec-

tor correction algorithm described by Barkley et al. (2013), which involves calculation on

air mass factor (AMF) and scattering weight. The long term record for OMI-SAO V003

has been validated by Zhu et al. (2017). An example of the observational coverage of

HCHO from the OMI-SAO V003 product is shown in Fig. 2.9. High column abundances

are distributed over the southeastern US, the Amazon, Europe and southeastern Asia.

However, the retrievals are noisy, compared to the OMI NO2 retrievals. The uncertainties

of the HCHO SCDs for each single measurement range from 40% over HCHO hotspots

to 100% in remote regions. The OMI HCHO data are comparable to HCHO retrievals

from other satellite instruments, such as GOME-2A, GOME-2B, and Ozone Mapping

and Profiler Suite (OMPS) (Zhu et al., 2017). However, comparisons have shown that
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Figure 2.9: Sample OMI tropospheric (left) NO2 columns from Krotkov et al. (2018) and
(right) HCHO columns from Chance (2007) on 1 August 2016.

OMI HCHO retrievals over hotspots could be 30% lower than those from GOME and

SCIAMACHY. Zhu et al. (2017) also found that all the retrievals within the southeast-

ern US could be biased low by up to 50%. In this study, a uniform bias correction,

with a correction factor of 1.4 is applied globally, following the bias correction in recent

OMI HCHO assimilation studies (Kaiser et al., 2018). The quality flags similar to OMI

NO2 are also used: cloud fraction<0.2, main quality flag=0, cross track quality flag=0,

viewing zenith angle<65◦, and solar zenith angle<75◦. OMI HCHO retrievals have been

assimilated to provide “top-down” constraints on surface isoprene emissions because tro-

pospheric HCHO is a signature chemical product of isoprene oxidation (Palmer et al.,

2003b). However, the inferred isoprene emissions can have large uncertainties due to large

retrieval errors and to chemical biases in the atmospheric models used in the inversion

analyses.

MLS HNO3 retrievals

The MLS instrument is also onboard the Aura satellite. It is a limb instrument measuring

millimetre and sub-millimetre thermal emission. The instrument has seven radiometers

covering the spectral range between 118 GHz and 2.5 THz. An example of the observa-

tional coverage for a given day is shown in Fig. 2.10. The cross track and along track

resolution are 10 km and 165 km, respectively. There are 240 limb scans per orbit which

provide more than 3000 profiles per day. The retrieval method of MLS HNO3 uses the

optimal estimation method described by Livesey et al. (2011). Fig. 2.11 shows the full

width at half maximum of the rows of the averaging kernel matrix for MLS HNO3 data.

The vertical resolution is 3-4 km in the upper troposphere and lower stratosphere. It
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should be noted that the peak of the averaging kernel for each pressure level suggests

the retrieval at each vertical level is dominated by the HNO3 abundance observed at the

corresponding level. Moreover, according to the integrated vertical sensitivity (shown as

solid black), retrievals at altitudes below 200 hPa are dominated by the a priori infor-

mation. In Chapter 4, I use version 4.2 of the MLS HNO3 product. I only use HNO3

located at altitudes above 150 hPa and below 15 hPa with the following data filtering

suggested by Livesey et al. (2011): precision > 0, Status flag = an even number, Quality

> 0.5, Convergence < 1.4, and Cloud fraction < 10%. Santee et al. (2017) validated the

HNO3 retrievals against aircraft measurements and found that the precision throughout

the lower and middle stratosphere is about 0.7 ppbv. There are systematic biases that

vary between ±0.5 and ±2 ppbv (or 5 to 15%) throughout the stratosphere. In this

thesis, MLS HNO3 retrievals are used to constrain modelled HNO3 as well as lightning

NOx emissions. As explained in Miyazaki et al. (2015), assimilation of MLS HNO3 data

could correct the modelled NO2 biases through chemical feedbacks between NOx, O3,

and HNO3.

Figure 2.10: MLS HNO3 columns (integrated down to 150 hPa) observed on 20 September
2004. (EOS MLS Science Team, 2011)
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Figure 2.11: Colored lines show the averaging kernels as a function of MLS retrieval level.
The dashed black line shows the full width at half maximum (FWHM) of the averag-
ing kernels, approximately scaled into kilometers (top axis).The discontinuity shows the
transition between the 240-GHz retrievals and the 190-GHz retrievals. The solid black
line shows the integrated area under each kernel. The value approaching unity shows the
retrieved information comes from the measurements. (Santee et al., 2017)

OMI-minus-OSIRIS (OmO) tropospheric NO2 columns

The OmO NO2 dataset was produced by the limb-nadir matching technique using NO2

total columns retrieved from OMI-SP V003 NO2 and stratospheric SCD retrieved from

the OSIRIS NO2 V5.07, which have been described above. The limb-nadir matching

technique was described in Adams et al. (2016). The total columns of NO2 from OMI

and OMO be written as

SCDOMI
tot = SCDOMI

strat + SCDOMI
tropo = VCDOMI

strat · AMFOMI
strat + VCDOMI

tropo · AMFOMI
tropo (2.4)

SCDOmO
tot = SCDOSI

strat + SCDOmO
tropo = VCDOSI

strat · AMFOSI
strat + VCDOmO

tropo · AMFOmO
tropo (2.5)
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The bias-corrected OMI SCDs with correction factor γ can be written as a combination

of the OSIRIS stratospheric VCD and the OmO tropospheric VCD as the following

mathematical expression:

γ · SCDOMI
tot = VCDOSI

strat · AMFOMI
strat + VCDOmO

tropo · AMFOMI
tropo (2.6)

In turn, the OmO tropospheric VCD can be written as:

VCDOmO
tropo =

γ · SCDOMI
tot − VCDOSI

strat · AMFOMI
strat

AMFOMI
tropo

(2.7)

The OmO NO2 VCDs are calculated by removing the stratospheric VCD of OMI NO2

using the non-coincident NO2 profiles retrieved from OSIRIS. The mismatch in the non-

coincident profiles between OMI and OSIRIS measurements are corrected using a pho-

tochemical box model (McLinden et al., 2000) and the correction factor γ. The box

model is run for each altitude layer of the OSIRIS NO2 profile and is based on the strato-

spheric chemistry scheme imposed by Brohede et al. (2008). For NOx-related species in

the model, O3 is based OSIRIS retrievals, whereas N2O, CH4, NOy, Cly and Bry are

climatological estimates from the Canadian Middle Atmosphere Model (CMAM) (Jon-

sson et al., 2004). After reducing the mismatch, the STS is then applied to subtract

the OSIRIS interpolated NO2 stratospheric columns from the OMI total columns based

on the date, location, and local time of each OMI measurement. Full details of the

limb-nadir matching technique are explained in Adams et al. (2016). The OmO NO2

VCD is then retrieved using the same AMF and scattering weight information used in

the OMI-SP product described by Krotkov et al. (2017). Fig. 2.12 compares the mean

and standard deviation of the OMI and OSIRIS stratospheric VCDs during June-July-

August (JJA) for 2008-2011. Between 20◦N-60◦N, the OSIRIS stratospheric VCDs are

0.4-0.6×1015 molec/cm2 smaller than the OMI stratospheric VCDs. The spread of the

JJA mean stratospheric VCD between OMI and OSIRIS over North America are compa-

rable. Fig. 2.13 compares the mean and standard deviation of tropospheric VCDs during

JJA. Tropospheric VCDs north of 45◦N are significantly larger in the OMI-SP product

than in the OmO product for all three months. In fact, the OmO tropospheric VCDs

in northern high latitudes are close to 0 molec/cm2. Between 5◦ and 45◦N, the OmO

mean tropospheric VCD range is 2.5×1014 molec/cm2, slightly larger than the OMI-SP

mean tropospheric VCDs (approximately 1.9×1014 molec/cm2). It is also noticeable that

the month-to-month variation for OmO is slightly larger than for OMI-SP. The standard

deviation for the OmO NO2 product is also higher than that for OMI-SP, suggesting a
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higher variability for OmO tropospheric VCDs.

Figure 2.12: The mean and standard deviation of global stratospheric VCDs from OMI-
SP and OmO retrievals. They are calculated from the VCDs in each latitude band during
JJA for 2008-2011.

In this study, I assimilate OmO tropospheric NO2 slant columns to quantify North

American NOx emissions. Following the suggestion of Adams et al. (2016), only measure-

ments that met the following criteria were assimilated: cloud fraction<0.3, solar zenith

angle<75◦, and vertical azimuth angle<65◦. Since the observation coverage of OSIRIS is

limited to the summer hemisphere, only data for the summer season (JJA) over North

America were used. Our analysis focus on the period of 2008-2011 since the data den-

sity and retrieval quality during that period is the best for all three of the instruments

(IASI, OMI, OSIRIS) involved in my study. The differences in tropospheric VCD between

OMI SP and OmO as well as their corresponding assimilated surface NOx emissions are
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Figure 2.13: The mean and standard deviation of tropospheric VCDs from OMI-SP and
OmO retrievals over North America during June (blue circles), July (orange circles), and
August (yellow circles) for 2008-2011.

discussed in Chapter 5.

2.1.2 Observations used for Validations

HIPPO Aircraft data

The HIPPO programme consists of five aircraft campaigns flying across the Pacific Ocean.

The observations extend from 85◦N to 67◦S, and from the ground to 14 km in alti-

tude (Wofsy et al., 2011). This study uses data from the HIPPO-2 campaign, which was

carried out in November 2009. The flight path of HIPPO-2 is shown in Fig. 2.14. The

HIPPO datasets consist of high frequency (up to 1 Hz) observations of multiple trace

gases by different instruments onboard the Gulfstream V aircraft. Ten second averages

of O3 observations measured by Vertical Cavity Surface Emitting Lasers (VCSEL, a open

path NIR multipass spectrometer) are utilized as an independent dataset to compare to
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the a priori and the a posteriori GEOS-Chem simulated O3 fields in Chapter 3.

Figure 2.14: Flight path of HIPPO-2 aircraft campaign (Alvarado et al., 2015).

ATom Aircraft data

The NASA Aircraft Tomography Mission (ATom) measures more than 200 air quality

and greenhouse gas (GHG) species to study air pollution in the atmosphere. The air-

craft DC-8 measures continuous air quality samples over an altitude range of 0.2-12 km

altitude. The flight paths of the four deployments are shown in Fig. 2.15. They include

coverage over the Pacific Ocean, the Atlantic Ocean, the Polar Caps, and inland North

America. I use CO, O3, and OH measurements made during ATom-1 (August 2016) and

ATom-2 (January–February 2017) to evaluate the assimilation. The O3 measurements

were made by the Unmanned Chromatograph for Atmospheric Trace Species (UCATS)

and the NOAA Nitrogen Oxides and Ozone (NOyO3) chemiluminescence instrument,

the CO measurements were made by UCATS and the Harvard Quantum Cascade Laser

System (QCLS), and the HOx species were measured by the Airborne Tropospheric Hy-

drogen Oxides Sensor (ATHOS). Details of the instrumentation are available on the

ATom Mission page (https://espo.nasa.gov/atom/instruments).

ARCTAS Aircraft data

ARCTAS was an aircraft campaign with the goal of better understanding atmospheric

composition and climate in the Arctic. ARCTAS-CARB was based around the Central

Valley with the focus of monitoring air quality off the coast of California during late June

2008. Immediately following ARCTAS-CARB, the ARCTAS-B summer campaigns were
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Figure 2.15: Flight path of the four ATom campaigns. Note that only the ATom-1 and
ATom-2 campaigns are used in this thesis. (ATom Science Team, 2016)

conducted from 26 June to 14 July 2008 and were based around Cold Lake, Alberta,

with flights extending across Canada (see Fig. 2.16). The instruments onboard the DC-

8 aircraft sampled high-frequency measurements of multiple O3 precursors (NO2, HOx,

HCHO, PAN) over the northern US and the Canadian boreal forests. The NO2 mea-

surements from the ARCTAS campaign have been been used for evaluation in previous

modelling studies, such as Parrington et al. (2013) and Bousserez (2014). In Chapter 5,

data from both ARCTAS-CARB (noted as Summer Phase-California) and ARCTAS-B

(noted as Summer Phase-Canada) are used to evaluate the modelled NO2 fields.

TCCON data

The Total Carbon Column Observing Network (TCCON) is a ground-based network of

FTIR instruments that provide retrievals of GHGs such as CO2, CH4, CO and N2O. TC-

CON retrievals of CO columns are based on measurements of transmitted sunlight in the

spectral range of 4233-4290 cm−1. The retrieval algorithm uses a nonlinear least squares

spectral fitting algorithm (GFIT), which employs an optimal estimation approach. The

a priori profile is perturbed to produce a modelled spectrum to best match the measured

spectrum (Wunch et al., 2010). 24 out of the 25 sites that are currently in operation and

are providing column-averaged dry-air mole fractions (DMF) of CO (XCO) are listed in
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Figure 2.16: Flight path of the ARCTAS campaigns (Jacob et al., 2010). Note that only
the Summer Phase-California and Summer Phase-Canada campaigns are used in this
thesis.

Table 2.1 (with Izaña, Tenerife excluded). The calibrated TCCON XCO columns have

been validated by Wunch et al. (2010) using aircraft campaigns flying over many TCCON

measurement sites. The XCO measurements are within 7% of aircraft/AirCore observa-

tions. The continuous XCO dataset throughout 2016 are used to evaluate modelled CO

abundances in Chapter 4.

To compare the GEOS-Chem CO fields with TCCON XCO data, the TCCON column

averaging kernels and a priori profiles are used to transform the model as follows:

ĉ = ca + hTaT (x− xa), (2.8)

where ĉ is the smoothed column DMF, ca is the TCCON a priori DMF, hT is the obser-

vation operator that vertically aggregates the CO concentrations into columns, aT is the

TCCON column average kernel, x is the DMF calculated from the GEOS-Chem model,

and xa is the TCCON a priori profile. It should be noted that xa is expressed in wet

mole fraction xweta in GGG2014 version of the TCCON dataset. To apply Eq. 2.8 for any

model comparisons, it is necessary to convert it to DMF given the mole fraction of water

fH2O using:

xa =
xweta

1− fH2O

, (2.9)
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Table 2.1: Information of all TCCON sites (Wunch et al., 2010) operational in 2016. Site
name, latitude, longitude, and altitude information are given. Classification shows the
region where each site is grouped in Fig. 4.7

Site Latitude Longitude Altitude (km) Classification
Anmyeondo, Korea 36.5N 126.3E 0.03 East Asia
Ascension Island 7.9S 14.3W 0.01 SH Ocean
Bialystok, Poland 53.2N 23.0E 0.18 Northern high latitudes
Bremen, Germany 53.1N 8.9E 0.03 Europe

Caltech, USA 34.1N 118.1W 0.23 North America
Darwin, Australia 12.5N 130.9E 0.04 Oceania

East Trout Lake, Canada 54.4N 105.0W 0.50 Northern high latitudes
Garmisch, Germany 47.5N 11.1E 0.74 Northern high latitudes
Karlsruhe, Germany 49.1N 8.4E 0.12 Europe

Lamont, USA 36.6N 97.5N 0.32 North America
Lauder, New Zealand 45.0S 169.7E 0.37 Oceania

Ny Alesund, Spitsbergen 78.9N 11.9E 0.02 Northern high latitudes
Orleans, France 48.0N 2.1E 0.13 Europe

Paris, France 48.8N 2.4E 0.06 Europe
Park Falls, USA 45.9N 90.3W 0.44 North America
Reunion Island 29.9S 55.5E 0.09 SH Ocean

Rikubetsu, Japan 43.5N 143.8E 0.36 East Asia
Saga, Japan 33.2N 130.2E 0.01 East Asia

Sodankyla, Finland 67.4N 26.6E 0.19 Northern high latitudes
Tsukuba, Japan 36.1N 140.1E 0.03 East Asia

Wollongong, Australia 34.4S 150.9E 0.03 Oceania
Zugspitze, Germany 47.42N 11.0E 2.96 Europe

The EPA AQS network

The US EPA Air Quality System (AQS) (http://www.epa.gov/aqs) provides observa-

tions of surface pollutants such as O3 and NO2 (Chai et al., 2006). These measurements

of air pollutants are collected by the EPA, state, and local and tribal air pollution control

agencies from more than 1000 sites across the US. The number of the qualified measure-

ments are nearly twice as many in summer than in winter (Chai et al., 2006). For O3,

modelled outputs are examined against hourly EPA AQS O3 data. To reduce the repre-

sentation biases with respect to the model, measurements under extreme O3 events and

severe weather conditions are excluded to avoid anomalous high or low O3 observations

(Chai et al., 2013). As the EPA AQS measurements are mostly distributed over emission

source regions, the dataset is used to examine the impact of optimized CO and NOx

emissions on the modelled O3 distribution in Chapter 3.
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Abundances of NO2 are obtained by calculating the difference between the measure-

ments obtained in the NOx and NO modes. Kharol et al. (2015) has suggested that the

NO2 concentration obtained through this approach may be overestimated due the pres-

ence of other reactive nitrogen species such as PAN, HNO3, HONO and organic nitrates

(e.g. alkyl nitrates, RONO). Following Kharol et al. (2015), I applied a bias correction

factor sf to the reported AQS NO2 measurements, where

sf =
NO2

NO2 + RONO + 0.95× PAN + 0.15× HNO3

. (2.10)

The concentration for each species used in the bias correction was obtained from the

GEOS-Chem model. Moreover, the surface NO2 concentration inferred from CTMs or

satellite retrievals are underestimated compared to the in-situ measurements (Wang and

Chen, 2013). This is because surface NO2 from the model is usually area averaged

into a broader area compared to the point source in-situ measurements. To account for

this difference, an additional representativeness correction factor of 1.7 is applied in the

AQS validation used in Chapter 5. The factor is based on the interpretation from land

regression model used in Kharol et al. (2015).

SHADOZ O3 ozonesonde

The Southern Hemisphere ADditional OZonesondes (SHADOZ) network consists of a

number of ozonesonde sites across the tropics, subtropics, and SH. The ozonsondes pro-

vide measurements of O3 from the surface up to about 30 km. I choose the 12 sites

shown in Fig. 2.17 (which are all operation sites, with the exception of Hanoi, Vietnam)

to evaluate the modelled O3 concentrations. All ozonesonde profiles are available on the

SHADOZ website: https://tropo.gsfc.nasa.gov/shadoz/. Thompson et al. (2007) exam-

ined the accuracy of the ozonesonde measurements and found that the uncertainty of the

observed O3 is within 5% throughout the troposphere. SHADOZ observations have been

used for validation in many O3 studies (e.g., Bowman et al., 2006; Miyazaki et al., 2012a;

Nassar et al., 2008). The data are used in Chapter 4 for evaluation of the modelled O3

in the tropics and subtropics.
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Figure 2.17: Geographical distributions of all SHADOZ ozonesonde cites that are cur-
rently in operation (Witte et al., 2017).

2.2 Model

2.2.1 Chemical transport model

A CTM is a 3D numerical model simulating transport, chemistry, emission and de-

position processes of chemicals in the atmosphere driven by prescribed meteorological

fields (Brasseur and Jacob, 2017). CTMs such as GEOS-Chem solve the governing equa-

tions, such as the continuity equation, in Eulerian form, and are classified as “box” mod-

els. In contrast, CTMs such as FLEXible PARTicle dispersion model (FLEXPART) solve

the governing equations in Lagrangian form, and are classifed as “puff” models. (Jacob,

1999) Moreover, as mentioned above, CTMs do not solve for the atmospheric dynam-

ics, but instead use the archived meteorological data to simulate atmospheric transport.

These meteorological fields are often based on assimilated fields so that the simulated

weather patterns will be consistent with observations (Brasseur and Jacob, 2017). CTMs

are therefore “offline” models, which do not allow the simulated tracers to exhibit any

impact on the driving meteorological fields.

Continuity Equation

In Eulerian form, the continuity equation for a given chemical tracer is

∂n

∂t
+∇ · F = P − L, (2.11)
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where n is the number density (molec/cm3) of the chemical species, ∂n
∂t

represents the

rate of change of the concentration of the species, ∇ · F is the flux divergence which

represents the influence of transport, and P and L are local production and loss rate (in

units of molec/cm3/s), which represents the source and sink term, respectively. In the

lower atmosphere, where molecular diffusion can be neglected, I can rewrite Eq. 2.11 in

the Eulerian advective form expressed in mixing ratio:

∂χnair
∂t

= −∇ · (χnairU) + P − L, (2.12)

and then:
∂χ

∂t
= −U · ∇χ+ P ′ − L′, (2.13)

where nair is the number density of air, χ is the mixing ratio of the chemical species,

P ′ = P
nair

and L′ = L
nair

are the production and loss rate expressed in mixing ratio form.

In this way, the continuity equation becomes a first order partial differential equation

(PDE) in space and time. In the CTMs, the system is further discretized in space, which

converts the PDE into a system of coupled ordinary differential equations (ODEs) in

dimension of d× k, where d is the total number of grid boxes in the model, and k is the

total chemical species transported in the model (Brasseur and Jacob, 2017). To further

simplify the continuity equations, operator splitting is applied to separate the transport

and chemistry terms into two independent processes. The transport term is assumed to

only interact between neighbouring grid boxes but not among species, whereas for the

chemical term (P ′ − L′) there can be interaction between the species but not between

neighbouring grid boxes (Brasseur and Jacob, 2017). In this way, Eq. 2.11 can be split

into: [
∂n

∂t

]
trans

= −∇ · (nU), (2.14)[
∂n

∂t

]
chem

= P − L. (2.15)

By solving Eqs. 2.14 and 2.16, given the total number of the involved species, their

chemical reaction rates, emissions, the production and loss rate, and the meteorological

fields, the concentration of modelled tracers can be propagated from time t0 to time

t0 + δt in each model time step δt with:

n(t0 + δt) = M(n(t0)) = C ·T(n(t0)), (2.16)
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where M is the model, as represented by the chemistry operator, C, and the transport

operator, T (Brasseur and Jacob, 2017).

2.2.2 GEOS-Chem model

GEOS-Chem (www.geos-chem.org) is a global CTM driven by the meteorological re-

analysis data from the Goddard Earth Observing System (GEOS) of the NASA Global

Modeling and Assimilation Office (GMAO). In Chapter 3 I use version v34 of the GEOS-

Chem adjoint model, which is based on v8-02-01 of the forward GEOS-Chem model. In

Chapters 4 and 5, I use version v35l of the adjoint model, which is based on v8-02-01 of

the GEOS-Chem model with relevant updates up to version 9 of the forward model. The

adjoint model can be driven by either GEOS-5 or GEOS-Forward Processing (GEOS-FP)

meteorological fields. The differences between GEOS-5 and GEOS-FP are in the vertical

resolutions and physical parameterizations of the parent GCM at GMAO. GEOS-5 is also

an older version that was available only until 2013. GEOS-FP is the current version that

is available for simulations after 2013. As an offline CTM, the modelled chemical fields

in GEOS-Chem will not impact the GEOS meteorological fields (Brasseur and Jacob,

2017).

The native resolution of the GEOS-5 and GEOS-FP fields is 0.5◦ × 0.667◦ and

0.25◦×0.3125◦ horizontally, respectively, with 72 vertical pressure levels from the surface

to 0.01 hPa. For the global inversions in Chapter 3 and 4, in order to reduce the compu-

tational costs of the simulations, the GEOS-5 and GEOS-FP products are reshaped into

a horizontal resolution of 4◦ × 5◦ in longitude × latitude with 47 vertical pressure levels

from surface to 0.01 hPa. The meteorological fields are updated every 3 or 6 hours de-

pending on the variables. At a horizontal resolution of 4◦×5◦, the time step in the model

for advection, convection, emission updates and chemistry are 30, 30, 60, and 60 min-

utes, respectively. In the full chemistry simulation, there are 86 species and 307 chemical

reactions representing the O3-NO2-hydrocarbon-aerosol chemistry. However, only 43 of

the individual tracers are transported. The numerical scheme of the transport operator

is based on that of Lin and Rood (1996). The chemical operator can use either the Gear

or Rosenbrock chemical solver. For GEOS-Chem, the adjoint model does not explicitly

simulate stratospheric chemistry. Instead, it uses the linearization of stratospheric ozone

(LINOZ) chemistry by McLinden et al. (2000). Wet and dry deposition of trace gases is

parameterized as described in Liu et al. (2001) and Wang et al. (1998a).
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2.2.3 GEOS-Chem nested model

The model can be run at the native horizontal resolution, in a nested mode, over selected

domains such as over North America, Europe, and Asia. For the NOx assimilation in

Chapter 5, I use the North American nested domain (140◦W-40◦W, 10◦N-70◦N) with

version v35l of the adjoint model at a resolution of 0.5◦× 0.667◦ resolution. The regional

model requires boundary conditions around the nested domain during the simulation

period, which are generated from the 4◦×5◦ global version of the model. The time step

in North American nested-grid model for advection, convection, emission updates and

chemistry are 10, 10, 20, and 20 minutes, respectively.

2.3 Emission inventories

For the global analyses in Chapters 3 and 4, anthropogenic emissions are taken from

EDGAR 3.2FT2000 (Olivier and Berdowski , 2001). However, for certain regions, the

global inventory is replaced with a number of regional inventories. In Canada, the

model uses the Criteria Air Contaminants from the National Pollutant Release Inven-

tory (www.ec.gc.ca/inrp-npri/). The US inventory is based on the US EPA National

Emission Inventory for 2005 (NEI05). The Mexican inventory uses the Big Bend Re-

gional Aerosol and Visibility Observational Study Emissions Inventory (BRAVO) (Kuhn

and Etyemezian, 2003). The European inventory is from the Cooperative Programme

for Monitoring and Evaluation of Long-Range Transmission of Air Pollutants in Eu-

rope (EMEP). In Asia, the model uses the emission estimates from Streets et al. (2006).

Biomass burning emissions are taken from GFED-3 inventory (van der Werf et al., 2006).

Biogenic emissions are from version 2.0 of the Model of Emissions of Gases and Aerosols

from Nature (MEGAN 2.0) (Guenther et al., 2006). Soil emissions of NOx are accord-

ing to Wang et al. (1998b), and the parameterization of LNOx follows Price and Rind

(1992), with a global scaling, as described by Murray et al. (2012), to match climatolog-

ical observations from the Optical Transient Detector and the Lightning Imaging Sensor

(OTD/LIS).

For the regional NOx studies in Chapter 5, the US anthropogenic emissions are from

the 2008 National Emission Inventory (NEI08) of the US EPA. The Canadian and Mex-

ican anthropogenic emissions, as well as the biomass burning inventory, are the same as

in the global model. Biogenic emissions are based on MEGAN v2.1. LNOx and soil NOx

emissions are as in the global model.
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2.4 Inversion approaches

2.4.1 Bayesian inversions

Inverse modelling, in general, is a Bayesian inference problem, in which I seek to opti-

mize selected modelled states given a set of observations. The variables estimated by the

numerical model are called state variables (represented by the state vector x). Mathe-

matically, for a perfect model without bias, the forward model can be written as (Keller ,

2014):

xn+1 = M(p,xn) (2.17)

where M represents the numerical model, acting on model parameter (such as emissions)

p and modelled states (such as concentrations) xn at time n. M evolves the modelled

state x from time n to time n + 1. With the consideration of Eq. 2.17, the observation

can be written as:

y = H(x)) + ε, (2.18)

where y represent the observation vector, H is the observation operator that projects the

modelled state into the observation space, and ε is the observation error, whose mean is

zero and covariance matrix is given by R.

Given a set of observations and prior knowledge of certain modelled states, Bayes’

theorem describes the probability distribution of the a posterior states as:

P (x|y) =
P (y|x)P (x)

P (y)
, (2.19)

where P (x) is the a prior probability density function (pdf) of the state, P (y|x) is the

conditional pdf of y given the a priori knowledge of x, and P (x|y) represents the a

posteriori pdf based on the knowledge from the observations. In this thesis, I assume

that the probability distributions in Eq. 2.19 are Gaussian. Hence, the conditional pdf

of the observations can be expressed as:

P (y|x) ∝ exp[−1

2
(y −H(x))TR−1(y −H(x))], (2.20)

and the a priori pdf as:

P (x) ∝ exp[−1

2
(x− xa)TB−1(x− xa)]. (2.21)
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Hence, the a posteriori pdf is expressed as:

P (x|y) ∝ exp[−1

2
(x− xa)TB−1(x− xa)− 1

2
(y −H(x))TR−1(y −H(x))], (2.22)

where xa is the a priori state vector, R is the observation error covariance matrix, and

B is the a priori/background error covariance matrix (Rodgers , 2000). I can also express

Eq. 2.22 as a cost function:

J =
1

2
(x− xa)TB−1(x− xa) +

1

2
(y −H(x))TR−1(y −H(x)), (2.23)

The maximum a posteriori (MAP) state is retrieved through either maximizing the a

posteriori pdf P (x|y) in Eq. 2.22 or by minimizing the cost function J in Eq. 2.23.

2.4.2 Optimal Estimation

Optimal estimation is a Bayesian inversion that is widely used in the remote sounding

community. The retrieval of trace gas concentrations (such as CO) or meteorological fields

(such as temperature) is performed by minimizing the difference between the spectrum

from a RTM and the radiance observed by Earth observing satellites, subject to a priori

constraints on the atmospheric quantity of interest. By assuming ε in Eq. 2.18 to be

normally distributed and linearizing the observation operator H, the solution obtained

from minimizing the cost function in Eq. 2.23 is

x̂ = xa + A(x− xa), (2.24)

where

A = BHT(HBHT + R)−1H. (2.25)

Equation 2.24 is the same as Eqs. 2.1, 2.2, and 2.3, where xa is the a priori state vector,

x is the true state, A is the averaging kernel of the retrievals, and x̂ is the retrieved state

vector.

2.4.3 4D-Var

The 4D-Var data assimilation scheme can be used to assimilate the 3D fields of the gases

of interest in a CTM, which has two types of applications in my project. First, inverse

modelling is applied when optimizing the emissions. In this case, surface emissions are

the optimized parameters. The measured atmospheric concentrations are the observa-
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tions. The forward model is the CTM that transforms the emissions into the atmospheric

abundances. The a priori emissions are based on bottom-up inventories. The a posteri-

ori emission then refers to the optimized top-down emission estimates. Second, inverse

modelling is applied when optimizing initial conditions. In this case, the modelled con-

centrations, which evolve in time according to the forward model, are compared with

the observations at various locations and times to optimize the initial model distribu-

tion so that the model better reproduces the observations when the initial conditions are

projected forward in time, over the period for which the observations were assimilated.

In the case where the satellite retrievals are not in the same space as the model, such

as when the data are retrievals of column abundances, an observation operator must be

used to map the state variables to the observation space. The mathematical expression

of the 4D-Var cost function is

J(p,x0) =
1

2
[p− pa]TB−1p [p− pa]

+
1

2
[x0 − xa]TB−1x [x0 − xa]

+
1

2

N∑
n=1

γr[yn −H(M(p,x0))]TR−1[yn −H(M(p,x0))],

(2.26)

where p are the model parameters, such as the CO emissions, x0 is the initial condition,

such as the O3 initial distribution, pa and xa are the a priori estimates of the parameters,

B is the a priori error covariance matrix, xn = M(p,x0) is the modelled state (e.g. CO

concentration) at time steps n, yn are observations (e.g. MOPITT CO profiles), and γr

is the normalization factor used for balancing the contribution of the different chemical

species to the cost function.

The minimization of the cost function J uses the method of Lagrange multipliers,

which is an algorithm to find the local minima of a function subject to certain constraints.

In this system, I would like to maximize J(p,x0) subject to xn = M(p,x0) (which can

be re-expressed xn −M(p,x0) = 0). Combining Eq. 2.17, Eq. 2.18 with Eq. 2.26, the

Lagrangian function L(p,x0, λ0) = J(p,x0)− λ(xn −M(p,x0)) is expanded as:

L(p,x0, λ0) =
1

2

(
(p− pa)TBp

−1(p− pa) +
N∑
n=1

(yn −H(xn))TR−1(yn −H(xn))

− 2
N∑
n=1

λTn [xn −M(p,x0)]

)
.

(2.27)
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To minimize the cost function, L must be minimized to obtain the improved estimates.

The derivative of L with respect to each variables after dropping the common multiplica-

tive factor 1
2

is shown below (Keller , 2014):

∂L
∂p

= 2

(
Sp
−1(p− pb) +

N∑
n=1

λTn
∂M(p,x0)

∂p

)
(2.28)

∂L
∂xn

= 2

(
−HTR−1[yn −H(xn)]− λn +

(
∂M(p,x0)

∂x

)T
λn+1

)
(2.29)

∂L
∂xN

= 2(−HTR−1[yN −H(xN)]− λN) (2.30)

∂L
∂λn

= 2(xn −M(p,xn−1)) (2.31)

When the system is minimized, ∂L
∂p

, ∂L
∂xn

, ∂L
∂xN

, and ∂L
∂λn

are all set to be zero. ∂L
∂λn

=0 is

self-explanatory since it represents the GEOS-Chem forward model which simulates the

tracers of interest from x0 to xn based on the a priori estimates p. ∂L
∂xn

=0 and ∂L
∂xN=0

produce the adjoint model equations:

λn =

(
∂M

∂xn

)T
λn+1 −HTR−1(yn −H(xn)), (2.32)

and

λN = −HTR−1(yN −H(xN)), (2.33)

where (∂M
∂x

)T is the adjoint of tangent linear model M = ∂M
∂x

. The adjoint model starts

calculate the adjoint forcing λN at the end of time window expressed in Eq. 2.33. After

that, the adjoint forcing in the previous time steps λn are computed using Eq. 2.32 until

the total cost function J and the state p and/or x0 are optimized using Eq. 2.28. In the

end, I repeat the forward calculation with the new estimate of p and/or x0 and iterate

until the convergence criterion is satisfied. (Keller , 2014)

In summary, the forward model with bottom-up emission inventories as well as ini-

tial concentrations for all chemical tracers are simulated. First, the initial conditions

are integrated forward in time. The concentrations of various species will be compared

with the employed satellite observations at the locations and times of the observations to

compute the cost function and adjoint forcing. After that, the total cost function is min-

imized by reducing the gradient dJ
dx

using the GEOS-Chem adjoint model (Henze et al.,

2007). (x represents the modelled states which depends on M , x0, and p.) Reducing the

gradient dJ
dx

requires adjusting the optimized quantities (emissions or initial conditions)
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at the beginning of the assimilation window. Then, I repeat the forward calculation with

the new estimate of p and/or x0 and iterate until the convergence criterion of the cost

function J is satisfied. In the GEOS-chem adjoint model, the Limited memory Broyden-

Fletcher-Goldfarb-Shanno algorithm for Bound-constrained optimization (L-BFGS-B) is

used to optimize the cost function (Byrd et al., 1995).

2.4.4 Weak-constraint 4D-Var

For the O3 assimilation in Chapter 5, I use the weak constraint 4D-var data assimila-

tion system of GEOS-Chem. Unlike strong constraint 4D-var, which assumes that the

model is perfect, weak constraint introduces a model error term (Trémolet , 2006) as

an additional optimization factor to correct for biases in the modelled transport and

chemistry. Implementing the model forcing in the total cost function for weak constraint

4D-var is key to mitigating the model biases. In this way, both the O3 initial conditions

and the model forcing terms are optimized throughout the assimilation window. The

mathematical expressions of the weak constraint 4D-var system are as follows:

xn = M(xn−1,p) + ηn, (2.34)

J(x0,p, η) = [p− pa]TB−1p [p− pa]

+ [x0 − xa]TB−1x [x0 − xa]

+
N∑
n=1

γr[yn −H(M(x0,p))]TR−1[yn −H(M(x0,p))]

+
N−1∑
n=1

ηTnQ−1η ηn.

(2.35)

Equation 2.34 represents the implementation of the model error for the forward model

simulations. Here ηn is added to the model to account for errors in evolving the model

state from time step n−1 to n. Equation 2.35 shows the cost function for weak constraint

4D-Var, which is similar to Eq. 2.26. It is noted that this expression drops the common

factor 1
2

and has the addition of the model error cost function term, where Qη is the

model error covariance matrix. The selection of Qη is further discussed in Chapter 5.

2.5 Observation operators

Recall that H is the observation operator that projects the model state to the observation

space. For MOPITT and TES, the observation operators are equivalent to Eqs. 2.1 and
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2.2, respectively, and are given by

HMOP(xn) = za
MOP + AMOP(xn − za

MOP), (2.36)

and

HTES(xn) = za
TES + ATES(xn − za

TES), (2.37)

where xn is the GEOS-Chem modelled output. Because of the high vertical resolution

of the OSIRIS data, the observation operator for OSIRIS consists only of interpolation

of the GEOS-Chem O3 profile onto the OSIRIS vertical grid. The observation operator

for OMI and OmO NO2 involves a two step approach. First, to calculate the modelled

tropospheric NO2 column abundance, I integrate the modelled NO2 profile to obtain

vertical column densities. Second, to avoid the mismatch of the air mass factor between

the model and the observation, I compare the modelled NO2 SCDs with retrieved NO2

observations, using the equation

HOMI/OmO(xn) = AMF · h(xn) (2.38)

where h is the column operator that linearly aggregates the GEOS-Chem NO2 partial

columns into VCDs and AMF is the air mass factor computed from the GEOS-Chem

model, where

AMF =

∫
ψ(p)m(p)dp∫
ψ(p)dp

. (2.39)

By definition, ψ(p) is the GEOS-Chem NO2 mixing ratio depending on the model pressure

p, and m(p) is the scattering weights which described the sensitivity of the backscattered

sunlight to the absorber. For IASI O3, the observation operator is equivalent to Eq. 2.3.

HIASI(xn) = za
IASI + AIASI(Cnxn − za

IASI) (2.40)

where za is the single IASI a priori O3 partial columns, xn is the modelled O3 con-

centrations, Cn the partial column operator that converts the modelled O3 concentra-

tions into partial columns, according to the information of pressure and altitude from

GEOS-Chem, and A is the IASI averaging kernel. For OMI HCHO, I apply the same

observation operator as OMI NO2 (for which I assimilate tropospheric SCDs), given by

HOMI(xn)=AMF·h(xn). The modelled HCHO is then transformed into SCDs using the

model derived AMF. This observation operator is also applied and explained in Kaiser

et al. (2018). For MLS HNO3, since the averaging kernel of a retrieved level peaks sharply

on the corresponding pressure levels (Massart et al., 2012), the observation operator di-
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rectly interpolates the modelled stratospheric HNO3 profile onto the MLS observation

grid using the same approach as for OSIRIS O3.



Chapter 3

Quantifying CO and NOx emissions

in November 2009 and July 2010

using observations from MOPITT,

OMI, TES, and OSIRIS

3.1 Introduction

Surface pollutants such as CO and NOx have a significant impact on air quality as well as

the evolution of the chemistry of the troposphere (Zhang et al., 2008a). As discussed in

Chapter 1, top-down estimates of regional emissions of CO and NOx are uncertain. These

uncertainties in the regional emission estimates reflect the influence of model errors, dif-

ferences in the employed data assimilation approaches, and the observations assimilated

in different studies. For instance, the uncertainties of tropospheric abundance of OH

and its major precursor O3 could profoundly impact the CO emission estimates. Multi-

species chemical data assimilation introduced in Section 1.6 has the potential to reduce

the modelled biases on CO-HOx-NOx-O3 tropospheric chemistry by providing comple-

mentary information from multiple satellite observations. Miyazaki et al. (2012a) were

the first to assimilate a suite of global space-based observations of atmospheric trace

gases to constrain the chemical mechanism in their CTM in the context of their inversion

analysis to quantify global NOx emissions and modelled states of CO, O3 and OH. In

this chapter, I use the GEOS-Chem 4D-Var data assimilation system to conduct a MSA

to quantify NOx and CO emissions, following the approach of Miyazaki et al. (2012a). I

assimilate O3 data from TES and OSIRIS, NO2 column abundances measured by OMI,

57



Chapter 3. MSA Constraints in November 2009 and July 2010 58

and retrieved CO profiles from MOPITT.

A key difference between the work here and that of Miyazaki et al. (2012a) is my use

of the 4D-Var assimilation scheme. With the LETKF approach, Miyazaki et al. (2012a)

had to employ localization to minimize the impact of long-range correlations, which could

limit the chemical coupling among species. Furthermore, they used a short assimilation

window of 90 minutes, which limits the model’s transport impact on optimizing surface

emissions of CO and NOx. In contrast, I use a long assimilation window of two weeks.

This was chosen to ensure that sufficient observations are ingested to constrain the model

states. In the 4D-Var scheme, the state vector is optimized to produce a smoothed

model trajectory, which would allow the model forecast to best reproduce the assimilated

observations over the assimilation period (Trémolet , 2006). As a result of this time

dependence, the 4D-Var scheme inherently produces a consistent chemical state across

the assimilation period (Eibern and Schmidt , 1999). Due to expensive computational

costs of running MSA, I restrict the study periods to November 2009 and July 2010.

These durations are chosen because the availability of all the datasets are maximized

during the corresponding period of the months. The November 2009 run is used to

examine the quality of the MSA results, as this assimilation time period overlaps with

the HIPPO-2 aircraft campaign. The experiments in July 2010 are used to examine the

seasonal differences for MSA. The 2-week assimilation window is selected since optimizing

O3 initial conditions in the 4D-var scheme can only provide O3 constraints within its

lifetime in troposphere. I also compare the 2-week window with other assimilation window

selections in Section 3.3.7. The initial conditions of all the advected tracers were obtained

by running the GEOS-Chem forward model from July 2005. I do not include a “spin-

up” assimilation period before each analysis period, which could introduce biases from

initial conditions. But these experiments are still legitimate since I would like to test

whether MSA could adjust the overall chemical state and reduce the initial condition

bias simultaneously.

As this study focuses on global emission estimates of CO and NOx, their surface

emissions including anthropogenic, biomass burning, biofuel and soil (for NOx only)

sources are optimized. O3 initial condition is also optimized when assimilating the two

O3 observations. This is motivated by the results from Jones et al. (2009) and Bowman

et al. (2006). They showed a strong impact of changing NOx surface emissions on O3

and CO concentrations, which in turn suggested that changing O3 would affect surface

CO and NOx emissions. Between the two O3 observations, TES O3 provides highest

sensitivity around mid-troposphere, while OSIRIS O3 provides the most information in

UTLS. As explained in Chapter 1, combining both observations is conducive to providing
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Table 3.1: Optimized quantities with the corresponding observations used in this study.

Optimized quantities Assimilated observation(s)
CO emissions MOPITT CO profiles
O3 initial conditions TES or OSIRIS O3 profiles
Surface NOx emissions OMI NO2 columns
Surface CO and NOx emissions, O3 ini-
tial conditions, LNOx emissions

All instruments (including MOPITT, TES,
OSIRIS, OMI)

complementary information for O3 throughout the troposphere. LNOx is also optimized,

as it constitutes an important NOx source in the free troposphere, especially in the

tropics, and can impact free tropospheric O3 (Bowman et al., 2006).

The optimization options are shown in Table 3.1. CO emission, surface NOx emissions

and O3 initial conditions are optimized when MOPITT CO retrievals, OMI tropospheric

NO2 column or TES/OSIRIS O3 retrievals are assimilated respectively. In MSA (also

referred to as the “all instrument run”), I optimize surface emissions of CO and NOx,

LNOx and O3 initial conditions with all observations assimilated.

3.2 Model setup

3.2.1 Assimilation approach

In the 4D-var data assimilation system of GEOS-Chem, the cost function is given by:

J(x0,p) = [p− pa]
TB−1p [p− pa] + [x0 − xa]

TB−1x [x0 − xa]

+
4∑
r=1

N∑
n=1

γr[yn,r −Hr(M(x0,p))]TR−1r [yn,r −Hr(M(x0,p))],
(3.1)

where yn,r is the observation vector that contains the four different observation types

(r) (MOPITT CO, TES O3, OSIRIS O3, and OMI NO2), at a given time n over the

assimilation period, p represents the model parameters, which refers to surface CO and

NOx emissions in our case, and x0 is the initial condition state vector which optimizes

the O3 initial conditions. In this chapter, CO production due to oxidation of NMVOC

is not constrained. In minimizing J , the model is compared to the observations at

the observation time n, and the GEOS-Chem adjoint is used to project the model-data

mismatch backward onto the initial conditions and model parameters (Henze et al., 2007).

pa and xa are the a priori estimates of the model parameters and the initial conditions,

Bp and Bx are the a priori error covariance matrices for the model parameters and the
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initial conditions, Rr is the observation error covariance for observations of species r,

and M(x0,p) represents the GEOS-Chem forward model that simulates the CO, O3,

and NO2 concentrations. γr is a normalization factor used for balancing the contribution

of the various observations to the cost function, which will be discussed in Section 3.2.3.

H is the observation operator that projects the model state to the observation space. The

detailed setup of each employed observation operator has been introduced in Section 2.5.

In the assimilation I set the a priori error covariances as diagonal matrices with

relative error standard deviations of 50%. It should be noted that characterizing the

covariances is challenging, particularly for the 4D-Var scheme. As a result, in the ab-

sence of reliable knowledge of the covariance structure, a diagonal covariance matrix is a

reasonable assumption. My assumption of a uniform a priori error of 50% is an ad-hoc

simplification, but still consistent with previous studies (e.g., Jiang et al., 2013, 2015a,

2017; Stavrakou et al., 2008). In addition, using a diagonal background error covariance

matrix could speed up the minimization of the cost function, which has been a stan-

dard approach for most of the 4D-Var based chemical data assimilations (Skachko et al.,

2016). Although I impose the diagonal covariance matrices, the use of the adjoint to

propagate information across the assimilation window allows observations of a particular

species to influence other species in the model. The assumption of a spatially uniform

a priori error enables me to better identify the impact of the multi-species observation

and their chemical coupling on the regional emission estimates without the confounding

influence of some regions being more tightly constrained to match the a priori emissions

than others. My use of a uniform 50% error is similar to the approach of Miyazaki et al.

(2012a). They assumed an initial a priori error of 40% for the emission estimates and

then inflated the emission errors after each analysis step to ensure a minimum emission

error of 30%. A notable difference between my assimilation configuration and Miyazaki

et al. (2012a) is that they assumed a 10% error for the tracer concentrations, whereas my

50% a priori error is assumed for the emission and concentration estimates. I believe that

a larger a priori error for the concentrations is appropriate in our configuration because

of the much longer assimilation window used here compared to that in Miyazaki et al.

(2012a) (two weeks compared to 90 minutes).

For the observation error covariances, I implement a super-observation approach for

MOPITT CO and OMI NO2 data. Following Jiang et al. (2013), I aggregate the MO-

PITT retrievals onto the model’s 4◦ × 5◦ grid and assume a uniform observation error

of 20% to capture the influence of representativeness errors. For OMI, which has the

greatest observational coverage of the datasets assimilated, I generate super-observations

following Miyazaki et al. (2012b), with the exception that I use our own representative-
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ness errors according to the cost function scaling discussed in Section 3.2.3. In general,

the super-observation error for NO2 is 25% of the mean measurement error.

3.2.2 Cost Function Weighting Observing System Simulation

Experiment (OSSE)

One major consideration in my MSA is the choice of the cost function normalization

factor γ, which weights observations of different species to balance their information con-

tribution in the MSA framework. If each observation is considered equally (γ = 1 for all

observations), the model will favor observations with high accuracy and the observations

of the chemical species with maximum adjoint sensitivity. My state vector consists of

CO and NOx emissions and the initial O3 abundances. Changes in the CO emissions

in the state vector will have a limited impact on the modelled NO2 mismatch with the

OMI observations. Changes in the NOx emissions will have a larger, but still limited

impact on the modelled CO mismatch with the MOPITT observations. However, on the

long timescales considered in the assimilation, changes in the CO and NOx emissions will

influence the model mismatch with the O3 data. So the challenge in the MSA is to ensure

that the MOPITT and OMI data provide a sufficient contribution to the cost function

minimization to constrain the CO and NOx emissions, respectively.

Table 3.2: Configurations of the the OSSEs for γ. Shown are the imposed bias in the CO
and NOx emissions and in the O3 initial conditions. Also listed are the pseudo datasets
assimilated in each OSSE.

OSSE CO Bias NOx Bias O3 Bias Pseudo Data
MOPITT −50% 0% 0% MOPITT

OMI 0% +50% 0% OMI
MSA1 −50% +50% +30% MOPITT, TES, OSIRIS, OMI
MSA2 −50% +50% +30% MOPITT, TES, OSIRIS, OMI
MSA3 −50% +50% +30% OMI-like CO, O3, NO2

To better understand the need for balancing the cost function, I have conducted an

OSSE using pseudo-observations during the first week of November 2009. Pseudo data

for MOPITT, TES and OSIRIS, and OMI, were generated by sampling the GEOS-Chem

a priori CO, O3, and NO2 fields, respectively, at the observation locations and times for

each instrument. In generating the TES and MOPITT pseudo data I applied the real

averaging kernels and a priori profiles. For OMI, I produced pseudo NO2 column densities

using the reported scattering weights from the real OMI NO2 dataset. I also produced

NO2, O3, and CO columns densities from an OMI-like instrument, for which I used the
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OMI observation locations and times to sample the GEOS-Chem CO, O3, and NO2 fields

and generated column densities by vertically integrating the modelled profiles (without

averaging kernels or scattering weights). I then assimilated these data in the five OSSE

experiments described in Table 3.2, assuming biased CO and NOx emissions and biased

O3 initial conditions. For the MOPITT OSSE, I reduced CO emissions by 50%, whereas

for the OMI OSSE I increased NOx emissions by 50%. For both OSSEs, the model

was run with perturbed emissions from early September to the beginning of November,

followed by the assimilation of the pseudo data during the first week of November. For

the MSA OSSEs, in addition to perturbing the CO and NOx emissions, I also increased

the O3 initial conditions by 30% throughout the troposphere. Since I conducted the

OSSEs for only one week in November 2009, I increased the precision of the pseudo data

by assuming a measurement error that was 50% of the errors reported with the real data.

I did not apply additional noise to the pseudo data since random errors would average

out given the large amount of data assimilated, and because my focus was mainly on the

impact of the weighting of the different terms in the cost function on the inferred sources.

Figure 3.1 shows the ratio of estimated to true emissions for Northern Africa, East

Asia, Europe, North America, Australia, and the globe. As expected, the OMI-only

and MOPITT-only OSSEs recovered the global emissions, but there were regional differ-

ences. The OMI-only inversion successfully recovered the regional NOx emissions, but

the MOPITT-only inversion did not have sufficient information with only one week’s

worth of MOPITT pseudo data to recover the true CO emission estimates for Europe

and North America to within 10%. For the MSA1 OSSE, when no scaling was applied to

the cost function (γ=1), the global mean CO and NOx emission estimates reverted closer

to the prior. The regional CO and NOx emission estimates were more biased than for the

single instrument case for most regions. This is because the OMI and MOPITT pseudo

data contributed less toward the cost function minimization as the inversion primarily

focused on optimizing the O3 state. For the MSA2, I scaled the MOPITT and OMI

terms with γOMI = 16 and γMOP = 64, respectively. The motivation for this particular

scaling will be discussed below in Sec. 3.2.3. As seen in Fig. 3.1, with the increased

weighting of the MOPITT and OMI pseudo data in MSA2, the assimilation was able to

recover the global mean CO and NOx emissions. Furthermore, the regional NOx emission

estimates were consistent with the estimates from the OMI-only assimilation. For the

CO emissions, the estimates for North America and Australia were closer to the truth,

whereas the North African and East Asian estimates were biased high. The European

estimate was the same as the result for MSA1. In MSA3, there was no scaling applied
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Figure 3.1: Emission SF for different experiments in major emission sources when compar-
ing with the unperturbed “true” state. MSA1 and MSA2 OSSE assimilate the pseudo-
observations of CO, NO2 and O3 sampled from MOPITT, OMI and TES & OSIRIS
observations respectively. γ=1 was applied in MSA1, Scaling following Case G in Sec-
tion 3.2.3 was applied in MSA2. In MSA3, the pseudo-observations of CO, NO2 and O3

are all sampled from OMI observations as tropospheric columns with γ=1.

to the cost function. However, unlike MSA1, the assimilation was able to recover the

global mean CO and NOx emissions. MSA3 also recovered the regional NOx emissions.

For CO, the assimilation recovered the emission estimates to within 10% for all regions

except for Northern Africa and East Asia. As a result of the OMI-like observational cov-

erage, MSA3 also produced the best estimate of European emissions. Similarly, I believe

that because the OMI-sampled O3 observations produced much greater observational

coverage than TES, the assimilation was better able to adjust the O3 state using the O3

data, and consequently, better able to utilize the CO and NO2 to optimize the CO and

NOx emissions, respectively. Overall, the choice of γ will depend on the type of data

assimilated and how well they constrain the different quantities within the state vector.

It should be noted that although the OMI-sampled tropospheric O3 column data worked

well in the OSSE, I believe that real tropospheric O3 column data from OMI would be

challenging to use in my MSA because of the potential impact of errors associated with

the removal of the stratospheric contribution to the total column.
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Table 3.3: Relative a posteriori contribution of the various observations to the total
observation term in the cost function using different normalization factors γMOP and
γOMI. Note that γTES=1 and γOSIRIS=1 for all experiments.

Case γOMI γMOP Cost function share (%) Total cost function
# MOPITT CO TES O3 OMI NO2 OSIRIS O3 (×107)
A 1 1 1.04 59 0.12 39 5.4
B 4 1 1.04 59 0.27 40 5.5
C 16 1 1.02 57 1.3 40 5.9
D 400 1 0.72 43 18 38 11
E 16 4 3.7 67 1.3 28 5.5
F 16 16 22 48 1.2 29 7.2
G 16 64 37 43 1.1 18 9.0
H 16 400 78 16 0.42 5.7 17

3.2.3 Estimating the Cost Function Weighting

To determine the appropriate values for γ for the MOPITT and OMI data, I conducted

a series of sensitivity tests in which I sequentially increased γMOP and γOMI from one

to 64 by a factor of four. I also considered a more extreme case with γMOP = 400 and

γOMI = 400. Table 3.3 shows the MOPITT and OMI data contributions to the obser-

vation term in the a posteriori cost function for eight of the sensitivity tests conducted.

When no scaling is applied, O3 observations from TES and OSIRIS provide the dominant

contributions to the total observation term in the cost function (60% and 39%, respec-

tively). The total contribution to the observation term from MOPITT CO is about 1%

and that from OMI NO2 is 0.12%. The dominating cost function contribution by O3 ob-

servations would lead to all O3 precursor fields such as modelled NO2 being over adjusted

to drive the assimilated O3 changes. Consequently, the assimilated NOx emissions will

not strongly reflect the influence of the OMI NO2 observations, which is consistent with

the results of the OSSE discussed above. As expected, as γMOP and γOMI become larger,

the contributions from MOPITT CO and OMI NO2 increase, and the contributions from

the two sets of O3 observations decrease. When γOMI = 400, the cost function share of

OMI NO2 reaches 18%. Similarly, increasing γMOP to 16 (with γOMI = 16), the MOPITT

CO a posteriori cost function contribution increases to 22%.

Figure 3.2 shows the a posteriori global CO and NOx emission estimates for the

different values of γMOP and γOMI in the MSA. With γMOP = 1 or γOMI = 1 , the

estimated surface CO or NOx emission changes in the MSA are much smaller than that

inferred using only MOPITT CO or OMI NO2, respectively. Instead, with γMOP = 64

and γOMI = 16, we recovered the global CO emissions to within 10% of the estimate
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Figure 3.2: Changes (in percent) in the global a posteriori emissions of CO and NO2 as
a function of the normalization factors γ shown in Table 3.3. The changes are shown
relative to the global emission estimates obtained from assimilating only MOPITT CO
or only OMI NO2 data to separately infer the CO or NOx emissions, respectively.

obtained from the MOPITT-only assimilation and the global NOx emissions to within

2% of the estimate inferred in the OMI-only assimilation. These are the cost function

weightings applied when data from all the instruments are assimilated together (referred

to as the all instrument run) for November 2009 and July 2010. I believe that the

γMOP = 64 is acceptable because global mean OH has an uncertainty of 10-15% (e.g.,

Krol et al., 1998; Spivakovsky et al., 2000; Wang et al., 1998b; Naik et al., 2013), which

leads to a similar uncertainty on the global mean CO emissions. The resulting global

CO emissions are also consistent with both MOPITT CO assimilation and many other

inverse modelling studies summarized in Hooghiemstra et al. (2012). Moreover, my choice

of γOMI = 16 and γMOP = 64 ensures that no single dataset will dominate the optimization

throughout the assimilation. The scaling applied here can be considered as an observation

error reduction for MOPITT and OMI, which is plausible since super-observations are

considered for the two observations. The importance of scaling each observation type

was also discussed in Müller and Stavrakou (2005). In their joint assimilation of ground-

based CO observations with GOME NO2 data, they apply a different scaling on the CO



Chapter 3. MSA Constraints in November 2009 and July 2010 66

and NO2 observations in order to produce a posteriori results that best match the CO

and NO2 in-situ measurements.

3.3 Results

3.3.1 Assimilated O3 Distribution

The O3 distribution plays a key role in the HOx-NOx-O3-VOC chemistry and as discussed

above, has a strong influence on the cost function minimization, therefore, I begin with

evaluating the assimilated O3 distribution. The a priori O3 distribution at 500 hPa and

the changes in O3 that result from assimilating TES or OSIRIS O3 observations are

shown in Fig. 3.3. The a priori O3 concentrations show a distinct minimum within the

subtropics and a maximum between 20◦-40◦ in both hemispheres. The changes in O3 in

the assimilation using only TES data have a strong zonal structure. Over the tropics and

subtropics there are negative corrections exceeding 10 ppbv, whereas over the northern

high latitudes there are positive corrections also exceeding 10 ppbv. In contrast, in

the OSIRIS assimilation, the changes are negligible, with a maximum decrease in O3 of

3 ppbv over northern Africa. This is because OSIRIS does not make observations at

these altitudes. The changes in the OSIRIS assimilation at these altitudes are caused by

downward transport of the changes in O3 in the UTLS.

The a posteriori O3 changes at 300 hPa (shown in Fig. 3.4) for the experiment assim-

ilating TES O3 data are similar in structure to the O3 changes at 500 hPa. There are

negative changes over the tropics and subtropics, and positive changes over the northern

high latitudes. The averaged magnitude of changes in the UTLS varies between -15 to 8

ppbv. As expected, the O3 changes at 300 hPa when using OSIRIS O3 are larger than

the changes obtained in the lower troposphere (LT), with negative corrections everywhere

except for polar regions. The averaged magnitude of the changes is about -10 ppbv.

For the experiment combining both TES and OSIRIS instruments, the assimilated

results are dominated by OSIRIS O3 for both the 500 hPa and 300 hPa levels. Within

the UTLS, OSIRIS provides more O3 measurements with smaller observation error than

TES. The optimization using 4D-var is most effective to respond to observations with

much less observation error (OSIRIS in this case). In the LT, it is suprising that OSIRIS

assimilation still has a large impact on O3 changes. When using TES only, any differences

between the modelled states and the observations will lead to changes where TES has

the highest vertical sensitivity. Since the averaging kernel of TES O3 peaks in the LT

and the middle troposphere (MT) (Bowman et al., 2006), the O3 changes at 500 hPa
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Figure 3.3: The a priori O3 concentrations and the difference between the a posteriori
and the a priori O3 concentrations at 500 hPa for November 2009.

would be most dominant. After OSIRIS data is added in the assimilation, the O3 adjoint

sensitivity will be most pronounced in the UTLS. Since the O3 bias is largest with a

much longer lifetime in the UTLS compared to other levels, it mitigates the O3 biases

for other layers.

For the experiment combining all instruments, the assimilated O3 distribution (not

shown) in both the middle troposphere and UTLS is similar to that obtained in the

TES+OSIRIS assimilation. However, at the surface, the all instrument assimilation

produces increases of up to 5 ppbv in O3 over the main anthropogenic emission regions

in the northern hemisphere (see Fig. 3.5), whereas the changes in surface O3 in the

TES+OSIRIS assimilation are negligible (not shown). In the TES-only assimilation there

are large changes in high latitude O3, which I believe are due to the downward transport

of the changes in O3 in the middle troposphere (see Fig. 3.3). In the tropics and southern

subtropics, the all instrument assimilation produce modest reductions in surface O3. The

increase in O3 in the northern extratropics as well as the decrease in the tropics in the all

instrument case are due to the reduced NOx emissions in the assimilation. These results

show that optimizing the O3 initial conditions is a less effective means of adjusting surface

O3 concentrations than optimizing the O3 precursor emissions. This is because the O3
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Figure 3.4: The a priori O3 concentrations and the difference between the a posteriori
and the a priori O3 concentrations at 300 hPa for November 2009.

lifetime is short near the surface, so the perturbations in the initial conditions are quickly

destroyed. The lifetime is expected to be longer at high latitude in November and, thus,

I see the persistence at the high latitude surface as a signal of the mid-troposphere O3

changes in the TES assimilation in Fig. 3.5.

Evaluation against HIPPO O3 data

The assimilated O3 in November 2009 is compared with HIPPO data to evaluate the

O3 distribution both in the LT and MT as well as in the UTLS. To map the modelled

state to the observations, I sampled the assimilated O3 at the time and locations closest

to the HIPPO observations. The differences between the observations and the a priori

and a posteriori simulations were then averaged into three latitude bins: 90◦N-45◦N,

45◦N-45◦S, and 45◦S-90◦S. As shown in Table 3.4, within the tropics and subtropics, the

observed O3 concentrations are lower than the a priori O3 concentrations for both LT (by

-4.4 ppbv) and UTLS (by -15.5 ppbv). When TES O3 is added to the assimilation, the a

posteriori O3 concentrations are closer to the observed values over this region. However,

the positive biases in the model are not removed completely. The experiment using TES

O3 also provides a posteriori O3 concentrations that are closer to the HIPPO values over
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Figure 3.5: The a priori O3 concentrations and the difference between the a posteriori
and the a priori O3 concentrations at the surface for November 2009.

the southern hemisphere. However, the assimilated O3 using TES degrades the model

agreement with the observations in the northern high latitudes. This could be due to the

influence of the TES averaging kernels smearing O3 from the stratosphere down into the

troposphere. In late fall and early winter, the tropopause is lower and O3 abundances are

greater in the high latitude lower stratosphere, which exacerbates the smearing effects

of the TES averaging kernels. The experiment combining TES and OSIRIS observations

compensates for the adverse impact of the TES assimilation in the northern high latitudes

and also significantly reduces the a priori model bias in the southern high latitudes.

However, at low latitudes in both hemispheres, the TES-only assimilation provides the

best agreement with the HIPPO data. The all instrument assimilation produces an O3

distribution that is similar to that of the TES+OSIRIS assimilation, but with slightly

larger absolute biases. Overall, despite the adverse impact of the TES assimilation in

the northern high latitudes, both the TES+OSIRIS and the all instrument assimilation

experiments effectively reduced the a priori bias.
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Table 3.4: Comparisons (in units of ppbv) between the HIPPO O3 observations and the
a priori and a posteriori O3 fields in November 2009. Shown are the mean difference
(HIPPO - model) and the mean absolute difference |(HIPPO - model)|, in parentheses.
Lower and Middle Troposphere (LT & MT) refers to 0-7 km in altitude, whereas Upper
Troposphere and Lower Stratosphere (UTLS) refers to 7-13 km.

Region A priori TES O3 OSIRIS O3 TES and
OSIRIS

All instruments

Global mean -7.3 (36) -3.3 (24) -1.7 (23) -1.4 (23) -1.9 (24)
90◦N-45◦N LT & MT -1.9 (11) -5.8 (15) -1.0 (7.3) -1.6 (7.6) -1.2 (7.2)
90◦N-45◦N UTLS 26 (52) 34 (50) 27 (41) 27 (40) 28 (42)
45◦N-45◦S LT & MT -4.4 (19) -1.2 (9.0) -3.7 (9.5) -3.3 (9.2) -3.4 (9.9)
45◦N-45◦S UTLS -16 (37) 0.9 (25) -4.7 (29) -1.7 (27) -0.8 (25)
45◦S-90◦S LT & MT -4.3 (17) -3.8 (6.8) -1.0 (7.3) -1.6 (7.3) -2.1 (7.1)
45◦S-90◦S UTLS -36 (50) -33 (47) 29 (55) 12 (53) 14 (51)

Evaluation against EPA AQS O3 data

The assimilated surface O3 in July 2010 is evaluated using EPA AQS O3 data. I focus on

O3 in July because models tend to overestimate summertime surface O3 abundances in

the eastern US (Reidmiller et al., 2009). Fig. 3.6 shows the differences between the obser-

vations and the a priori model, the TES-OSIRIS assimilation, the OMI NO2 assimilation

and the all instrument assimilation. The AQS data were binned onto the model grid us-

ing the weighted-average algorithm suggested by Klonecki et al. (2012). As expected the

a priori model overestimates surface ozone across much for the US. Canty et al. (2015)

suggested that these biases on modelled surface ozone could be due to discrepancies in

vertical mixing as well as errors in the O3 precursors. In the TES-OSIRIS assimilation

in which I adjusted only the O3 initial conditions there is no significant improvement on

surface O3, which is expected since the O3 lifetime is short in the boundary layer. The all

instrument run, however, shows significant surface O3 improvements. In the eastern and

western US (east and west of 95◦W) the mean ozone bias decreased from 13.1 to 6.2 ppbv

and from 5.4 to 0.3 ppbv, respectively. In fact, the OMI NO2 assimilation alone would

correct surface O3 with similar patterns as the O3 changes obtained by assimilation of

all of the instruments. The surface O3 biases were reduced to 7.9 and 1.9 ppbv for the

eastern and western US, respectively, driven by the chemical response to the adjusted

NOx emissions. This confirms the utility of the MSA approach for providing additional

corrections to the O3 distribution through the emission optimization.
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Figure 3.6: Surface O3 distribution for AQS data interpolated on the GEOS-Chem model
grid, as well as the differences between AQS and the modelled O3 during July 2010.

3.3.2 Tropospheric OH concentrations

Figure 3.7 shows the mass weighted global mean OH concentrations for the a priori

and the changes in OH from MOPITT assimilation as well as MSA. The global mean

OH produced by the a priori is 11.9×105 molec/cm3 for November 2009, and 13.9×105

molec/cm3 for July 2010. The distribution of tropospheric mean OH is consistent the

tropospheric water vapour abundances. In November, the highest OH concentrations

are found in the tropics and southern subtropics due to higher actinic fluxes as well

as higher water vapour concentrations. In July 2010, the OH maximum shifts into the

northern hemisphere. For the assimilated results in comparison with the a priori, the

global mean OH constrained by MSA is reduced to 10.5×105 molec/cm3 (by 11.7%) and

12.8×105 molec/cm3 (by 7.9%) in November and July respectively. In contrast, with

the MOPITT-only assimilation I obtained reductions in the global mean OH of 0.9% and

1.8% for November and July, respectively. My results show that the MSA is conducive to

constraining the tropical and subtropical OH, which could reduce the uncertainties of CO

emission estimates due to biased tropospheric OH (Müller et al., 2018). There are also

significant OH changes due to CO and NOx emission adjustments over the extratropics.
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In November 2009, the a posterior OH is reduced by 6.5% between 30oN and 60oN. In

July 2010, as the tropospheric chemical cycling of CO-HOx-NOx-O3-OH becomes more

active over the northern extratropics, the resulting OH is reduced by 10.5%. These OH

changes inferred by MSA suggest that tropospheric OH could be constrained indirectly,

relying on the assimilation of the OH-related species in the 4D-var assimilation system. I

note, however, that improving the OH abundance in the assimilation should also account

for the influence of VOCs on OH, which was not done in my analysis.

Figure 3.7: The a priori mass weighted tropospheric mean OH distribution (in 105

molec/cm3) and the relative difference (OHpost−OHap

OHap
×100%) between the a posteriori and

the a priori OH for different experiments. The mass weighted tropospheric mean OH was
calculated using Equation 1.16, following Spivakovsky et al. (2000).

3.3.3 Regional CO and NOx Emissions in November 2009

The difference of anthropogenic and biomass burning CO emissions between the a pri-

ori and the a posteriori using MOPITT-only and all other experiments are shown in

Fig. 3.8. The anthropogenic emissions optimized by MOPITT observations show an in-

creased emissions (more than 5× 1011molec/cm2/s) over East Asia, Europe, the eastern

and western United States, and over Northeast Asia. The biomass burning emissions as-

similating MOPITT CO shows that the emissions over Northern Equatorial Africa are de-

creased by more than 4×1011molec/cm2/s, while emissions over southern Africa, northern

Australia, and northwestern North America are increased around 3.5×1011molec/cm2/s.

When assimilating all chemical species, the optimized emissions over both anthropogenic
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Figure 3.8: The a priori CO emissions (in 1010 molec/cm2/s) and the a posteriori CO
emission changes (including both anthropogenic and biomass burning components) be-
tween the a priori and the a posteriori for different experiments in November 2009.

and biomass burning emission regions are similar to the experiment using MOPITT CO.

However, the magnitude of the estimated emission changes for the assimilation using all

instruments are different, suggesting model biases on CO fields have been mitigated by

MSA.

To test how other species’ assimilation would affect CO emissions, the remaining pan-

els of Fig. 3.8 display the optimized CO emissions for MOPITT + TES, MOPITT+OSIRIS

and MOPITT+OMI. Among all three runs, adding OSIRIS O3 observations has the most

impact on perturbing the a posterior surface CO emissions. The a posterior surface CO

emissions have retreated to the a priori level in almost all the regions except for East

Asia and northern Africa. Two reasons might explain this significant damping effect on

emission changes. The first is that the total cost function for the MOPITT+OSIRIS joint

assimilation is dominated by OSIRIS O3, the model then does not respond to CO emis-

sion optimization efficiently. The other reason is that less CO adjustments are required

to match with the a posterior O3 concentration for OSIRIS assimilation in the MT and

LT. In comparison with OSIRIS O3 retrievals, MOPITT+TES O3 assimilation shows

some impacts on perturbing the CO emissions in biomass burning regions. However, the

relative changes between the MOPITT+TES case and the MOPITT case range around

20-30%, much smaller than the impact of adding OSIRIS assimilation.

To assess the a posteriori emissions quantitatively, the CO emissions have been ag-

gregated over the different continental regions shown in the upper-left corner of Fig. 3.8.
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I find the MOPITT+OMI and the all instruments cases are consistent, and are generally

in agreement with the MOPITT-only assimilation. For example, for North America the

MOPITT, MOPITT+OMI, and the all instrument estimates are 21.5 TgCO/month, 18.4

TgCO/month, and 18.5 TgCO/month, respectively. For Europe, the corresponding es-

timates are 12.6 TgCO/month, 12.0 TgCO/month and 10.5 TgCO/month, respectively.

For the biomass burning emissions in northern equatorial Africa (N. Africa), I find that

combining MOPITT with the O3 observations results in larger departures from the a

priori. The MOPITT+TES and MOPITT+OSIRIS emission estimates are 21.8% and

22.1%, respectively, lower than the a priori. In contrast, the all instrument estimate is

only 4.3% lower than the a priori. Given the large biases in O3 in the UTLS and the

importance of convective transport in the tropics, it is possible that the larger changes

relative to the a priori for MOPITT+TES/OSIRIS runs are due to the assimilation try-

ing to reduce the overestimate in O3 in the model by reducing the emissions that are

convectively transported throughout the free troposphere, counteracting with CO emis-

sion increase brought by MOPITT CO assimilation. For the all instrument run, such

ozone adjustment was brought by optimized NOx emissions, which leaves assimilated CO

emissions primarily responding to MOPITT CO observations.

The a priori NOx combustion emissions and the estimated changes in the emissions

relative to the a priori for the OMI-only assimilation and for OMI combined with the dif-

ferent datasets are shown in Fig. 3.9. For the OMI-only assimilation, there are reductions

of NOx emissions over the eastern US and Europe, but the changes are heterogeneous

over East Asia, with increased and decreased emissions across the region. There is also

a modest increase in emissions in the southern US and in the biomass burning region in

northern equatorial Africa. Adding MOPITT CO observations to the assimilation does

not change the spatial patterns of the optimized emissions significantly. In contrast, in-

gesting O3 observations has a large impact on the NOx emission estimates. The impact

is more clearly seen in the regional emission estimates in Fig. 3.10. With TES data

included, East Asian emissions are 24% lower than the a priori, whereas the OMI-only

estimate is 11% lower. For northern equatorial Africa, the OMI-only case suggested a

5% increase in emissions, whereas the OMI+TES assimilation produced a 58% decrease

in the emissions. These changes are occurring because the TES O3 data override the in-

formation coming from the OMI tropospheric NO2 observations. Consequently, the NOx

emission are compromised to reduce the bias in the modelled O3 to give a better fit to the

TES retrievals. In the all instrument case, in which I balance the contributions to the cost

function, the estimated regional emissions are 20% lower than the OMI-only estimate.

For the major anthropogenic emission regions, North America and East Asia, I find that
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Figure 3.9: The a priori NOx emissions (in 109 molec/cm2/s) and the a posteriori NOx

emission changes for different experiments in November 2009.

the all instrument estimate is consistent with that inferred in the OMI-only assimilation.

Europe is an exception, for which I obtain a large difference (18%) in emissions between

the OMI-only and the all instrument cases. The situation with the European emission

estimates will be discussed further in Section 3.3.4.

3.3.4 Regional CO and NOx Emissions in July 2010

The regional CO emission estimates for July 2010 and November 2009 are compared

in Table 3.5. In comparison to the results in November, I find differences between the

emission estimates from the MSA and those from the MOPITT-only assimilation. For

example, for North America and Europe, the MSA CO emission estimates are higher by

30% and lower by 65% than those in the MOPITT-only assimilation, respectively. In

November, the MSA estimates for these regions were lower by 14% and 17%, respectively,

compared to the MOPITT-only case. In East Asia, the other major anthropogenic source

region, the source estimate in the MSA was lower than the MOPITT-only estimate by

about 10% in both months. Globally, the total CO emission estimates between the two

assimilations differ by 9% in both July and November. Regionally, the European emission

estimate from the MSA differed the most from the MOPITT-only assimilation. My

results are consistent with those of Jiang et al. (2015a), who also used the GEOS-Chem

adjoint model, and found that summertime emission estimates for North America and

Europe were most sensitive to the different OH fields. They argued that relative to East
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Figure 3.10: Surface NOx emissions (in TgN/month) in different regions for different
experiments in November 2009.

Asia, for example, North American and European CO emissions in GEOS-Chem were

more strongly confined to the lower troposphere. This suggests that the free tropospheric

CO from these regions was more chemically aged. Thus, inferring emission estimates from

observations that exhibit high retrieval sensitivity to CO in the free troposphere could

result in emission estimates that are sensitive to biases in OH, since the observations will

contain a mix of lower tropospheric air with fresh emissions and free tropospheric air that

is more chemically aged. In contrast, emission estimates inferred from observations in

the boundary layer will be less sensitive to discrepancies in OH since the measurements

will capture fresh CO emissions, with little chemical aging.

For the main anthropogenic NOx emission regions (North America, Europe, and East

Asia), I find that the emission estimates from the MSA for Europe and East Asia are

lower than those from the OMI-only assimilation by 16% and 12%, respectively, in July,

whereas the North American estimate is 27% higher. In contrast, in November, the North

American and East Asian MSA estimates are 5% and 7% lower, respectively, whereas the

European estimate is 18% higher. As with CO, I find that the European NOx emission

estimates in both seasons are sensitive to the MSA approach. As noted by Jiang et al.

(2015a), European emissions are strongly confined to the boundary layer. This could
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make estimating European NOx emissions more sensitive to discrepancies in the vertical

distribution of NOx when using NO2 column data. Additional work is needed to better

understand the source of the differences in the European emission estimates between the

MSA and OMI-only assimilation. The large difference between the MSA and OMI-only

NOx emission estimate for North America in July could be due to the fact that we do

not optimize isoprene emissions in the assimilation. The isoprene oxidation pathways are

NOx dependent, and discrepancies in the isoprene emissions in the model could impact

the local NOx abundances. The other reason is that the model might try to correct biases

owing to LNOx, which is larger in summer, by over-adjusting surface emissions.

In July, the dominant biomass burning region in the tropics is southern Africa where

the MSA suggested a 35% increase in CO emissions and a 43% increase in NOx emissions

over the a priori. In contrast, in November 2009, which is the beginning of the biomass

burning season in northern Africa, the MSA suggested reductions of 4% and 15% in

the CO and NOx emissions relative to the a priori, respectively. It is interesting to

note that the MOPITT-only and OMI-only assimilations produced increases of 7% and

5% in the CO and NOx emissions relative to the a priori in November 2009, respectively.

Interannual variability in Africa biomass burning emissions is low except for 2010 reported

by Giglio et al. (2013). For the wildfire season in 2010, the emissions are associated

with much higher than averaged burned area in southern Africa (Giglio et al., 2013).

My higher estimate is part of an increasing trend in burned area of +1.5 Mha/yr for

southern Africa present in both GFED-3 and GFED-4 (Giglio et al., 2010, 2013). Giglio

et al. (2013) also argued that northern African emissions in 2009 and 2010 experienced

significantly reduced burning, which is consistent with my estimated emission changes.

3.3.5 Evaluation of the emission estimates in November 2009

and July 2010

To evaluate the inferred emissions, I compared the a posteriori CO and NO2 fields with

the assimilated data. Fig. 3.11 shows that the MOPITT-only assimilation reduces the

mean bias, relative to the MOPITT data, by more than a factor of two, from 12% to 5%.

The MSA reduces the bias further, to 4%. The distribution of the MSA difference is also

less skewed, with a standard deviation of 14% (compared to 16% for a priori). For NO2,

the OMI-only assimilation also reduces the mean bias by more than a factor of two, from

45% to 20%. However, with the MSA, the residual bias is reduced to only 32%. The

larger residual bias in the MSA is expected since the assimilation is trying to adjust the

NOx emissions to accommodate the O3 data as well as the NO2 data. This makes the
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adjustment on surface NOx emissions less effective on correcting the modelled NO2 bias

compared to the OMI-only assimilation. The distribution is more skewed than for CO

due to the fact that the modelled NO2 columns are negatively biased throughout much

of the background atmosphere, which the assimilation could not correct. The model is

positively biased over the main NOx source regions, which the assimilation does correct.

The better fit to the MOPITT data with the MSA may reflect the impact of a reduced

OH bias on the CO simulation mentioned in Section 3.3.2. For July 2010 shown in

Figure 3.12, my assimilation also reduces the mean CO and NO2 biases in both seasons

compared to their corresponding assimilated observations. In July, the relative mean bias

is reduced from -0.45 (a priori) to -0.07 (all instrument) for CO comparing to MOPITT

CO observations, from -0.32 (a priori) to -0.25 (all instrument) for NO2 comparing to

OMI NO2 observations. Such evidence shows that my DA system improves the model

states when comparing to the assimilated observations for both seasons.

Figure 3.11: Relative bias distribution for November 2009 between the model and MO-
PITT (left panel)/OMI (right panel) for the a priori (blue) and the a posteriori using
MSA (green).
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Figure 3.12: Same as Fig. 3.11, but for July, 2010.

3.3.6 Comparison with Previous Inversion Analyses

I compared the assimilated CO emission estimates with the inversion results shown

in Jiang et al. (2017) and Kopacz et al. (2010). For North America I estimated a source

of 40 Tg CO with the MSA and 31 Tg CO for the MOPITT-only assimilation for July,

whereas Jiang et al. (2017) estimated 15 Tg CO with the MOPITT V6 TIR/NIR pro-

file. For Europe, my July estimates were 10 Tg CO and 27 Tg CO from the MSA and

MOPITT-only assimilation, respectively. In contrast, Jiang et al. (2017) estimated 5

Tg CO. So both my MSA and the MOPITT-only European estimates were larger than

those in Jiang et al. (2015a). For East Asia I inferred 28 and 31 Tg CO for July for

the MSA and MOPITT-only assimilation. Jiang et al. (2017) estimated 24 Tg CO. My

East Asian emission estimates seem comparable to those of Jiang et al. (2017). For

Europe and East Asia, Kopacz et al. (2010) estimated July 2004 combustion emissions

of about 9 Tg CO and 12 Tg CO, respectively, which was comparable to my European

MSA estimate of 10 Tg CO, but much lower than my East Asian estimate of 28 Tg CO

for July 2010. For November 2004, Kopacz et al. (2010) reported European and East

Asian combustion emissions of about 11 Tg CO and 21 Tg CO. For November 2009,
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my MSA emission estimates for Europe and East Asia are 11 Tg CO and 40 Tg CO,

respectively. So my European emission estimates are comparable to Kopacz et al. (2010).

One issue when comparing my results to other studies is that all the inversion analyses

were conducted at different time periods or with different assimilation configurations.

For instance, both Jiang et al. (2017) and Kopacz et al. (2010) used v5-07-08 of GEOS-

Chem OH fields, whereas the OH in my analysis is more similar to the v8-02-01 OH fields

used by Jiang et al. (2015a). Jiang et al. (2015a) argued that CO emission estimates

using v8-02-01 OH could be 40% higher than using v5-07-08 OH, which explains why

my emission estimates are higher in many regions. Jiang et al. (2017) also included the

biogenic source of CO in their state vector and optimized the VOC source together with

the combustion emissions of CO at the model resolution. In comparison, Kopacz et al.

(2010) separately optimized the combustion and VOC sources of CO. They optimized

the combustion emissions at the model resolution and aggregated the VOC source with

the methane source to produce a global mean chemical source of CO. For this study, I did

not include biogenic emissions in my state vector, so my emission estimate accounts only

for combustion-related emissions, which may also explain some differences on emission

estimates.

3.3.7 Sensitivity to assimilation window selections

For the experiments mentioned above, I used a two-week assimilation period. The length

of the assimilation window was selected to match the lifetime of mid-tropospheric O3 in

the tropics and the repeat time for TES observational coverage. I focused on O3 since

it was a key component of tropospheric chemistry and because the MOPITT and OMI

provided greater observational coverage. Here, I vary the assimilation window of the MSA

in November 2009 from two weeks to one week, and then to two days. In the experiments

with the shorter windows, I am assimilating the data over for the same total two-week

period. For example, for the experiment with the two-day window, after the optimized

CO and NOx emissions and O3 concentrations are obtain at the end of the initial two-day

period, they are used as initial parameters for the next two-day assimilation period. In

this manner, I stepped through the original two-week period, at two-day intervals.

As shown in Table 3.6, the total regional CO and NOx emission estimates are ro-

bust. Although the total emissions retreat to the a priori with the shorter assimilation

windows, the differences relative to the standard two-week case are small. In my experi-

ments, for the total CO emissions, the differences are -4% and -6% for the experiments

with one-week and two-day window experiments, respectively. Similarly, for NOx I found
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Table 3.6: Regional surface CO and NOx emission estimates in November 2009 for the
all instrument case using assimilation windows of two weeks, one week, and two days.

CO regional emissions (TgCO/month) NOx regional emissions (TgN/month)

Regions AW=2 weeks AW=1 week AW=2 days AW=2 weeks AW=1 week AW=2 days

S. America 4.1 4.1 4.1 0.11 0.12 0.13
N. America 18.5 18.6 18.0 0.39 0.41 0.43
E. Asia 40.2 36.5 33.9 0.55 0.58 0.61
SE. Asia 3.0 2.9 3.0 0.04 0.06 0.05
Australia 18.1 15.5 18.9 0.07 0.07 0.07
Europe 10.5 10.9 10.4 0.33 0.32 0.35
N. Africa 8.8 9.3 9.1 0.16 0.20 0.17
S. Africa 5.1 5.4 5.2 0.02 0.03 0.03

Rest of World 15.4 16.5 15.0 0.24 0.27 0.31
Total 124.7 119.7 117.6 1.91 2.06 2.15

that total emission estimates differ by 8% and 13% for the one-week and two-day exper-

iments, respectively. For the regional anthropogenic CO emission estimates, the largest

discrepancy between the one-week window experiment and the standard two-week case

was for the East Asian emissions, which were 9% lower in the one-week window exper-

iment. This difference increased to -16% for the two-day window experiment. For the

NOx emission estimates, the absolute differences between one-week window experiment

and the standard two-week case were less than about 5% for the major anthropogenic

source regions. This agrees with Zhang et al. (2008b), who also found consistent op-

timized NO2 despite varying assimilation windows. The maximum absolute difference

increased to about 11% for the two-day assimilation window case. My results suggest

that although I originally selected the two-week assimilation window based on the TES

observational coverage, I could reduce the window length to one week when we integrate

the data from all of the instruments.

3.4 Summary

A case study of multiple species data assimilation using 4D-var data assimilation scheme

is applied through the GEOS-Chem adjoint model to optimize the surface emissions of CO

and NOx as well as the initial conditions of O3. The observations from multiple chemical

species are introduced, including MOPITT CO retrievals, TES and OSIRIS O3 retrievals,

as well as OMI tropospheric columns. I found that the multi-species assimilation reduced

the absolute mean bias in modelled O3, relative to HIPPO-2 data, to 10 ppbv or less

in the middle and lower troposphere. The residual mean biases were less than 3.5 ppbv
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everywhere, with the model overestimating O3 concentrations, except in the high-latitude

UTLS, where the model was biased low, with residual mean biases of 29 ppbv and 14

ppbv between 45◦N − 90◦N and 45◦S − 90◦S, respectively. The large residual biases in

the UTLS might be due to the low (4◦ × 5◦) horizontal resolution of the model (Deng

et al., 2015). At the surface, the MSA reduced mean surface O3 over North America in

July 2010 by 20.1% when validating against EPA AQS data.

For CO and NOx emissions, I found that in November 2009, the estimates obtained

from MSA were generally comparable to those inferred from the MOPITT-only and

OMI-only assimilation, respectively. For CO emissions from the main anthropogenic

source regions, the largest discrepancies were obtained for the emission estimates for

Europe and North America. In November, the European and North American emission

estimates from the MSA differed from the MOPITT-only estimates by -17% and -14%,

respectively. For the NOx emissions, the North American and European MSA estimates

differed from the OMI-only estimates by -5% and 18%. In July, the differences between

the MSA estimates and those based on the MOPITT-only and OMI-only assimilation

were larger. The differences for the North American and European CO emission esti-

mates increased to -65% and 31%, respectively. For the North American and European

NOx emission estimates, the July differences were -16% and 27%, respectively. The large

difference between the MSA and MOPITT-only estimates for North American and Eu-

ropean CO emissions are consistent with the findings of Jiang et al. (2015a), who found

that summertime emissions from these regions were particularly sensitive by the choice of

OH distribution specified in their model. They attributed this sensitivity to the fact that

emissions from these regions are relatively more slowly exported to the free troposphere,

so the emission signals from these regions in the free troposphere reflect more chemically

aged air. Further investigation is needed to better understand the source and seasonal

dependence of this sensitivity of the North American and European emissions.

Comparison of the a posteriori CO and NO2 fields with the assimilated data showed

that the MSA provided a better fit to the MOPITT data than the MOPITT-only assim-

ilation. In contrast, the OMI-only assimilation produced a better fit to the OMI data

than the MSA. The better agreement between the OMI-only assimilation and the OMI

data was due to the fact that the assimilation adjusted the NOx emission to minimize

the model-data mismatch, only by the assumed prior and observation errors. Whereas

in the MSA, the NOx emissions were adjusted to improve the model agreement with the

O3 data as well as with the OMI NO2 columns. For CO, the closer agreement between

the MSA a posteriori fields and the MOPITT data could be due to the reduced chemical

bias in the model, associated with the constrained OH fields in the MSA.
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My results highlight the importance of producing consistent chemical states for in-

verse modelling of CO and NOx emissions. However, this poses several challenges. A

major issue is the biases in the modelled O3 distribution, which affects tropospheric OH

abundances and the NOx-O3 coupling. The NOx inversion analysis responded strongly

to the modelled O3 to mitigate discrepancies in between the modelled and observed O3.

Consequently, it is important to effectively mitigate the O3 biases through assimilation

of O3 data or through correcting modelled OH. Given the short lifetime of O3 in the

lower troposphere, it would be helpful to assimilate O3 data that can provide global

observational coverage on at least daily timescales such as IASI O3. This would help

mitigate the O3 biases in the assimilation on short timescales and minimize the potential

impact of the biases on the shorter-lived chemical tracers. Another issue is that only

combustion-related sources were optimized in my inversion analyses. Tropospheric OH

was also estimated relying on chemical feedback within the model. The global mean OH

levels were decreased by 11.7% and 7.9% in November and July respectively. However,

the biogenic source of CO from VOC oxidation is a large component of the CO budget,

particularly for North America in the summer (Hudman et al., 2008b), and there are

large uncertainties in the bottom up biogenic inventories (Marais et al., 2012). Stud-

ies (e.g. Kleinman et al., 1994; Zhang et al., 2004; Travis et al., 2016) shown that these

VOC sources, as well as anthropogenic VOC emissions (which are also uncertain), have

a strong impact on tropospheric O3 and OH abundances, and their oxidation is sensitive

to local NOx concentrations. Several inverse modelling studies (e.g. Barkley et al., 2013;

Marais et al., 2012; Kaiser et al., 2018) have utilized formaldehyde (HCHO) satellite

observations to constrain isoprene emissions (the dominant biogenic CO source). Future

multi-species assimilation studies should consider incorporating HCHO data to constrain

the CO and VOC emissions as well as tropospheric O3 and OH concentrations.



Chapter 4

Constraints on the oxidative

capacity of the atmosphere:

Implications for top-down CO

emission estimates

4.1 Introduction

As discussed in Chapter 1, the chemical sources and sinks of atmospheric CO were still

poorly characterized, which is largely due to imperfect chemistry in CTMs. A key chemi-

cal constituent that is important for tropospheric CO is the hydroxyl radical (OH), which

determines the oxidative capacity of the atmosphere. Jiang et al. (2015a) and Müller

et al. (2018) showed that the modelled OH concentrations were a main factor impacting

inferred regional CO emission estimates. Jiang et al. (2015a) used the same data as-

similation configuration with two different prescribed OH fields and obtained differences

of up to 46% for the emission estimates for the United States and Europe. Müller et al.

(2018) used five different prescribed OH fields found that the a posteriori CO field most

consistent with independent CO observations was that inferred from the OH distribution

with a low ratio (of 0.85) of northern hemispheric to southern hemispheric CO.

In this chapter, we extend the analysis from Chapter 3 to better quantify tropospheric

OH and thus reduce the OH-related biases in top-down estimates of CO emissions. Com-

pared to Chapter 3, I try to better constrain the impact of the oxidation of NMVOCs on

CO and OH by including HCHO data in the assimilation. I also attempt to improve the

optimization of the lightning NOx source by including HNO3 data in the UTLS. Hence, I

85
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assimilate CO profiles from MOPITT, HCHO and NO2 tropospheric columns from OMI,

O3 partial columns from IASI and OSIRIS, HNO3 profiles from MLS. I also extend the

assimilation over the full annual cycle in 2016 by running the model January 2016 to the

end of February 2017. To avoid biases due to poor initial conditions at the beginning

of the total assimilation period, the January 2016 period can be essentially treated as a

spin-up period to correct the background concentrations. The assimilation window is 2

weeks, following the same approach in Chapter 3. For the full year analyses, this means

that between January 2016 to February 2017 there are 28 windows in total. The assim-

ilated concentration at the end of window N is saved and used as the initial conditions

of the N + 1 window.

4.2 Model Setup

4.2.1 Assimilation approach

Similar to Chapter 3, the mathematical expression for the 4D-var cost function is as

follows:

J(x0,p) = [p− pa]TB−1p [p− pa] + [x0 − xa]TB−1x [x0 − xa]

+
6∑
r=1

N∑
n=1

γr[yn,r −Hr(xn)]TR−1r [yn,r −Hr(xn)],
(4.1)

where p is the emission parameters including CO, and NOx emissions, and x0 is the

initial condition parameter which accounts for O3, HCHO and HNO3 concentrations at

the beginning of the assimilation window. It should be noted that I experimented with

optimizing either the isoprene emissions or the HCHO initial conditions in the MSA

to provide constraints on the chemical source of CO. pa (xa) and Bp (Bx) are the a

priori estimates and error covariance matrices for p (x0), respectively. yn,r represents

the six assimilated observations including MOPITT CO, IASI O3, OSIRIS O3, OMI NO2,

OMI HCHO, and MLS HNO3, at a given time n over the assimilation period, Rr is the

observation error covariance for observation r, which accounts for both measurement

error and representation error. H is the observation operator converting model outputs

to the observation grid, which has been explained in Section 2.5. The total cost function

is then reduced by emission optimization and initial condition optimization. Selection

of Bp, Bx, and Rr will determine how the model will reduce the cost function based on

the information given, i.e., how the optimized quantities would respond when trying to

minimize the resulting cost function. These will be explained in the observation error
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matrix setup below.

In this study, the optimized parameters include surface emissions of CO and NOx,

LNOx emissions and initial conditions of O3 and HNO3. The specific optimized quantities

for each experiment are explained in Table 4.1. I set the a priori error covariance matrices,

Bp and Bx, by assuming 50% uncertainty in the bottom-up inventories following Jiang

et al. (2017), and in initial modelled states following Section 3.2. The only exception

is for lightning NOx emissions, since the LNOx adjustment is over-sensitive to modelled

O3 and NO2 biases in the UTLS during the summer. I assign an uncertainty of 20% for

LNOx to avoid over-adjustment. Such a setting would also allow the model to reduce

the modelled NO2 biases by primarily adjust surface NOx emissions. Due to the coarse

resolution of the a priori emissions and initial conditions, no spatial perturbations or

correlations were assumed in either Bp or Bx. As in Section 3.2, I assume diagonal

error covariance matrices and thus do not manually impose any correlations between

the species. Despite the fact that there is no correlation in the uncertainties among the

species, a given optimized quantity can respond to all assimilated observations according

to the chemical coupling that is captured by the adjoint forcing in Eq. 2.32.

Similar to the setup of the observation error covariance mentioned in Section 3.2,

the following assumptions are made for the observation error of each species. For MO-

PITT CO, the observation error is set to 20% to account for both measurement and

representation error, following Jiang et al. (2015a). For IASI O3, the observation error is

equal to 15% of the measured ozone column, same as the approach of Peiro et al. (2018)

and Emili et al. (2014). For OMI, MLS and OSIRIS observations, the observation error

for each species uses the measurement error reported in the corresponding retrieval prod-

uct. Since the spatial and temporal resolution of all the assimilated observations tend to

be finer than the employed model, to avoid over-sampling as well as spatial correction

among multiple observations, a “super-observation” approach is used to characterize the

adjoint forcing of each model grid box.

In the super-observation approach used by Miyazaki et al. (2012b) and Klonecki et al.

(2012), they pre-processed all filtered measurements by computing a weighted measure-

ment (with its weighted uncertainty) for all the measurements falling into a model grid

cell. They then conducted the analysis by comparing the modelled states with the super-

observation. In contrast, I first compute the adjoint forcing by comparing each observa-

tion with the modelled state. I then calculate the super-adjoint forcing for each model

grid cell by computing the mean of all the adjoint forcings falling into the model grid

cell. One advantage of my approach is that the adjoint forcing mean would effectively

serve as a weighted average of all the measurements because the measurement with large
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observation error would essentially lead to small adjoint forcing (see Eqs. 2.32 and 2.33

for the adjoint forcing equations). Another advantage is that this super-observation

approach can be applied to all assimilated observations to avoid disagreement in the

super-observation algorithms among the different assimilated observations. In the end,

the cost function weighting (noted as γ in Eq. 4.1) is applied to balance the adjoint

sensitivity among observations of different species.

Table 4.1: Optimized quantities for each experiments used in this study, with cost func-
tion weight schemes for each multi-species data assimilation. *Note that isoprene emis-
sions are optimized for MSA-isop run only.

Experiments Optimized parameters and cost function weighting schemes
CTRL run None
Single Instrument runs:
MOPITT CO assmilation CO emissions
IASI or OSIRIS O3 assimilation O3 initial conditions
OMI NO2 assimilation Surface NOx emissions
OMI HCHO assimilation Surface isoprene emissions
MSA (including MOPITT, IASI,
OSIRIS, OMI and MLS data):

CO, NOx and isoprene* emissions, O3, HCHO, and HNO3 initial
conditions

MSA-std γMOP=16, γIASI=1, γOSI=1,γOMINO2
=16, γOMIHCHO

=4, γMLS=1
MSA-γ=1 γMOP=1, γIASI=1, γOSI=1, γOMINO2

=1, γOMIHCHO=1, γMLS=1
MSA-isop γMOP=16, γIASI=1, γOSI=1, γOMINO2

=16, γOMIHCHO
=4, γMLS=1

4.2.2 Experiments

Three groups of full-year analyses shown in Table 4.1 were performed for the year 2016

as well as the first two months of 2017. The CTRL run refers to the forward model

simulation based on the a priori estimates without assimilation. Single instrument run

refers to assimilation on one species using its corresponding observation. The MSA runs

refer to the posteriori modelled state when all the observations are assimilated. I propose

four MSA experiments with different model configurations. In detail, the standard run

of MSA (MSA-std) applies the cost function weighting with a similar assumption as

Chapter 3 with γMOP=16 for CO, and γOMI=16 for NO2 and γOMI=4 for HCHO. The

MSA-std run is the default MSA run discussed in Section 4.3. The MSA-γ=1 case refers

to the multi-species assimilation without the cost function scaling on any observations.

MSA-isop turns on the isoprene emission optimization in the MSA framework, whose

cost function scaling applied is the same as MSA-std.
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4.3 Results

4.3.1 Assimilation results

Changes in tropospheric O3

The annual mean O3 distribution for the a priori, the IASI-only assimilation, and the

MSA are shown in Figure 4.1. In the mid-troposphere, the IASI-only assimilation pro-

duced increases in O3 (about 10-15 ppbv) in northern high-latitudes and decreases (ex-

ceeding 15 ppbv) in the subtropics. There are also enhancements in O3 over equatorial

Africa. It should be noted that no observations were assimilated poleward of 75◦N, which

means the O3 changes in northern high-latitudes are driven by the model transport of O3

to these regions. The same spatial pattern of O3 corrections in the mid-troposphere is

present in the lower troposphere, but with a decrease in the magnitude of the changes. In

the UTLS, however, there are large negative corrections poleward of 30◦. The assimilated

results from the MSA showed the same correction patterns as the IASI-only assimilation

in mid-troposphere and UTLS. Near the surface, there are additional changes in O3 in

the MSA that are produced by adjusting the O3 precursor emissions. For instance, the

assimilated ozone is lower by 3-5 ppbv in North America, which is a result of the chemical

response to the decreased NOx emissions in the MSA (shown in Fig. 4.13).

The O3 time series in different latitude and altitude bins are shown in Figure 4.2. It

should be noted that the modelled O3 time series is produced by optimizing the initial

conditions for two-week intervals throughout the year. Since the initial conditions for each

adjacent two-week assimilation window (e.g., O3 abundances on January 1st vs January

16th) are not continuous, the resulting assimilated time series exhibit larger month-

to-month variations than the a priori run. In the northern extratropics, the a priori

model has a strong seasonal cycle in the upper troposphere that decrease significantly

in amplitude at lower altitudes. Both the IASI-only assimilation and the MSA produce

a stronger seasonal cycle in the middle and lower troposphere, with enhanced O3 in

March-April-May (MAM). In the southern extratropics, the seasonal cycle is largest in

the UTLS and the amplitude does not change in the assimilation experiments. However,

both assimilations reduce O3, with the MSA reducing O3 from 110-160 to 80-130 ppbv

over the seasonal cycle. In the middle troposphere, the IASI-only assimilation and the

MSA produce consistent O3 abundances, which are slightly lower than the a priori. Near

the surface in the southern extratropics, the assimilation experiments have a negligible

impact on O3 abundances. In the tropics and subtropics, the largest reductions in O3,

relative to the a priori, are in the SH, where I find that the MSA reduces O3 abundances
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Figure 4.1: Modelled O3 abundances (in ppbv) for the a priori (CTRL) run (top row)
and the assimilated changes in ozone (in ppbv) relative to the a priori for the IASI-only
assimilation (middle row) and the MSA (bottom row). Shown are O3 changes at 250 hPa
(left column), 500 hPa (middle column), and 800 hPa (right column).

at all levels.

If I define the tropopause at 100 hPa within ±32◦ latitude and at 250 hPa in the

extratropics, the total tropospheric O3 burden for the a priori, the IASI-only assimilation,

and the MSA are 360, 343 and 311 Tg O3/yr, respectively. The a priori O3 burden

is greater than the observation-based estimate of 337 Tg that is based on ozonesonde

observations for 2010-2014 (Gaudel et al., 2018). In contrast, the O3 burden in the IASI-

only assimilation is consistent with the ozonesonde-based estimate, whereas the burden

in the MSA slightly underestimates the burden.

Changes in isoprene emissions and HCHO abundances

The a priori isoprene emissions and the changes in the emissions in the HCHO-only and

the MSA-isop assimilations are shown in Fig. 4.3. In the HCHO-only assimilation, iso-
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prene emissions are reduced in the southeastern US, the Amazon, southeast Asia, and

in central Africa. The reductions of the isoprene emissions in the the HCHO-only as-

similation are consistent with recent HCHO inversion studies (e.g., Barkley et al., 2013;

Marais et al., 2012; Kaiser et al., 2018). However, in the MSA-isop assimilation isoprene

emissions are increased everywhere, which is inconsistent with my current a priori under-

standing that MEGAN may be overestimating isoprene emissions. Furthermore, in the

MSA-isop assimilation, the chi-squared statistics of assimilated HCHO increased by 30%

after the assimilation, which suggests that the assimilated HCHO is more inconsistent

with the observation than the a priori HCHO. This inconsistency is due to a discrepancy

in the isoprene oxidation scheme in the model. In the version of the adjoint employed

here, isoprene oxidation acts as a sink for NOx, resulting in a negative correlation be-

tween tropospheric O3 and isoprene emissions (Mao et al., 2013). Consequently, in the

MSA-isop assimilation the optimization increases the isoprene emissions to reduce the

positive bias in O3 in the tropics and subtropics. In a more recent version of the ox-

idation scheme, as described by Mao et al. (2013), NOx is recycled to the atmosphere

instead of being lost to the formation of isoprene nitrates, which can produce a positive

correlation between O3 and isoprene emissions. However, the adjoint of the updated

isoprene oxidation scheme is not available in the version of the adjoint model used in this

study. This study therefore chose not to optimize the isoprene emissions in the standard

MSA assimilation (MSA-std), although the HCHO retrievals are ingested in the assimi-

lation. Instead, HCHO initial condition optimization in MSA-std is to provide indirect

constraints on CO production from the chemical oxidation of NMVOCs.

Figure 4.3: Modelled a priori isoprene emissions (left panel) as well as the scaling fac-
tors for the emissions in the HCHO-only assimilation (middle panel) and the MSA-isop
assimilation (right panel). The scaling factor is the ratio of the a posteriori emissions to
the a priori emissions.

The a priori HCHO abundances in the lower troposphere are shown in Figure 4.4

together with the changes in HCHO in the HCHO-only assimilation and the standard

MSA. High HCHO concentrations are present over the main isoprene emission regions
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shown in Fig. 4.3. In the HCHO-only assimilation HCHO is significantly reduced over

the main source regions in the tropics. There are increases in HCHO over northern

Canada, boreal Eurasia, and eastern China. There are also slight increases over the

tropical oceans. For the MSA, the a posterior HCHO changes in the tropics follow the

pattern of HCHO changes in the HCHO-only assimilation with large reductions over the

continental source regions. However, in the MSA background HCHO is also reduced over

the oceans, due to the O3 assimilation. The consistency in the changes in HCHO over

the main source regions between the HCHO-only assimilation the standard assimilation

suggests that excluding the isoprene emissions from the state vector in MSA-std is not

strongly biasing the HCHO analysis.

Figure 4.4: Modelled HCHO concentrations (in pptv) for CTRL run, as well as HCHO
changes (in pptv) for OMI HCHO assimilation and MSA-std at 800 hPa.

Changes in tropospheric OH

The annual mean, mass weighted modelled tropospheric OH is shown in Fig. 4.5. As

shown in a priori distribution, tropospheric OH is most abundant over the tropics and

subtropics (30◦S-30◦N). The model also shows local minima in tropical OH over the Ama-

zon (80◦-60oW), equatorial Africa (25◦-35◦E), and Indonesia (130◦-145◦E). These minima

are associated with the titration of OH due to the oxidation of NMVOCs. Among the

different assimilation experiments, the MOPITT-only assimilation tends to reduce the

modelled OH globally by 3-5% due to the chemical feedback from the increased modelled

CO throughout the assimilation period. The OMI NO2-only assimilation shows more

localized reductions on OH over North America, Europe, East Asia, and southeast Asia

due to the OH response to changes in the modelled NO2. The OMI HCHO-only assim-

ilation enhances the OH abundance by more than 10% over regions with high NMVOC

emissions, such as the southeastern US, the Amazon, and equatorial Africa. As shown in

Fig. 4.3, the HCHO-only assimilation tends to reduce isoprene emissions in these regions,

which results in increased OH due to the isoprene titration of OH in this version of the

adjoint model. Additionally, there are positive changes in OH over the northern high
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latitudes in the HCHO-only assimilation. The IASI-only assimilation produces negative

OH changes within the subtropics, except over the Amazon and equatorial Africa. These

changes together with the enhancement in OH found over northern high-latitudes are OH

responses to the assimilated O3. However, for the OMI HCHO assimilation and the IASI

O3 assimilation, the positive OH changes over the northern high-latitudes are unrealistic

since they would further exacerbate the existing high biases in OH. The MSA shows the

OH responses to all of the assimilated quantities. Modelled OH is reduced by 10-15%

over the tropics (except for equatorial Africa) and by 5-15% over North America and

Europe. Moreover, OH responses in the MSA tend to reflect the changes due to the O3

assimilation in the tropics and subtropics and to the CO and NO2 assimilation in the

northern extratropics. It should also be noted that the MSA does not produce positive

changes in OH over the northern high latitudes, which mitigated some of the posterior

biases introduced by the OMI HCHO and IASI O3 assimilation.

Figure 4.5: Tropospheric mass weighted mean OH (in 105 molec/cm3) in for CTRL run,
as well as relative changes in percentage (post−ap

ap
× 100%) compared to the a posteriori

for MOPITT assimilation, OMI NO2 assimilation, OMI HCHO assimilation, IASI O3

assimilation and MSA-std.

Figure 4.6 compares the time series of global mean, monthly mean, mass-weighted

tropospheric OH as well as the ratio between NH and SH OH (given as the NH/SH

ratio) for the different assimilation experiments and for the Spivakovsky et al. (2000) OH

climatology. The OH climatology from Spivakovsky et al. (2000) is still widely used for

inverse modelling of CO and CH4 emissions since it provides a 3D OH distribution that

was empirically derived from observations. The time series of OH for the a priori has a
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strong seasonal cycle with high OH abundances in July-August-September (JAS) and low

abundances in December-January-February (DJF). However, the a priori global mean

OH is consistently higher (by 0.8-1.5×105 molec/cm3) than Spivakovsky et al. (2000)

OH climatology throughout the assimilation period. The MOPITT-only assimilation

reduces the global mean OH in response to the enhanced assimilated CO, but is still

much higher than the Spivakovsky et al. (2000)’s OH climatology. In contrast, the MSA

produces even larger reductions that capture the climatology well in June-July-August

(JJA). The global mean OH inferred from the MSA is 12.0×105 molec/cm3, which is

close to Spivakovsky et al. (2000)’s estimate of 11.6×105 molec/cm3, whereas the a priori

estimate was 13.0×105 molec/cm3. The MSA global mean OH estimate is within the

multi-model mean of 11.1±1.6×105 molec/cm3) in ACCMIP (Naik et al., 2013). The

estimated methane lifetime for the a posteriori OH from the MSA is 8.68 years, which

falls within the ACCMIP range of 9.8±1.6 years reported by Voulgarakis et al. (2013).

Compared to the observationally-based estimate of the methane lifetime (for conditions

for 2000) of 10.2±0.9 years (Naik et al., 2013), the lifetime obtained here suggests that

the OH abundance in the MSA is still biased high.

Figure 4.6: Time series of global mean, monthly mean, mass-weighted tropospheric OH
(top panel, in units of 105 molec/cm3) and the hemispheric ratio (NH/SH) of OH (bot-
tom panel) for a priori simulation, the MOPITT-only assimilation, MSA, and the OH
climatology from Spivakovsky et al. (2000).
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Another key metric to evaluate the global OH distribution is the NH/SH ratio. Simi-

lar to Spivakovsky et al. (2000), both the a priori and the assimilation experiments have a

higher NH/SH ratio (more than a factor of 2) in JJA, and a lower NH/SH ratio (0.5-0.6)

in DJF. The annual mean NH/SH ratio for the a priori OH is 1.21, which is larger than

the Spivakovsky et al. (2000) ratio of 1.0, but consistent with the ACCMIP multi-model

mean Naik et al. (2013). For the assimilated results, neither the MOPITT-only assimi-

lation nor the MSA significantly changed the interhemispheric ratio. Indeed, the MSA

slightly increasing the ratio from 1.21 to 1.23. The insensitivity of the NH/SH ratio in

the MOPITT-only assimilation and the MSA makes sense since the OH changes (shown

in Fig. 4.5) are fairly symmetric across the equator. In contrast, Miyazaki et al. (2015),

they found that their multi-species assimilation (for 2005-2012) reduced OH abundances

in the NH and slightly increased it in the SH, resulting in a NH/SH ratio of 1.18. The

differences between my results and those of Miyazaki et al. (2015) could be related to dif-

ferences in transport in our atmospheric models as well as the data assimilation schemes

used in the analyses. Miyazaki et al. (2015) used a Kalman filter scheme that sequentially

adjusts the model state and could therefore mitigate transport-related biases. In con-

trast, my 4D-Var scheme adjusts only the initial conditions and assumes that the model

transport is perfect.

4.3.2 Evaluation of the assimilation against TCCON XCO data

Figure 4.7 shows the time series of TCCON XCO binned into six different regions. The

individual sites included in each region are listed in Table 2.1. The CO columns simulated

by the a priori (CTRL) run underestimate XCO relative to the TCCON data by 15-45%.

However, although the model is systematically low, it captures the seasonal cycle in

the NH well, with higher CO in winter and lower CO in summer, reflecting the greater

OH abundances in summer. During the first two months, both assimilations do not

improve XCO by more than 15% due to the spin-up of the system. But from March

2016 to February 2017, both the MOPITT-only assimilation and the MSA better match

the TCCON XCO across the NH. Over North America, the mean XCO from TCCON

was 86 ppb; whereas for the a priori, the MOPITT-only assimilation, and MSA, they

were 69, 83, and 84 ppb, respectively. Similarly, over Europe the mean XCO from

TCCON was 89 ppb, whereas for the a priori it was 74 ppb and for both the MOPITT-

only assimilation and MSA they were 89 ppb. In the SH, the XCO peaks during SON,

which is associated with the transport of biomass burning emissions from the tropical

continental regions. Both the MOPITT-only assimilation and the MSA reproduce the
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peak in XCO over Oceania during the biomass burning season, but are biased low for

the rest of the year, indicating the system’s inability to correct background CO in the

SH. This underestimate of SH background CO could be due to model transport errors.

It could also indicate that OH in the model is still overestimated. Both assimilations

have difficulties reproducing XCO over the SH oceans. These sites include Ascension

Island and Reunion Island, which experience the influence of African biomass burning

emissions. Discrepancies in the transport of these emissions could contribute to the

discrepancies shown in Fig. 4.7. Indeed, Arellano et al. (2006) noted a difficulty in

reproducing observations over Ascension Island in their inversion analysis of MOPITT

CO. They suggested that this discrepancy could be due to errors in the altitude of the

convective outflow from Africa. Recently, Stanevich (2018) assimilated CH4 retrievals

from GOSAT to characterize errors in the GEOS-Chem model and found that the inferred

model errors over Africa suggested that there could be too much deep convective transport

over Africa and insufficient shallow outflow to the Atlantic in the model.

4.3.3 Evaluation of the assimilation against ATom-1 and ATom-

2 aircraft data

This section evaluates the modelled OH, O3, and CO over the Atlantic and Pacific oceans

using data from the ATom-1 (in Fig. 4.8) and ATom-2 (in Fig. 4.9) aircraft campaigns.

As shown in Fig. 2.15, ATom-1 flew from August 4th to August 31st in 2016. ATom-2

flew from January 26th to February 22nd in 2017. For the comparison, I bin the data

over each ocean basin into NH and SH bins to show the seasonal contrast between ATom-

1 and ATom-2. The observed OH, O3, and CO measurements are compared with the

model at the nearest model time and location.

OH evaluation

As shown in Figs. 4.8 and 4.9, the a priori is generally able to reproduce the ATom

observations in the lower and middle troposphere over the Atlantic Ocean. The largest

a priori biases are in the upper troposphere, which the assimilations are not able to

reduce. Over the Pacific Ocean, the largest discrepancies are in the NH during ATom-1

and in the SH during ATom-2. MOPITT CO assimilation does not produce significant

OH responses. Only 5% decreases are found in mid-troposphere for the a posteriori

OH in the Pacific leg in NH, which is related to the strong CO-OH coupling in the NH

summer. In contrast, the OH response in the MSA framework is much stronger, with

improvements found for the a posterior OH in both legs in both hemispheres. For ATom-1,
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the MSA reduces the overestimate on OH over the NH Pacific by 15-30%, but produced an

underestimate in OH in the lower troposphere. Similarly, the MSA improved the modeled

OH in the middle troposphere over the SH Pacific during ATom-2, but enhanced the bias

near the surface.

O3 evaluation

For both ATom-1 and ATom-2, the a priori run (CTRL) consistently overestimates the

tropospheric O3 by 25-60 ppbv, with the largest biases in the UTLS. In general, the IASI-

only assimilation and the MSA produce similar improvements in the modelled O3. For

example, the assimilations reduce the O3 overestimation by 15-30 ppbv in the SH for both

Atlantic and Pacific legs of ATom-1. In the NH during ATom-1, the MSA produces larger

bias reductions in the middle troposphere than the IASI assimilation. However, in the NH

during ATom-2, the IASI-only assimilation produce larger bias reductions. This could be

due to the fact that in NH summer (ATom-1 period), the assimilated constraints on the O3

precursors in the MSA lead to larger adjustments to the O3 distribution than assimilation

of only IASI data. In contrast, in winter (ATom-2 period), when the O3 lifetime is longer,

assimilation of the precursor constraints may not provide much additional benefit beyond

that from assimilation of only the IASI data.

CO evaluation

As with the TCCON comparison, the a priori model (CTRL) significantly underestimate

the observed CO, with biases in a magnitude of 10-46 ppbv throughout the troposphere.

Both the MOPITT-only assimilation and the MSA produce enhanced CO abundances in

both hemispheres. However, the MOPITT-only assimilation best reduces the bias in the

NH, whereas the MSA produces CO abundances in closer agreement with the observations

in the SH. One exception occurs over the Atlantic Ocean in the SH during ATom-2, for

which the MOPITT-only assimilation reproduces the observations well in the lower and

middle troposphere. This peak in CO is likely associated with the transport of biomass

burning emission from northern tropical Africa to the southern tropical Atlantic. In

Chapter 3, it was shown that the MOPITT-only assimilation provided a closer fit to the

MOPITT data than the MSA due to the fact that in the MSA the optimized CO must be

consistent with the MOPITT data as well as other observational constraints. This could

explain the smaller biases between the ATom data and the MOPITT-only assimilation

in the NH. It is difficult, however, to explain the large residual biases between both

assimilations and the ATom data given the good agreement obtained with the TCCON
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data. A noticeable discrepancy between the model and the observations is the difference

in the vertical gradient in CO over the SH Pacific in ATom-2. The observations show

increasing CO with altitude, which the model does not exhibit and which the assimilations

do not correct. The higher CO abundances in the upper troposphere may be due to long-

range transport of CO in the UTLS, and an error in transport cannot be corrected for in

the assimilation since only the CO emissions are optimized in the system. This suggests

data assimilation schemes that consider model error in their cost function such as weak-

constraint 4D-Var could be used to further mitigate the model biases due to transport,

which will be discussed in Chapter 6.

4.3.4 Evaluation of the assimilation against SHADOZ data

Tropospheric O3 in the tropics and subtropics are compared with SHADOZ Ozonesonde

observations in Fig. 4.10. The a priori simulation is positively biased in the middle

and upper troposphere by 20-60%. The IASI-only assimilation improves the modelled

O3 mostly in the middle troposphere with an improvement of 4-12 ppbv. However, O3

biases in UTLS are largely unchanged. In contrast, the MSA, due to the assimilation of

both tropospheric and stratospheric observations (IASI and OSIRIS), is able to improve

O3 from the middle troposphere to lower stratosphere. In the UTLS, the assimilation of

OSIRIS O3 and MLS HNO3 observations in the MSA reduced the modelled O3 biases by

15-25 ppbv. I also found that the MSA was most effective at improving the O3 in the

UTLS in the subtropics, such as at Hilo, La Reunion Island, and Irene.

4.3.5 CO emission estimates

Figure 4.11 shows the annual mean CO emissions including both anthropogenic and

biomass burning sources based on the bottom-up inventories during March 2016 to Febru-

ary 2017, as well as its estimated emission scaling factors for the MOPITT and the MSA

assimilations. The emission scaling factor is the ratio of the a posteriori to a priori emis-

sions. The bottom-up inventories show large anthropogenic emission sources in North

America, Europe, and East Asia. These continental regions account for 10.5%, 11.4%,

and 56.4% of the total annual anthropogenic emission budget, respectively. The biomass

burning sources in Amazonia, equatorial Africa, and Southeast Asia contribute 10.7%,

64.4% and 32.1% to the global biomass burning budget, respectively. After the assimila-

tion, the MOPITT CO inversion increased emissions almost everywhere, with the largest

correction over the eastern US, Europe, India, East Asia, and equatorial Africa. The CO

emissions estimated in the MSA also shows increased emissions over these regions, but
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Figure 4.8: Comparisons of ATom-1 observations with modelled OH (left column), O3

(middle column), and CO (right column) profiles from the a priori (CTRL) run, the
single instrument assimilation, and the MSA-std. The single instrument assimilation
refers to the MOPITT-only assimilation for CO and OH, whereas it refers to the IASI-
only assimilation for O3. The vertical profiles show the mean abundance of OH (in pptv),
O3 (in ppbv), and CO (in ppbv) averaged over the northern (top two rows) and southern
(bottom two rows) hemispheres and over the Atlantic and Pacific oceans.
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Figure 4.9: Same as Fig. 4.8, but for ATom-2.
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with much smaller changes in magnitude. Moreover, the MSA indicates that the bottom-

up emission inventories did not have strong biases in regions such as the southeastern

US, Amazonia and southeastern China, which is different from the MOPITT assimilation

estimates. This is because the MOPITT assimilation over adjusts the surface emissions

to compensate for model biases, such as discrepancies in the modelled OH. In contrast,

the biases in the model chemistry are are mitigated in the MSA by assimilating the other

species that are chemically related to CO. The reduction in the global OH budget shown

in Fig. 4.6 would explain why the MSA CO emission estimates are lower than those from

the MOPITT-only assimilation. Moreover, the different CO estimates obtained in the

southeastern US and Amazonia are due to the assimilation of OMI HCHO to constrain

the biogenic source of CO.

Figure 4.11: Annual mean total CO emissions (in 1010 molec/cm2/s) for CTRL, and CO
emission SF (which is the ratio of the a posteriori emissions to the a priori emissions) for
MOPITT assimilation and MSA-std. Total emissions include anthropogenic and biomass
burning components only.

The global and regional CO emission monthly timeseries for the a priori (CTRL) run,

the MOPITT assimilation, and the MSA are shown in Figure 4.12. The focus here is only

on the anthropogenic emissions in the US (the contiguous 48 states), Europe, and Asia

(including East Asia, India and Southeast Asia) as well as the biomass burning emissions

in Amazonia, equatorial Africa, southern Africa, and India/Southeast Asia. The a priori

emissions did not show extreme seasonal variations in the northern mid-latitudes. Slightly

higher CO emissions are present in DJF in East Asia as well as in JJA in North America.

Compared to the MOPITT assimilation, the monthly CO emissions are reduced by 1-

2.5 TgCO/month for the MSA, with the seasonal cycle more consistent with Kopacz

et al. (2010) and Jiang et al. (2015a). The European anthropogenic emissions estimated

by the MOPITT assimilation have a distinct peak in March and April, which were 2.2

TgCO/month larger than the emission estimates by the MSA. Jiang et al. (2015a)

argued that the European emissions tended to be confined within the boundary layer

and thus the air in the free troposphere over Europe is more chemically aged. As a

result, inversions using column or profile CO data (that sample the free troposphere)
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to estimate European emissions will be strongly influenced by OH. The MSA European

emissions were consistently lower than for the MOPITT assimilation, with the exception

of October. For East Asia, both the MOPITT and MSA have show larger CO emissions

(by 20-30 TgCO/month) than the a priori in MAM. In other seasons, there was an 8-20%

percent increase in anthropogenic CO emissions in both the MOPITT assimilation and

the MSA.

Figure 4.12: Regional monthly total CO emission time series (in TgCO/month) for
CTRL, MOPITT assimilation and MSA-std.

For biomass burning emissions, regions such as Amazonia, northern and southern

Africa, southeastern Asia and Australia show a much larger seasonal cycle with distinct

peaks associated with their wildfire seasons. Both the MOPITT assimilation and the

MSA suggest that biomass burning in northern and southern Africa are underestimated

during their corresponding wildfire seasons. In both regions, the MSA shifted the peak

emission earlier by one month relative to the MOPITT assimilation. In contrast, the

South American a priori emissions are consistent with a posteriori estimates. However,

the MOPITT assimilation shifted the peak in the emission one month earlier, whereas

the MSA has the same timing of the peak in the emissions as the a priori. The region
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with the most pronounced change in the emission estimates is southeastern Asia. The

MOPITT assimilation suggested that the biomass burning peak in JAS for is significantly

underestimated in the a priori. In contrast, the MSA suggested that the peak in the a

prior is severely overestimated by 40%. Which scenario is more realistic is difficult to

confirm since Jiang et al. (2017) showed that the interannual variability of CO emissions

over southeastern Asia can vary by more than 200%. According to Huijnen et al. (2016)

and Dalsøren et al. (2009), both the deep convection and the chemical conditions (e.g.,

the OH abundance) would affect CO inversions in southeastern Asia. Despite that, the

overall total biomass burning emission estimates suggest that the wildfire emissions from

the GFED-3 emission inventory is underestimated. This was also confirmed by Giglio

et al. (2013) since they found that the updated biomass burning inventory (GFED-4)

showed an increase of 15% of total burned area compared to GFED-3 in the Moderate-

resolution imaging spectroradiometer (MODIS) era (after 2000).

The global and regional CO emission statistics for all experiments employed in my

study are compared with other recent CO inversion studies (in Table 4.2) that have tried

to mitigate the impact of chemical biases associated with OH (e.g., Müller et al., 2018;

Jiang et al., 2017; Miyazaki et al., 2015). The annual emission estimates for Müller et al.

(2018), Jiang et al. (2017), and Miyazaki et al. (2015) refers to their CO estimates for

2013, 2015, and 2016 respectively. The global annual emissions for the a priori, the

MOPITT assimilation, and the MSA-std are 680, 975 and 890 TgCO/year respectively.

In fact, the total CO emission estimates from the MOPITT assimilation, the MSA-std,

and the MSA-isop are all within the range of the total emissions (831-1009 TgCO/year)

estimated by these recent CO inversion studies. In contrast, CO emissions estimated

from MSA-γ=1 is much lower (771 TgCO/year) due to the ineffective cost function

weighting towards the MOPITT CO observations. It should be noted that the CO

emissions reported in Müller et al. (2018) are lower partially because they employed a

global mean OH (9.3×105molec/cm3) that is 22.5% lower than the OH estimates from

the MSA-std. In contrast, the 2016 CO emission estimates from the TCR-2 reanalysis

from Miyazaki et al. (2015) has larger emission estimates. Regionally, the MSA-std

estimates are most similar to those from Jiang et al. (2017) who also used the GEOS-

Chem model for their inversion analysis, but conducted a two-step assimilation approach

to mitigate the impact of OH biases on their inversion.
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4.3.6 NOx emission estimates

Annual mean surface NOx emission estimates from the a priori as well as the scaling fac-

tors for the OMI-only assimilation and the MSA-std assimilation are shown in Figure 4.13.

High NOx emissions mostly come from anthropogenic emission sources in North America,

Europe, and East Asia. In comparison, surface NOx emissions related to wildfires are

relatively low, distributed over the Amazon, equatorial Africa, and Indonesia. The OMI

NO2 assimilation suggests anthropogenic NOx emission inventories over the northern

extratropics were significantly overestimated by 30-60%, especially over the eastern US

and Europe. Biomass burning NOx emission inventories for equatorial Africa, India and

southeastern Asia were also overestimated by 10-50%. However, these emission changes

inferred from the OMI-only assimilation tend to be excessive since the data assimilation

system has to correct biases in the modelled concentrations due to discrepancies in the

chemistry and emission inventories by adjusting only the surface NOx emissions. In con-

trast, the results for the MSA-std assimilation suggest that the overestimation of the

bottom-up inventories is much less severe (by 5-20%) for US, Europe and southeastern

Asia. The MSA also suggests that the emission inventories over East Asia are slightly

underestimated by 10%. Some NOx emissions associated with Canadian and Russian

wildfires are also picked up in the a posteriori emissions for the MSA.

Figure 4.13: Annual mean total surface NOx emissions for CTRL, and surface NOx

emission scaling factor for OMI NO2 assimilation and MSA-std. Total surface emissions
include anthropogenic and biomass burning components only.

In terms of the global budget, surface NOx emissions from North America, Europe

and East Asia accounts for 14.0%, 17.8% and 31.2% of the total emissions. Biomass

burning emissions in boreal forests has increased from 3.7 to 4.7 TgN/year for the MSA.

In the southern hemisphere, the a posteriori NOx emissions for the Amazon, equatorial

Africa, and Indonesia were changed by -15.2%, +44.7%, and -27.6% in the MSA compared

to the a priori. Overall, the annual mean a posterior NOx emission using the MSA is

24.9 TgN/year in 2016, which is consistent with the surface NOx emission estimates of

26.5 TgN/year reported by Miyazaki et al. (2015). The annual production of NOx from



Chapter 4. Constraints on tropospheric OH 109

LNOx in the MSA-std assimilation is 5.9 Tg/year, which is 32.9% lower than the a priori,

suggesting that there is a high positive biases in LNOx in the model. The a posteriori

estimates also agree with the LNOx source estimates by other studies such as Murray

et al. (2012) (6.0 TgN/year) and Miyazaki et al. (2014) (6.4 TgN/year).

4.4 Summary

Multi-species data assimilation experiments were performed using the GEOS-Chem model

with a 4D-var data assimilation scheme to optimize the tropospheric CO-HOx-NOx-O3

chemistry throughout 2016. Building on the work in Chapter 3, CO and NOx emissions,

as well as O3 and HNO3 initial conditions were optimized by assimilating satellite ob-

servations of CO from MOPITT, NO2 from OMI, HCHO from OMI, O3 from IASI and

OSIRIS, and HNO3 from MLS. Significant changes in tropospheric O3 were obtained in

the assimilation, mostly due to the influence of the IASI O3 assimilation. The modelled

HCHO response to the OMI HCHO observations was consistent between the OMI-only

assimilation (in which I assimilated only HCHO and adjusted isoprene emissions) and

the MSA-std (in which I assimilated HCHO but did not optimize isoprene emissions).

However, the resulting surface isoprene emissions were largely inconsistent between the

OMI-only assimilation and the MSA-isop assimilation (which I also optimized isoprene

emissions), due to biases in the isoprene oxidation scheme in the model. The MSA-std

produced reductions in OH of to 15% over North America and Europe as well as over

regions within the tropics and subtropics. The assimilations were evaluated with inde-

pendent in-situ aircraft, TCCON, and ozonesondes data. Comparisons with TCCON

measurements and ATom aircraft data showed that CO enhancement after the assim-

ilation reduced the negative biases in CO throughout the troposphere. The modelled

O3 evaluation with ATom aircraft data and SHADOZ O3 ozonesonde data showed that

assimilation resulted in improvement of O3 in the middle and upper troposphere. Fur-

thermore, the OH responses to the assimilation showed significant improvement relative

to the OH climatology from Spivakovsky et al. (2000). The global tropospheric mean OH

was reduced from 13.0 to 12.0×105molec/cm3 which better matched the Spivakovsky

et al. (2000) estimate of 11.6×105 molec/cm3. The ability to constrain the modelled OH

state is a key achievement of the MSA. The full a posteriori OH field can now be used for

various CO and CH4 inverse modelling studies in the future. As a result of the changes

in OH, the CO emission estimated using the MSA-std suggested that the bottom-up in-

ventory underestimates CO emissions by 13-30%, much less than underestimate of 43%

indicated by the MOPITT-only assimilation. The surface and LNOx emission estimates
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for the MSA were 24.9 and 5.9 TgN/year respectively, both of which agreed well with

NOx inversion studies (e.g., Miyazaki et al., 2015; Murray et al., 2012).



Chapter 5

Estimating NOx emissions for North

America using OmO NO2 retrievals

5.1 Introduction

Atmospheric NOx is a major air quality contaminant that adversely impacts human

health. It is also a key precursor for tropospheric O3. Satellite observations of NO2 have

been used extensively to infer surface emissions of NOx (e.g. Martin et al., 2003; Jaeglé

et al., 2005; Stavrakou and Müller , 2006; Miyazaki et al., 2012b, 2017). According to

bottom-up emission inventories, there has been a significant negative trend in NOx emis-

sions in North America and Europe during the past two decades, and satellite retrievals

of NO2 indeed show large reductions in NO2 during this period. However, recently Jiang

et al. (2018) has suggested that the US Environmental Protection Agency’s emissions

inventory has overestimated the negative trend in North American NOx emissions. They

found that their top-down emission estimates suggested a reduction in the rate of de-

crease of North American emissions after 2011, which they attributed to an increasing

relative contribution of industrial and off-road diesel emissions (which were not as strictly

regulated as on-road gasoline emissions) and a slower than expected reduction in on-road

diesel emissions. The work of Jiang et al. (2018) highlighted the need to better un-

derstand the trends in NOx emissions, and utility of inverse modelling of space-based

measurements of NO2 to provide top-down constraint on the emissions.

Retrievals of NO2 from GOME, SCIAMACHY, OMI, and GOME-2 provide a con-

tinuous NO2 observation record over the last 20 years (Boersma et al., 2008). Newly

launched instruments such as TROPOMI as well as future instruments such as Tropo-

spheric Emissions: Monitoring POllution (TEMPO) will produce NO2 measurements

111
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with much higher precision and finer spatial and temporal resolution. However, a chal-

lenge with using these data for inverse modelling of NOx emissions is that the inversion

analyses require observations of tropospheric NO2 abundances, whereas the measure-

ments provide constraints on the total atmospheric column abundance of NO2. To iso-

late the tropospheric contribution to the total column, a number of different approaches

have been employed. Martin et al. (2003) first applied the reference sector method,

which assumed that the total NO2 columns over the remote and unpolluted atmosphere,

where tropospheric NO2 abundances are low, is representative of the stratospheric NO2

columns. Boersma et al. (2008) assimilated OMI column data in a CTM to provide an

optimized description of the stratospheric NO2 columns. However, discrepancies in the

estimated stratospheric column in each of these approaches could bias the tropospheric

residuals. For example, the reference sector approach did not properly account for vari-

ability in the stratosphere, and the assimilation approach can introduce model biases in

the data product. Recently, Adams et al. (2016) used a limb-nadir matching technique

with stratospheric NO2 retrievals from OSIRIS to subtract the stratospheric contribution

to the OMI total column. Here I conduct the first inverse modelling analysis of these

OSIRIS-minus-OMI (OmO) tropospheric NO2 columns.

The objective in this chapter is to evaluate the utility of the new OmO retrievals for

quantifying surface NOx emissions. I focus on assimilating the data during 2008-2011

using the nested version of the model for North America. The use of the high-resolution

nested grid model will better capture the strong heterogeneity in tropospheric NO2 and

thus reduce the representation error in the model chemistry. To reduce the impact of O3-

related biases on the inversion, I also assimilate IASI O3 retrievals to create observation-

based boundary conditions for the nested assimilations. Note that since the focus of

this study is to evaluate the utility of the OmO retrievals for inverse modeling of NOx

emissions, I separately assimilate the O3 and NO2 observations, which is different from

the MSA approach introduced in Chapters 3 and 4.
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5.2 Model setup

5.2.1 Assimilation approach

The strong constraint 4D-var cost function for regional NOx emission optimization is

expressed as:

J(p) = [p− pa]
TB−1[p− pa] +

N∑
n=1

[yn −H(xn)]TR−1[yn −H(xn)], (5.1)

where p represents the surface NOx emissions, yn represents the OmO NO2 observation

being assimilated at a given time n, H is OmO NO2 observation operator described in

Section 2.5, B is the a priori error covariance matrix that accounts for uncertainty of

the initial estimates of surface NOx emissions, and R is the observation error covariance.

Here B is specifed with a uniform uncertainty of 50%, which is consistent with recent NOx

inversion studies (e.g., Travis et al., 2016; Lin et al., 2017; McDonald et al., 2018) that

have argued that the anthropogenic sources of NOx are overestimated by as much as 50%

over the southeastern US. This setup is also consistent with other regional NOx inversion

studies (e.g., Qu et al., 2017; Miyazaki et al., 2017). In specifying the observation error

covariance, I used a similar super-observation approach to that described in Section 4.2.

The uncertainty of the tropospheric VCD is 5±3×1014 molec/cm2 for all the assimilated

observations over North America, which is consistent with the standard deviation shown

in Fig. 2.13. The uncertainty of each OmO observations are computed based on the

column abundance with its associated uncertainty from both OMI total columns and

OSIRIS stratospheric columns.

To optimize the O3 boundary conditions I first conducted a global assimilation analy-

sis at a resolution of 4◦×5◦ using IASI data, and archived the optimized fields around the

North American boundary. To obtain a good constraint on the O3 distribution through-

out the analysis period, I used the weak constraint 4D-Var approach, for which cost

function is given as:

J(x0, η) = [x0 − xa]
TB−1x [x0 − xa] +

N∑
n=1

[yn −H(xn)]TR−1[yn −H(xn)]

+
N−1∑
n=1

ηTnQ−1η ηn,

(5.2)

where x0 represents the O3 initial conditions, yn represents the IASI O3 observation
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being assimilated at a given time n, H is the IASI O3 observation operator described in

Section 2.5, B is the a priori error covariance matrix that accounts for uncertainty of the

initial O3 distribution, R is the observation error covariance matrix, and Q is the model

error covariance matrix, which was discussed in Section 2.4.4.

Here Bx is specified as a diagonal matrix with a relative error standard deviation of

50%. This assumption provides a loose a priori constraint and allow the O3 initial condi-

tions to respond more strongly to the observations so that the entire O3 state across the

assimilation window would better match the assimilated observations. A high uncertainty

on the initial O3 distribution is also consistent with other O3 assimilation studies (e.g.,

Miyazaki et al., 2012a; Barré et al., 2012; Emili et al., 2014). The observation error

covariance R is specified as in Section 4.2. I assume that Q = q2I conducted a series

of parameter tuning experiments to determine q. The O3 assimilation analysis shown in

Chapter 3 suggested that the model can exhibit O3 biases varying from 0.5 ppbv to 20

ppbv. Hence, I tested values of q of 0.1, 0.5, 3, 6, and 10 ppbv. To test difference choices

of q, we conduct some weak-constraint 4D-var based O3 assimilation over August 2016.

The assimilated O3 fields were then validated against ATom-1 O3 observations. It should

be noted that when q is 10 ppbv, the cost function failed to search any local minima for

several iterations. For other four possible values of q (0.1, 0.6, 3 and 6), the assimilated

total O3 burden changed by less than 5%. Compared to the strong-constraint 4D-Var,

using q = 0.5 provided the most improvement over the northern extratropics when vali-

dated against ATom-1 O3 observations. Hence, I used q = 0.5 for the model forcing error

error in this study. Ideally though, Q should be estimated from an ensemble of runs with

perturbed dynamics to capture the model error based on the spread of the ensemble.

However, such an ensemble is not available at present.

5.2.2 Experiments

As mentioned above, I first optimized the O3 distribution using the global model at 4◦×5◦

to provide improved boundary conditions for the nested simulation. I then carried out

a case study for July 2008 in which I conducted the experiments listed in Table 5.1. I

separately assimilated the OMI NO2 and OmO NO2 retrievals, and then assimilated the

OmO NO2 data with the IASI O3 assimilated boundary conditions. The goal of these

experiments was to understand the differences between the OMI and OmO assimilations,

as well as how the O3 impacted the optimized NOx emissions. For the three assimilation

runs, the assimilation window was 3 days. This assimilation window is much shorter than

that used in the MSA studies in Chapters 3 and 4 to better capture the short lifetime of
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Table 5.1: Experiments deployed in the regional NOx inverse modeling studies.

Experiments Optimized quantities Assimilated Assimilated period
observation(s)

CTRL None None Case study: July-2008
Continuous run: JJA 2008-2011

OMI Surface NOx emissions OMI NO2 Case study: July-2008
assimilation tropospheric SCDs
OmO Surface NOx emissions OmO NO2 Case study: July-2008
assimilation tropospheric SCDs
OmO+IASI Surface NOx emissions OmO NO2 and Case study: July-2008,
-BC assim. +O3 initial conditions IASI O3 Continuous run: JJA 2008-2011

NOx and to take advantage of the high data density of both IASI and OmO observations.

I chose the period July 2008 for the case study to so that I can use the ARCTAS aircraft

observations to evaluate the modelled NO2. I also evaluated the model using surface

observations from the EPA AQS and NAPS air quality network. After the July 2008

case study, I repeated the experiments for each summer (JJA) in 2008 to 2011.

The initial concentrations for the model on June 1st, at the beginning of the assim-

ilation period each summer, was obtained by running the forward model from August

31st in the previous year without any assimilation. The boundary conditions for each

experiment were similarly generated from a forward run of the global model, except for

the OmO+IASI BC simulation, in which the O3 boundary conditions were specified from

the global IASI O3 assimilation.

5.3 Results

5.3.1 O3 changes in the IASI assimilation

The modeled O3 changes over North America due to the IASI O3 assimilation are shown in

Fig. 5.1. The main changes are found in middle and upper troposphere. O3 over northern

California and the eastern US is reduced, whereas it is increased in the subtropics and

high-latitudes. At the surface, the assimilated results have a similar pattern of changes

as in the middle troposphere, but with much smaller magnitudes (less than 2 ppbv), due

to downward transport from the free troposphere. Figure 5.1 also shows the altitude-

latitude cross section of the a priori O3 across North America. As can be seen, O3 is at a

maximum at the surface and in the upper troposphere. The surface maximum is due to

anthropogenic emissions, whereas the upper tropospheric maximum is due to lightning

NOx emissions (Parrington et al., 2008). The assimilated changes in O3 suggest that

there could be a discrepancy in the vertical distribution of O3 production from lightning
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NOx emissions, with the model producing too much O3 in the middle troposphere.

Figure 5.1: The a priori O3 distribution (top left) and the difference (both in ppbv)
between the a posteriori and the a priori Ox at 800 hPa (top right), 500 hPa (bottom
left), and 300 hPa (bottom right) for the IASI O3 assimilation.

5.3.2 Evaluation against OmO NO2 data

Figure 5.2 compares the modeled NO2 tropospheric columns with the OmO NO2 obser-

vations for boreal summer in 2008. The a priori NO2 columns are overestimated with

mean differences of 0.18± 3.18×1015 molec/cm2. There is significant overestimation over

major cities such as Los Angeles, San Francisco, Mexico City, Chicago, and Toronto as

well as over larger regions such as the eastern US and Alberta. This overestimation was

also seen in the assimilated results shown in Chapters 3 and 4. After the assimilation,

the mean difference between the modelled and observed NO2 columns was decreased to

0.03±2.92×1015 molec/cm2, which indicates that the assimilation is fitting the OmO data

well. However, there are large residual biases in the mid-western US that the emission

optimization cannot remove. This may suggest that the inversion is more effective at
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adjusting urban NOx sources than rural sources. Also, the remaining NO2 biases could

be related to two factors. First, discrepancies in the AMF between the model and obser-

vations would result in NO2 column differences that could be not reduced using emission

optimization. Second, lightning NOx is a major source of NOx emissions in summer.

Since LNOx was not optimized in these experiments, some of the residual NO2 biases

could be due to high LNOx emissions. In Chapter 4 I estimated global a posteriori LNOx

emissions that were 33% lower than the a priori. The overestimation of the NO2 columns

in the Midwest coincides with the region of the O3 reductions in IASI assimilation, sug-

gesting that there could indeed be excessive LNOx emissions in the middle and upper

troposphere over the eastern US.

Figure 5.2: Top left: Distribution of the mean NO2 column abundances (1015 molec
cm−2) from the OmO retrievals in JJA 2008. Top right: Differences between the a priori
model and the OmO retrievals. Bottom left: Differences between the a posteriori NO2

from the OmO+IASI BC assimilation and the OmO retrievals. Bottom right: Histogram
of the modelled minus observation differences (1015 molec cm−2) for a priori model (blue
bars) and the OmO+IASI BC a posteriori fields (green bars).
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5.3.3 Evaluation against ARCTAS NO2 aircraft data

Figure 5.3: Vertical profile of the =mean differences (in pptv) between modelled NO2

and ARCTAS observations of NO2. Shown are the mean differences for the a priori
(blue line), the OMI assimilation (green line), the OmO assimilation (red line), and the
OmO+IASI BC assimilation (aqua line)

Figure 5.3 shows vertical profiles of relative mean differences between the modelled NO2

and the ARCTAS observations. From the surface to about 3 km, the assimilations did

not have much of an impact on the bias relative to the aircraft observations. According

to the ARCTAS flight plan, these measurements were made on the outbound flights from

Los Angeles, Yellowknife, and Cold Lake. For these observations, both representation

error of the modelled NO2 as well as observation errors could be large (Miyazaki et al.,

2017). Hence, I excluded the boundary layer data in the comparisons shown in Fig. 5.3.

Between 3-10 km, the a priori NO2 was biased high by up to 34 pptv. The OMI and OmO

assimilation results were similar, and both reduced NO2 biases above by about 4 pptv

in 5 km and between 8-9.5 km. For ARCTAS observations poleward of 60◦N, the two

assimilations cannot improve the modelled NO2 significantly because the observations are

away from emission source regions. In contrast, the OmO assimilation using assimilated

O3 boundary conditions further reduce the NO2 bias by about 3 ppbv between 4-6 km,

and by 20 pptv between 8-9.5 km. The background NO2 in the upper troposphere is

remarkably improved thanks to the chemical feedback of the assimilated O3 on NO2. The

relative improvement in the upper troposphere also reflects the fact that IASI tends to be
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more sensitive to O3 abundances in the UTLS, which leads to more effective corrections

on upper tropospheric O3, and hence on modelled upper tropospheric NO2.

5.3.4 Evaluation against AQS and NAPS O3 data

Figure 5.4 shows the surface O3 evaluation against AQS and NAPS observations. Since

the purpose of O3 assimilation is to improve the O3 fields for boundary conditions in

the regional NOx inversions, I first interpolate the modelled O3 from the global model

to the nested grid and then compared the re-gridded fields at the times and locations

closest to the observations. The AQS and NAPS O3 observations reveal that there is

high level of surface O3 in California, in the Midwest, and in the eastern US. Without O3

assimilation, the global model overestimates surface O3 in the Midwest and eastern US by

9.8 and 16.1 ppbv, respectively. These summertime surface O3 biases were also found in

the AQS validation analysis in Chapter 3. Assimilation of the IASI O3 at 4◦×5◦ reduces

the model biases by 2.5 ppbv in the midwest and 2.8 ppbv in the eastern US. The mean

model bias across the AQS and NAPS network for the 4◦×5◦ a priori simulation, the

a posterior IASI O3 assimilation, and the a posteriori OmO+IASI BC O3 assimilation

are 13.9, 11.7, and 9.3 ppbv, respectively. When I simulate the surface O3 using the

nested model with the O3 boundary conditions archived from the IASI assimilation (a

priori+IASI BC), the total surface O3 bias is reduced to 9.9 ppbv. This shows that

improving the model resolution alone does mitigate some of modelled biases. But the

improvement is modest (with the bias decreasing from 11.7 to 9.9 ppbv). However,

the NOx emission optimization in the OmO+IASI BC assimilation only provides a slight

additional reduction in the mean bias (to 9.3 ppbv). This could be due to the fact that the

O3 and NO2 assimilations are conducted independently as separate optimizations instead

of the joint assimilation approaches used in Chapters 3 and 4. The larger reduction in

the surface ozone bias obtained in Chapter 3 compared to the results here confirms

that jointly assimilating NO2 and O3 to exploit the NOx-O3 coupling provides a strong

constraint on surface ozone.

5.3.5 Validation against AQS and NAPS NO2 observations

Shown in Fig. 5.5 are the AQS and NAPS and observations of NO2, gridded on the

GEOS-Chem nested grid, and the differences between the model and the observations.

The AQS and NAPS NO2 data are less dense than the O3. There are NO2 measurements

from AQS+NAPS measurements distributed in California, the midwest, the eastern US,

and western Canada. The multi-year mean of the AQS and NAPS measurements shows
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high NO2 concentrations in urban areas such as San Francisco, Los Angeles, Denver,

Chicago, and New York as well as in biomass burning regions in Alberta. Many of

these locations coincide with high NO2 tropospheric columns found in Fig. 5.2. This

shows that the surface NO2 observations and the OmO NO2 tropospheric columns may

have consistent information on the NOx emission hotspots. The a priori NO2 fields are

biased high in the urban areas mentioned above and across the eastern US. There is

also significant overestimation in Texas and Louisiana. After the assimilation, the NOx

emission optimization reduces the absolute biases of the surface NO2 concentrations by

57.1% when compared to AQS and NAPS measurements, with much of the improvement

in the eastern US. The mean model biases for the western and eastern US are reduced from

0.7 to -0.3 ppbv and from 0.8 to -0.2 ppbv, respectively. The model also slightly improves

the NO2 fields (by 0.2 ppbv) over the wildfire regions in central Canada. However, the

NO2 biases over rural regions in the Midwest are slightly enhanced. A possible reason for

this could be that the representativeness correction factor of 1.7 that was applied to the

observations (and which was explained in Section 2.1.2) is too strongly based on urban

sampling and, consequently, could result in larger biases in the rural AQS and NAPS

observations.

Figure 5.5: Mean AQS and NAPS NO2 observations for JJA 2008 (left), and mean
absolute differences (both in ppbv) between the AQS+NAPS data and the modelled
NO2 for the 0.5◦×0.667◦ priori simulation (middle) and the OmO+IASI BC assimilation
(right).

5.3.6 NOx emission estimates

Case study: Impact of IASI O3 assimilation on estimating NOx emissions for

July, 2008

I have compared the bottom-up NOx emissions with the inferred surface emissions from

the OMI and OmO assimilations as well as with the OmO+IASI BC assimilation in
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Fig. 5.6. The total a posteriori NOx emissions for the three experiments are 0.559,

0.52 and 0.547 TgN/month, respectively, compared to the a priori of 0.695 TgN/month.

Comparison of the OMI and the OmO experiments indicate larger reductions in emis-

sions across the US and eastern British Columbia in the OmO assimilation. However,

as the OmO+IASI BC experiment has effectively reduced the NO2 biases (shown in

Fig. 5.5), its posterior estimates are 5.1% higher than the emission estimates inferred

from the OmO assimilation. Unlike the OMI assimilation, for which most of the emis-

sion corrections are over urban areas, the OmO and the OmO+IASI BC assimilation

produce reductions in both urban and rural areas. Over the eastern US (east of 95◦W),

the NOx emissions are 0.281 TgN/month for the OmO+IASI BC assimilation, which is

0.026 TgN/month smaller than the estimates from the OMI assimilation. This is be-

cause surface NOx emissions tend to respond to both the OmO observations and the

reduced O3 near the surface in the eastern US (which was introduced by the assimilated

O3 boundary conditions, shown in 5.1).

Figure 5.6: The a priori NOx emissions (in 1010 molec/cm2/s) and the a posteriori NOx

emission scaling factor for OMI, OmO and OmO+IASI BC assimilations for 2008-2011.



Chapter 5. Assimilation of OmO data 123

Estimated emissions from OmO+IASI BC for JJA 2008-2011

The JJA a priori and a posteriori emissions for 2008-2011 are shown in Figs. 5.7 and

5.8. The four-year mean anthropogenic and biomass burning a priori emissions were

564.8 GgN/month and 55.9 GgN/month, respectively. There are strong emissions (more

than 1 GgN/month) from cities on the west coast and east coast of the US, around the

Great Lakes, and near Mexico City. In addition, there are large NOx emissions from

power plants and wildfires. For example, there are biomass burning sources in central

Canada, which tend to exhibit high year to year variations. Some aircraft and shipping

NOx emissions along the Atlantic are also present. Compared to the a priori emissions,

the a posterior emissions have significant reductions over all emission types. Reductions

were obtained over remote areas in the southeastern US, the Midwest, and in cities along

west and east coast of US. For the OmO+IASI BC assimilation, the anthropogenic and

biomass burning emissions were reduced by 44.8% and 26.7%, respectively. In California,

reductions of up to 7.7% NOx were obtained in 2008, with slightly smaller reductions in

2009-2011. In the eastern US, NOx emissions were reduced by 2.9%, 2.1%, 3.5% and

3.0% in the four years, respectively. The bottom up inventories on Canadian wildfires in

2008, 2010 and 2011 are also overestimated, which are reduced by 1.3%-3.2% after the

assimilation.

Table 5.2 shows the JJA mean NOx emission estimates for North American cities that

are large sources of NOx as well as total North American emissions. Between 2008-2011

the total North American a posteriori emissions were lower than the a priori by 26%, 19%,

36%, 30% in the four years, respectively. In Mexico City, Los Angeles, Houston, Detroit,

and New York City, the a posteriori NOx emissions were 23%, 30%, 56%, 49%, and 41%

lower than the priori, respectively, in 2008. The North American a posteriori emissions in

2011 were 13.6% lower than in 2008, which is consistent with the 10.8% reduction between

2008 and 2011 in surface NO2 concentrations in the AQS observations. Among the four

years considered in my analysis, the North American emission estimates in 2010 were the

lowest, 6% smaller than NOx emissions in 2011. The emission reductions relative to the

a priori were also the largest in 2010. A possible reason could be the adjoint sensitivity

is most effective in responding to the OmO and IASI observations in 2010. Recall that

other factors such as meteorology and the chemical coupling of NOx-related species (e.g.

NMVOCs, O3) could also affect the assimilation. Additional work is needed to determine

whether there is increased sensitivity in 2010 due to the observational constraints or the

meteorological conditions.

To evaluate the emission estimates, my results are compared with the top-down esti-

mates from the TCR-2 NOx emission reported by Miyazaki et al. (2017) for 2008-2011 as
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Figure 5.7: The JJA mean prior NOx emission for 2008-2011 in units of 1010 molec cm−2

s−1.

well as the emission estimates from the EDGAR-Hemispheric Transport of Air Pollution

version 2 (EDGAR-HTAP v2) inventory for 2008 and 2010. My a posteriori estimates

of 0.48 and 0.40 TgN/month in 2008 and 2010, respectively, are slightly lower than

the Miyazaki et al. (2017) estimates of 0.45 and 0.43 TgN/month, but higher than the

EDGAR-HTAP estimates of 0.38 and 0.42 TgN/month. For 2009 and 2011, Miyazaki

et al. (2017) estimated emissions of 0.44 and 0.43 TgN/month, whereas my a posteriori

emissions were 0.47 TgN/month and 0.42 TgN/month. Miyazaki et al. (2017) also esti-

mated the lowest emissions in 2010. The change of -13.6% in my a posteriori emissions in

2011 relative to 2008 is larger than the -3.5% change reported by Miyazaki et al. (2017).

However, as discussed above, my estimated reduction in the emissions from 2008 to 2010

is comparable to the -10.8% change in surface NO2 abundances in the AQS observa-

tions. Jiang et al. (2018) found that NOx emissions decreased more slowly after 2011

than predicted by the EPA bottom-up inventory. It would be interesting to extend the

analysis beyond 2011 to confirm this slowdown in NOx emission reduction using OmO

data.
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Figure 5.8: The JJA mean posterior NOx emission changes relative to the a priori for
2008-2011 in units of 1010 molec cm−2 s−1.

5.4 Discussion

It should be noted that there are several factors that might lead to uncertainties in the a

posteriori emission estimates reported here. First, I did not optimize the lightning NOx

emissions my inversion analyses. In the inversions, all of the differences between the

modelled NO2 and the OmO observations were minimized by optimizing only the surface

NOx emissions. In fact, lightning NOx emissions in summertime also contributed to the

total tropospheric column (Martin et al., 2003). However, as discussed in Chapter 3,

optimizing surface and lightning NOx emissions simultaneously using only column NO2

data is challenging since the inversion cannot distinguish between changes in the column

due to changes in lightning NOx and changes in surface emissions. In Chapters 3 and 4, I

had additional chemical constraints (e.g. O3 and HNO3) to help discriminate between the

two NOx sources. But in this chapter, because my focus was on assessing the utility of the

OmO data for inverse modelling of NOx emissions, I chose not to conduct a multi-species

analysis. Second, the sensitivity of the emissions to the assimilated observations will also
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depend on regional meteorology, such as boundary layer mixing, which can impact the

vertical profile of NO2. However, currently this study was unable to quantify this impact

on the analysis. Third, although the nested model resolution was much higher than the

global model, and that used by Miyazaki et al. (2017) and Jiang et al. (2018), it was still

too coarse for simulating NOx chemistry. Valin et al. (2011) argued that a resolution of

2-12 km is needed to properly capture the nonlinearity in the NOx chemistry.

5.5 Summary

I estimated surface NOx emissions in North America by assimilating OmO observations

using the GEOS-Chem nested model, constrained with boundary conditions obtained by

assimilating IASI O3 data. Employing the nested-grid model helps to better capture the

regional level NOx emissions. Also, the modelled surface O3 and NO2 have significant

less bias compared to AQS and NAPS observations when using the nested grid model.

The IASI O3 assimilation produced reductions in O3 in the middle troposphere over the

western and eastern US as well as O3 increases north of 45◦N and south of 30◦N. The

evaluation of modelled NO2 with ARCTAS NO2 observations suggested that the modelled

NO2 in the free troposphere was improved by 5-20 pptv mostly due to the assimilated

O3 fields. In the initial case study for July 2008, the a posterior NOx emissions inferred

from separately assimilating OMI and OmO data were 0.575 and 0.565 TgN/month,

respectively, suggesting good agreement between the two data sets on estimating NOx

emissions. The emissions estimated by assimilated by OmO data (OmO+IASI BC) with

optimized O3 boundary conditions were 0.547 TgN/month. Compared with the OmO

assimilation, the OmO+IASI BC assimilation produced greater reduced in emissions in

rural regions of eastern US as well as in Alberta.

For the 2008-2011 period, the total top-down anthropogenic and biomass burning

emissions were reduced by 44.8% and 26.7%, respectively, compared to the a priori. Ex-

amination of the cities with large emissions of NOx showed that the emissions from all of

the cities were overestimated in the bottom-up inventory. The most significant reductions

were estimated for Houston and Philadelphia, whereas much smaller reductions were ob-

tained for Los Angeles and Mexico City. These top down emission estimates suggest that

federal and local emission control policies had a remarkable impact on reducing urban

NOx emissions during the study period. The total North American NOx emissions were

found to be 13% less in 2011 than in 2008. The is consistent with the decreasing trend

seen in the surface AQS NO2 measurements. My results demonstrate that the OmO

retrievals can provide reliable constraints on surface NOx emissions.
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Chapter 6

Final Remarks

6.1 Key findings

• Chapter 3

– Multi-species data assimilation (DA) provides a consistent chemical state over

the assimilation window.

– Multi-species DA provides a better fit to MOPITT CO assimilation due to

reductions in the chemical biases in the model. In contrast, multi-species DA

fits OMI NO2 data more poorly than assimilating only NO2 data because of

the strong coupling between NO2 and O3.

• Chapter 4

– Multi-species DA provides a means of indirectly constraining tropospheric OH.

The constraints in the extratropics are stronger in summer than in winter,

reflecting the stronger chemical coupling in summer.

– Bottom-up CO emission inventories were underestimated in the northern ex-

tratropics in 2016, whereas the bottom-up NOx emission inventories were over-

estimated in the northern extratropics.

• Chapter 5

– Utilizing assimilated O3 boundary conditions improves the NO2 fields in the

North American middle and upper troposphere in the nested GEOS-Chem

simulation.

– OmO tropospheric NO2 column retrievals provide constraints on regional NOx

emission estimates that are consistent with those obtained from OMI NO2

tropospheric NO2 columns.
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6.2 Conclusion

The focus of the thesis was to implement a multi-species chemical data assimilation

framework to constrain tropospheric O3-HOx-NOx-hydrocarbon chemistry, with the goal

of obtaining improved top-down CO and NOx emission estimates. In Chapter 3, I con-

ducted a case study for November 2009 and July 2010 in which I assimilated MOPITT

CO, TES and OSIRIS O3, and OMI NO2 observations to optimized CO and NOx emis-

sions as well as O3 initial conditions. Assimilation of TES and OSIRIS O3 observations

reduced the modelled O3 bias when evaluated against HIPPO O3 aircraft data. Between

the two O3 data sets, TES O3 retrievals were more impactful in improving O3 within

the tropical middle and lower troposphere, whereas the OSIRIS O3 retrievals were more

effective at improving O3 in the UTLS. I found that when combining TES and OSIRIS

data, the dominant contribution to the cost function minimization came from the OSIRIS

O3 data due to the strong adjoint sensitivity in the UTLS where the modelled O3 biases

were most pronounced. In the assimilation using MOPITT CO, TES O3, OMI NO2 and

OSIRIS O3, the mean posteriori bias was -1.9 ppbv, 33% less than the a priori biases.

Neither TES nor OSIRIS data resulted in changes in surface O3 in the MSA framework.

Instead, surface O3 in the MSA was improved through the chemical responses to the

adjusted CO and NOx emissions, demonstrating the benefit of the MSA framework.

I found that assimilation of MOPITT data in the the MSA approach provided a better

fit to the MOPITT data than assimilating only MOPITT CO. In the MOPITT-only

assimilation the model is incapable of adjusting the surface emissions to fully minimize

the discrepancies between the model and the observations that arise from errors in the

surface emissions as well as in the model chemistry. However, because the MSA is able to

reduce the chemical biases (e.g., the OH biases), the assimilation is able to better fit the

MOPITT data. In contrast, I found that the NO2-only assimilation provided a better

fit to the OMI NO2 data. This is because the NOx emission optimization responded to

not only the NO2 observations but also to the O3 observations in the MSA, as a result

of the strong NOx-O3 chemical coupling in the model. The value of the MSA approach

is that it exploits the chemical coupling in the model to produce a modelled state that

best matches all of the available observations. It allows the observations to impact the

unobserved species in the model according to the chemical mechanism. As such, I also

found that impact of the MSA on tropospheric OH in the extratropics was larger July

2010 than in November 2010, reflecting the stronger chemical coupling in the chemistry

in summer than in winter. I also investigated the impact of each type of observations to

the assimilated results. I found that if the adjoint forcing from different species cannot
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contribute comparably to the total cost function, the observations with the maximum

adjoint sensitivity (UTLS O3 in my case) would dominate the assimilation framework

which leads to all O3-related tracers responding to O3 changes rather than responding

to their corresponding observations. Such sensitivity among different species would also

vary by seasons. The strength of chemical coupling reflects the photochemical lifetime

of the species and has an impact on the analysis. For instance, the tropospheric OH in

July 2010 over northern extratropics was more sensitive to assimilated observations than

in November 2009.

In Chapter 4, I extended the multi-species data assimilation framework used in Chap-

ter 3 to include observations of HNO3 and HCHO. Observations of CO from MOPITT

CO, NO2 and HCHO from OMI, O3 from IASI and OSIRIS, and HNO3 from MLS were

assimilated throughout 2016 and the first two months of 2017. Evaluation of the as-

similated CO with TCCON data showed that the assimilation significantly reduced the

model underestimation of CO abundances in the northern hemisphere. For example,

over North America the mean a priori XCO was 69 ppbv, whereas for TCCON it was

86 ppbv. The MOPITT-only assimilation and the MSA increased the mean XCO to

83 ppbv and 84 ppbv, respectively. Similarly, over Europe the mean a posteriori XCO

was 89 ppbv for both the MOPITT-only assimilation and the MSA, which matched the

TCCON measurements. However, I found that there large residual biases in CO relative

to the ATom-1 and ATom-2 observations over the Atlantic and Pacific oceans. Evalua-

tion of the O3 against ATom and SHADOZ O3 data showed that the MSA reduced the

positive bias in tropical O3 in the middle and upper troposphere. Unlike Chapter 4 in

which the OSIRIS O3 data dominated the cost function minimization, the IASI data a

greater impact in the assimilation than OSIRIS. This is likely due to the much greater

density of IASI data than OSIRIS data.

A key objective of the work was to improve tropospheric OH. I found that the global

mean tropospheric OH for the MSA was reduced from 13.0 to 12.0×105molec/cm3, which

is closer to the climatological mean of 11.6×105molec/cm3 from Spivakovsky et al. (2000).

The study estimated a mean methane lifetime of 7.8 years with the a priori model, which

increased to 8.68 years with the MSA a posteriori fields. The reductions in OH in

the northern extratropics were mostly driven by the chemical feedbacks associated with

changes in CO and NO2 in the assimilation. In the tropics, the OH reductions were

mostly driven by changes in O3 in the assimilation. Both hemispheres experience OH

reductions such that the OH inter-hemispheric ratio did not change significantly as a

result of the assimilation. The a prior NH/SH ratio was 1.21 and the a posteriori was

1.23. Both the a prior and the a posterior is still different from the Spivakovsky et al.
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(2000)’s climatology. Furthermore, Müller et al. (2018) have argued that the ratio should

be as low as 0.85, which would be inconsistent with the constraints obtained in the MSA.

Figure 6.1: Annual CO emissions (in TgCO/month) for CTRL, MOPITT assimilation,
and MSA-std (in solid bars), compared to CO emission estimates from TCR-2 data based
on Miyazaki et al. (2015), Jiang et al. (2017) and Müller et al. (2018) (in dashed bars).
The index in brackets suggests emission types (1: fossil fuel emissions, 2: biomass burning
emissions)

As shown in Fig. 5.1, the global CO emission estimates from the a priori and the

standard MSA assimilation were 280 and 417 TgCO/year, respectively. The a priori

inventories were underestimated in all major emission source regions, except for India

and Southeast Asia. Regionally, the MSA emission estimates were consistent with the

estimates from Jiang et al. (2017), who assimilated MOPITT into the GEOS-Chem model

using a two-step approach to reduce the impact of discrepancies in OH on their analysis.

They assimilated MOPITT data over the oceans to provide boundary conditions for the

continental regions, and then assimilated the data over the continents to quantify the CO

sources, with the assumption that the MOPITT data over the continents are sampling

fresh CO emissions with little chemical aging due to reaction with OH. My results are

also generally consistent with the emission estimates from Miyazaki et al. (2015), who

used an ensemble Kalman filter to conduct a MSA. Overall, the top down CO emission

estimates in my study have shown good agreement with recent CO inverse modelling
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studies that tried to mitigate biases in OH (e.g., Miyazaki et al., 2015; Jiang et al., 2017;

Müller et al., 2018) .

In Chapter 5 I investigated the potential of using OmO NO2 retrievals to quantify

North American NOx emissions using the nested version of the GEOS-Chem model. I

also assimilated IASI O3 data to produce optimized boundary conditions for the regional

model and found that the O3 assimilation resulted in large reductions in O3 abundances

in the middle troposphere over the eastern US, and increases in O3 north of 50◦N and

south of 25◦N. I found that assimilating the OmO data with the optimized boundary

conditions for O3 resulted in improvements in modelled NO2 in the middle and upper

troposphere, relative to ARCTAS aircraft data. For the case study (July 2008), the

largest discrepancies between the OmO and the OmO+IASI BC experiments occurred

in rural regions. In the eastern US, the emission estimates from OmO+IASI BC assimi-

lation are 5.3% higher than from the OmO assimilation. This is consistent with the 6%

difference found in the surface O3 abundance between the two experiments, suggesting

that the additional NOx emission adjustment in the OmO+IASI BC assimilation was

related to surface O3 changes from the IASI O3 assimilation.

I quantified summertime (JJA) NOx emissions for 2008-2011 and found that the

bottom-up inventories overestimated surface NOx emissions by 27-36%. The assimila-

tion suggested significant reductions in emissions from major urban regions, such as Los

Angeles, Houston, and New York, that are large sources of NOx. These emission statistics

suggested the bottom up inventories were overestimating North American surface NOx

emissions. The inferred emissions in 2008 and 2010 were within the range between the

top-down estimates from Miyazaki et al. (2017) and bottom-up estimates from EDGAR-

HTAP v2. I also found that the total North American emissions in 2011 were 13.6% lower

than the emission in 2008, which was similar to the reduction in surface NO2 abundances

measured by the AQS network.

Overall, the results in Chapters 3 and 4 revealed that the MSA approach can miti-

gate model biases in tropospheric CO, OH, NO2 and O3 modelled states, which lead to

improved regional CO and NOx emission estimates. The MSA approach is a powerful

means of integrating the growing suite of space-based atmospheric composition measure-

ments to obtain more reliable air quality simulations. The results in Chapter 5 showed

that the new OmO retrievals can provide constraints on regional NOx emissions in an in-

verse modelling context. The OmO data represent a data-driven means of separating the

stratospheric contribution to the total NO2 columns without relying on models or ad hoc

assumptions about the variability of the stratospheric NO2 columns. The utility of the

OmO data shown here highlights the complementarity of space-based limb profile data
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with nadir observations to better quantify the changing composition of the troposphere.

6.3 Thesis implications and suggested future work

6.3.1 Implications on CTMs and MSA

As mentioned in Chapters 3 and 4, the modelled global mean tropospheric OH was

biased high. The MSA using 4D-var was able to reduce the bias in global mean OH,

but could not effectively adjust the hemispheric ratio of OH. Since neither Miyazaki

et al. (2015) nor my study was able to produce a NH/SH ratio close to unity, it is

possible that there are still unknown mechanisms that are neither recognized by the

laboratory-based studies nor implemented in atmospheric models that play an important

role in OH chemistry. It is especially difficult to see how it would be possible for the

models to achieve the low NH/SH ratio of 0.85 that was suggested by Müller et al. (2018).

Validation against independent observations in Chapter 4 revealed some remaining biases

in CO and O3 within the tropics and subtropics of the SH. These biases are due to either

ineffectiveness of the current optimization scheme or biases in model transport (convective

and interhemispheric transport). The weak-constraint 4D-Var scheme could be used in

the MSA approach to mitigate for these biases. However, the weak-constraint scheme

will further increase the complexity of the MSA framework, which will also increase the

computational cost.

In Chapter 4, the assimilated HCHO fields did not lead to consistent changes in

isoprene emissions between the HCHO-only assimilation and the MSA due to biases

in the isoprene oxidation scheme in the model. Recently, an adjoint of the updated

isoprene chemistry was implemented in GEOS-Chem by Kaiser et al. (2018). However,

it was a non-standard implementation, which I could not use for the analyses in this

thesis. A key task for future work would be to port the updates from Kaiser et al.

(2018) into the standard version of the adjoint model and repeat the analysis conducted

here, assimilating O3, NO2, HCHO, and CO data. Furthermore, I believe that this

future analysis should focus on North America using the nested model, building on the

work done in this Chapter 5. A North American focus would be ideal because the

southeastern United States is associated with high NMVOC emissions and has been

extensively studied, consequently there is a wealth of independent observations available

to evaluate the assimilation. The work in Chapter 4 highlighted the issues with the

old isoprene oxidation scheme. This future analysis will help evaluate the new isoprene

oxidation scheme in the context of the multi-species constraint on the chemistry.
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When observations of various species were ingested in the assimilation the total cost

function tends to be dominated by certain species whose observations exhibit high ac-

curacy or high adjoint sensitivity. This could lead to unrealistic adjustments of some

species due to chemical feedbacks linking those species to the observations. Indeed, the

resulting changes in the species could be inconsistent with the individual observations of

those species. To mitigate this problem requires appropriately balancing the contribu-

tions of the different observations in the cost function or imposing a more sophisticated

background error covariance. However, achieving these is not trivial. In my current

framework, I used an ad hoc approach of scaling the various terms in the cost function to

produce CO and NOx emission estimates that are consistent with the estimates obtained

from the single instrument assimilation runs with an idealized error covariance. However,

it is desirable to obtain an approach that does not require ad hoc assumptions. One pos-

sible approach would be iteratively minimize the cost function according to the lifetime

of the species in the state vector. In this framework, I would first optimize the shorter-

lived species (e.g. NO2 and HCHO) and then use that information in the optimization

of the longer-lived species (e.g., CO and O3). Thus, each iteration of the current MSA

would involve two sub-loops, in which I separately adjust the shorter-lived and longer-

lived species. This approach would increase the computation cost of the assimilation,

but it may alleviate the need for arbitrary scaling of the cost function. This approach

would also allow us to use shorter assimilation windows for the shorter-lived species,

which would help improve the quality of the assimilation. Another possible approach

is to enable state uncertainties using initialized ensemble states. Future MSA systems

should use advanced data assimilation techniques such as a hybrid 4D-EnVar to allow

the propagation of the background error covariance in order to account for the spatial

and temporal correlations in the MSA system.

6.3.2 4D-Var vs EnkF data assimilation using GEOS-Chem on

modeled NOx and O3 abundances

The multi-species data assimilation in Chapters 3 and 4 showed the capability of the

approach for improving the modelled troposphere by taking advantage of a range of

observations of various chemical species. Miyazaki et al. (2012a) were the first to conduct

a multi-species assimilation using a suite of satellite observations. They used an EnKF

data assimilation scheme with the CHASER-DAS CTM. Recently, Kazuyuki Miyazaki

has developed an LETKF data assimilation framework for the GEOS-Chem model, which

enables direct comparisons for the LETKF and 4D-Var data assimilation schemes. The
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EnKF data assimilation scheme updates the state vector in a sequential manner within

a much shorter assimilation window (e.g., 90 min in Miyazaki et al. (2012a)). This

imposes a strong localization in space and time on the modelled state. In contrast, the

4D-Var assimilation scheme acts as a smoother, which minimize the cost function to

better match all of the observations in space and time over the assimilation window. In

the future, it would be useful to conduct a comparison between the LETKF and 4D-Var

assimilation schemes to determine the strengths and limitations of the two approaches

for multi-species data assimilation. Key areas of focus should be on 1) the impact of the

length of the assimilation window in the 4D-Var scheme, 2) the impact of the localization

length scale in the EnKF, and 3) the impact of the choice of the a priori error covariance

matrices in the 4D-Var scheme.

6.3.3 Future MSA in the geostationary satellite era

In the next decades, multiple geostationary satellite (GEO) instruments such as TEMPO

for North America, Sentinel-4 for Europe, and the Geostationary Environmental Moni-

toring Spectrometer (GEMS) for Asia will be available to provide O3, NO2, and HCHO

measurements with increased spatial and temporal sampling. These GEO instruments

will revolutionize the global monitoring system for air quality. They are capable of pro-

viding more continuous daytime observations with spatial resolution less than 5 km in

contrast to at best twice per day for low Earth orbiting satellites. The MSA approach

offers the best means of exploiting these data and integrating them with data from the

existing low Earth orbiting satellites to provide vastly improved constraints on air qual-

ity. The MSA could also be operated with much-shorter assimilation windows, which

allows more emphasis on assimilating short lifetime species on regional and urban scales.

It would be interesting to start conducting OSSEs for TEMPO, Sentinel-4, and GEMS

to assess the utility of data from each mission when they are integrated in a multi-

species data assimilation approach. In particular, it would be interesting to quantify how

the observational coverage and measurement precision impacts the ability to constrain

tropospheric CO-OH-NOx-O3 chemistry.
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