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Variable annuities (VA) are equity-linked annuity contracts which provide the opportu-

nity for policy-holders to benefit from financial markets appreciation and at the mean

time provide protection from the downside risks of the markets. They have been over-

shadowing traditional fixed annuities to become the leading form of protected investment

worldwide. However, the embedded guarantees in VA can bring significant downside risks

to the insurer and need to be hedged. Among different hedging strategies, move-based

discrete hedging strategies are widely adopted in practice but the cost analysis for move-

based discrete hedging strategies are mathematically complex. In this thesis, we first ex-

amine various move-based hedging strategies and show that a two-sided underlier-based

hedging strategy is desirable for the return of premium guarantee. Then we assume a

GBM model for the sub-account to develop a semi-analytic framework for the hedging

cost analysis of this strategy and thereby propose a modified “Percentile Premium Prin-

ciple”, which imposes a significant “loading” on top of the regular charge to cover the

costs arising from the discrete re-balances under the two-sided underlier-based strategy.

We apply the modified “Percentile Premium Principle” to the pricing of various VA de-

signs, including GMMB, annual ratchet VA, structured product based VA with both

buffered and contingent protection. Finally, we advance the algorithm towards a more

general model-GBM with regime switching-to allow a better representation of the VA

sub-account.
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Chapter 1

Introduction

1.1 Background

Over the last decade, variable annuities (VA) have been overshadowing traditional fixed

annuities to become the leading form of protected investment worldwide. In the US, the

total sales peaked in 2007, just before the financial crisis, at $182.2 billion dollars, and

the net assets almost doubled in the past ten years from $885.8 billion in 2001 to $1,505.0

billion in 2010. See Insured Retirement Institute (2011) for more detail. In UK, where it

has recently started to thrive, the sales figures are catching up, with 538.7 million pounds

in 2007, 1,153.3 million in 2008, 1,045.4 million in 2009 and 444.7 million in the first half

of 2010. In Japan, where growth has been even more spectacular, from almost no market

in 2001 to more than $100 billion in 2007.

Variable annuities offer a tax-deferred way of investing in the capital markets. For an

additional fee, many VA come with guarantees minimum benefits paid out even if the

underlying funds dries up. In this sense, VA provides its policyholders the opportunity

to gain from financial markets appreciation as well as the protection from the downside

risks of the markets.
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According to a report by Oliver Wyman Limited (2007)1, the popularity of these con-

tracts is driven by the demographic changes taking place in most parts of the world. The

over-50 population is getting larger, richer and more diverse in styles of life. They de-

mand access to market appreciation in order to keep abreast with the rising cost of living,

but also expect protection for their assets and well-being given increased uncertainty in

the volatility of asset returns. With the various investment options and multiple forms

of guarantees variable annuities could offer, they would be able to choose the best fit for

their desired risk/return target.

Though assets reached an all-time high of $1.61 trillion in the first quarter of 2012,

the variable annuity market has been sending adverse signals lately. Sales are down,

several key players have exited the market (Indeed, companies such as Sun Life, The

Hartford, Jackson National, ING and MetLife have dialed down their variable annuity

exposure or pulled-out entirely. See AnnuityDigest (2012) for more details). Critics say

variable annuities are too costly, the relatively high fees annuity investors pay can eat

up a significant amount of money over the long term. Variable annuities typically charge

1.25 percent to 1.60 percent mortality and expense fees on top of the fund expense ratios.

So instead of paying around 1% for all-in participant fees, the participant pays at least

2.25 to 2.6 percent for annuity products and often even more. Some insurers respond

to these criticism by designing “Structured Product Based Variable Annuities”, whose

payouts are based on the price changes of a reference asset (an index, equity, interest

rate, etc.) but subject to buffers against losses and caps on gains. More specifically,

structured products underlying these new annuity contracts pass on losses below some

threshold or “buffer” to investors and limit the gains of investors at some “cap” (See

Deng et al. (2012) and references therein). These new features allow the provision of

1The report discusses the European retirement protection market but the reasons given in the report
are applicable to other countries too.
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cheaper products by the insurers to boost their sales.

1.2 Basic Features of Variable Annuities

Tax-Deferred Returns

Payments and returns of the variable annuities are tax-deferred. All dividends, interest

and capital gains are automatically reinvested without incurring local, state or federal

taxes. All earnings are taxed at ordinary income tax rates when withdrawn. Therefore,

returns compound more quickly without the erosive effects of taxes, and the value of the

annuity is allowed to grow at a faster pace.

Separate Account and Sub-Accounts

Variable annuities provide the choice of stock and bond portfolios called “sub-accounts”

that are similar to mutual funds. By law, this account must be kept separate from the

insurance company’s general account, so that all dividends, interest, gains and losses are

separate and apart from the finances of the insurance company. Sub-accounts allow the

owner to tailor an asset allocation model for specific investment objectives. The number

of sub-account choices and the specific funds will depend on the individual variable

annuity contract that the investor chooses.

Equity Participation with Minimum Guarantees

Variable annuities offer participation in an underlying index or fund or combination of

funds through its sub-account, in conjunction with one or more guarantees. The level

of participation is usually controlled by the participation rate, which is the percentage

of the gain of the sub-account to be credited to the policyholder. According to Insured

Retirement Institute (2011), the guaranteed minimum benefit in a VA contract generally
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fall into four categories

• Guaranteed Minimum Maturity Benefit (GMMB): the policyholder is guaranteed a

certain monetary amount at the maturity of the contract. A simple GMMB might

be a guaranteed return of premium if the underlying fund falls over the term of the

insurance. The guarantee may be fixed or subject to regular or equity-dependent

increases.

The typical payoff of the GMMB at maturity T is

(S0(1 + g)T − ST )+,

where S0 is the initial value of the sub-account, ST is the value of the sub-account

at maturity and g is guaranteed rate of return. From a derivative’s perspective,

this payoff is simply that of a put option (a financial derivative that offers the buyer

the right to sell an asset at a certain price, regardless of its spot price at maturity)

written on the sub-account with strike price K = S0(1 + g)T .

• Guaranteed Minimum Death Benefit (GMDB): a specific monetary sum is given to

the policyholder upon his/her death. Like GMMB, the death benefit may simply

be the original premium, or may increase at a fixed rate of interest. But more

generous death benefits are not uncommon.

The typical payoff of the GMDB is

(S0(1 + g)T (x) − ST (x)))+,

where S0 is the initial value of the sub-account, ST (x) is the value of the sub-

account at maturity, g is guaranteed rate of return and T (x) is the time of death

of a policyholder whose current age is x.

When an insurer sells a large number of VA contracts, the mortality risk can be
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diversified during the accumulation phase of the VA contracts, and as a result it

can be treated deterministically. For this reason we ignore the mortality risk in the

following calculation. However, the methods we develop in Chapter 4 can be easily

extended to incorporate the mortality risk by the use of combination of exponential

functions to approximate the mortality density.

• Guaranteed Minimum Accumulation Benefit (GMAB): the policyholder has the

option to renew the contract at the end of the original term, at a new guarantee

level appropriate to the maturity value of the maturing contract. It is a form of

guaranteed lapse and reentry option.

• Guaranteed Minimum Withdraw Benefit (GMWB): the holder can withdraw guar-

anteed periodic amounts up to the value of the initial capital. The GMWB ter-

minates once the initial capital has been withdrawn; any remaining funds in the

sub-account are returned to the policyholder at maturity.

1.3 Hedging Variable Annuities

The minimum guarantees wrapped in VA contracts appear as financial options to insur-

ers. That is, the holder has the right to sell an asset at a certain price regardless of

the its market value at the time of sale. These options can bring potentially significant

downside risks to the insurer and therefore needs to be hedged or reserved for regulatory

and economic purposes. According to Blamont and Sagoo (2009), the relevant risk level

for reserving is typically the 0.5% percentile over a one-year horizon and if assets are

kept as a reserve against deterministic market shocks, solvency is only guaranteed at the

confidence level considered. Only reserves equal to assets can ensure solvency with 100%

confidence. On the other hand, one can hedge the tail risk and the advantage of hedging

over reserving is that the capital allocated to hedges can be a lot smaller than reserving.

See Table 4 in Blamont and Sagoo (2009) for a comparison.
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Broadly speaking, there are four hedging approaches. The first is no hedging at all.

For small VA blocks, running naked may be acceptable. However, for larger ones, it can

be very risky due to high market volatility that has been exhibited in recent years. The

second is to buy reinsurance or structured products from another financial institution.

Such products may offer substantial protection to the insurer. But they can be expen-

sive or even unavailable for at least two reasons: firstly, they are customized products

designed particularly to meet the insurer’s needs; secondly, re-insurers may be reluctant

to offer coverage for the guaranteed variable annuities given the increased equity market

risks of these products. The third alternative is static hedging. This strategy aims to

offset the embedded option in the VA contract through buying a portfolio of options from

the financial market. Since the payoff structure of the embedded option is sometimes

too exotic to be decomposed as a combination of the payoff of options available in the

market, basis risk can be significant. Moreover, VA contracts usually span over a long

period of time, but options longer than 5 or 10 years in maturity are not available in the

market for reasonable prices. The last strategy, which we will discuss in much detail here,

dates back to 1970’s when Black and Scholes, in their seminal paper Black and Scholes

(1973) on option pricing theory, proposed a continuous hedging strategy known as Greek

hedging. Under this strategy, one constructs a replicating portfolio to track the value of

the derivatives through re-balancing that incurs transaction costs.

Vast research efforts have been devoted to the pricing/hedging of different VA prod-

ucts in this continuous setting. For instance, Windcliff et al. (2001) explore the valuation

of segregated funds using an approach based on the numerical solution of a set of linear

complementarity problemsMoller (2001) examines a portfolio of equity-linked life insur-

ance contracts and determines risk minimizing hedging strategies within a discrete-time

setup Milevsky and Posner (2001) obtain the no arbitrage and equilibrium valuation of
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a stochastic-maturity Titanic option whose payoff structure is in between European and

American style but is triggered by death; Boyle et al. (2001) propose a method for valuing

American options using a Monte Carlo simulation approach that can be used to price

the reset feature found in some equity-linked insurance contracts; Forsyth et al. (2003)

investigate the performance of several types of hedging strategies for segregated fund

guarantees using stochastic simulation techniques; Lin and Tan (2003) propose an eco-

nomic model that has the flexibility of modeling the underlying index fund as well as the

interest rates, which is then applied to the pricing of equity-indexed annuities; Jaimungal

and Young (2005) investigate the pricing problem for pure endowment contracts whose

life contingent payment is linked to the performance of a tradable risky asset or index

whose price is modeled by a finite variation Levy process; Milevsky and Salisbury (2006)

develop a variety of methods for assessing the cost and value of the GMWB; Coleman et

al. (2007) take into account the jump and volatility risks embedded in guarantees with

a ratchet feature and evaluate relative performances of delta hedging and dynamic dis-

crete risk minimization hedging strategies; Shah and Bertsimas (2008) price a life option

with guaranteed withdrawal benefits using different asset pricing models, including those

that allow the interest rates and the volatility of returns to be stochastic; Melnikov and

Romanyuk (2008) use the efficient hedging methodology in order to optimally price and

hedge equity-linked life insurance contracts whose payoff depends on the performance of

multiple risky assets; Marquardt et al. (2008) propose a methodology for pricing GMDBs

under a benchmark approach which does not require the existence of a risk neutral prob-

ability measure; Dai et al. (2008) develop a singular stochastic control model for pricing

variable annuities with the GMWB; Bauer et al. (2008) introduce a model which permits

a consistent and extensive analysis of all types of guarantees currently offered within

variable annuity contracts; Wang (2009) derives quantile hedges for GMDB under vari-

ous assumptions; Lin et al. (2009) consider the pricing problem of equity-linked annuities

and variable annuities under a regime switching model when the dynamic of the market
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value of a reference asset is driven by a generalized geometric Brownian motion model

with regime switching; Belanger et al. (2009) model the problem of GMDB with partial

withdraw as an impulse control problem and give a method for computing the fair value

of the associated insurance fee; Marshall et al. (2010) offer a simple but effective way for

insurers to measure the value of the GMIB; Peng et al. (2010) consider the pricing of

variable annuities with the Guaranteed Minimum Withdrawal Benefit (GMWB) under

the Vasicek stochastic interest rate framework; Piscopo and Haberman (2011) introduce

a theoretical model for the pricing and valuation of guaranteed lifelong withdrawal ben-

efit (GLWB) options embedded in variable annuity contracts; Ng and Li (2011) develop

a multivariate valuation framework for VA on mixed funds; Jaimungal et al. (2012) de-

velop an efficient method for valuing path-dependent VA products through re-writing the

problem in the form of an Asian styled claim and a dimensionally reduced PDE, whose

results are then compared with an analytical closed form approximation; Chi and Lin

(2012) study the flexible premium variable annuities (FPVA) that allow contributions

during the accumulation phase.

Though perfectly in theory, continuous delta hedging can be costly and impractical for

insurance companies. The reason lies in the fact that one has to re-balance his hedging

portfolio continuously (or at least very frequently) in order to remain hedged. For large

investment houses, this is not a problem since they have at hand plentiful financial prod-

ucts and are therefore able to maintain their hedging portfolio at low operational costs.

Insurance companies, on the other hand, do not enjoy this advantage. As a result, they

seek alternative hedging strategies which can offer the same protection with low costs.

Discrete hedging is such a solution. Using this strategy, one constructs the same initial

replicating portfolio as continuous hedging, but adjust it discretely in time. This differ-

ence gives rise to a non-self-financing replicating portfolio. The cost of discrete hedging

consists of two parts, one is the cost of constructing the initial hedging portfolio, the

8



other is the cost associated with each subsequent adjustment.

In practice, there are mainly two kinds of discrete hedging strategies, time-based and

move-based respectively. The former hedges the option at equally spaced points in time.

Boyle and Emanuel (1980) is among one of the first studies on the distribution of the

local tracking error of time-based discrete hedging, which we would briefly summarize in

Section 3.4. For the global tracking error, Bertsimas et al. (2000) (and references therein,

which investigate the trade-off between hedging frequency and transaction costs.) derives

the asymptotic distribution of the tracking error at each re-balancing point, as the num-

ber of re-balancing points tends to infinity; Hayashi and Mykland (2005) generalize the

result of Bertsimas et al. (2000) to continuous Ito processes and also suggest a data-driven

nonparametric hedging strategy for the case of unknown underlying dynamics; Angelini

and Herzel (2009) compute the expected value and the variance of the error of a hedging

strategy for a contingent claim when trading in discrete time, which are valid for any fixed

number of trading dates (however, their methods are not applicable to the move-based

hedging). Despite of its analytic tractability, the time-based strategy is a plain approxi-

mation to continuous hedging with no regard to the volatility risk. When the volatility is

high, the value of the sub-account fluctuates remarkably over short periods, causing the

necessity of frequent re-balancing of the hedging portfolio. A wiser choice for this situa-

tion is to use move-based hedging, which hedges whenever the value of the sub-account

moves out of a prescribed region (See Table 1.3.1 and Table 1.3.2 for comparison of the

time- and move-based discrete hedging strategies under the same volatility and hedging

frequency. The cost distribution associated with the move-based hedging exhibits smaller

variance and thinner right tail). Martellini and Priaulet (2002) provide a systematic em-

pirical comparison of four different hedging strategies in the presence of transaction costs

within a unified mean-variance framework. They conclude, among others, that the ad-

vantage of move-based methods over time-based methods increases with a decrease in the
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Time-Based Two-sided Underlier-Based
mean 0.0185 0.0077
std 0.1991 0.1169
skewness 0.1004 -0.4511
kurtosis 6.4500 7.3026
90% quantile 0.2404 0.1344
95% quantile 0.3318 0.1847
97.5% quantile 0.4293 0.2378
99% quantile 0.5697 0.3116

Table 1.3.1: Moments and quantiles of cost distribution under the time-based and move-
based hedging strategies for an at-the-money put option. The model parameters are
T = 3, S0 = K = 50, r = 0.02, µ = 0.1, σ = 0.1, d = 0. For the time-based hedging, the
number of re-balance is 100 for 3 years and for the two-sided underlier-based hedging,
α is chosen to be 0.0168 so that the expected number of re-balance is also 100. The
row “mean” refers to the mean cost of discrete re-balance. For comparison purpose, we
calculate the cost of continuous hedging to be 2.0927 for this case.

drift of the underlying asset, and with an increase in the volatility of the underlying asset.

Unfortunately, cost estimation for move-based hedging is mathematically complex be-

cause it involves the stopping times of the value of the sub-account. One way to analyze

the cost of move-based discrete hedging is through Monte Carlo simulation. Although

straightforward by its nature, the Monte Carlo method has certain drawbacks. The path-

dependency of the total hedging cost demands the generation of the whole trajectory of

the underlier at each iteration, which is done by discretization. However, as pointed out

in Glasserman (2003), this leads to bias in the estimates. For example, the hitting times

have to be approximated by interpolation. Furthermore, with the discrete process the

band is almost never hit exactly, overshoots are everywhere, which violates the hedg-

ing rule. The other class of methods is analytic approximation. For a certain type of

move-based hedging, Dupire (2005) finds the limit of the end-of-period tracking error as

the bandwidth goes to 0 and compares it with the time-based hedging to conclude that

“Nothing beats the move based”. Henrotte (1993) derives approximate expressions for

expected transactions costs and the variance of the total cash flow from both time- and
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Time-Based Two-sided Underlier-Based
mean 0.0063 0.0023
std 0.8289 0.5005
skewness 0.1140 -0.4296
kurtosis 4.6064 4.9739
90% quantile 0.9828 0.5736
95% quantile 1.3606 0.7747
97.5% quantile 1.7132 0.9680
99% quantile 2.2065 1.2049

Table 1.3.2: Moments and quantiles of cost distribution under the time-based and move-
based hedging strategies for an at-the-money put option. The model parameters are
T = 3, S0 = K = 50, r = 0.02, µ = 0.1, σ = 0.3, d = 0. For the time-based hedging, the
number of re-balance is 100 for 3 years and for the two-sided underlier-based hedging, α is
chosen to be 0.05 so that the expected number of re-balance is also 100. The row “mean”
refers to the mean cost of discrete re-balance. For comparison purpose, we calculate the
cost of continuous hedging to be 8.5598 for this case.

move- based strategies. Toft (1996) extends the work of Henrotte (1993) by showing how

these expressions can be simplified and computed efficiently for general input parameters.

As a matter of fact, all the analytic results we mentioned above are asymptotic. Indeed,

Dupire’s and Henrotte’s expressions are obtained in the limit as the bandwidth, the trans-

actions costs and the time between rebalancing points, respectively, go to zero. These

limits, however, are clearly unrealistic. Moreover, the mean-variance analysis conducted

in Henrotte (1993) and Toft (1996) does not seem to provide very useful information on

the two hedging strategies. When a discrete hedging is employed, the value of the option

based on the risk-neutral valuation and the cost incurred from discrete hedging should

be separated as the former is tradable while the latter is not, nor replicable. A more

sensible approach would be, in our opinion, to consider only the latter and to compare

their cost distributions for the same re-balancing frequency under the physical measure.

In this thesis, we examine various move-based hedging strategies and develop an alterna-

tive semi-analytic algorithm for hedging cost analysis of a desirable move-based hedging
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strategy. We also propose a modified “Percentile Premium Principle” for variable annu-

ities to incorporate the significant cost associated with discrete hedging. Based on this

modified scheme, the insurers implementing move-based discrete hedging in managing

their VA risk exposures should charge a significant “loading” on top of the traditional

fee.
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Chapter 2

Option Pricing Basics

In this chapter, we review some basic knowledge of option pricing theory that are essential

in understanding variable annuity hedging.

2.1 Dynamic Hedging of Derivatives

Derivatives are financial contracts which derive their value from some other assets (called

the underlying asset). Suppose we sell a derivative written on the underlying asset S with

payoff at maturity T ϕ(ST ). We denote by St the value of the underlying at time t and

by PtT the time t price of a zero coupon bond maturing at T . In order to hedge the

option, we construct a self-financing portfolio that replicates the option value at matu-

rity. To start with, we assume that the portfolio is only restructured at finite time points

0 = T0 < T1 < · · · < Tn = T . Our portfolio contains ∆ie
−d(Tn−Ti) units of underlying S

in [Ti, Ti+1), where d is the dividend yield of the underlying asset.

At T0, the initial value of our replicating portfolio is VT0 , which consists of ∆0e
−dTn

13



units of underlying and therefore (VT0 −∆0e
−dTnS0)P−1

0n units of bond

VT0 = ∆0e
−dTnS0 + ((VT0 −∆0e

−dTnS0)P−1
0n )P0n

= ∆0e
−dTnS0 + (VT0P

−1
0n −∆0F0)P0n,

where F0 = e−dTnS0P
−1
0n is the time T0 forward price of the underlying asset and Pin =

PTi,Tn .

The value of the portfolio at time T1, T2, . . . , Tk are

VT1 = ∆0e
−dTnS1e

dT1 + (VT0P
−1
0n −∆0F0)P1n

= ∆1e
−d(Tn−T1)S1 + (∆0 −∆1)e−d(Tn−T1)S1 + (VT0P

−1
0n −∆0F0)P1n

= [∆1F1 + (∆0 −∆1)F1 + VT0P
−1
0n −∆0F0]P1n,

VT2 = ∆1e
−d(Tn−T1)S1e

d(T2−T1) + (VT0P
−1
0n −∆0F0)P2n

= ∆2e
−d(Tn−T2)S2 + (∆1 −∆2)e−d(Tn−T2)S2 + (∆0 −∆1)e−d(Tn−T1)S1 + (VT0P

−1
0n −∆0F0)P2n

= [∆2F2 + (∆1 −∆2)F2 + (∆0 −∆1)F1 + VT0P
−1
0n −∆0F0]P2n,

· · ·

VTk = [∆kFk + (∆k−1 −∆k)Fk + · · ·+ (∆0 −∆1)F1 + VT0P
−1
0n −∆0F0]Pkn

= [∆k−1(Fk − Fk−1) + ∆k−2(Fk−1 − Fk−2)) + · · ·+ ∆0(F1 − F0) + VT0P
−1
0n ]Pkn.

In the continuous time limit, we obtain

Vt
PtT

=

∫ t

0

∆dF +
V0

P0T

.

Define the forward value of the option by Ut = Vt
PtT

, then

Ut =

∫ t

0

∆dF + U0, (2.1.1)
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and in particular

UT =

∫ T

0

∆dF + U0. (2.1.2)

In general, the RHS of (2.1.2) depends on the whole path of F up to time T . How-

ever, on the LHS, UT = VT = ϕ(ST ) = ϕ(FT ) depends only on FT . So we have to

find a strategy that gives path-independent value of the portfolio. In other words, our

replicating portfolio Ut depends only on t and Ft, not on the values assumed by F before t.

To further analyze this strategy, we need to postulate the dynamics of F . We make

the assumption that F follows a stochastic differential equation (SDE)

dFt = µ(t, Ft)dt+ σ(t, Ft)dWt, (2.1.3)

where Wt is a Brownian motion. Then according to Ito’s lemma

dU(t, Ft) = [
∂U

∂t
+

1

2
σ2(t, Ft)

∂2U

∂F 2
]dt+

∂U

∂F
dFt. (2.1.4)

Comparing (2.1.4) with (2.1.1), we get the equations that a self-financing and path-

independent portfolio should satisfy


∂U
∂F

= ∆t

∂U
∂t

+ 1
2
σ2(t, Ft)

∂2U
∂F 2 = 0.

(2.1.5)

The partial differential equation (PDE) in the second line of (2.1.5) is of fundamental

importance in derivative pricing theory.
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2.2 The Black-Scholes Option Pricing Formula

Let us restrict to the simplest form of financial derivatives-European call and put options,

whose payoff at maturity T are ϕ(ST ) = (ST−K)+ and ϕ(ST ) = (K−ST )+, respectively.

In light of the no arbitrage assumption, if we could construct a self-financing and path-

independent portfolio that replicates the option payoff at its maturity, then the price of

the option at any time t before maturity should coincide with the time-t value of the

replicating portfolio.

As noted in the previous section, the forward value U of any self-financing and path-

independent portfolio satisfies

∂U

∂t
+

1

2
σ2(t, Ft)

∂2U

∂F 2
= 0.

At maturity T , we should have

U(T ) = V (T ) = ϕ(ST ) = ϕ(FT ).

Combining these two equations, we get


∂U
∂t

+ 1
2
σ2(t, Ft)

∂2U
∂F 2 = 0

U(T, FT ) = ϕ(FT ).

(2.2.1)

As the PDE in the first line of (2.2.1) is of first order in time, the final condition in the

second line of (2.2.1) is sufficient for computing U(t, Ft) for all t ∈ [0, T ]. It is worthwhile

to point out that the above PDE does not depend on µ(t, Ft). So its solution, the option

price, will not be affected by changes in µ(t, Ft).

Once we obtain U(t, Ft), the hedging portfolio can be constructed in the following way:
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At time t(< T ), we hold e−d(T−t) ∂U(t,Ft)
∂Ft

units of the underlying asset S and buy V (t, Ft)−

e−d(T−t)∆tSt worth of zero-coupon bond PtT . e−d(T−t) ∂U(t,Ft)
∂Ft

is called the Delta of the

derivative at time t and this hedging strategy is thus named as delta hedging.

For a call option, (2.2.1) becomes


∂U
∂t

+ 1
2
σ2(t, Ft)

∂2U
∂F 2 = 0

U(T, FT ) = (FT −K) + .

(2.2.2)

In their seminal paper on option pricing-Black and Scholes (1973), Black and Scholes

assumed σ(t, Ft) = σFt to obtain the celebrated Black-Scholes equation


∂U
∂t

+ 1
2
σ2F 2

t
∂2U
∂F 2 = 0

U(t = T, FT ) = (Ft −K) + .

(2.2.3)

Its solution, the Black-Scholes formula, is

U(t, Ft) = FN(d1)−KN(d2), (2.2.4)

d1 =
log(Ft

K
) + 1

2
σ2(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

So the price of an European call option at any t < T is

C(t, Ft) = PtT [FN(d1)−KN(d2)].

To find the price for the European put P (t, Ft), we exploit the put-call parity

C(t, Ft)− P (t, Ft) = PtT (Ft −K),
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which is a consequence of the no arbitrage hypothesis and the relation (St−K)+− (K−

St)+ = St −K.

So the put price is

P (t, Ft) = PtT [KN(−d2)− FtN(−d1)]. (2.2.5)

2.3 Option Greeks

Option Greeks are the mathematical derivatives of the option price with respect to the

underlying factors to which its value is attached. They reflect the sensitivities of the op-

tion price to small changes in the underlying factors and therefore, can be used to assess

risk exposure. For example, by looking at the values of different Greeks, a market-maker

with a portfolio of options may be able to understand how the changes in stock prices,

interest rates and volatility affect profit and loss.

According to McDonald (2009), the definitions of various option Greeks are

1. Delta (∆) measures the option price change when the stock price increase by $1;

2. Gamma (Γ) the change in Delta when the stock price increase by $1;

3. Vega measures the change in option price when there is an increase in volatility of 1

percentage point;

4. Theta (θ) measures the change in option price when there is a decrease in the time to

maturity of 1 day;

5. Rho (ρ) measures the change in option price when there is an increase in the interest

rate of 1 percentage point;

6. Psi (Ψ) measures the change in option price when there is an increase in the continu-

ous dividend yield of 1 percentage point.

18



According to the Black-Scholes formula, the Delta for call and put are

∆C(t, Ft) = e−d(T−t)N(d1).

and and its Delta is

∆P (t, Ft) = −e−d(T−t)N(−d1).

respectively.

2.4 The Martingale Approach for Derivatives Pric-

ing

There exists an alternative way to calculate the price of a derivative. To start with, we

state the following theorem that provides a probabilistic representation of solutions to

certain parabolic PDEs.

Theorem 2.4.1 (Feynman-Kac). Assume g ∈ C1,2 and E[h(XT )] <∞, the two problems

below have the same solution

1. 
∂g
∂t

+ µ(t, x) ∂g
∂x

+ 1
2
σ2(t, x) ∂

2g
∂x2 − r(t, x)g = 0

g(t = T, x) = h(x).

(2.4.1)

2.

g(t, x) = E
[
h(XT )e−

∫ T
t r(u,X(u))du

]
, (2.4.2)

where

dXu = µ(u,Xu)du+ σ(u,Xu)dWu,

Xt = x.
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The proof of this theorem can be found in any standard textbook on stochastic analysis.

See e.g. Lin (2006).

According to Theorem 2.4.1, the solution to (2.2.1) can be expressed as

U(t, Ft) = E[ϕ(FT )|Ft] = E[ϕ(ST )|Ft],

where the expectation is taken w.r.t. a measure under which Wt is a Brownian motion

and dFt = σFtdWt. We call this measure the T -forward measure and denote it by QT .

The price of the derivative is V (t, St) = PtTE
QT [ϕ(ST )], or equivalently

V (t, St)

PtT
= EQT [

ϕ(ST )

PTT
] = EQT [

V (T, ST )

PTT
], ∀t < T (2.4.3)

From a probabilistic point of view, V (t,St)
PtT

is a martingale w.r.t. QT .

In light of (2.4.3), if we take the zero-coupon bond maturing at T as the numeraire, the

relative price V (t,St)
PtT

of any derivative would be a martingale under the T -forward measure

QT .

Let rt be the short rate of interest. Define the money market account by Bt = e
∫ t
0 rtdt

and the risk neutral measure Q by

(
dQ

dQT
)t =

Bt/B0

PtT/P0T

, (2.4.4)

which is clearly a martingale under QT .
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Applying the Bayes formula (Karatzas and Shreve (1991) Page 193 5.3 Lemma), we get

BtE
Q
t [
V (T, ST )

BT

] = EQ
t [
V (T, ST )

BT

Bt]

=
EQT

t [V (T,ST )
BT

Bt(
dQ
dQT

)T ]

EQT

t [( dQ
dQT

)T ]

=
EQT

t [V (T,ST )
BT

Bt
BT /B0

PTT /P0T
]

Bt/B0

PtT /P0T

= PtTE
QT

t [
V (T, ST )

PTT
],

where for compactness, we used Et[•] as a shorthand for E[•|Ft].

Recalling (2.4.3), we have

V (t, St)

Bt

= EQ
t [
V (T, ST )

BT

]. (2.4.5)

In other words, if we take the money market account B as the numeraire, the relative

price V (t,St)
Bt

of any derivative would be a martingale under the risk neutral measure Q.

In summary, the martingale approach represents the price of a derivative as the (condi-

tional) expectation of its payoff under an appropriate martingale measure.

2.5 Geometric Brownian Motion

In the derivation of the Black-Scholes formula, we made the assumption that σ(t, Ft) =

σFt. Under this assumption, the SDE that Ft satisfies is

dFt
Ft

= σdWt, (2.5.1)

where Wt is a standard Brownian motion w.r.t. QT .

If we further assume the short rate is constant, i.e. rt ≡ r, then the T -forward mea-

sure QT would be equivalent to the risk neutral measure Q. Indeed, with constant short
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rate of interest, Bt = ert, PtT = e−r(T−t) and the Doleans-Dade exponential defined in

(2.4.4) is just 1. In this special case, a QT Brownian motion is also a Q Brownian motion.

So the dynamics of F remains unchanged from QT to Q. Moreover, there is a simple

relation between Ft and St, when the short rate is constant

Ft = Ste
(r−d)(T−t),

where d is the dividend yield of S.

So the SDE for S is 
dSt
St

= (r − d)dt+ σdWt

S(t = 0) = S0

(2.5.2)

with Wt a Brownian motion under the risk neutral measure.

The solution to (2.5.2) is the Geometric Brownian Motion (GBM) with drift r − d and

volatility σ

St = S0e
(r−d− 1

2
σ2)t+σWt .

So we conclude that in the Black-Scholes framework, the prorogation of the underlying

asset is assumed to follow a GBM.

What is the rationale in this assumption? In fact, GBM can be view as the continu-

ous limit of a discrete price process, generated by a random walk in returns.

Suppose the price of the underlying asset evolves discretely in time. Over each small

time interval of length ∆t, it can go either up by a factor of ev∆t+σ
√

∆t or down by

ev∆t−σ
√

∆t, with equal probability. We call v the drift and σ the volatility. In a mathe-

matical format, the price changes by a factor of ev∆t+σ
√

∆tX over each time interval and

the changes over disjoint intervals are independent, where X is a random variable with

P (X = 1) = P (X = −1) = 1
2
. Suppose the price of the underlying asset starts from S0

at time 0. Than at any fixed time t = N∆t, the price is St = S0e
vt+σ

√
t
X1+···+XN√

N , where
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X1, · · · , XN are i.i.d. random variables with P (X = 1) = P (X = −1) = 1
2
. In other

words, X1 + · · ·+XN is a random walk. According to Donsker’s Theorem (See Karatzas

and Shreve (1991) 4.20 Theorem),
√
tX1+···+XN√

N
converges weakly to a Brownian motion

Wt (to apply Donsker’s Theorem, replace ∆t by 1
n

and let n→∞.) and St = S0e
vt+σWt

is a GBM.

In practice, the parameters µ and σ in the GBM model can be estimated as follow.

Suppose we have a sample of historical stock prices: St0 , St0+∆t, · · · , St0+N∆t. Define

Xi = log(
St0+i∆t

St0+(i−1)∆t
), 1 ≤ i ≤ N . Then assuming that the stock pays no dividend, a

consistent estimator for σ is σ̂ = s√
∆t

and a consistent estimator for µ is µ̂ = x̄
∆t

+ 1
2
σ̂2,

where x̄ and s are the sample mean and standard deviation of {Xi}N1 respectively.
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Chapter 3

The Move-Based Hedging Strategies

A variable annuity with guaranteed minimum maturity benefit assures the policyholder

of a minimum guarantee on the balance of his/her sub-account at the time of maturity T .

The guarantee level, denoted by G, typically ranges from 75% to 100% of the purchase

payments and may also accrue compound interest up to an advanced age. Denote by

T (x) the future lifetime of a policyholder at age x, then from the insurer’s point of view,

the gross liability of the GMMB rider is given by the discounted payoff

e−rT (G− ST )+I{T (x)>T}, (3.0.1)

where r is the risk free interest rate and ST the value of the VA sub-account at T .

When the insurer sells a large number of VA contracts, the mortality risk is diversifi-

able during the accumulation phase of the VA contracts, and as a result it can be treated

deterministically. For this reason, we ignore the mortality risk in our analysis and the

insurer’s liability thus reduces to

e−rT (G− ST )+. (3.0.2)
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This payoff, from a financial perspective, is exactly the same as that of an European put

option. So in this chapter, we will first describe several move-based hedging strategies for

the European put option and compare their relative performances through investigating

the cost distributions. Then we derive three key densities for geometric Brownian motion

that underpins the analysis of two-sided underlier-based hedging. Finally for complete-

ness, we modify the main result of Boyle and Emanuel (1980) to provide a local and

asymptotic analysis of the time-based hedging. As we mentioned in Chapter 1, the cost

distribution of the time-based hedging has been extensively in several papers, among

which Boyle and Emanuel (1980) is one of the earliest and most intuitive.

3.1 The Move-Based Hedging Strategies

In practice, there are three commonly used move-based hedging strategies for put op-

tions, the two-sided underlier based, the one-sided underlier-based and the two-sided

Greek-based. We now give a brief description for each of them.

1. The Two-Sided Underlier-Based Hedging: This strategy imposes a band for

the movement of the value of the sub-account St and requires re-balancing at the

hitting time to the band. It is the move-based hedging strategy we investigate in

this paper for the reasons given in the next section. Below is a detailed description

of this strategy.

Suppose that at time 0, we sell a put option with maturity T written on the VA

sub-account whose value is P0. To hedge, we buy ∆0 units of the sub-account and

invest M0 in the money market account. Thus, ∆0 is the delta of the put option at

time 0 and M0 is such that ∆0S0 + M0 = P0. A band [S0e
−α, S0e

α] is set for the

movement of the sub-account value. We will not re-balance our hedging portfolio

until the value of the sub-account hits the band. At the hitting time (say τ), two
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actions take place:

(i) resetting the band: the band is reset to be [Sτe
−α, Sτe

α], which centers around

the new sub-account value;

(ii) re-balancing the hedging portfolio: we adjust the hedging portfolio to match

the delta of the option at that time and infuse or take out cash such that the value

of the hedging portfolio equals the value of the option. The cost incurred is thus the

difference between the option value and the value of the hedging portfolio before

re-balancing. This procedure is repeated whenever the value of the sub-account

hits the band up to the time of maturity.

2. The One-Sided Underlier-Based Hedging: Some practitioners may think the

re-balancing triggered by the upward move of the sub-account redundant because

we only suffer from the downward move when shorting a put. As a result, they often

employ a one-sided underlier-based hedging strategy, which is almost identical to

the two-sided hedging strategy we mentioned above except that the upper barrier of

the band is removed. More precisely, the initial band [S0e
−α, S0e

α] in the two-sided

underlier-based hedging is replaced by a single lower barrier [S0e
−α,+∞) and at

the hitting time (say τ) of this barrier, it is reset to be [Sτe
−α,+∞).

3. The Two-Sided Greek-based Hedging: Under this strategy, we set a band for

the delta of the option, ∆t, instead of for the sub-account value St. Moreover, the

band for ∆t is not proportional to its current value but of the form [∆t−α,∆t +α]

(Since the theoretical value of the ∆ of a put option always falls into [−1, 0], we

should cut off the part of the band that lies out of [−1, 0]. And when the value of

the ∆ comes very close to the boundary -1 and 0, the band should become one-

sided. These boundary adjustments are very important because otherwise, the tail

of the cost distribution would be much fatter, as seen in Table 3.2.1). The hedging

portfolio is re-balanced if ∆t hits the band. This is intuitively more direct than the
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underlier-based hedging as what we effectively update during each re-balancing is

the delta of the hedging portfolio.

3.2 A First Look at the Cost Distribution

In this section, we compare the cost distribution of the three hedging strategies intro-

duced in the previous section via Monte Carlo simulation.

We assume the value of the underlying asset follow GBM

St = S0e
(µ−d− 1

2
σ2)t+σWt , ∀t > 0, (3.2.3)

where S0 is the initial value of the sub-account, µ the mean return rate, d the man-

agement fee, σ the volatility, r the risk free interest rate, and Wt a standard Brownian

motion under the real probability measure.

In detail, we generate 100,000 paths (with the time step of 0.0001) of the sub-account

value, along each path we first identify the hitting times of the sub-account and then

calculate the cost associated with each re-balancing (i.e. the present value of the differ-

ence between the then-current value of the put and the value of our hedging portfolio

just before re-balancing, discounted at rate r), and finally sum them up to obtain the

total cost for this path. This procedure produces a sample of size 100,000, which can be

used to estimate important statistics and plot histograms of the true cost distribution.

To make a fair comparison, we choose the bandwidth (level of the barrier) so that all the

three strategies have roughly the same hedging frequency (around 100 re-balances in 3

years). Table 3.2.1 summarizes the simulation results.

It is obvious from Table 3.2.1 that the one-sided underlier-based hedging is the worst

and should be discarded. The two-sided underlier-based hedging has a smaller standard
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Underlier-Based
One-Sided

Underlier-Based
Two-Sided

Greek-Based
without Boundary Adjustments

Greek-Based
with Boundary Adjustments

mean 3.5248 0.0023 0.0924 0.0365
std 13.1283 0.5005 0.8076 0.5474
skewness 2.8675 -0.4296 2.2852 0.1579
kurtosis 18.5249 4.9739 17.3893 3.3606
90% quantile 19.9861 0.5736 0.9120 0.7214
95% quantile 29.8750 0.7747 1.4118 0.9833
97.5% quantile 40.0551 0.9680 2.0590 1.1951
99% quantile 51.5242 1.2049 3.0543 1.4119

Table 3.2.1: Moments and quantiles of cost distribution under the 3 hedging strategies
for an at-the-money put option. The model parameters are T = 3, S0 = K = 50, r =
0.02, µ = 0.1, σ = 0.3, d = 0. For the one-sided underlier-based hedging, α = 0.0015; two-
sided underlier-based hedging, α = 0.05; Greek-based hedging with or without boundary
adjustments, α = 0.045. The row “mean” refers to the mean cost of discrete re-balance.
For comparison purpose, we calculate the cost of continuous hedging to be 8.5598.

deviation than that of the Greek-based hedging but a larger kurtosis. Hence it is not

clear at the moment which strategy is superior. However, a closer look at all the statistics

will provide a clear picture that the two-sided underlier-based hedging is indeed superior:

the kurtosis measures the overall heaviness of the tail and it does not differentiate the

heaviness of the left tail from that of the right tail. While for an insurance company, the

right tail is of central significance because it reflects the losses (the left tail, on the other

hand, represents profits). The larger quantile values of the Greek-based hedging and its

positive skewness, as opposed to the negative skewness under the two-sided underlier-

based hedging, all suggest that the cost distribution under the Greek-based hedging has a

longer right tail, while the cost distributions under the two-sided underlier-based hedging

has a longer left tail.

This desirable feature provides us the rationale to further investigate the cost distribu-

tion under the two-sided underlier-based strategy (Another reason for the choice of the

two-sided underlier-based strategy is the difficulty in finding the hitting time distribution

for the delta of the put option. The nonlinearity of delta of the put option makes finding

the hitting time distribution of the delta remain extremely challenging).

In the following, we conduct more simulation studies on the cost distribution of the
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µ = 0.05
σ = 0.2

µ = 0.1
σ = 0.2

µ = 0.15
σ = 0.2

µ = 0.05
σ = 0.3

µ = 0.1
σ = 0.3

µ = 0.15
σ = 0.3

mean -0.0050 0.0333 0.1119 -0.0021 0.0049 0.0278
std 0.9947 0.9434 0.8541 1.0006 0.9927 0.9653
skewness -0.6847 -0.7127 -0.7989 -0.5620 -0.5637 -0.6229
kurtosis 4.6133 4.8191 5.5205 4.7426 4.7170 5.0031

Table 3.2.2: Descriptive statistics for cost distribution. The common parameters are
S0 = 50, K = 50, α = 0.1, r = 0.02, T = 3, d = 0. The row “mean” refers to the mean
cost of discrete re-balance. For comparison purpose, we calculate the cost of continuous
hedging to be 5.3183 when σ = 0.2 and 8.5598 when σ = 0.3.

two-sided underlier-based hedging by assigning 6 sets of parameter values to the GBM

model (3.2.3). Descriptive statistics for these simulations are provided in Table 3.2.2.

Histograms are displayed in Figure 7.1.1. These results suggest heavy and asymmetric

tail behavior of the cost.

3.3 Three Density Functions for the Hitting Time

Distribution of Geometric Brownian Motion

In this section, we derive three density functions that will prove to be very useful in the

analysis of the two-sided underlier-based hedging.

We define the stopping time when the sub-account S starting from S0 hits a two-sided

band [S0e
−α, S0e

α]

τα,−α = inf{t > 0|St = S0e
α or St = S0e

−α}, (3.3.4)

and two auxiliary stopping times

τα = inf{t > 0|St = S0e
α, Ss > S0e

−α(∀0 < s < t)}, (3.3.5)
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µ = 0.05, σ = 0.2 µ = 0.05, σ = 0.3

µ = 0.1, σ = 0.2 µ = 0.1, σ = 0.3

µ = 0.15, σ = 0.2 µ = 0.15, σ = 0.3

Figure 3.2.1: Histograms of cost distribution. The common parameters are T = 3, r =
0.02, α = 0.1, S0 = 50, K = 50, d = 0.

τ−α = inf{t > 0|St = S0e
−α, Ss < S0e

α(∀0 < s < t)}. (3.3.6)

In other words, τα is the first time that S hits S0e
α without hitting S0e

−α earlier and τ−α

is the first time that S hits S0e
−α without hitting S0e

α earlier.

From the definitions, we can see: (1) τα,−α = τα ∧ τ−α; (2) τα < ∞ ⇒ τ−α = ∞

and τ−α <∞⇒ τα =∞.

We remark that under the two-sided underlier-based strategy, the bandwidth depends
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on the current value of the sub-account but the distribution of the three stopping times

defined above does not. In fact, they are the exit times of [−α, α] by a drifted Brownian

motion (µ− d− 1
2
σ2)t+ σWt, starting from 0.

Now we derive the densities of τα and τ−α in a slightly more general setting. Define

X(t) = vt+ σWt and

Ta,b = inf{t : X(t) = a or X(t) = b},

Ta = inf{t : X(t) = a,X(s) < b(∀0 < s < t)},

Tb = inf{t : X(t) = b,X(s) > a(∀0 < s < t)},

where a < 0 < b and as before, Ta(or Tb) <∞⇒ Tb(or Ta) =∞.

Following the approach of Lin (1998), we will first compute the Laplace transform of Ta

and Tb using the Gerber-Shiu technique and then inverse the transform through rewriting

them as a series of the Laplace transform of stable distribution. The Gerber-Shiu method

makes use of the following exponential martingale

Zλ(t) = eλX(t)−(λv+ 1
2
λ2σ2)t. (3.3.7)

For any u > 0, we can find two values of λ s.t. λµ+ 1
2
λ2σ2 = u,

λ1 =
−v −

√
v2 + 2σ2u

σ2
< 0, λ2 =

−v +
√
v2 + 2σ2u

σ2
> 0,

and therefore obtain two martingales,

M1(t) = Zλ1(t) = eλ1X(t)−ut,

M2(t) = Zλ2(t) = eλ2X(t)−ut.
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Observe that for any fixed λi (i = 1, 2) and u > 0, Mi(Ta,b ∧ t) < emax{|λia|,|λib|}, so

Mi(Ta,b ∧ t) is a bounded martingale and we can apply the optional stopping theorem

(See for example, Durrett (2010) Page 230) to get

E[Mi(Ta,b)] = 1, i = 1, 2. (3.3.8)

More explicitly, for i = 1,

E[M1(Ta,b)] = E[eλ1X(Ta,b)−uTa,b ]

= E[eλ1X(Ta,b)−uTa,bI{Ta,b=Ta} + eλ1X(Ta,b)−uTa,bI{Ta,b=Tb}]

= E[eλ1a−uTaI{Ta,b=Ta}] + E[eλ1b−uTbI{Ta,b=Tb}]. (3.3.9)

But since Tb <∞⇒ Ta =∞ and u > 0,

E[eλ1a−uTa ] = E[eλ1a−uTaI{Ta,b=Ta} + eλ1a−uTaI{Ta,b=Tb}]

= E[eλ1a−uTaI{Ta,b=Ta}].

(3.3.9) can be further simplified to

E[M1(Ta,b)] = E(e−uTa)eaλ1 + E(e−uTb)ebλ1 = 1, (3.3.10)

and similarly for i = 2, we have

E[M2(Ta,b)] = E(e−uTa)eaλ2 + E(e−uTb)ebλ2 = 1. (3.3.11)
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From equation (3.3.10) and (3.3.10), we solve the Laplace transforms of Ta and Tb,

E(e−uTa) =
ebλ2 − ebλ1

eaλ1+bλ2 − ebλ1+aλ2
,

E(e−uTb) =
eaλ1 − eaλ2

eaλ1+bλ2 − ebλ1+aλ2
.

Because

1

eaλ1+bλ2 − ebλ1+aλ2
= e−aλ1−bλ2

∞∑
n=0

e−n(b−a)(λ2−λ1),

we have

E(e−uTa) =
∞∑
n=0

e−n(b−a)(λ2−λ1)−aλ1 −
∞∑
n=0

e−(n+1)(b−a)(λ2−λ1)−aλ2 , (3.3.12)

E(e−uTb) =
∞∑
n=0

e−n(b−a)(λ2−λ1)−bλ2 −
∞∑
n=0

e−(n+1)(b−a)(λ2−λ1)−bλ1 . (3.3.13)

In order to inverse the Laplace transforms (3.3.12) and (3.3.13), let an = (1/σ)[2n(b −

a) − a] and bn = (1/σ)[2n(b − a) + b] for n ∈ Z, then the terms of the first series in

(3.3.12) is

e−n(b−a)(λ2−λ1)−aλ1 = e
av
σ2−

anv
σ

√
1+ 2σ2u

v2

= e
av
σ2−

anv
σ e

anv
σ

[1−
√

1+ 2σ2u
v2 ]. (3.3.14)

Note that the Laplace transform of an Inverse Gaussian distribution with the shape

parameter α > 0, the scale parameter β > 0 and pdf

fIG(t) =
α√

2πβt3
e−

1
2βt

(βt−α)2

is ∫ ∞
0

e−utfIG(t)dt = e
α[1−

√
1+ 2u

β
]
. (3.3.15)
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So by comparing (3.3.14) with (3.3.15), we conclude that inversion of the first series in

(3.3.12) is

e
av
σ2−

anv
σ

an√
2πt3

e
(vt−anσ)2

2σ2t = e
av
σ2−

1
2

( v
σ

)2tf(t; an),

where f(t; a) = a√
2πt3

e−a
2/st is the density of a one-sided stable distribution of index 1

2
.

For the terms in the second series of (3.3.12), let m = −n− 1, then

e−(n+1)(b−a)(λ2−λ1)−aλ2 = e
av
σ2 +amv

σ e−
amv
σ

[1−
√

1+ 2σ2u
v2 ],

and its inversion is

−e
av
σ2 +amv

σ
am√
2πt3

e
(vt+amσ)2

2σ2t = −e
av
σ2−

1
2

( v
σ

)2tf(t; am).

Finally, the inversion of (3.3.12), or the density of Ta, is

ga(t) = e
av
σ2−

1
2

( v
σ

)2t
∞∑

n=−∞

f(t; an). (3.3.16)

A parallel argument lead to the density of Tb

ga(t) = e
bv
σ2−

1
2

( v
σ

)2t
∞∑

n=−∞

f(t; bn). (3.3.17)

The densities of τα and τ−α, defined in (3.3.5) and (3.3.6) are given by gα(t) and g−α(t),

with σ unchanged and v replaced by µ− d− 1
2
σ2.

Our next goal is to identify the distribution of the sub-accont at maturity T given it

has not hit the band along the way. This distribution is characterized by the following

probability density

PS0(ST ∈ ds, max
0≤u≤T

Su < S0e
α, min

0≤u≤T
Su > S0e

−α), (3.3.18)
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which can be translated to a probability regarding only drifted Brownian motion

P0(XT ∈ dx, max
0≤u≤T

Xu < α, min
0≤u≤T

Xu > −α), (3.3.19)

where St = S0e
Xt ,∀t < T and x = log( s

S0
).

When Xt is a standard Brownian motion, the above probability is given by the following

theorem

Theorem 3.3.1 (Karatzas and Shreve (1991) 8.10 Proposition). Choose 0 < x < a.

Then for t > 0, 0 < y < a:

Px[Wt ∈ dy, T0 ∧ Ta > t] =
∞∑

n=−∞

p−(t;x, y + 2na)dy, (3.3.20)

where Wt is standard Brownian motion with X0 = x, T0 and Ta are the hitting time of 0

and a respectively, p−(t;x, y) = p(t;x, y)− p(t;x,−y), p(t;x, y) = 1√
2πt
e−

(x−y)2

2t .

We now generalize this theorem to the case of drifted Brownian motion Xt = vt+ σWt.

In spirit of the Girsanov Theorem (Karatzas and Shreve (1991) Page 191 5.1 Theorem),

we introduce a new measure P̃ through

Zt(W ) = E[
dP̃

dP
|Ft] = exp{−qWt −

1

2
q2t}, t < T

where q = v
σ
. Then dZt(W )

Zt(W )
= −qdWt and therefore, the process W̃t defined by W̃t = Wt+qt

is a standard Brownian motion under P̃ and Xt = vt+ σWt = σW̃t.

According to Theorem 3.3.1,

P̃X0=x(XT ∈ dy, max
0≤u≤T

Xu < a, min
0≤u≤T

Xu > 0)

= P̃W̃0= x
σ
(W̃T ∈ d(

y

σ
), max

0≤u≤T
W̃u <

a

σ
, min

0≤u≤T
W̃u > 0)

=
∞∑

n=−∞

p−(t;
x

σ
,
y

σ
+ 2n

a

σ
)
1

σ
dy.
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Applying the Bayes formula, we have, for 0 < x, y < a,

PX0=x(XT ∈ dy, max
0≤u≤T

Xu < a, min
0≤u≤T

Xu > 0)

= EP
X0=x[I{XT∈dy,max0≤u≤T Xu<a,min0≤u≤T Xu>0}]

= EP̃
X0=x[I{XT∈dy,max0≤u≤T Xu<a,min0≤u≤T Xu>0}(

dP

dP̃
)T ]

= EP̃
X0=x[I{XT∈dy,max0≤u≤T Xu<a,min0≤u≤T Xu>0}e

q
σ
XT− 1

2
q2T ]

= EP̃
X0=x[I{XT∈dy,max0≤u≤T Xu<a,min0≤u≤T Xu>0}e

q
σ
y− 1

2
q2T ]

= e
q
σ
y− 1

2
q2T

∞∑
n=−∞

p−(T ;
x

σ
,
y

σ
+ 2n

a

σ
)
1

σ
dy

= e
v
σ2 y−

1
2

( v
σ

)2T
∞∑

n=−∞

p−(T ;
x

σ
,
y

σ
+ 2n

a

σ
)
1

σ
dy.

By the shift invariance property of the drifted Brownian motion, we have, for x1 < 0, x <

x2,

PX0=0(XT ∈ dx, max
0≤u≤T

Xu < x2, min
0≤u≤T

Xu > x1)

= e
v
σ2 (x−x1)− 1

2
( v
σ

)2T
∞∑

n=−∞

p−(T ;
−x1

σ
,
x− x1

σ
+ 2n

x2 − x1

σ
)
1

σ
dy

= e
v
σ2 (x−x1)− 1

2
( v
σ

)2T
∞∑

n=−∞

1

σ
√
T

[
φ(
x+ 2n(x2 − x1)

σ
√
T

)− φ(
x+ 2n(x2 − x1)− 2x1

σ
√
T

)

]
,

(3.3.21)

Where φ(x) = 1√
2π
e−

1
2
x2

. The above result also appears in He et al. (1998) (with a

different proof).
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3.4 An Asymptotic Analysis for the Time-Based Hedg-

ing

In this section, we modify the main result of Boyle and Emanuel (1980) for the case of

the European put option to provide an asymptotic analysis for the cost distribution of

the time-based hedging.

Under the time-based hedging strategy, we choose N equally spaced time points in [0, T ]

and re-balance our replicating portfolio at these time points to match the then-current

value of the put option. Denote by ∆t the time elapse between two consecutive re-

balances.

Boyle and Emanuel (1980) looks at the conditional distribution of the next re-balancing

cost, given the current state of the underlying asset. Specifically, suppose we have just

re-balanced the hedging portfolio at time t = m∆t such that it comprises of −N(−d1)

units of the underlying asset and the value of p+N(−d1)S in the money market account

earning interest at risk-free rate r, where S is the current value of the underlier, p =

Xe−rτN(−d2) − SN(−d1) is the current price of the put option, X is the strike price,

d1 =
log( S

X
)+(r+ 1

2
σ2)τ

σ
√
τ

and d2 = d1 − σ
√
τ . Suppose at time t + ∆t, the value of the

underlying asset moves to S+ ∆S and option price changes to p+ ∆p. So the re-balance

at t+ ∆t bring us a cost

HR = (p+ ∆p)− [−N(−d1)(S + ∆S) +Xe−rτN(−d2)(1 + r∆t)] + o(∆t2)

= ∆p+ ∆SN(−d1)−Xe−rτr∆tN(−d2) + o(∆t2) (3.4.22)

To further simplify the above equation, assume the underlying asset follows GBM with

volatility σ, then

∆p =
∂p

∂S
∆S +

∂p

∂t
∆t+

1

2

∂2p

∂S2
σ2S2u2∆t+ o(∆t

3
2 ),
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∂p

∂S
= −N(−d1),

∂p

∂t
= Xe−rτ [rN(−d2)− φ(d2)σ

2
√
τ

],

∂2p

∂S2
=

φ(d1)

Sσ
√
τ
,

Sφ(d1) = Xe−rτφ(d2).

where u is a standard normal r.v. and φ(x) is the standard normal density.

Using the above identities and ignoring the high order terms of ∆t, we can reduce (3.4.22)

to

HR =
Xe−rτ

2
√
τ
φ(d1)(u2 − 1)∆t,

= λy∆t. (3.4.23)

where λ = Xe−rτ

2
√
τ
φ(d1) and y = u2 − 1.

From (3.4.23) we see that the conditional expectation of the next re-balancing cost

HR is 0 and the conditional standard deviation, skewness and kurtosis moments are
√

2λ∆t, 4√
2
, 15, respectively. So the conditional distribution is positively skewed with a

very heavy tail. And its standard deviation exhibit an asymptotically linear relation with

∆t. Moreover, HR is negative (positive) if and only if |u| < 1 (|u| > 1), which means

our hedge will yield negative (positive) returns about 68% (34%) of the time.
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Chapter 4

A Semi-Analytic Algorithm for the

Cost Analysis of Put Option

In this chapter, we first develop semi-analytic algorithms to compute the expectation and

the higher moments of the cost of the two-sided underlier-based hedging. Then using

the methods of moments, we fit a parametric model for the cost distribution to its first

4 moment. Finally with the fitted distribution, we approximate the quantile of the total

hedging cost, which is an key input in the implementation of the modified “Percentile

Premium Principle” for variable annuities.

4.1 The Main Idea

Recall that in the two-sided underlier-based hedging strategy, each rebalance is triggered

by the hit to a band. We denote by τ (i), (i = 1, 2, 3, ...) the timespan from the (i− 1)-th

hit to the i-th hit. Then by the strong Markov property and the stationarity of Brownian

motion, {τ (i)}∞i=1 are i.i.d. random variables with the same distribution as τα,−α defined

in (3.3.4).

Let us consider the cost incurred at the first hit. If the first hit occurs before the
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maturity (i.e. τ (1) < T ), we adjust our portfolio to match the option value at time τ (1).

Otherwise, the value of the sub-account never hit the band throughout the life of the

option (τ (1) ≥ T ) and we simply close our position at maturity T . In other words, the

first cost will occur at the truncated stopping time τ (1) ∧ T . If the first hit occurs before

maturity(T > τ (1)), then there would be a second cost, and the timespan from the first

hit to the second hit is again a truncated stopping time τ (2) ∧ (T − τ (1)).

Now look at the two truncated stopping times

τ (1) ∧ T, τ (2) ∧ (T − τ (1)).

If we replace the fixed maturity T by ε
(1)
λ , an independent exponential r.v. with parameter

λ, then by the strong Markov property and the stationarity of Brownian motion and the

memoryless property of exponential distribution, the distribution of τ (2) ∧ (ε
(1)
λ − τ (1))

will be exactly the same as that of τ (1)∧ ε(1)
λ conditional on Fτ (1) and ε

(1)
λ > τ (1). The use

of random maturity for option pricing was pioneered in Carr (1998). This randomization

allows us to derive a recursive formula for computing the cost at each truncated stopping

time.

4.2 The Expected Cost

To keep the notation compact, we use τ̄ (i) to denote the i-th truncated stopping time,

i.e.

τ̄ (i) = τ (i) ∧ (ε
(1)
λ − τ

(1) − · · · − τ (i−1)) = τ (i) ∧ ε(i)λ .

Recall that the first cost is the difference between of the time-τ̄ (1) value of the option

and the hedging portfolio before re-balancing, discounted back to time 0 at the risk free

40



interest rate:

e−rτ̄
(1)
[
Pτ̄ (1) −

(
M0e

rτ̄ (1)

+ ∆0Sτ̄ (1)

)]
. (4.2.1)

With the techniques developed in Section 3.3, we are able to compute the expectation of

(4.2.1). The essential steps are listed below.

First, we rewrite (4.2.1) as

I
ε
(1)
λ >τ (1)

{
Ke−rε

(1)
λ

[
N(−d̃2)−N(−d2)

]
− Sτ (1)e−rτ

(1)

e−d(ε
(1)
λ −τ(1))

[
N(−d̃1)−N(−d1)

]}
︸ ︷︷ ︸

A1

(4.2.2)

+ I
ε
(1)
λ ≤τ (1)e

−rε(1)
λ

[
(K − S

ε
(1)
λ

)+ −KN(−d2) + S
ε
(1)
λ
N(−d1)

]
︸ ︷︷ ︸

A2

,

where

d1 =
lnS0

K
+ (r − d+ 1

2
σ2)ε

(1)
λ

σ

√
ε

(1)
λ

,

d2 = d1 − σ
√
ε

(1)
λ ,

d̃1 =
ln

S
τ(1)

K
+ (r − d+ 1

2
σ2)(ε

(1)
λ − τ (1))

σ

√
ε

(1)
λ − τ (1)

,

d̃2 = d̃1 − σ
√
ε

(1)
λ − τ (1),

and abbreviate A1 to I
ε
(1)
λ >τ (1)q(ε

(1)
λ , τ (1)).

Then conditioning on ε
(1)
λ , the conditional expectation of A1 is

E
ε
(1)
λ

[I
ε
(1)
λ >τ (1)q(ε

(1)
λ , τ (1))] (4.2.3)

= E
ε
(1)
λ

[I
ε
(1)
λ >τ (1)q(ε

(1)
λ , τ (1))Iτ (1)=τα ] + E

ε
(1)
λ

[I
ε
(1)
λ >τ (1)q(ε

(1)
λ , τ (1))Iτ (1)=τ−α ].
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Because τα =∞ when τ (1) = τ−α, the first term on the RHS of (4.2.3) is

E
ε
(1)
λ

[I
ε
(1)
λ >τα

q(ε
(1)
λ , τα)Iτ (1)=τα ]

= E
ε
(1)
λ

[I
ε
(1)
λ >τα

q(ε
(1)
λ , τα)Iτ (1)=τα ] + E

ε
(1)
λ

[I
ε
(1)
λ >τα

q(ε
(1)
λ , τα)Iτ (1)=τ−α ]

= E
ε
(1)
λ

[I
ε
(1)
λ >τα

q(ε
(1)
λ , τα)].

Similarly, the second term on the RHS of (4.2.3) is:

E
ε
(1)
λ

[I
ε
(1)
λ >τ−α

q(ε
(1)
λ , τ−α)].

Conditioning on ε
(1)
λ , the conditional expectation of A2 is

E
ε
(1)
λ

{
I
ε
(1)
λ ≤τ (1)e

−rε(1)
λ

[
(K − S

ε
(1)
λ

)+ −KN(−d2) + S
ε
(1)
λ
N(−d1)

]}
.

To compute the above three conditional expectations, we need three key inputs: (1) the

density of τα; (2) the density of τ−α; (3) the conditional density of Xt = (µ− 1
2
σ2)t+σWt

given min0≤u≤tXu > −α,max0≤u≤tXu < α, all of which have been obtained in Section

3.3.

Hereafter, we denote the expectation of the first hitting cost (4.2.1) by h(S0).

The second cost, which incurs at τ (1) + τ̄ (2), can be expressed in a similar way

I
ε
(1)
λ >τ (1) e

−r(τ (1)+τ̄ (2))
[
Pτ (1)+τ̄ (2) −

(
Mτ (1)erτ̄

(2)

+ ∆τ (1)Sτ (1)+τ̄ (2)

)]
, (4.2.4)

The additional indicator function I
ε
(1)
λ >τ (1) in (4.2.4) reflects the fact that the second cost

incurs if and only if the first hit occurs before the maturity.

To compute the expectation of (4.2.4), we first condition on Fτ (1) and ε
(1)
λ > τ (1). The
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inner expectation is

e−(r+λ)τ (1)

Eτ (1)

[
Pτ (1)+τ̄ (2) −

(
Mτ (1)erτ̄

(2)

+ ∆τ (1)Sτ (1)+τ̄ (2)

)
|ε(1)
λ > τ (1)

]
, (4.2.5)

where we have used the identity E(XIA) = E(X|A)P (A) for any random variable X and

any event A.

Note that, by conditioning on Fτ (1) and ε
(1)
λ > τ (1), τ̄ (2) has exactly the same distribution

as τ̄ (1). Thus, the expectation in (4.2.5) is h(Sτ (1)).

In general, the conditional expectation (conditioning on Fτ (1)+···+τ (n−1) and ε
(1)
λ > τ (1) +

· · ·+ τ (n−1)) for the n-th hit is

h(Sτ (1)+τ (2)+...+τ (n−1))e−(r+λ)(τ (1)+τ (2)+...+τ (n−1)). (4.2.6)

We now demonstrate the computation of the unconditional expectation of (4.2.6) by a

simple example with n = 3.

When n = 3, the expectation becomes

E
[
h(Sτ (1)+τ (2))e−(r+λ)(τ (1)+τ (2))

]
. (4.2.7)

From a computational point of view, since the function h(·) is computed numerically, we

should try to avoid its frequent evaluation. This is achieved by observing that Sτ (1)+τ (2)

can only take 3 different values: S0e
−2α, S0 and S0e

2α. So we can decompose the expec-

tation into 3 parts and plug h(·) out. In particular,

E [h(Sτ (1)+τ (2))e−(r+λ)(τ (1)+τ (2))]

= h(S0e
2α)E

[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0e2α}

]
+ h(S0)E

[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0}

]
+ h(S0e

−2α)E
[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0e−2α}

]
.
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The remaining expectation terms in the above expression can be written explicitly. In

what follows, we will calculate E
[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0}

]
. The calculation of the

other two expectations is almost identical.

E
[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0}

]
= E

[
e−(r+λ)(τ (1)+τ (2))I{τ (1)=τα,τ (2)=τ̃−α}

]
+ E

[
e−(r+λ)(τ (1)+τ (2))I{τ (1)=τ−α,τ (2)=τ̃α}

]
= E

[
e−(r+λ)ταe−(r+λ)τ̃−αI{τ (1)=τα}I{τ (2)=τ̃−α}

]
+ E

[
e−(r+λ)τ−αe−(r+λ)τ̃αI{τ (1)=τ−α}I{τ (2)=τ̃α}

]
= E

[
e−(r+λ)ταI{τ (1)=τα}

]
E
[
e−(r+λ)τ̃−αI{τ (2)=τ̃−α}

]
+E

[
e−(r+λ)τ−αI{τ (1)=τ−α}

]
E
[
e−(r+λ)τ̃αI{τ (2)=τ̃α}

]
= 2E

[
e−(r+λ)τ−αI{τ (1)=τ−α}

]
E
[
e−(r+λ)ταI{τ (1)=τα}

]
,

where τα, τ−α are defined in (3.3.5) and (3.3.6), respectively. τ̃±α is an independent copy

of τ±α.

By definition, τ−α = ∞ (τα = ∞) when τα < ∞ (τ−α < ∞). This property allows a

further simplification of the above equation. In fact,

Lα = E
[
e−(r+λ)τα

]
= E

[
e−(r+λ)ταI{τ (1)=τα}

]
+ E

[
e−(r+λ)ταI{τ (1)=τ−α}

]
= E

[
e−(r+λ)ταI{τ (1)=τα}

]
,

and similarly

L−α = E
[
e−(r+λ)τ−α

]
= E

[
e−(r+λ)τ−αI{τ (1)=τ−α}

]
.

Hence,

E
[
e−(r+λ)(τ (1)+τ (2))I{S

τ(1)+τ(2)=S0}

]
= 2L−αLα.

Therefore, for the unconditional expectation (4.2.7) we have

E
[
h(Sτ (1)+τ (2))e−(r+λ)(τ (1)+τ (2))

]
= h(S0e

2α)L2
α + 2h(S0)LαL−α + h(S0e

−2α)L2
−α. (4.2.8)
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In general, the expectation of the (n+ 1)-th cost is

E
[
h(Sτ (1)+τ (2)+...+τ (n))e−(r+λ)(τ (1)+τ (2)+...+τ (n))

]
=

n∑
i=0

Ci
nh(S0e

(2i−n)α)LiαL
n−i
−α . (4.2.9)

The total expected cost is obtained by summing up all the individual cost.

In summary, we have derived the expected total cost for an exponential maturity. In

order to find the expected total cost for a fixed maturity, the following connection is

useful.

Let g(T ) be the total expected cost for an arbitrary fixed maturity T . Then the expec-

tation under an exponential maturity with parameter λ is

E[g(ε
(1)
λ )] =

∫ ∞
0

g(T )λe−λTdT.

Divide both sides by λ, we have

E[g(ε
(1)
λ )]

λ
=

∫ ∞
0

g(T )e−λTdT. (4.2.10)

Clearly, the right hand side of (4.2.10) is the Laplace transform of g(T ). So the total

expected cost for fixed maturity can be retrieved from that for exponential maturities by

numerically inverting the Laplace transform.

There exist many routines for the numerical inversion of the Laplace Transform. We

find Hollenbeck (1998) and Brancik (2011) particularly useful. The former can return

the value of the original function at several points in the time domain in a single run and

the latter can invert a matrix of transformed functions simultaneously.
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4.3 Higher Moments

Our next step towards the distribution of the total hedging cost, is to compute its higher

moments with which we may estimate the cost distribution using a parametric distribu-

tion.

The algorithm introduced in Section 4.2 can be easily adapted to compute the second

moment of each individual cost. To begin with, let us look at the square of the first cost

e−2rτ̄ (1)
[
Pτ̄ (1) −

(
M0e

rτ̄ (1)

+ ∆0Sτ̄ (1)

)]2

. (4.3.11)

Denote by h(2)(S0) the expectation of (4.3.11). h(2)(·) is evaluated through a slightly

modified procedure for computing h(·): (4.3.11) can be written as (A1 +A2)2, where A1

and A2 appear in (4.2.2). Since A1 and A2 are mutually exclusive, i.e. A1A2 = 0, we have

(A1 + A2)2 = A2
1 +A2

2. The expectation of A2
1 and A2

2 can be computed using numerical

integration.

Given h(2)(·), we now move to the square of the second cost

I
ε
(1)
λ >τ (1)e

−2r(τ (1)+τ̄ (2))
[
Pτ (1)+τ̄ (2) −

(
Mτ (1)eτ̄

(2)

+ ∆τ (1)Sτ (1)+τ̄ (2)

)]2

= e−2rτ (1)

I
ε
(1)
λ >τ (1)e

−2rτ̄ (2)
[
Pτ (1)+τ̄ (2) −

(
Mτ (1)eτ̄

(2)

+ ∆τ (1)Sτ (1)+τ̄ (2)

)]2

.

Its expectation is computed by first conditioning on Fτ (1) and ε
(1)
λ > τ (1) to get the inner

expectation

e−(2r+λ)τ (1)

Eτ (1)

(
e−2rτ̄ (2)

[
Pτ (1)+τ̄ (2) −

(
Mτ (1)eτ̄

(2)

+ ∆τ (1)Sτ (1)+τ̄ (2)

)]2

|ε(1)
λ > τ(1)

)
.

The expectation term above can be easily seen to be h(2)(Sτ (1)). As a result, the condi-

tional expectation of the square of the second cost is e−(2r+λ)τ (1)
h(2)(Sτ (1)).
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In general, the conditional expectation of the square of the (n + 1)-th cost has the fol-

lowing form

e−(2r+λ)(τ (1)+···+τ (n))h(2)(Sτ (1)+···+τ (n)),

and its full expectation is given by

i=n∑
i=0

Ci
nh

(2)(S0e
(2i−n)α)L̃iαL̃

n−i
−α ,

where L̃α = E(e−(2r+λ)τα) and L̃−α = E(e−(2r+λ)τ−α).

In a nearly effortless manner, we could continue this way to calculate the 3rd and 4th

moments of each individual costs. The details are omitted here.

Now suppose we are interested in the moments of the total cost and have at hand the first

to the fourth moments of each individual cost. As a matter of fact, the full expansion of

the second, third and fourth moments of the total cost involve not only the moments of

individual costs, but also the interaction terms. The computation of the latter is difficult

in general and computationally expensive. However, by assuming independence of the

individual costs, we can circumvent this difficulty with the aid of multinomial expansion

theorem (This is a reasonable assumption. Indeed, numerical experiments conducted in

Section 4.4 indicate very weak correlations between individual costs). The moments of

the total cost are then

E(C1 + C2 + · · ·+ Cm)n =
∑

k1+k2+···+km=n

n!

k1!k2! · · · km!
E(

∏
1≤t≤m

Ckt
t )

=
∑

k1+k2+···+km=n

n!

k1!k2! · · · km!

∏
1≤t≤m

E(Ckt
t ), (4.3.12)

where Ci is the discounted cost for the i-th hit and n = 2, 3, 4. Though straightforward,

the multinomial expansion approach can be very inefficient numerically, because the

number of terms in (4.3.12) increases dramatically with m. So we now introduce an
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alternative recursive method to compute the first 4 moments of the total cost under the

independence assumption.

Let C = C1 +C2 + · · ·+Cm be the total (discounted) cost and Mi = E(Ci) be its i-th raw

moment. The recursive method exploits the central moments. Suppose we have obtained

the central moments of each individual cost. Under the independence assumption, the

second central moment of the total cost (i.e. the variance) is

V ar(C) = V ar(
m∑
i=1

Ci) =
m∑
i=1

V ar(Ci).

So M2 = E(C2) = V ar(C) + E2(C) =
∑m

i=1 V ar(Ci) +M2
1 .

The third central moment of C is

E
(
[C − E(C)]3

)
= E

( m∑
i=1

[Ci − E(Ci)]

)3
 =

m∑
i=1

E
(
[Ci − E(Ci)]

3
)

and therefore

M3 = E(C3) = E
(
[C − E(C)]3

)
+ 3E(C2)E(C)− 3E(C)3 + E(C)3

=
m∑
i=1

E
(
[Ci − E(Ci)]

3
)

+ 3M2M1 − 2M3
1 .

The fourth central moment of C is

E
(
[C − E(C)]4

)
= E

( m∑
i=1

[Ci − E(Ci)]

)4


=
m∑
i=1

E
(
[Ci − E(Ci)]

4
)

+
∑

1≤i<j≤m

E
(
[Ci − E(Ci)]

2
)
E
(
[Cj − E(Cj)]

2
)
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and

M4 = E(C4) = E
(
[C − E(C)]4

)
+ 4E(C3)E(C)− 6E(C2)E2(C) + 4E4(C)− E4(C)

=
m∑
i=1

E
(
[Ci − E(Ci)]

4
)

+
∑

1≤i<j≤m

E
(
[Ci − E(Ci)]

2
)
E
(
[Cj − E(Cj)]

2
)

+ 4M3M1 − 6M2M
2
1 + 3M4

1 .

Other generalizations of the algorithm include the analysis of sensitivities based on the

derivatives of the total expected cost w.r.t. the model parameters. Since these are of

minor importance in the current context, we will briefly present the methods in Section

4.4.

4.4 Numerical Examples

In this section, we first validate the the proposed semi-analytic algorithms by Monte

Carlo and then apply it to analyze the impact of the model parameters on the total

hedging cost. We will then examine the accuracy of approximating the higher moments

and quantiles of the cost distribution by the independence assumption.

Table 4.4.1 compares the total expected cost estimated by the semi-analytic algorithm

and Monte Carlo simulation, respectively. The results suggest that these two methods

agree with each other reasonably well.

In Table 4.4.2, we compute the total expected cost for different combinations of model

parameters. From this table, we can observe several interesting trends

1. The cost decreases as σ increases;

2. For small µ (µ = 0.05), the cost decreases with maturity T . While for large µ

(µ = 0.1, 0.15), it increases with maturity T ;
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Semi-Analytic Monte Carlo: ∆t = 10−4 Monte Carlo: ∆t = 10−6

T = 1 0.1395 0.1491(0.0030) 0.1383(0.0029)
T = 2 0.1840 0.1794(0.0021) 0.1830(0.0026)
T = 3 0.1993 0.1937(0.0026) 0.1990(0.0023)
T = 4 0.2021 0.2060(0.0030) 0.2024(0.0021)
T = 5 0.1992 0.2012(0.0020) 0.1993(0.0019)

Table 4.4.1: Total expected cost. The common parameters are S0 = 50, K = 50, r =
0.02, µ = 0.2, σ = 0.2, α = 0.1, d = 0. In the column “Monte Carlo: ∆t = 10−4”,
we generate 100000 paths with time step 10−4 in the Monte Carlo simulation and the
number in the bracket is the standard error of the estimator; In the column “Monte
Carlo: ∆t = 10−6”, we generate 100000 paths with time step 10−6 in the Monte Carlo
simulation and the number in the bracket is the standard error of the estimator. Note
that the standard errors shown in the bracket is a measure of the statistical error, not
of the discretization error. The discretization error can be seen from the changes in the
estimates when we shorten the length of the time step in the path generation.

σ = 0.1 σ = 0.2 σ = 0.3
µ = 0.05 (0.0144,0.0134,0.0132) (-0.0018,-0.0030,-0.0038) (-0.0023,-0.0034,-0.0041)
µ = 0.1 (0.1522,0.1952,0.2107) (0.0202,0.0295,0.0355) (0.0025,0.0036,0.0044)
µ = 0.15 (0.3615,0.4132,0.4018) (0.0697,0.0980,0.1125) (0.0177,0.0253,0.0302)

Table 4.4.2: Total expected cost for different sets of parameters. The common parameters
are S0 = 50, K = 50, r = 0.02, α = 0.1, d = 0. Each unit is a vector containing values for
maturities T = 1, T = 2, T = 3, respectively.
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3. The cost increases as µ increases.

To understand these trends, we begin with an analysis for the effect of the upward and

downward movements of the sub-account on the cost. Suppose that we are now at a

time point before maturity and have just rebalanced our hedging portfolio so that its

value is equal to the option value. If the sub-account moves upward thereafter, both

the option and the hedging portfolio will lose value. If the sub-account moves in the

other direction, both gain in value. Whatever is the direction of the movement, the

magnitudes of the changes in the value of the hedging portfolio are the same, since its

position in the sub-account is fixed. However, due to the asymmetry of the option value,

a downward movement in the sub-account will increase the option value more than that

an upward movement can decrease. We will call the loss caused by an upward move of

the sub-account the “up loss” and the “down loss” for the one caused by a downward

move. From the above discussion, we know that the up loss should in general be smaller

than the down loss.

With this intuition in mind, we can then explain the observed trends. As σ increases,

the difference between the up an down losses is flattened because the asymmetry of the

put option value is lessened. This means the up loss will increase while the down loss

will decrease, and the down loss’s decrease is slightly faster than the up loss’s increase.

If µ is small, the odds of the sub-account’s moving up and down are roughly equal. So

the overall effect of the flattening is the decrease in total loss. Moreover, a larger σ will

dictate a higher hedging frequency. These two factors together explain trend 1.

The increase in T has the similar mitigation effect as the increase of σ on the asym-

metry of option value. So when µ is small, we can see a steady decrease in cost caused

by the increase of T in the first row of Table 4.4.2, which is captured by the first part

of trend 2. However, when µ is large, the odds of the sub-account’s moving up would
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be significantly higher than its moving down. Hence, although the magnitude of the

up loss’s increase is smaller than that of the down loss’s decrease, the total loss would

increase with T because the increased up loss gets a better chance to show up. These

explain both trend 3 and the second part of trend 2. From another perspective, when

the put is worthless, diligent hedging can be superfluous or even counterproductive.

So far we have analyzed the impact of µ, σ and T on the hedging cost, we now wish

to investigate the effect of changes in S0 and r. We will do this in a more straightforward

way: computing the corresponding “Greeks” of the total expected cost. As we have

mentioned in Section 2.3, Greeks are the derivatives of the options price (in the current

context, the total expected cost) and reflect its sensitivity to certain underlying factors.

For the derivative w.r.t. the initial sub-account value S0, let DCi
j be the i-th cost dis-

counted to the j-th hitting time τ (j) and let hS(S0) be the derivative of the expectation

of the first cost w.r.t. the sub-account value

hS(S0) =
∂

∂S0

E
{
DC1

0

}
.

Then, for the derivative of the second cost, we have

∂

∂S0

DC2
0 = I

ε
(1)
λ >τ (1)e

−rτ (1) ∂

∂S0

DC2
1

= I
ε
(1)
λ >τ (1)e

−rτ (1) ∂Sτ (1)

∂S0

∂

∂Sτ (1)

DC2
1 .

Conditioning on Fτ (1) and ε
(1)
λ > τ (1), the inner expectation is

e−(r+λ)τ (1) ∂Sτ (1)

∂S0

hS(Sτ (1)),
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and the full expectation is

e−αhS(Se−α)L−α + eαhS(Seα)Lα,

where L−α and Lα are defined as before.

In general, the expectation of the derivative the (n+1)-th cost w.r.t. the sub-account

value is
n∑
i=0

(
n

i

)
e(2i−n)αhS(S0e

(2i−n)α)LiαL
n−i
−α .

For the derivative w.r.t. the risk free interest rate, let hr(S0) be the derivative of the

expectation of the first cost w.r.t. r:

hS(S0) =
∂

∂r
E
{
DC1

0

}
.

Then the derivative of the second cost is

∂

∂r
DC1

0 =
∂

∂r
(I
ε
(1)
λ >τ (1)e

−rτ (1)

DC2
1)

= I
ε
(1)
λ >τ (1)e

−rτ (1) ∂

∂r
DC2

1 + I
ε
(1)
λ >τ (1)τ

(1)e−rτ
(1)

DC2
1 .

Conditioning on Fτ (1) and ε
(1)
λ > τ (1), the inner expectation is

e−(r+λ)τ (1)

hr(S(1)
τ )− τ (1)e−(r+λ)τ (1)

h(S(1)
τ ).

This conditional expectation consists of two parts. The function hr(·) and h(·) can be

evaluated numerically. And using the indicator function, we can single them out from the

full expectation. The rest are E
(
e−(r+λ)τ (1)

I
S

(1)
τ =S0ekα

)
and E

(
τ (1)e−(r+λ)τ (1)

I
S

(1)
τ =S0ekα

)
.

We have already obtained the analytical expression of the former. The latter can be
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S0 = 30 S0 = 40 S0 = 50 S0 = 60 S0 = 70
-0.0015 -0.0008 0.0038 0.0003 -0.0011

Table 4.4.3: Derivative of expected cost w.r.t. the sub-account. The common parameters
are K = 50, T = 1, r = 0.02, µ = 0.05, σ = 0.2, α = 0.1, d = 0.

T = 1 T = 2 T = 3 T = 4 T = 5
-0.3164 -4842 -0.6002 -0.6879 -0.7569

Table 4.4.4: Derivative of expected cost w.r.t. interest rate. The common parameters
are S0 = 50, K = 50, µ = 0.05, σ = 0.2, α = 0.1, d = 0.

easily calculated by taking derivative of the former w.r.t. either r or λ.

In Table 4.4.3, we calculate the derivative of the total expected cost w.r.t. S0. The

derivatives are uniformly small, with slightly larger values at the strike. This indicates

that the total hedging cost is not very sensitive to the initial sub-account value.

Table 4.4.4 contains the derivative of the total expected cost w.r.t. r. As expected, these

derivatives are negative. Each re-balancing leads to either a loss or a profit and with

r increased, the present values of both the loss and the profit are reduced. Since the

total cost is the sum of all losses minus the sum of all profits, and over the course of

hedging, loss are dominant in term of magnitude or frequency of occurrences (this is why

we get many positive values for the total expected cost in Table 4.4.2), the total cost

decreases. In addition, the impact of r increases with the maturity, as the discounting

effect becomes more and more evident.

Now we come back to the question left in section 4.3: are the individual costs nearly

independent? To find the answer, we used simulation to compare the true moments of

the total cost with those obtained under the independence assumption. See Table 4.4.5

for the results. We comment that the second moment are very close to each other, while

the differences in 3rd and 4th moments are slightly larger but still negligible. These
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µ = 0.05
σ = 0.2

µ = 0.1
σ = 0.2

µ = 0.15
σ = 0.2

µ = 0.05
σ = 0.3

µ = 0.1
σ = 0.3

µ = 0.15
σ = 0.3

moments-true:
1st
2nd
3rd
4th

-0.0050
0.9895
-0.6886
4.5301

0.0333
0.8912
-0.5095
3.7438

0.1119
0.7420
-0.2514
2.7696

-0.0021
1.0012
-0.5692
4.7584

0.0049
0.9855
-0.5369
4.5705

0.0278
0.9326
-0.4827
4.2865

moments-independence:
1st
2nd
3rd
4th

-0.0050
0.9953
-0.8625
4.5217

0.0333
0.8936
-0.6557
3.6388

0.1119
0.7247
-0.3079
2.2792

-0.0021
1.0100
-0.6723
4.1671

0.0049
0.9877
-0.6254
3.9535

0.0278
0.9325
-0.5124
3.4852

Table 4.4.5: Moments comparison. The common parameters are: T = 3, S0 = K =
50, r = 0.02, α = 0.1, d = 0.

suggests a very weak linear dependence between individual costs, which can therefore

be sacrificed for computational efficiency. In Table 4.4.6-4.4.11, we approximate, with

various distributions (single normal, Gumbel, mixture of two normals and Edgeworth

expansion), the quantile of the the total cost. Because of the availability of its first 4

moments, we adopt the method of moments to determine the parameters in each of the

candidate distributions and use the fitted distributions to approximate the true quantile

(See Section 4.5 for the details).

We set the following criteria for the selection of the appropriate candidate distribution

1. Since the cost can be either positive or negative, the desirable distribution should

be two-tailed;

2. The distribution should be flexible enough to capture the asymmetry and the heavy

tail feature of the cost distribution;

3. Since we use the method of moments for fitting, the moments of the distribution

should exist and be easy to calculate. Moreover, the expression of the moments

should not be too exotic to be processed by a regular optimization routine. Finally,
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True Normal Gumbel Mixture Edgeworth
90% 1.0844 1.2698 1.0896 1.0734 1.1441
95% 1.4244 1.6362 1.2975 1.3687 1.3692
97.5% 1.7469 1.9447 1.4551 1.6571 1.5360
99% 2.1540 2.3091 1.6272 2.0721 3.1638

Table 4.4.6: Quantile comparison: µ = 0.05, σ = 0.2. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.

True Normal Gumbel Mixture Edgeworth
90% 1.0594 1.2423 1.0714 1.0407 1.1367
95% 1.3803 1.5874 1.2667 1.3180 1.3576
97.5% 1.6962 1.8824 1.4181 1.5945 1.5202
99% 2.1223 2.2280 1.5813 2.0721 2.0036

Table 4.4.7: Quantile comparison: µ = 0.1, σ = 0.2. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.

the information of this distribution should concentrate in its first few moments (for

example, the first two moments of the normal distribution contain all its informa-

tion).

4. Among all the distributions satisfying the above conditions, we prefer choosing the

simplest, in order to be as objective as possible.

The results suggest that the right tail of the true distribution is heavier than Gumbel

and lighter than normal. In terms of one-sided quantile estimation, the normal mixture

dominates all the others. In Figure 4.4.1, we also plot the real histogram against the

densities of the fitted distribution. the normal mixture model provides the best overall

fit to the cost distribution (though a slight deviation near the mode). In Figure 4.4.2,

we visualize the tail behavior of these distributions using the Q-Q plot. From this plot,

it is clearly seen that that the normal mixture model gives the best fit to the right tail

of the cost distribution.
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True Normal Gumbel Mixture Edgeworth
90% 1.0228 1.2065 1.0517 1.0443 1.1263
95% 1.3232 1.5001 1.2136 1.2940 1.3436
97.5% 1.6169 1.7859 1.3656 1.5243 1.5027
99% 2.0258 2.0988 1.5133 1.8272 1.6456

Table 4.4.8: Quantile comparison: µ = 0.15, σ = 0.2. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.

True Normal Gumbel Mixture Edgeworth
90% 1.1182 1.2803 1.0989 1.1519 1.1704
95% 1.4803 1.6512 1.3100 1.4655 1.4273
97.5% 1.8360 1.9591 1.4666 1.7523 1.6310
99% 2.2933 2.3257 1.6397 2.1202 1.8422

Table 4.4.9: Quantile comparison: µ = 0.05, σ = 0.3. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.

True Normal Gumbel Mixture Edgeworth
90% 1.1132 1.2771 1.0973 1.1218 1.1713
95% 1.4721 1.6397 1.3023 1.4302 1.4289
97.5% 1.8235 1.9506 1.4620 1.7250 1.6333
99% 2.2759 2.3143 1.6338 2.1261 1.8452

Table 4.4.10: Quantile comparison: µ = 0.1, σ = 0.3. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.

True Normal Gumbel Mixture Edgeworth
90% 1.1005 1.2649 1.0900 1.1268 1.1700
95% 1.4788 1.6156 1.2880 1.4264 1.4270
97.5% 1.7859 1.9198 1.4447 1.7044 1.6309
99% 2.2224 2.2735 1.6117 2.0678 1.8423

Table 4.4.11: Quantile comparison: µ = 0.15, σ = 0.3. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.
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µ = 0.05, σ = 0.2 µ = 0.1, σ = 0.2

µ = 0.15, σ = 0.2 µ = 0.05, σ = 0.3

µ = 0.1, σ = 0.3 µ = 0.15, σ = 0.3

Figure 4.4.1: Density comparison. The common parameters are: T = 3, S0 = K =
50, r = 0.02, α = 0.1, d = 0.

4.5 Quantile Calculation

In this section, we review some statistical properties of the GEV distribution and the

Edgeworth expansion that we use in Section 4.4 for the estimation of the quantiles of the

hedging cost distribution.
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µ = 0.05, σ = 0.2 µ = 0.1, σ = 0.2

µ = 0.15, σ = 0.2 µ = 0.05, σ = 0.3

µ = 0.1, σ = 0.3 µ = 0.15, σ = 0.3

Figure 4.4.2: Quantile-Quantile plot. We plot the 80%-99.9% quantiles of the distribu-
tions. The X-axis is the true/empirical quantile of the cost distribution. The Y-axis
is the quantile of the approximating distributions. The solid line is the true/empirical
quantiles of the cost distribution estimated by Monte Carlo; the circle line is the quan-
tiles of the mixture distribution of two normals; the triangle line is the quantils of the
normal distribution and the plus sign line is the quantiles of the Gumbel distribution.
The common parameters are: T = 3, S0 = K = 50, r = 0.02, α = 0.1, d = 0.
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4.5.1 GEV Distribution

We consider this distribution class for its flexible tail behavior and compact parametriza-

tion. According to McNeil et al. (2005), the GEV distribution class has cdf Hξ,µ,σ(x) :=

Hξ((x− µ)/σ), where

Hξ(x) =

 exp(−(1 + ξx)−1/ξ) , ξ 6= 0

exp(−e−x) , ξ = 0
.

Here, ξ, µ and σ are the shape, location and scale parameter, respectively.

The distributions associated with ξ > 0 are called Frechet and these include well known

fat tailed distributions such as the Pareto, Cauchy, Student-t and mixture distributions.

If ξ = 0, the GEV distribution is the Gumbel class and includes the normal, exponential,

gamma and lognormal distributions but only the lognormal distribution has a moderately

heavy tail.

Finally, in the case where ξ < 0, the distribution class is Weibull. These are short tailed

distributions with finite lower bounds and include distributions such as uniform and beta

distributions.

From the histogram of the true cost distribution(Figure 4.4.1), we conclude that a short-

tailed distribution(ξ < 0) is obviously not suitable. Moreover, the third column in Table

4.4.6-4.4.11 suggest that the right tail of the true distribution is thinner than that of

Normal, thus a heavy-tailed distribution(ξ > 0) is also improper. So finally we are left

with the Gumbel class(ξ = 0).

The Gumbel distribution has two parameters: The location parameter µ and the scale

parameter β(β is negative, the re-parametrization is made for the sake of consistency
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with the Matlab built-in functions for extreme value distribution).

Its cdf is exp(−e(x−µ)/β), mean is µ+γβ and variance is (πβ)2/6, where γ ≈ 0.577215665

is the Euler constant.

Now suppose we have calculated the first two moment of the cost distribution, denoted

by m1 and m2, then using the method of moments, the estimate for µ and β can be

obtained by solving  µ+ γβ =m1

(πβ)2/6=m2 −m2
1.

Once we get µ̂ and σ̂, the α quantile of the fitted distribution is the root of

exp(−e−(x−µ̂)/β̂) = α.

The results form the column “Gumbel” of Table 4.4.6-4.4.11.

4.5.2 Edgeworth Expansion

The Edgeworth Expansion provides a moment approximation to the CDF of a distribu-

tion. It gives an accuracy of O(n−
3
2 ), but can sometimes generate values that exceed the

theoretical [0, 1] range.

In light of Cheah et al. (1993), if we denote by µ, σ2, µ3, µ4 the mean, variance, third

and fourth central moment of the true distribution, then the corresponding cumulants

are κ1 = µ, κ2 = σ2, κ3 = µ3, κ4 = µ4 − 3σ2 and the cumulants of the normalized distri-

bution are γ1 = 0, γ2 = 1, γ3 = κ3/σ
3, γ4 = κ4/σ

4.
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The approximating cdf, up to the fourth cumulant, is

FE(z) = Φ(z) + φ(z)(−γ3

6
h2(z)− 3γ4h3(z) + γ2

3h5(z)

72
),

where Φ(z) and φ(z) are the cdf and pdf of the standard normal distribution and h2(z) =

z2 − 1, h3(z) = z3 − 3z, h5(z) = z5 − 10z3 + 15z are the Hermite polynomials.
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Chapter 5

The Percentile Principle Premium

for Variable Annuities

The semi-analytic algorithm developed in Chapter 4 allows us to analytically quantify

the re-balancing cost of the move-based hedging. In this chapter, we introduce a modified

“Percentile Premium Principle” for variable annuities, which is built upon this insightful

quantification, to incorporate the significant discrete hedging cost.

The “Percentile Premium Principle”, as an alternative to the “Expected Premium Prin-

ciple”, derives its utility from the information on the extreme losses to ensure that the

probability of a loss on a contract will not exceed a risk threshold. In finance, the same

consideration leads to the VaR (VaR is percentile in essence) based techniques for eco-

nomical capital requirement, which delimits the amount of risk capital, assessed on a

realistic basis, that a firm should possess to cover the risks that it is running or collecting

as a going concern, such as market risk, credit risk, and operational risk.

Inspired by the spirit of the “Percentile Premium Principle”, we modify it for the move-

based hedging of variable annuities. In particular, we introduce a loading, in addition to
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the regular charge, to provide the insurer enough fund with high realistic confidence for

the operation of discrete re-balancing. To see the modified “Percentile Premium Princi-

ple” in action, we start with the pricing of the Guaranteed Minimum Maturity Benefit

to present the detailed procedures of its implementation. Then we apply it to more

complex, path-dependent VA products.

5.1 Guaranteed Minimum Maturity Benefit

Consider a VA with guaranteed minimum maturity benefit (GMMB) whose payoff is

e−rT (G− ST )+.

Suppose at time 0, an annuitant starts with one unit of the VA sub-account, which is

worth X0. Let the maturity of this VA contract be T and over the time period [0, T ],

the annuitant is guaranteed a minimum rate of return g. From the insurer’s perspective,

this guarantee lead to a time-T loss of

(X0(1 + g)T −XT )+.

To compensate for the loss, the insurer charges a fee δ, proportional to the level of sub-

account value over the life of the VA. We assume that the sub-account mimics a certain

market index St that initially follows the same GBM

Xt = X0e
(µ− 1

2
σ2)t+σWt ,

St = S0e
(µ− 1

2
σ2)t+σWt ,

X0 = S0.

After the insurer’s deducting the fee, the sub-account value falls to

Xt = X0e
(µ−δ− 1

2
σ2)t+σWt ,
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while the market index St remains unchanged.

The insurer’s problem is to hedge a put option (option A) written on an untradable

asset Xt, with payoff (X0(1 + g)T − XT )+, using a tradable asset St. To tackle this

problem, consider another put option (option B) with payoff (X0(1 + g)T − X̄T )+, where

X̄t is a tradable, dividend paying asset with dividend yield d and the following dynamic

X̄t = X̄0e
(µ−d− 1

2
σ2)t+σWt ,

X̄0 = X0.

Then according to Black-Scholes formula, the price of option B (or the cost of continu-

ously hedging option B with X̄t) is

Ke−rTN(−d2)− S0e
−δTN(−d1), (5.1.1)

where

d1 =
log(S0

K
) + (r − δ + 1

2
σ2)

σ
√
T

,

d2 = d1 − σ
√
T .

Note that

(i) Option A and option B have the same payoff,

and

(ii) Using X̄t to hedge is equivalent to using St if we reinvest all the dividends (indeed,

if St pays dividends at rate g, then it becomes X̄t),

We conclude that the cost of continuously hedging option A with St is given by (5.1.1).

On the revenue side, the total amount of money the insurer accumulates over [0, T ]
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is ∫ T

0

e−rtδStdt.

Its present value is obtained by taking expectation under the risk neutral measure

EQ(

∫ T

0

e−rtδStdt) = δS0T. (5.1.2)

Equating (5.1.1) and (5.1.2) gives us the fair value of δ for continuous hedging. The

results are summarized in the lines “Regular Fee” of Table 5.1.1-5.1.5.

For discrete hedging, however, a surcharge (the loading) needs to be imposed to cover the

cost arising from the non-self-financing re-balancing strategy. In the actuarial practice,

the fair value of the loading is based on the “Expected Premium Principle”

expected total re-balancing cost=expected revenue. (5.1.3)

However, due to the observed heavy tail of the total re-balancing cost, we would rather

replace its expectation by its 95% quantile (of the real probability distribution) in (5.1.3),

which leads to the following “Percentile Premium Principle”

95% quantile of the total re-balancing cost=expected revenue. (5.1.4)

As opposed to the traditional “Expected Premium Principle”, the new valuation scheme

(5.1.4) is more prudent in that it offers enough funds for the insurer to cover the discrete

hedging cost not just on average, but for 95% of the time. The spirit of the “Percentile

Premium Principle” also dictates the choice of the physical probability measure for its

implementation, because we are now concerned with the extreme losses in the real world

scenario. Consequently, we set the growth rate of the sub-account at µ − δ in the al-

gorithms proposed in Chapter 4 to compute the 95% quantile of the distribution of the
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µ = 0.05
σ = 0.2

µ = 0.1
σ = 0.2

µ = 0.15
σ = 0.2

µ = 0.05
σ = 0.25

µ = 0.1
σ = 0.25

µ = 0.15
σ = 0.25

µ = 0.05
σ = 0.3

µ = 0.1
σ = 0.3

µ = 0.15
σ = 0.3

Regular Fee 0.0855 0.0855 0.0855 0.1083 0.1083 0.1083 0.1291 0.1291 0.1291
Loading 0.0145 0.0128 0.0120 0.0142 0.0139 0.0128 0.0148 0.0138 0.0135

Table 5.1.1: Management fee for discrete hedging. The common parameters are: T =
2, S0 = K = 50, r = 0.02, α = 0.1, g = 0.

µ = 0.05
σ = 0.2

µ = 0.1
σ = 0.2

µ = 0.15
σ = 0.2

µ = 0.05
σ = 0.25

µ = 0.1
σ = 0.25

µ = 0.15
σ = 0.25

µ = 0.05
σ = 0.3

µ = 0.1
σ = 0.3

µ = 0.15
σ = 0.3

Regular Fee 0.0617 0.0617 0.0617 0.0788 0.0788 0.0788 0.0945 0.0945 0.0945
Loading 0.0090 0.0083 0.0074 0.0092 0.0090 0.0080 0.0094 0.0089 0.0079

Table 5.1.2: Management fee for discrete hedging. The common parameters are: T =
3, S0 = K = 50, r = 0.02, α = 0.1, g = 0.

re-balancing cost and denote the value by Q0.95(δ;µ, σ, α, r, S0, K, T ). On the revenue

side, the present value of the total amount of money we accumulate over [0, T ] is

∫ T

0

e−rtδStdt.

Its expectation, under the physical measure, is

S0δ
e(µ−r−δ)T − 1

µ− r − δ
.

The fair value of the loading δ can be obtained by solving

Q0.95(δ;µ, σ, α, r, S0, K, T ) = S0δ
e(µ−r−δ)T − 1

µ− r − δ
. (5.1.5)

Table 5.1.1-5.1.5 calculate the fair value of the loading in line with the “Percentile Pre-

mium Principle” (5.1.5). As expected, the regular fee-the cost of continuous hedging-is

µ = 0.05
σ = 0.2

µ = 0.1
σ = 0.2

µ = 0.15
σ = 0.2

µ = 0.05
σ = 0.25

µ = 0.1
σ = 0.25

µ = 0.15
σ = 0.25

µ = 0.05
σ = 0.3

µ = 0.1
σ = 0.3

µ = 0.15
σ = 0.3

Regular Fee 0.0484 0.0484 0.0484 0.0623 0.0623 0.0623 0.0750 0.0750 0.0750
Loading 0.0065 0.0060 0.0047 0.0068 0.0063 0.0053 0.0071 0.0062 0.0055

Table 5.1.3: Management fee for discrete hedging. The common parameters are: T =
4, S0 = K = 50, r = 0.02, α = 0.1, g = 0.
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r = 0.01 r = 0.02 r = 0.03 r = 0.04 r = 0.05
Regular Fee 0.1076 0.0945 0.0828 0.0725 0.0635

Loading 0.0091 0.0089 0.0087 0.0083 0.0080

Table 5.1.4: Management fee for discrete hedging. The common parameters are: T =
3, S0 = K = 50, µ = 0.1, σ = 0.3, α = 0.1, g = 0.

S0 = 40 S0 = 50 S0 = 60 S0 = 70
Regular Fee 0.2262 0.0945 0.0423 0.0213

Loading 0.0100 0.0089 0.0067 0.0053

Table 5.1.5: Management fee for discrete hedging. The common parameters are: T =
3, K = 50, µ = 0.1, σ = 0.3, r = 0.02, α = 0.1, g = 0.

independent of the real rate of return of the sub-account. The loading is the additional

fee we need to charge when the re-balancing cost of discrete hedging is taken into ac-

count. The results suggest several interesting correlations between the cost and the model

parameters.

1. The loading decreases with µ. Indeed, from Table 4.4.6-4.4.11, we observe that the

95% quantile of the discrete hedging cost distribution decreases with µ, so does

the left hand side of (5.1.5). Because a higher value of µ dictates a higher level of

the sub-account, to which the proportional management fee is linked, the value of

the fee needs to decrease for the right hand side of (5.1.5) to match the left hand

side. From another perspective, as µ decreases, the downside risk of the put option

becomes more and more pronounced, the insurer thus needs to charge more for its

risk exposure.

2. The loading increases with σ. The reason lies in two facts: (i) the 95% quantile of

the discrete hedging cost distribution increase with σ, so does the left hand side of

(5.1.5); (ii) The right hand side is independent of σ and is an (piecewise) increasing

function of the loading δ.
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3. The loading increases with r while decreases with T and S0. To give an explanation,

the following observations may be helpful: (i) The right hand side of (5.1.5) is a

decreasing(increasing) function of r (T and S0) for small (µ−r−δ)T (for δ < µ−r).

(ii) The increase in r (T and S0) has a more significant impact on the left (right)

hand side of (5.1.5).

4. There is a positive correlation between the regular fee and the loading.

5.2 Annual Ratchet VA

In this section, we consider the pricing and hedging of a n-year Annual Ratchet VA.

Under the ratchet contract design, the participation in the equity index is evaluated year

by year. Each year the guaranteed payoff is stepped up by the greater of the floor rate

g and the return of the sub-account.

Suppose the sub-account starts at S0, then at time 1, the wealth of the policyholder

is guaranteed to be the maximum of S0(1 + g) and S1, denote by S∗1 . The policyholder

reinvests any extra amount to the sub-account so that the number of shares he holds for

the next period is
S∗1
S1

. At time 2, the account value is the maximum of S∗1(1 + g) and

S∗1
S1
S2, denoted by S∗2 · · · . This process of annual ratcheting continues to the end of year

n, resulting in a total discounted cost for the insurer

ϕratchet,n = e−r[S0(1+g)−S1]++e−2r[S∗1(1+g)−S
∗
1

S1

S2]++· · ·+e−nr[S∗n−1(1+g)−
S∗n−1

Sn−1

Sn]+,

(5.2.6)

where

S∗i = max{S∗i−1(1 + g),
S∗i−1

Si−1

Si} = S∗i−1 max{(1 + g),
Si
Si−1

} = S∗i−1Gi, S
∗
0 = S0. (5.2.7)
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Note that our formulation of the payoff for annual ratchet VA is somewhat uncommon

(For common ones, see for example, Hardy (2004)). This is because we look at the cost

to the insurer, instead of the payoff to the policyholder. Indeed, the annual ratcheting

at the end of each year brings an instant cost to the insurer, as it has to boost the

sub-account with money from its own pocket. However, the increase in the sub-account

is not cashed out by the policyholder until the maturity of the contract. So from the

policyholder’s perspective, the annual increase is accumulated to the maturity, resulting

in a payoff of a form similar to that in Hardy (2004). But for the insurer, the cost is the

sum of each annual boosting, the present value of which is given by (5.2.6).

To price, we rewrite ϕratchet,n as

ϕratchet,n = e−rS0[(1+g)− S1

S0

]+ +e−2rS∗1 [(1+g)− S2

S1

]+ + · · ·+e−nrS∗n−1[(1+g)− Sn
Sn−1

]+.

For the i-th term on the RHS, we have

EQ

{
e−irS∗i−1[(1 + g)− Si

Si−1

]+

}
= e−irEQ(S∗i−1)EQ

[
(1 + g)− Si

Si−1

]
+

,

where we use the fact that S∗i−1 is independent of Si
Si−1

.

According to the Black-Scholes formula for a put option with strike 1 + g and S0 = 0,

EQ

{[
(1 + g)− Si

Si−1

]
+

}
= (1 + g)N(−d2)− er−dN(−d1),

where

d1 =
log 1

1+g
+ (r − d+ 1

2
σ2)

σ
,

d2 = d1 − σ.
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By definition of S∗i , we have

EQ(S∗i ) = EQ(S∗i−1)EQ[max(1+g,
Si
Si−1

)] = EQ(S∗i−1)EQ

{[
Si
Si−1

− (1 + g)

]
+

+ (1 + g)

}
.

And again, by virtue of the Black-Scholes formula, we have

A = EQ

{[
Si
Si−1

− (1 + g)

]
+

+ (1 + g)

}
= er−dN(d1)− (1 + g)N(d2) + (1 + g),

where d1 and d2 are defined as before.

Thus,

EQ(S∗i ) = S0A
i, i ∈ {1, 2, · · · , n}.

In summary, the price of the n-year annual ratchet VA, or the cost of continuously hedging

it, is

Pratchet,n = S0[(1 + g)N(−d2)− er−dN(−d1)]
n∑
i=1

e−irAi−1. (5.2.8)

The hedging strategy for the annual ratchet VA can be described as follow:

Suppose we sell a n-year annual ratchet VA at time 0 with payoff structure given by

ϕratchet,n. In period (0,1], we hedge S∗0 = S0 units of a put option with payoff [(1+g)− S1

S0
]+

at time 1; In period (1,2], we hedge S∗1(note that, this strategy is feasible since S∗1 is known

at time 1) units of a put option with payoff [(1 + g) − S2

S1
]+ at time 2;... In general, in

period (i − 1, i] (i ∈ {1, 2, · · · , n}), we hedge S∗i−1 units of a put option with payoff

[(1 + g)− Si
Si−1

]+ at time i.

It is worthwhile to point out that in the strategy we just described, the option we hedge

in period (i−1, i] does not depend on i, only the units of such an option differ from period

to period. In fact, the option we hedge for each period is simply a vanilla put option

with strike K = 1 + g, time to maturity T = 1 and initial sub-account value S0 = 1. We

can use the semi-analytic algorithm to compute the moments of the total discounted (at

time i−1) costs for discretely hedging such an option over period (i−1, i]. In particular,
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let Ci−1 be the total discounted hedging cost for (i−1, i] and Mk be Ci−1’s k-th moment.

For a n-year annual ratchet VA, the total cost of discrete hedging is

TC = S0C0 + e−rS∗1C1 + · · ·+ e−(n−1)rS∗n−1Cn−1. (5.2.9)

Suppose we are interested in the k-th moment of the total cost (5.2.9), then by virtue of

the multinomial theorem,

E(TCk)

= E

 ∑
m1+m2+···+mn=k

k!

m1!m2! · · ·mn!
(Sm1

0 Cm1
0 )(e−m2rS∗m2

1 Cm2
1 ) · · · (e−(n−1)mnrS∗mn

n−1 C
mn
n−1)


=

∑
m1+m2+···+mn=k

k!

m1!m2! · · ·mn!
e−(m2+2m3+···+(n−1)mn)rE

[
(Cm1

0 Cm2
1 · · ·Cmn

n−1)(S∗m1
0 S∗m2

1 · · ·S∗mn
n−1 )

]
=

∑
m1+m2+···+mn=k

k!

m1!m2! · · ·mn!
e−(m2+2m3+···+(n−1)mn)rE

[
(Cm1

0 Cm2
1 · · ·Cmn

n−1)
]
E
[
(S∗m1

0 S∗m2
1 · · ·S∗mn

n−1 )
]
.

(5.2.10)

Exploiting the independence of C0, C1, · · · , Cn, we have

E
[
Cm1

0 Cm2
1 · · ·Cmn

n−1

]
= Mm1Mm2 · · ·Mmn .

And by iterative conditioning, we have

E
[
(S∗m1

0 S∗m2
1 · · ·S∗mnn−1 )

]
= Sm1+m2+···+mn

0 J(m2+m3+· · ·+mn)J(m3+· · ·+mn) · · · J(mn),

where

J(k) = E(Gk
i )

= (1 + g)kN(
log(1 + g)− (µ− d− 1

2
σ2)

σ
)

+ek(µ−d− 1
2
σ2)+ 1

2
k2σ2

[1−N(
log(1 + g)− (µ− d− 1

2
σ2)

σ
− kσ)].

72



Now we turn to the calculation of the fair management fee δ for the annual ratchet VA

(δ is constant over the term of the annual ratchet VA and does not vary from year to

year). In light of the “Percentile Premium Principle”, the fair management fee includes

two parts, the regular fee and the loading. The first is to finance the cost of continuous

hedging while the second covers the cost arising from discrete re-balance. For continuous

hedging, the cost is given by Pratchet,n in (5.2.8), and the revenue collected by the insurer

during the life of this contract is

∫ 1

0

e−rtδStdt+

∫ 2

1

e−rtδ
S∗1
S1

Stdt+ · · ·+
∫ n

n−1

e−rtδ
S∗n−1

Sn−1

Stdt.

Taking expectation under the risk neutral measure Q, we get the present value of the

revenue

Rcont = δS0

n−1∑
i=1

e−irAi. (5.2.11)

The regular fee is obtained by equating Pratchet,n with Rcont. Interestingly, by comparing

(5.2.8) with (5.2.11), we see that the regular fee does not depend on n, the number of

ratcheting of the VA.

According to the “Percentile Premium Principle”, the loading is the solution to

95% quantile of the total re-balancing cost=expected revenue under the physical measure.

The quantile can be approximated by our algorithm and the expected revenue is

EP [

∫ 1

0

e−rtδStdt+

∫ 2

1

e−rtδ
S∗1
S1

Stdt+ · · ·+
∫ n

n−1

e−rtδ
S∗n−1

Sn−1

Stdt]

= δ[

∫ 1

0

e−rtS0e
(µ−d)tdt+

∫ 2

1

e−rtEP (S∗1)e(µ−d)(t−1)dt (5.2.12)

+ · · ·+
∫ n

n−1

e−rtEP (S∗n−1)e(µ−d)(t−n+1)dt]

= δS0
eµ−d−r − 1

µ− d− r

n−1∑
i=0

J i(1)e−ir. (5.2.13)
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Tables 5.2.6 to 5.2.9 list the results generated by (5.2.10) and compare them with those

computed by Monte Carlo simulation. We see that the 1st, 2nd and 4th moments are

close to each other while the 3rd moments diverge a bit far. Figure 5.2.1 plots: 1) The

histograms of the discrete hedging cost distribution generated by Monte Carlo simulation

(with 106 iterations); 2) The density function of a mixture distribution of two normals,

fitted to the first four moments of the cost distribution, which are estimated using sim-

ulation; 3) The density function of a mixture distribution of two normals, fitted to the

first four moments of the cost distribution, which are estimated using the semi-analytic

algorithm. Table 5.2.10 compares the quantiles of the true distribution and those given

by the approximating distributions. Despite the relatively large difference in the esti-

mation of the third moments, the two fitted densities are almost indistinguishable and

therefore provide equally good estimations for the quantiles.

In Tables 5.2.11-5.2.14, we compute the regular fee and the loading for annual ratchet

VAs with various model/contract specifications. Comparing the trend of these numbers

with those for GMMB, we observe

the similarities:

1. Both the regular fee and the loading increase with σ;

2. There is a positive correlation between the regular fee and the loading,

and the differences:

1. The regular fee for the annual ratchet VA is independent of the length of the

contract;

2. The loading of the annual ratchet VA increase with µ and g. As the level of ratch-

eting is determined by both the guaranteed growth rate g and the drift parameter

of the sub-account µ, an increase in either of them will lead to a higher return and

thus more charges.
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1st moment 2nd moment 3rd moment 4th moment
Monte Carlo -0.0152 2.8349 -1.9119 29.7832
Semi-analytic -0.0154 2.8496 -2.4526 32.4185

Table 5.2.6: Moments of the discrete hedging costs for a 2-year annual ratchet VA. The
common parameters are S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.

1st moment 2nd moment 3rd moment 4th moment
Monte Carlo -0.0249 5.1872 -3.2657 102.8921
Semi-analytic -0.0245 5.2111 -5.4295 114.6941

Table 5.2.7: Moments of the discrete hedging costs for a 3-year annual ratchet VA. The
common parameters are S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.

1st moment 2nd moment 3rd moment 4th moment
Monte Carlo -0.0331 8.5345 -4.7317 306.3399
Semi-analytic -0.0355 8.5571 -10.9250 341.7194

Table 5.2.8: Moments of the discrete hedging costs for a 4-year annual ratchet VA. The
common parameters are S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.

1st moment 2nd moment 3rd moment 4th moment
Monte Carlo -0.0434 13.2383 -6.2195 833.7747
Semi-analytic -0.0483 13.2771 -21.0084 936.1415

Table 5.2.9: Moments of the discrete hedging costs for a 5-year annual ratchet VA. The
common parameters are S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.
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2-year 3-year 4-year 5-year
True:
90%
95%

97.5%
99%

1.9579
2.5176
3.0433
3.7097

2.6876
3.4834
4.2298
5.2148

3.4390
4.5072
5.5448
6.9347

4.2513
5.6472
7.0177
8.9095

Monte Carlo:
90%
95%

97.5%
99%

1.9783
2.5472
3.0766
3.7597

2.7232
3.5334
4.2868
5.2648

3.3962
4.5751
5.7718
7.3191

4.0850
5.8204
7.6024
9.7085

Semi-analytic:
90%
95%

97.5%
99%

1.9602
2.5171
3.0333
3.7097

2.8039
3.5927
4.2760
5.0731

3.3158
4.3534
5.4003
6.9347

3.9393
5.3310
6.9088
9.2233

Table 5.2.10: Quantile comparison. The columns contain the quantiles of the cost
distributions of hedging annual ratchet VAs with different terms. The first row com-
putes the quantiles by simulation, the total number of iteration is 106. The sec-
ond row uses a mixture model of two normals to match the first four moments of
the cost distribution, obtained by simulation. The third row fits the mixture model
with the moments given by the semi-analytic algorithm. The common parameters are
S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.

n=2 n=3 n=4 n=5
regular fee 0.2930 0.2930 0.2930 0.2930

loading 0.0227 0.0193 0.0171 0.0158

Table 5.2.11: Management fee for discrete hedging of annual ratchet VA. The common
parameters are: S0 = 50, µ = 0.1, σ = 0.3, r = 0.03, g = 0.05, α = 0.1.

σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5
regular fee 0.2419 0.2930 0.3426 0.3889

loading 0.0153 0.0158 0.0163 0.0166

Table 5.2.12: Management fee for discrete hedging of annual ratchet VA. The common
parameters are: S0 = 50, µ = 0.1, n = 5, r = 0.03, g = 0.05, α = 0.1.

76



2-year 3-year

4-year 5-year

Figure 5.2.1: Density of the cost distribution of hedging annual ratchet VAs with different
terms. The blue area represents the histogram obtained by simulation. The red circle
line is the density of a mixture distribution of two normal, fitted to the simulated values
of the first four moments of the cost distribution. The black plus sign line is the density
of a mixture distribution of two normal, fitted to the values of the first four moments of
the cost distribution given by the semi-analytic algorithm. The common parameters are
S0 = 50, g = 0.05, r = 0.03, µ = 0.1, σ = 0.3, d = 0.01, α = 0.1.

5.3 Structured Product Based VA

Recently, a new type of variable annuity with payoffs similar to those of structured prod-

ucts rather than those of a mutual fund has been introduced to the market. For example,

AXA Equitable made available its first batch of Structured Capital Strategies, structured

products inside a variable annuity on Oct. 4, 2010. This instrument allows investors to
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g = 0.03 g = 0.05 g = 0.08 g = 0.10
regular fee 0.2515 0.2930 0.3617 0.4097

loading 0.0157 0.0158 0.0159 0.0159

Table 5.2.13: Management fee for discrete hedging of annual ratchet VA. The common
parameters are: S0 = 50, µ = 0.1, σ = 0.3, n = 5, r = 0.03, α = 0.1.

µ = 0.06 µ = 0.08 µ = 0.1 µ = 0.12
regular fee 0.2930 0.2930 0.2930 0.2930

loading 0.0157 0.0158 0.0158 0.0160

Table 5.2.14: Management fee for discrete hedging of annual ratchet VA. The common
parameters are: S0 = 50, σ = 0.3, n = 5, r = 0.03, g = 0.05, α = 0.1.

select a reference asset (the S&P 500, Russell 2000, MSCI EAFE, gold or oil), a time

frame (one, three or five years) and a certain level of downside protection (10%, 20% or

30%). See AXA Equitable (2012) for a detailed description.

In essence, structured products underlying these new annuity contracts partially absorbs

losses below some threshold “buffer” and truncate the gains at some “cap”. The limited

protection from downside risks and limited participation to market growth may seems

somewhat undesirable to investors, but on the issuer’s side, there is a reason for market-

ing such products.

Structured notes have been around for years. In the past they have guaranteed full

downside protection in exchange for limited upside participation. But with interest rates

remaining low and volatility high by historical standards, fewer firms can afford to con-

struct 100% principle protected products cheaply enough to attract buyers. Instead,

most of today’s versions offer only “buffered” or “contingent” protection. The former

cushions the impact of losses to a certain extent while the latter covers losses only until

the underlying asset falls to a prescribed level, after which, the protection is cancelled

out, leaving the investors alone.

We discuss the cost of discretely hedging this new type of VA in this section.
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5.3.1 Structured Capital Strategies

Let us draw a concrete example from Deng et al. (2012) for illustration.

Consider a structured product based variable annuity (spVA) that is linked to a certain

index with cap c and buffer b. Suppose the index value is S0 at the time of issue and ST

at the maturity T of the contract, then the payoff of the annuity is

ϕ(ST ) =



ST + S0b ST ≤ S0(1− b)

S0 S0(1− b) < ST ≤ S0

ST S0 < ST ≤ S0(1 + c)

S0(1 + c) S0(1 + c) < ST

(5.3.14)

In other words, if the sub-account moves downward, the buffer would assume a fraction

b of the losses and pass the rest, if any, to the investor; if it moves upward, the investor

would earn the profits up to a cap rate of c.

The payoff feature of spVA, however, is quite different from those of the traditional VAs.

As we have noted in the case of GMMB, the guarantees wrapped in the traditional VAs

can be viewed as a purchased put. The spVA, in contrast, renders the investors a nearly

opposite position-a sold put. The payoff diagram of ϕ(ST ) in Figure 5.3.2 demonstrates

its similarity to a sold put. In fact, ϕ(ST ) can be decomposed to a combination of: a

zero-coupon bond with face value S0(1 + c), a sold put option with strike S0(1 − b), a

sold put option with strike S0(1 + c) and a purchased put with strike S0.

We now turn to the cost analysis for discretely hedging a spVA with payoff ϕ(ST ). As

usual, we assume the reference index follows a GBM. We also ignore the zero-coupon

component in the payoff, for it can be hedged statically. The hedging target thus becomes

ϕ(ST ) = (S0 − ST )+ − (S0(1− b)− ST )+ − (S0(1 + c)− ST )+. (5.3.15)
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Figure 5.3.2: Payoff Diagram of spVA

Note that (5.3.15) is always non-positive, for one of the sold put (the one with strike

S0(1 + c)) has a higher strike and thus worths more than the purchased put.

Though the algorithm we developed in Chapter 4 is designed for European put option,

it can be generalized to the case of any other path-independent options in a natural way.

Specifically, we randomize the maturity by an independent exponential random variable

ε
(1)
λ to obtain a recursive formula for each re-balancing cost. The first cost has an almost

identical form to that in (4.2.1)

e−r(τ1∧ε
λ
1 )
[
P sp

τ1∧ελ1
−
(
M sp

0 e
r(τ1∧ελ1 ) + ∆sp

0 Sτ1∧ελ1

)]
, (5.3.16)

where P sp
t and ∆sp

t are the time-t price and Delta of the spVA at time t (these are

simply the linear combination of the prices and Deltas of the put options in ϕ(ST )),

M sp
t = P sp

t −∆sp
t , τ1 is the hitting time of the band and ελ1 is the exponential maturity

of the contract.

Denote the expectation of (5.3.16) as hsp(S0), then conditioning on Fτ (1)+···+τ (n−1) and
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ε
(1)
λ > τ (1) + · · ·+ τ (n−1), the conditional expectation of the (n+ 1)-th cost is

hsp(Sτ (1)+τ (2)+...+τ (n−1))e−(r+λ)(τ (1)+τ (2)+...+τ (n−1)), (5.3.17)

which is almost the same as (4.2.6) except that h is replaced by hsp.

Therefore, the unconditional expectation is

n∑
i=0

Ci
nh

sp(S0e
(2i−n)α)LiαL

n−i
−α ,

where L±α = E
[
e−(r+λ)τ±α

]
.

The total expected cost is the sum of individuals’.

Recall that for put option, a good approximation to the higher moments of the dis-

crete hedging cost can be achieved by assuming the independence of the individual costs.

Since the payoff of the spVA resembles that of the short put, we have a strong argument

to make the same assumption. As it turns out in Table 5.3.15, this gives us good results

once again.

With the availability of the first four moments, we fit a mixture of two normals model to

the cost distribution. The fitted density is plotted in Figure 5.3.3 and the fitted quantiles

are presented in Table 5.3.16.

Finally, we apply the “Percentile Premium Principle” to calculate the fair value of the

fee for spVA. As before, the fee breaks into two parts, with the regular fee used to cover

the cost of continuous hedging and the additional loading for the discrete re-balancing.

In a frictionless market, the continuous hedging cost of the spVA is given by its arbitrary

free price. And since the payoff function ϕ(ST ) of the spVA can be decomposed as a

linear combination of three vanilla puts with strikes S0, S0(1 + c) and S0(1− b), the price
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of the spVA is equal to

P (S0, S0, r, δ, σ, T )− P (S0, S0(1− b), r, δ, σ, T )− P (S0, S0(1 + c), r, δ, σ, T ), (5.3.18)

where P (S0, K, r, δ, σ, T ) is the Black-Scholes price of a European put with the current

value of the underlier being S0, strike K, risk free interest rate r, dividend yield d and

time to maturity T . At rate δ, the present value of the insurer’s revenue over [0, T ] is

EQ(

∫ T

0

e−rtδSt) = δS0T. (5.3.19)

The fair value for the regular fee is obtained by equating (5.3.18) with (5.3.19).

For the fair value of the loading, we set the 95% quantile of the distribution of the total

re-balancing cost-Q0.95(δ, µ, σ, r, α, b, c, S0, T ) be equal to the expected revenue under the

real probability measure

EP (

∫ T

0

e−rtδStdt) = S0δ
e(µ−r−δ)T − 1

µ− r − δ
.

The results are summarized in Table 5.3.17 to 5.3.20, where the “regular fee with bond” is

obtained by retaining the bond component (a zero-coupon bond with face value S0(1+c))

in the spVA while the “regular fee w/o bond” drops the bond, leaving only the option

part, which has payoff and price. From these tables, several trends can be observed

1. The regular fee for the option part of the spVA is negative. This confirms our

earlier assertion that the spVA essentially render the beneficiary a sold put, which

means he/she should receive , rather than pay, premiums. Moreover, the value of

the sold put increase as the cap level c increases and the buffer b decreases. So the

premiums he/she receives (absolute values of the “regular fee w/o bond”) increase

with c and decrease with b;
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2. In contrary to the VA products we have seen before, there is no certain codepen-

dency between the “regular fee” and the “loading”. As b increases, the “regular fee

with bond” increases while the absolute value of the “regular fee without bond”

and the loading decreases (Indeed, as b increases, the flat part in Figure 5.3.2 be-

comes wider and therefore the move-based hedging does a better job, all fees drop

accordingly); As c increases, the regular fee with bond, the absolute value of the

“regular fee without bond” and the loading all increase; As σ increases, both the

regular fee with bond and the loading decrease .However, the absolute value of

the “regular fee w/o bond” increase with σ since the option the beneficiary shorts

becomes more expensive. And the increased option value in turn drags down the

value of the spVA, given the bond part is insensitive to the volatility.);

3. The regular fee is independent with µ while the loading decreases with it. This is

intuitively clear, in that the payoff of spVA is capped at c and thus unaffected by

the variability of the underlying asset at its high levels. The impacts on the loading

of µ and the cap are similar.

5.3.2 Structured Notes with Contingent Protection

In this section, we consider the discrete hedging problem for structured notes with con-

tingent protection. As a concrete example, let us look at one of UBS AG’s Return

Optimization Securities with Contingent Protection whose payoff is summarized in Kim

and Levisohn (2010):

Investors get 100% principal protection as long as the Standard & Poor’s 500-stock index

hasn’t fallen more than 30% at the end of the product’s three-year term. If the index

falls more than 30%, investors suffer all the losses. If the markets fall by less than 30%,
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b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

moments-true:
1st
2nd
3rd
4th

-0.0008
1.0548
0.4699
4.7803

0.0124
1.2422
0.7058
7.0909

0.0207
1.3945
1.0425
10.0097

-0.0057
0.9683
0.2860
3.7790

0.0088
1.2147
0.5486
6.3520

0.0158
1.3870
0.8014
8.8566

moments-independence:
1st
2nd
3rd
4th

-0.0008
1.0659
0.6095
4.5487

0.0124
1.2408
0.8713
6.5165

0.0207
1.3978
1.1919
8.8230

-0.0057
0.9695
0.4104
3.9483

0.0088
1.2074
0.6873
6.4214

0.0158
1.3917
0.9427
8.7648

Table 5.3.15: Moments comparison. b is the buffer level and c the cap level. The common
parameters are: T = 3, S0 = 50, µ = 0.1, σ = 0.3, r = 0.03, α = 0.1, d = 0.02.

b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

True:
90%
95%

97.5%
99%

1.2933
1.8262
2.3087
2.9439

1.3886
1.9748
2.5893
3.2554

1.4309
2.1145
2.7819
3.6068

1.2454
1.7270
2.1809
2.7154

1.3919
1.9617
2.4999
3.1521

1.4579
2.0614
2.6998
3.5260

Semi-analytic:
90%
95%

97.5%
99%

1.2829
1.8599
2.4071
3.0286

1.3837
2.0337
2.6483
3.3357

1.4204
2.0740
2.8064
3.6804

1.2028
1.7394
2.2541
2.8439

1.3430
1.9617
2.5639
3.2501

1.4159
2.0181
2.6999
3.5673

Table 5.3.16: Quantile comparison. The columns contain the quantiles of the cost dis-
tributions of hedging spVA with different buffer and cap levels. The first row com-
putes the quantiles by simulation, the total number of iteration is 106. The second
row uses a mixture model of two normals to match the first four moments of the cost
distribution, obtained by the semi-analytic algorithm. The common parameters are
S0 = 50, r = 0.03, µ = 0.1, σ = 0.3, d = 0.02, T = 3, α = 0.1.
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b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee with bond 0.2028 0.2037 0.2044 0.2209 0.2217 0.2223
regular fee w/o bond -0.0538 -0.0664 -0.0792 -0.0468 -0.0603 -0.0738

loading 0.0111 0.0122 0.0131 0.0106 0.0117 0.0128

Table 5.3.17: Management fee for spVA. b is the buffer level and c the cap level. The
common parameters are: T = 3, S0 = 50, µ = 0.1, σ = 0.3, r = 0.03, α = 0.1. The
“regular fee w/o bond” is the fee charged for continuously hedging the options part
(excluding the bond in the payoff) of the spVA.

b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee with bond 0.1958 0.1976 0.1990 0.2139 0.2155 0.2168
regular fee w/o bond -0.0704 -0.0836 -0.0969 -0.0615 -0.0755 -0.0895

loading 0.0109 0.0118 0.0127 0.0105 0.0117 0.0121

Table 5.3.18: Management fee for spVA. b is the buffer level and c the cap level. The
common parameters are: T = 3, S0 = 50, µ = 0.1, σ = 0.4, r = 0.03, α = 0.1.

b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee with bond 0.2028 0.2037 0.2044 0.2209 0.2217 0.2223
regular fee w/o bond -0.0538 -0.0664 -0.0792 -0.0468 -0.0603 -0.0738

loading 0.0092 0.0105 0.0118 0.0085 0.0103 0.0112

Table 5.3.19: Management fee for spVA. b is the buffer level and c the cap level. The
common parameters are: T = 3, S0 = 50, µ = 0.2, σ = 0.3, r = 0.03, α = 0.1.

b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee with bond 0.1958 0.1976 0.1990 0.2139 0.2155 0.2168
regular fee w/o bond -0.0704 -0.0836 -0.0969 -0.0615 -0.0755 -0.0895

loading 0.0095 0.0104 0.0115 0.0086 0.0098 0.0110

Table 5.3.20: Management fee for spVA. b is the buffer level and c the cap level. The
common parameters are: T = 3, S0 = 50, µ = 0.2, σ = 0.4, r = 0.03, α = 0.1.
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investors get back their principal at the end of product’s term. If the index rises (the

end-of-period value), investors earn 1.5 times the upside, up to a cap of 58.6%, which

they get if the index is up 39%. Fees, also called the “underwriting discount”, are 2.5%.

The path-dependent part in this product is exactly the same as that of a down-and-out

put (DOP) option, which is put that goes out of existence if the asset price falls to hit a

barrier before maturity.

As a counterpart to the down-and-out put, a down-and-in put comes into existence if the

asset price falls to hit a barrier before maturity. At a first glance, one may allege that

insurers should market the down-and-in put rather than the down-and-out, for the former

provides well-timed protection and should therefore be favored by policyholders over the

latter. However, wise insurers would reject this proposal, for the same argument. The

reason lies in the fact that the policyholders and the insurers have opposite interests. A

well-timed protection for the investor means an ill-timed disaster for the insurer. Insurers

issuing down-and-in put would face non-diversifiable risks in adverse market conditions,

when every policyholder would claim for rescue. So the down-and-out put is indeed a

prudent choice and we now move on to its hedging.

Suppose we sell a down-and-out put written on the sub-account with strike price K and

barrier B(B < K). If the sub-account value never hit the barrier, the payoff of the DOP

at maturity will be the same as that of a standard put. Otherwise, the DOP is knocked

out at the moment of hitting and we are free thereafter.

The price of DOP (with K > B) at time t < T given that it has not been knocked

out is (See e.g. Hull (2011))

PDOP (St, K,B, r, σ, T − t, d)

= Ke−r(T−t)N(−d2)− Ste−d(T−t)N(−d1) + StN(−x1)e−d(T−t)
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−Ke−r(T−t)N(−x1 + σ
√
T − t)− Ste−d(T−t)(

B

St
)2λ[N(y)−N(y1)]

+Ke−r(T−t)(
B

St
)2λ−2[N(y − σ

√
T − t)−N(y1 − σ

√
T − t)].

where St is the sub-account value at time t, K is the strike price, B is the barrier level,

r is the risk free interest rate, σ is the volatility, T is the maturity, d is the dividend yield

and

λ =
r − d+ 1

2
σ2

σ2
,

x1 =
log St

B

σ
√
T − t

+ λσ
√
T − t,

y1 =
log B

St

σ
√
T − t

+ λσ
√
T − t,

y =
log B2

KSt

σ
√
T − t

+ λσ
√
T − t.

The Delta of this option is given by:

∆DOP (St, K,B, r, σ, T − t, d)

= −N(−d1)e−d(T−t) +N(−x1)e−d(T−t) − e−d(T−t) φ(x1)

σ
√
T − t

+Ke−r(T−t)
φ(x1 − σ

√
T − t)

Stσ
√
T − t

− e−d(T−t)B2λ(1− 2λ)St
−2λ[N(y)−N(y1)]

− e−d(T−t)B2λSt
1−2λφ(y1)− φ(y)

Stσ
√
T − t

+Ke−r(T−t)B2λ−2(2− 2λ)St
1−2λ[N(y − σ

√
T − t)−N(y1 − σ

√
T − t)]

+Ke−r(T−t)B2λ−2St
2−2λφ(y1 − σ

√
T − t)− φ(y − σ

√
T − t)

Stσ
√
T − t

.

where φ(x) = 1√
2π
e−

1
2
x2

.

Suppose the sub-account value starts at S0. As a matter of fact, DOP is a path-dependent

option and the barrier level B can take any value smaller than K. Consequently in the

hitting time problem, we have to deal with a new barrier B in addition to the three
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barriers S = S0e
α, S = S0e

−α, t = T for the standard put. This could be troublesome

in general. To circumvent this difficulty, we let B coincide with one of the old barriers,

i.e. B = S0e
−mα for some positive integer m. For a general B, we may find m s.t.

B− = S0e
−(m−1)α < B < S0e

−mα = B+, compute the hedging cost for B− and B+ and

approximate the cost for B by interpolation.

Consider the expectation of the discounted cost at the first truncated stopping time

τ (1) ∧ ε(1)
λ . Because B = S0e

−mα, the DOP will not be knocked out during [0, τ (1) ∧ ε(1)
λ ),

so the expectation of the discounted cost at the first truncated stopping time τ (1)∧ε(1)
λ will

have the same form as that of the standard put, except the price P , delta ∆ and money

market account M are replaced by those of DOP. We denote this value by hDOP (S0).

The discounted value for the cost of the (n+ 1)-th hit is

I{ε(1)
λ >ξn}

I{S0>B}I{Sτ(1)>B} · · · I{Sξn>B}e
−r(ξn+τ (n+1)∧ε(n+1)

λ )[
PDOP

ξn+τ (n+1)∧ε(n+1)
λ

−
(
MDOP

ξn er(τ
(n+1)∧ε(n+1)

λ ) + ∆DOP
ξn ed(τ (n+1)∧ε(n+1)

λ )S
ξn+τ (n+1)∧ε(n+1)

λ

)]
︸ ︷︷ ︸

Dn+1

,

(5.3.20)

where ξn = τ (1) + · · ·+ τ (n).

The first indicator in (5.3.20) says that we have not reached the maturity after the n-th

hit and the next (n+ 1) indicators say that the DOP has not been knocked out by time

τ (1) + · · ·+ τ (n) (this is another advantage we get by restricting B = S0e
−mα. In general,

we need to check the whole path to see whether the barrier is hit. But when B = S0e
−mα,

we only need to check this condition at each hitting time of the moving band). With

these two conditions satisfied, we will continue to hedge the cost at the (n + 1)-th hit

and the form of the cost at the (n+ 1)-th hit is exactly the same as that of the first.

To compute its expectation, we condition on Fτ (1)+···+τ (n) and ε
(1)
λ > τ (1) + · · · + τ (n)}.
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The conditional expectation is

e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)>B} (5.3.21)

E
[
e−r(τ

(n+1)∧ε(n+1)
λ )Dn+1|Fτ (1)+···+τ (n) , ε

(1)
λ > τ (1) + · · ·+ τ (n)

]
= e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)>B}h

DOP (Sτ (1)+···+τ (n)).

For the unconditional expectation, first note that when n < m,

I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)>B} = 1.

So in this case, we only need to compute

e−(r+λ)(τ (1)+···+τ (n))hDOP (Sτ (1)+···+τ (n)),

which can be done in a way similar to that for the standard put, with h replaced by

hDOP . The result is

E[e−(r+λ)(τ (1)+···+τ (n))hDOP (Sτ (1)+···+τ (n))] =
n∑
i=0

Ci
nh

DOP (S0e
(2i−n)α)LiαL

n−i
−α ,

where Lα = E
[
e−(r+λ)τα

]
and L−α = E

[
e−(r+λ)τ−α

]
.

When n = m, I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)>B} = I{S
τ(1)+···+τ(m)>B}. So we need to

compute

E[e−(r+λ)(τ (1)+···+τ (m))I{S
τ(1)+···+τ(m)>B}h

DOP (Sτ (1)+···+τ (m))]

=
∑

S0ekα>B

hDOP (S0e
kα)E[e−(r+λ)(τ (1)+···+τ (m))I{S

τ(1)+···+τ(m)=S0ekα}]. (5.3.22)

Both hDOP and E[e−(r+λ)(τ (1)+···+τ (m))I{S
τ(1)+···+τ(m)=S0ekα}] = Ci

mL
i
αL

m−i
−α , i = m+k

2
are

known, so is (5.3.22).
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When n > m, we need to compute

E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)>B}h
DOP (Sτ (1)+···+τ (n))].

By conditioning on Sτ (1)+···+τ (n) , we can write it as:

∑
S0ekα>B

E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)=S0ekα}]h
DOP (S0e

kα).

The key input is E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)=S0ekα}], which ad-

mits a recursive relation, as shown below.

If the value of the sub-account at the n-th hitting time is S0e
kα, its value at the (n−1)-th

hitting time can only be either S0e
(k−1)α or S0e

(k+1)α. Taking advantage of this fact, we

get

E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)=S0ekα}]

= E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}I{S

τ(1)+···+τ(n)=S0ekα}]

+ E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k+1)α}I{S

τ(1)+···+τ(n)=S0ekα}]

= E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}I{τ (n)=τα}]

+ E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k+1)α}I{τ (n)=τ−α}].

(5.3.23)

The first expectation term on the RHS of (5.3.23) can be computed in two steps.

Conditioning on Fτ (1)+···+τ (n−1) , the conditional expectation is

e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}

E[e−(r+λ)(τ (n))I{τ (n)=τα}|Fτ (1)+···+τ (n−1) ]
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= e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}

E[e−(r+λ)(τ (1))I{τ (1)=τα}]

= e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}

E[e−(r+λ)(τα)I{τ (1)=τα}]

= e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}Lα.

and the full expectation is

E[e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k−1)α}]Lα.

Similarly, the second term on the RHS of (5.3.23) is

E[e−(r+λ)(τ (1)+···+τ (n−1))I{S0>B}I{Sτ(1)>B} · · · I{S
τ(1)+···+τ(n−1)=S0e(k+1)α}]L−α.

In summary, if we let

f(n, k) = E[e−(r+λ)(τ (1)+···+τ (n))I{S0>B}I{Sτ(1)>B} · · · I{Sτ(1)+···+τ(n)=S0ekα}],

then

f(n, k) = f(n− 1, k + 1)L−α + f(n− 1, k − 1)Lα. (5.3.24)

The recursion (5.3.24) starts at n = m with initial condition

f(m, k) = E[e−(r+λ)(τ (1)+···+τ (m))I{S
τ(1)+···+τ(m)=S0ekα}] = Ci

mL
i
αL

m−i
−α ,

i =
m+ k

2
,

k = −m+ 2,−m+ 4, · · · ,m,
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m = 2 m = 3 m = 4 m = 5
moments-true:

1st
2nd
3rd
4th

-0.0107
0.6101
18.7373

1331.2273

0.0473
1.2886
21.1829

1255.2929

0.0911
1.9160
22.2021

1194.0548

0.1120
2.1738
23.8058

1034.2894
moments-semi analytic:

1st
2nd
3rd
4th

-0.0124
0.6328
16.0309

1163.9510

0.0406
1.3876
19.8174

1095.0649

0.0826
2.0269
20.8156
974.4574

0.1095
2.2248
21.2746
888.2653

Table 5.3.21: Moments comparison. The barrier level isB = S0e
−mα. The row “moments-

true” is obtained by simulation and the row “moments-semi analytic” is obtained by the
semi-analytic algorithm with the assumption that individual costs are independent. The
common parameters are: T = 3, S0 = K = 50, µ = 0.1, σ = 0.2, r = 0.02, α = 0.1, d = 0.

and boundary conditions

f(n,−m) = 0,∀n ≥ m, (5.3.25)

f(n, k) = 0,∀k > n. (5.3.26)

In Table 5.3.21, we compare the moments calculated by Monte Carlo simulation and the

semi-analytic algorithm, assuming individual costs are independent. These two methods

generate similar moments estimators.

The large fourth moment of the cost distribution suggests a very heavy tail. Indeed, using

Monte Carlo simulation with 106 iterations, we find, for m = 3 and the same common

parameters as in Table 5.3.21, the 90% quantile of the cost distribution is 0.3737 while

its 99% quantile is 4.6388.
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b = 0.1, c = 0.2 b = 0.1, c = 0.3

b = 0.1, c = 0.4 b = 0.2, c = 0.2

b = 0.2, c = 0.3 b = 0.2, c = 0.4

Figure 5.3.3: Density of the cost distribution of hedging spVA with different buffer and
cap levels. The blue area represents the histogram obtained by simulation. The red plus
sign line is the density of a mixture distribution of two normal, fitted to the values of
the first four moments of the cost distribution given by the semi-analytic algorithm. The
common parameters are S0 = 50, r = 0.03, µ = 0.1, σ = 0.3, d = 0.02, T = 3, α = 0.1.

93



Chapter 6

Extension to Regime Switching

GBM

6.1 Regime Switching Models

Since its invention, the Black-Scholes option pricing model has been refined in various

ways. The demand for capturing the structural changes in macroeconomic conditions,

economic fundamentals, monetary policies and business environment motivates the in-

troduction of Markov regime switching models to the econometrics, finance and actuarial

science. These models use an embedded continuous time Markov chain to control the

transitions between multiple states of certain economic, financial or actuarial factors,

including aggregate return, volatility, interest rate, mortality and so on.

The origin of regime-switching models dates back to Quandt (1958) and Goldfeld and

Quandt (1973), which discuss the parameter estimation of a linear regression system

obeying two separate regimes. Whereafter, in an influential paper, Hamilton (1989) sug-

gests Markov switching techniques as a method for modeling non-stationary time series.

For option pricing under regime switching models, Naik (1993) provides an elegant treat-
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ment pricing European option under a regime switching model with two regimes; Buff-

ington and Elliott (2002) extends the approximate valuation of American options due

to Barone-Adesi and Whaley to a Black-Scholes economy with regime switching; El-

liott et al. (2005) adopts a regime switching random Esscher transform to determine an

equivalent martingale pricing measure and justify their pricing result by the minimal

entropy martingale measure (MEMM); Elliott et al. (2007) studies the price of European

and American option under a generalized Markov-modulated jump diffusion model us-

ing the generalized Esscher transform and coupled partial-differential-integral equations;

Boyle and Draviamb (2007) considers the pricing of exotic options using a PDE method,

Surkov et al. (2007) present a new, efficient algorithm, based on transform methods,

which symmetrically treats the diffusive and integrals terms, is applicable to a wide class

of path-dependent options (such as Bermudan, barrier, and shout options) and options

on multiple assets, and naturally extends to regime-switching Levy models. In the actu-

arial literature, Hardy (2001) popularizes the use of regime switching model for pricing

and hedging long term investment guarantee products and fits the model to the monthly

data from the Standard and Poor’s 500 and the Toronto Stock Exchange 300 indices us-

ing a discrete time regime-switching lognormal model; Siu (2005) considers the valuation

of participating life insurance policies with surrender options in regime-switching mod-

els; Siu et al. (2008) extends the framework of Siu (2005) and investigates the valuation

of participating life insurance policies without surrender options to a Markov, regime-

switching, jump diffusion case; Lin et al. (2009) considers the pricing problem of various

equity-linked annuities and variable annuities under a generalized geometric Brownian

motion model with regime switching.

If the number of states in the regime switching model is large, we need either to solve a

system of PDEs with the number of PDEs being the number of states of the embedded

Markov chain or to perform multiple integrals numerically, both of which can be compu-
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tationally inefficient. Therefore in practice, we prefer relatively simple model with just

two states. It turns out that regime switching model with two regimes is often enough

to describe the vicissitudes of the business world, for instance, the economic expansion

and recession, the bull and the bear market and the public mentality of optimism and

pessimism. See Chapter 11 of Taylor (2005) for empirical evidence.

In this chapter, we consider the discrete hedging problem of variable annuities under

the assumption that the sub-account follows a GBM model with two regimes. To this

end, we start with the derivation of the state-dependent, defective densities of the two-

sided hitting times of the regime switching GBM.

6.2 Hitting Time Distribution for GBM with Two

Regimes

In this section, we derive the hitting time distribution of a Regime Switching GBM with

two regimes. In particular, we consider two independent arithmetic BM

X1
t = µ1t+ σ1W

1
t , X

2
t = µ2t+ σ2W

2
t ,

where W 1
t and W 2

t are a standard Brownian motions under the physical measure P .

Let Jt be an independent continuous Markov process with two states {1, 2} and in-

tensity matrix Q =

−λ λ

v −v

, and {Ti|i ≥ 0} be the jump epochs of Jt.
1

1We assume Jt is observable because, in the incomplete market model that we will introduce shortly,
there are not any other securities or derivatives from which the parameters in the intensity matrix of Jt
could be inferred.
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We define the Markov additive process Xt as

Xt = X0 +
∑
n≥1

∑
1≤i,j≤2,i 6=j

(X i
Tn −X

i
Tn−1

)I{JTn−1
=i,JTn=j,Tn≤t}

+
∑
n≥1

∑
1≤i≤2

(X i
t −X i

Tn−1
)I{JTn−1

=i,Tn−1≤t<Tn}. (6.2.1)

In other words, the evolution of Xt will switch from X i
t to Xj

t when Jt transits from state

i to state j, where 1 ≤ i, j ≤ 2, i 6= j.

The GBM with regime switching is St = S0e
Xt . Since the stopping times of St can be

translated to those of Xt, we focus on the latter hereafter.

Suppose X0 = 0 and J0 = 1, define the two-sided stopping times

Tu,d = inf{t > 0|Xt = u or Xt = d}, (6.2.2)

Tu = inf{t > 0|Xt = u,Xs > d(∀0 ≤ s < t)}, (6.2.3)

Td = inf{t > 0|Xt = d,Xs < d(∀0 ≤ s < t)}. (6.2.4)

As usual, Tu <∞ or Tu,d = Tu implies Td =∞ and Td <∞ or Tu,d = Td implies Tu =∞.

We derive the state-dependent Laplace transform of the Tu and Td

Lu1,1(θ) = E0,1[e−θTuI{JTu=1}],

Lu1,2(θ) = E0,1[e−θTuI{JTu=2}],

Ld1,1(θ) = E0,1[e−θTdI{JTd=1}],

Ld1,2(θ) = E0,1[e−θTdI{JTd=2}],

Lu2,1(θ) = E0,2[e−θTuI{JTu=1}],

Lu2,2(θ) = E0,2[e−θTuI{JTu=2}],

Ld2,1(θ) = E0,2[e−θTdI{JTd=1}],

Ld2,2(θ) = E0,2[e−θTdI{JTd=2}],
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where θ > 0 and E0,1(•) underscores X0 = 0, J0 = 1.

Let ϕi(α) = µiα + 1
2
σ2
i α

2, i = 1, 2 be the Laplace exponent of X i
t and

F (α) = Q+

ϕ1(α) 0

0 ϕ2(α)

 =

ϕ1(α)− λ λ

v ϕ2(α)− v

 ,
then according to Asmussen and Kella (2000),

Theorem 6.2.1 (Asmussen and Kella). For any initial distribution of (X0, J0) and every

complex α such that ϕi(α) exists,

MW (t, α) = eαXt1Jte
−F (α)t

is a (row) vector valued martingale. Consequently, if h(α) and θ(α) are a right eigenvector

and eigenvalue of the matrix F (α), then with every initial distribution of (X0, J0)

eαXt−θ(α)thJt(α) (6.2.5)

is a martingale, where hj(α) is the j-th element of h(α).

The two (real) eigenvalues of F (α) are

θ1,2(α) =
1

2

[
(ϕ1(α)− λ+ ϕ2(α)− v)±

√
(ϕ1(α)− λ− ϕ2(α) + v)2 + 4λv

]
. (6.2.6)

For a given θ > 0, there are four α’s, denoted by αk(θ), k ∈ {1, 2, 3, 4}, s.t. θ is an

eigenvalue of F (αk(θ)). In particular, they are the four roots of the following 4-th order

polynomial

1

4
σ2

1σ
2
2α

4+
1

2
(µ2σ

2
1 +µ1σ

2
2)α3+

[
µ1µ2 −

1

2
vσ2

1 −
1

2
λσ2

2 −
1

2
θ(σ2

1 + σ2
2)

]
α2−[vµ1 + λµ2 + θ(µ1 + µ2)]α+θ(λ+v)+θ2 = 0.

For an eigenvalue θ of F (α), its eigenvector h(α) satisfies h1(α)
h2(α)

= −λ
ϕ1(α)−λ−θ . So we take,
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without loss of generality, h1(α) = −λ, h2(α) = ϕ1(α)− λ− θ.

Now we make use of (6.2.5) to derive the state-dependent Laplace transforms.

Because for any θ > 0,

eα(θ)Xt−θthJt(α(θ))

is a martingale, the optional sampling theorem implies

E0,1

[
eα(θ)XTu,d−θTu,dhJTu,d (α(θ))

]
= h1(α(θ)). (6.2.7)

On the other hand,

E0,1

[
eα(θ)XTu,d−θTu,dhJTu,d (α(θ))

]
= E0,1

[
eα(θ)u−θTuhJTu (α(θ))I{Tu,d=Tu}

]
+ E0,1

[
eα(θ)d−θTdhJTd (α(θ))I{Tu,d=Td}

]
= eα(θ)uE0,1

[
e−θTuhJTu (α(θ))

]
+ eα(θ)dE0,1

[
e−θTdhJTd (α(θ))

]

and

E0,1

[
e−θTuhJTu (α(θ))

]
= E0,1

[
e−θTuhJTu (α(θ))I{JTu=1}

]
+ E0,1

[
e−θTuhJTu (α(θ))I{JTu=2}

]
= −λE0,1

[
e−θTuI{JTu=1}

]
+ [ϕ1(α(θ))− λ− θ]E0,1

[
e−θTuI{JTu=2}

]
= −λLu1,1 + [ϕ1(α(θ))− λ− θ]Lu1,2,

E0,1

[
e−θTdhJTd (α(θ))

]
= −λE0,1

[
e−θTdI{JTd=1}

]
+ [ϕ1(α(θ))− λ− θ]E0,1

[
e−θTdI{JTd=2}

]
= −λLd1,1 + [ϕ1(α(θ))− λ− θ]Ld1,2.

Hence (6.2.7) becomes

−λeα(θ)uLu1,1+eα(θ)u[ϕ1(α(θ))−λ−θ]Lu1,2−λeα(θ)dLd1,1+eα(θ)d[ϕ1(α(θ))−λ−θ]Ld1,2 = h1(α(θ)).

(6.2.8)

Recall that for a given θ > 0, we can find four αk(θ), k ∈ {1, 2, 3, 4} satisfying (6.2.8),

so we have four equations. And we also have four unknowns: Lu1,1, L
u
1,1, L

d
1,1, L

d
1,2. So in
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principle, Lu1,1, L
u
1,1, L

d
1,1, L

d
1,2 can be obtained. (It turns out that, in most common cases,

αk(θ), k ∈ {1, 2, 3, 4} are real and distinct). To be specific, let

A =



−λeα1(θ)u eα1(θ)u[µ1α1(θ) + 1
2
σ2

1α1(θ)2 − λ− θ] −λeα1(θ)d eα1(θ)d[µ1α1(θ) + 1
2
σ2

1α1(θ)2 − λ− θ]

−λeα2(θ)u eα2(θ)u[µ1α2(θ) + 1
2
σ2

1α2(θ)2 − λ− θ] −λeα2(θ)d eα2(θ)d[µ1α2(θ) + 1
2
σ2

1α2(θ)2 − λ− θ]

−λeα3(θ)u eα3(θ)u[µ1α3(θ) + 1
2
σ2

1α3(θ)2 − λ− θ] −λeα3(θ)d eα3(θ)d[µ1α1(θ) + 1
2
σ2

1α3(θ)2 − λ− θ]

−λeα4(θ)u eα4(θ)u[µ1α4(θ) + 1
2
σ2

1α4(θ)2 − λ− θ] −λeα4(θ)d eα4(θ)d[µ1α4(θ) + 1
2
σ2

1α4(θ)2 − λ− θ]



and

B1 =

[
−λ −λ −λ −λ

]′
.

Then [
Lu1,1 Lu1,2 Ld1,1 Ld1,2

]′
= A−1B1.

Similarly, [
Lu2,1 Lu2,2 Ld2,1 Ld2,2

]′
= A−1B2,

with B2 =



µ1α1(θ) + 1
2
σ2

1α1(θ)2 − λ− θ

µ1α2(θ) + 1
2
σ2

1α2(θ)2 − λ− θ

µ1α3(θ) + 1
2
σ2

1α3(θ)2 − λ− θ

µ1α4(θ) + 1
2
σ2

1α4(θ)2 − λ− θ


.

Having obtained the state-dependent Laplace transform of Tu and Td, we are now con-

cerned with inverting them to get the state-dependent defective densities

fui,j(t) = P0,i(Tu ∈ dt, JTu = j), fdi,j(t) = P0,i(Td ∈ dt, JTu = j),

where i, j ∈ {1, 2}.

As a matter of fact, the expressions for Lui,j, i, j ∈ {1, 2} are too complex to allow a

direct analytic inversion. However, we are able find an analytic approximation for the

state-dependent Laplace transform by sum of exponential functions.

To begin with, consider a smooth function f(x) on [0, 1]. According to Beylkin and
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Monzon (2005), we define the continuous approximation problem as follow: Given the

accuracy ε > 0, find the (nearly) minimal number of complex weights ωm and complex

nodes etmx s.t. ∣∣∣∣∣f(x)−
M∑
m=1

ωme
tmx

∣∣∣∣∣ ≤ ε, ∀x ∈ [0, 1].

The first step in solving this continuous problem is to reformulate it as a discrete one.

Namely, given 2N + 1 values of f(x) on a uniform grid in [0, 1] and a target accuracy

ε > 0, find the (nearly) minimal number of complex weights ωm and complex nodes γm

s.t. ∣∣∣∣∣f(
k

2N
)−

M∑
m=1

ωmγ
k
m

∣∣∣∣∣ ≤ ε, ∀0 ≤ k ≤ 2N.

Once we obtain ωm and γm, the solution to the continuous problem is
∑M

m=1 ωme
tmx, tm =

2N log(γm).

Section 4 of Beylkin and Monzon (2005) provides an algorithm for the computation of

ωm and γm

1. For a properly chosen N (we should slightly oversample f(x) to guarantee that the

function can be reconstructed from its samples), let h(k) = f( k
2N

) and use this

sample to construct the Hankel matrix H with Hk,l = h(k + l);

2. Find the smallest eigenvalue of H that is bigger than the target accuracy ε > 0 and

denote the corresponding eigenvector by u = [u0, · · · , uN ];

3. Find M roots of the so called c-eigenpolynomial
∑N

k=0 ukz
k in the significant region

and denote the roots by γ1, · · · , γM . (Beylkin and Monzon (2005) does not provide

clear guidance on how to choose the M roots, though. For our application, we just

select those roots which are real or nearly real. The nearly real number refers to a

complex number with very small imaginary part, which, we believe, is zero if not

for the numerical error. It turns out that this criterion almost always select exactly

M roots.)
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4. Obtain the M weights corresponding to γ1, · · · , γM by solving a least square prob-

lem

minimize
2N∑
k=0

(
hk −

M∑
m=1

ωmγ
k
m

)2

.

To approximation a function f(x) on [0, c], we can define a new function on [0, 1] by

g(x) = f(cx) and find the sum of exponential approximation to g, say
∑M

m=1 ωme
tmx.

Then the approximation to f is
∑M

m=1 ωme
tm

x
c .

In Figure 6.2.1, we apply the algorithm to the 8 state-dependent Laplace transforms.

The results suggest a very good approximation, as the two lines in each plot are almost

indistinguishable.

Once we get the nodes t and weight ω, we can invert the sum of exponential functions to

find an approximation to the state-dependent densities. For example, consider fu1,1(t) =

P0,1(Tu ∈ dt, JTu = 1), because we know Lu1,1 = E0,1[e−θTuI{JTu=1}] =
∑M

m=1 ωme
tmx,

the continuous density fu1,1(t) can be estimated by a discrete probability distribution:

P0,1(Tu = −tm, JTu = 1) = ωm, 1 ≤ m ≤ M . (In principle, Tu and Td should only take

positive value. But there are positive t’s in Table 6.2.1 and Table 6.2.2. We remark

that this does not cause any trouble, for those positive t’s are always associated with

extremely small ω’s, which ,we believe, should in fact be 0. So we can drop the positive

t’s.)

We will see later on that the discrete approximation to the continuous densities of the

two-sided hitting times will reduce the burden of numerical computation of the expected

cost significantly.
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t ω

Lu1,1

1.80852501856910
-1.06059605301666
-2.52907603949538
-5.23319421181019
-9.57317511046110
-16.1619048107431
-26.2536426423025
-42.9604678809146

5.64943548810358e-10
0.0540292652465996
0.160085744041042
0.165102716812368
0.103377159102284
0.0397036897486903
0.00761835243509458
0.000421848827119129

Lu1,2

-1.14784601679815
-3.04871571904201
-6.41798503951179
-11.8427914708896
-20.5712260042625
-35.6930763520289

0.00253328594487044
0.00886794245087835
0.0108794512941907
0.00659607296831040
0.00183889125673382
0.000148511141090607

Ld1,1

1.80852756817127
-1.06059905792554
-2.52908758423329
-5.23321977964831
-9.57320954563106
-16.1619407768352
-26.2536792193954
-42.9605076940982

4.39924500978415e-10
0.0420786354962498
0.124677326691885
0.128586572262751
0.0805143140683346
0.0309231009106943
0.00593354332153920
0.000328556232407684

Ld1,2

-1.14803445863434
-3.0518626504514
-6.42264322541062
-11.8477599424369
-20.5763897315360
-35.6987833276554

0.00210134663721014
0.00738197397318248
0.00908930154130968
0.00551891627013721
0.00153915581156443
0.000124296504110904

Table 6.2.1: The Nodes and weights. The common parameters are µ1 = 0.1, σ1 =
0.2, µ2 = 0.15, σ2 = 0.3, λ = 1, v = 2, u = 0.05, d = −0.05.
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t ω

Lu2,1

-1.15095811756262
-3.05700094828703
-6.43003774970880
-11.8562348816443
-20.5854249365050
-35.7088754004830

0.00228863096892593
0.00806376972204257
0.00995760718492565
0.00605756637161561
0.00169031715922332
0.000136485367669418

Lu2,2

-0.655026489777474
-1.82964119366378
-4.09323727933916
-7.80531230318662
-13.9136117031091
-27.1393227256974

0.119847868824214
0.218616045751207
0.133155914839690
0.0383435399620687
0.00418901372426000
9.22969818685364e-05

Ld2,1

-1.14492512868536
-3.04357722313321
-6.41057159920028
-11.8342822972467
-20.5621582137059
-35.6829543591211

0.00183782068557754
0.00641435596222969
0.00784645262186679
0.00474812549018077
0.00132295942677462
0.000106857961816101

Ld2,2

-0.654934164699926
-1.82923376178448
-4.09207626118483
-7.80242327879989
-13.9054701524608
-27.1110276498739

0.101417891624054
0.185032527533187
0.112728645771948
0.0324762801803375
0.00355090584188897
7.80911940697021e-05

Table 6.2.2: The Nodes and weights (Continued). The common parameters are µ1 =
0.1, σ1 = 0.2, µ2 = 0.15, σ2 = 0.3, λ = 1, v = 2, u = 0.05, d = −0.05.
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Lu1,1 Lu1,2

Ld1,1 Ld1,2

Lu2,1 Lu2,2

Ld2,1 Ld2,2

Figure 6.2.1: Sum of exponential approximation to the state-dependent Laplace trans-
form. The black solid lines are the state-dependent Laplace transforms and the red
plus sign lines are the sum of exponential approximations. The common parameters are
µ1 = 0.1, σ1 = 0.2, µ2 = 0.15, σ2 = 0.3, λ = 1, v = 2, u = 0.05, d = −0.05.
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6.3 The Expected Cost

In this section, we derive a new recursive formula for computing the expected cost of

discretely hedging a put option with the underlying asset following a GBM model with

two regimes.

Consider the first cost

e−r(τ1∧ε
λ
1 )
[
PR
τ1∧ελ1

−∆R
0 e

d(τ1∧ελ1 )Sτ1∧ελ1 −M
R
0 e

r(τ1∧ελ1 )
]
, (6.3.1)

where τ1
d
= Tu,d, ε

λ
1 is an independent exponential r.v. with mean 1

λ
, PR

t ,∆
R
t and MR

t are

the time t price, Delta and value of the money market account of a put option written

on an underlying asset whose dynamics follows a GBM with two regimes.

The expectation of (6.3.1) is denoted by hR(S0, J0). We will show how to compute

hR(S0, J0) using numerical integration in section 6.4.

Now assume hR(S0, J0) is known, we move on to the second cost

I{τ1<ελ1}e
−r(τ1+τ2∧ελ2 )

[
PR
τ1+τ2∧ελ2

−∆R
τ1
ed(τ2∧ελ2 )Sτ1+τ2∧ελ2 −M

R
τ1
er(τ2∧ε

λ
2 )
]
, (6.3.2)

where τ2
d
= Tu,d is conditionally independent of τ1 and ελ2 = ελ1 − τ1.

Conditioning on τ1 and τ1 < ελ1 , the conditional expectation is

e−(r+λ)τ1Eτ1

(
e−r(τ2∧ε

λ
2 )
[
PR
τ1+τ2∧ελ2

−∆R
τ1
ed(τ2∧ελ2 )Sτ1+τ2∧ελ2 −M

R
τ1
er(τ2∧ε

λ
2 )
]
|ελ1 > τ1

)
= e−(r+λ)τ1hR(Sτ1 , Jτ1).

In general, the conditional expectation for the (n+ 1)-th cost is

e−(r+λ)(τ1+···+τn)hR(Sτ1+···+τn , Jτ1+···+τn). (6.3.3)
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For the computation of the unconditional expectation, we take n = 2 as an example

E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)

]
= E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)

]
=

∑
s=S0e2α,S0,S0e−2α

∑
j=1,2

E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)I{Sτ1+τ2=s,Jτ1+τ2=j}

]
. (6.3.4)

Each term in the sum of (6.3.4) can be further simplified in similar ways. For instance,

E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)I{Sτ1+τ2=S0e2α,Jτ1+τ2=1}

]
= hR(S0e

2α, 1)E0,1

[
e−(r+λ)(τ1+τ2)I{Sτ1+τ2=S0e2α,Jτ1+τ2=1}

]
,

and

E0,1

[
e−(r+λ)(τ1+τ2)I{Sτ1+τ2=S0e−2α,Jτ1+τ2=1}

]
= E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα+τ̃α=1}

]
= E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα=1}I{Jτα+τ̃α=1}

]
+E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα=2}I{Jτα+τ̃α=1}

]
(6.3.5)

Using the identity E(XIA) = E(X|A)P (A) for A = {Jτα = 1} and A = {Jτα = 2}, we

have

E0,1

[
e−(r+λ)(τ1+τ2)I{Sτ1+τ2=S0e−2α,Jτ1+τ2=1}

]
= E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα+τ̃α=1}|Jτα = 1

]
P (Jτα = 1)

+ E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα+τ̃α=1}|Jτα = 2

]
P (Jτα = 2) (6.3.6)
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For E0,1

[
e−(r+λ)(τα+τ̃α)I{τ1=τα,τ2=τ̃α}I{Jτα+τ̃α=1}|Jτα = 1

]
, we further condition on τ1 and

the conditional expectation is

e−(r+λ)ταI{τ1=τα}|Jτα = 1 Eτα
[
e−(r+λ)τ̃αI{τ2=τ̃α}I{Jτα+τ̃α=1}|Jτα = 1

]
= e−(r+λ)ταI{τ1=τα}|Jτα = 1 Eτα

[
e−(r+λ)τ̃αI{Jτα+τ̃α=1}|Jτα = 1

]
= e−(r+λ)ταI{τ1=τα}|Jτα = 1 Lα1,1(r + λ),

where Lα1,1(r + λ) = E0,1

[
e−(r+λ)TαI{JTα=1}

]
.

So the unconditional expectation is

Lα1,1(r + λ)E0,1

[
e−(r+λ)ταI{τ1=τα}|Jτα = 1

]
and the first term on the RHS of (6.3.6) is

Lα1,1(r + λ)E0,1

[
e−(r+λ)ταI{τ1=τα}|Jτα = 1

]
P (Jτα = 1)

= Lα1,1(r + λ)E0,1

[
e−(r+λ)ταI{τ1=τα}I{Jτα=1}

]
= Lα1,1(r + λ)E0,1

[
e−(r+λ)ταI{Jτα=1}

]
= Lα1,1(r + λ)Lα1,1(r + λ)

Analogously, the second term is Lα1,2(r + λ)Lα2,1(r + λ), so

E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)I{Sτ1+τ2=S0e2α,Jτ1+τ2=1}

]
= hR(S0e

2α, 1)[Lα1,1(r + λ)Lα1,1(r + λ) + Lα1,2(r + λ)Lα2,1(r + λ)],

where for compactness, we write L±αi,j (r + λ) = L±αi,j , i, j ∈ {1, 2}.
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Applying the same operations to other term in the sum of (6.3.4), we get

E0,1

[
e−(r+λ)(τ1+τ2)hR(Sτ1+τ2 , Jτ1+τ2)

]
= hR(S0e

2α, 1)[Lα1,1L
α
1,1 + Lα1,2L

α
2,1] + hR(S0e

2α, 2)[Lα1,1L
α
1,2 + Lα1,2L

α
2,2]

+ hR(S0, 1)[Lα1,1L
−α
1,1 + Lα1,2L

−α
2,1 + L−α1,1L

α
1,1 + L−α1,2L

α
2,1]

+ hR(S0, 2)[Lα1,1L
−α
1,2 + Lα1,2L

−α
2,2 + L−α1,1L

α
1,2 + L−α1,2L

α
2,2]

+ hR(S0e
−2α, 1)[L−α1,1L

−α
1,2 + L−α1,2L

−α
2,2 ] + hR(S0e

−2α, 2)[L−α1,1L
−α
1,2 + L−α1,2L

−α
2,2 ].

For the unconditional expectation of the (n+1)-th cost E0,i

[
e−(r+λ)(τ1+···+τn)hR(Sτ1+···+τn , Jτ1+···+τn)

]
,

we need to define

Lu =

Lu1,1 Lu1,2

Lu2,1 Lu2,2

 , Ld =

Ld1,1 Ld1,2

Ld2,1 Ld2,2


and then

E0,i

[
e−(r+λ)(τ1+···+τn)hR(Sτ1+···+τn , Jτ1+···+τn)

]
=

n∑
k=0

∑
j=1,2

hR(S0e
(2k−n)α, j)

[ ∑
l1,··· ,ln=0,1;l1+···+ln=k

(Ll1
uL1−l1

d ) · · · (Lln
u L1−ln

d )

]
i,j

. (6.3.7)

The efficient computation of f(n, k) =
[∑

l1,··· ,ln=0,1;l1+···+ln=k(L
l1
uL1−l1

d ) · · · (Lln
u L1−ln

d )
]

makes use of the following recursion.

∑
l1,··· ,ln,ln+1=0,1;
l1+···+ln+ln+1=k

(Ll1
uL1−l1

d ) · · · (Lln
u L1−ln

d )(Lln+1
u L

1−ln+1

d )

=
∑

l1,··· ,ln,ln+1=0,1;
l1+···+ln=k,ln+1=0

(Ll1
uL1−l1

d ) · · · (Lln
u L1−ln

d )Ld +
∑

l1,··· ,ln,ln+1=0,1;
l1+···+ln=k−1,ln+1=1

(Ll1
uL1−l1

d ) · · · (Lln
u L1−ln

d )Lu,

and hence

f(n+ 1, k) = f(n, k)Ld + f(n, k − 1)Lu, 1 ≤ k < n+ 1.
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λ = 0.5
v = 1

λ = 0.5
v = 2

λ = 1
v = 0.5

λ = 1
v = 2

λ = 2
v = 0.5

λ = 2
v = 1

moments-true:
1st
2nd
3rd
4th

0.0246
1.5331
11.5395
291.5601

0.0209
1.1092
8.9031

206.3097

0.0311
1.8356
16.0664
440.4688

0.0222
1.2066
9.8240

259.6881

0.0258
1.2879
12.8538
364.0162

0.0245
1.4221
15.9128
460.4080

moments-independence:
1st
2nd
3rd
4th

0.0246
1.5177
10.7765
280.4126

0.0209
1.0950
8.2642

197.3913

0.0311
1.8148
16.1584
431.2186

0.0222
1.2036
9.3789

251.1223

0.0258
1.2854
13.2212
364.2944

0.0245
1.4174
15.9899
455.1345

moments-semi analytic:
1st
2nd
3rd
4th

0.0280
1.5057
11.2062
275.3842

0.0267
1.0841
8.3594

165.0003

0.0346
1.7014
15.7990
418.8227

0.0261
1.1691
9.6107

213.6247

0.0291
1.2131
12.2099
334.6223

0.0275
1.4033
15.1269
425.0708

Table 6.3.1: Moments comparison. The row “moments-true” and the row “moments-
independence” are obtained by Monte Carlo simulation with 100000 iterations. The row
“moments-semi analytic” is obtained using the semi-analytic algorithm. The common
parameters are: T = 3, S0 = K = 50, r = 0.02, α = 0.05, µ1 = 0.1, µ2 = 0.15, σ1 =
0.3, σ2 = 0.4, d = 0.03, J0 = 1.

For the higher moments, we assume that the individual costs are independent and this

again turns out to be reasonable. See Table 6.3.1 for the comparison using the results

from Monte Carlo simulation. We then fit the cost distribution with a mixture model

of two normals by matching the first 4 raw moments and use the fitted distribution

to approximate the quantiles. The fitted densities are plotted in Figure 6.3.1 and the

quantiles are listed in Table 6.3.2.

6.4 Expectation of the First Cost

In this section, we compute the function Expectation of the First Cost-hR(S0, J0), using

numerical integration.
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λ = 0.5
v = 1

λ = 0.5
v = 2

λ = 1
v = 0.5

λ = 1
v = 2

λ = 2
v = 0.5

λ = 2
v = 1

quantiles-true:
90%
95%

97.5%
99%

1.4271
1.8606
2.2401
2.6982

1.1152
1.5466
1.9354
2.4048

1.3103
1.6185
1.8913
2.2525

1.1418
1.5240
1.8756
2.3400

0.9825
1.2448
1.4969
1.8188

1.0513
1.3534
1.6340
1.9881

quantiles-semi analytic:
90%
95%

97.5%
99%

1.4245
1.8345
2.2043
2.6839

1.3256
1.7036
2.0401
2.4606

1.3334
1.7245
2.0862
2.5961

1.2599
1.6221
1.9473
2.3626

1.0461
1.3511
1.6225
1.9602

1.0119
1.3116
1.5891
1.9844

Table 6.3.2: Quantiles comparison. The true quantiles are obtained by Monte Carlo
simulation with 100000 iterations. The common parameters are: T = 3, S0 = K =
50, r = 0.02, α = 0.05, µ1 = 0.1, µ2 = 0.15, σ1 = 0.3, σ2 = 0.4, d = 0.03, J0 = 1.

Recall that the first cost is given by

e−r(τ1∧ε
λ
1 )
[
PR
τ1∧ελ1

−∆R
0 e

d(τ1∧ελ1 )Sτ1∧ελ1 −M
R
0 e

r(τ1∧ελ1 )
]

= I{τ1<ελ1}e
−rτ1

[
PR
τ1
−∆R

0 e
dτ1Sτ1 −MR

0 e
rτ1
]

+ I{τ1≥ελ1}

[
PR
ελ1
−∆R

0 e
dελ1Sελ1 −M

R
0 e

rελ1

]
(6.4.8)

The second term on the RHS of (6.4.8) is of minor importance, for at least two reasons:

1. When ελ1 is large and the bandwidth α is small, the sub-account will almost always

hit the band before ελ1 , especially with high volatility or drift. So the second term

vanishes in this case.

2. When ελ1 is small and the sub-account does not hit the band before ελ1 , the second

term-the difference between the value of the option and the hedging portfolio-is

nonzero but should be very small. Because neither time (ελ1 is small) nor the

underlying asset price (the sub-account does not hit the band) has changed too

much.
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λ = 0.5, v = 1 λ = 0.5, v = 2

λ = 1, v = 0.5 λ = 1, v = 2

λ = 2, v = 0.5 λ = 2, v = 1

Figure 6.3.1: Density comparison. The histograms are obtained by Monte Carlo simu-
lation with 100000 iterations. The common parameters are: T = 3, S0 = K = 50, r =
0.02, α = 0.05, µ1 = 0.1, µ2 = 0.15, σ1 = 0.3, σ2 = 0.4, d = 0.03, J0 = 1.

Henceforth we ignore the second term and focus on the first of (6.4.8). Table 6.3.1

examines the accuracy of this simplification. The row “moments-semi analytic” uses the

semi-analytic algorithm to compute the moments of the total re-balancing cost, which
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are close to the value obtained by Monte Carlo Simulation.

Denote e−rτ1
[
PR
τ1
−∆R

0 e
dτ1Sτ1 −MR

0 e
rτ1
]

by q(ελ1 , τ1), the expectation of the first term

on the RHS of (6.4.8) is

E
[
I{τ1<ελ1}q(ε

λ
1 , τ1)

]
= E

[
Eελ1

(
I{τ1<ελ1}q(ε

λ
1 , τ1)

)]
,

where the inner expectation can be further decomposed

Eελ1

[
I{τ1<ελ1}q(ε

λ
1 , τ1)

]
= Eελ1

[
I{τ1<ελ1}q(ε

λ
1 , τ1)I{τ1=τα}

]
+ Eελ1

[
I{τ1<ελ1}q(ε

λ
1 , τ1)I{τ1=τ−α}

]
= Eελ1

[
I{τα<ελ1}q(ε

λ
1 , τα)I{τ1=τα}

]
+ Eελ1

[
I{τ−α<ελ1}q(ε

λ
1 , τ−α)I{τ1=τ−α}

]
= Eελ1

[
I{τα<ελ1}q(ε

λ
1 , τα)

]
+ Eελ1

[
I{τ−α<ελ1}q(ε

λ
1 , τ−α)

]
= Eελ1

[
I{τα<ελ1}q(ε

λ
1 , τα)I{Jτα=1}

]
+ Eελ1

[
I{τα<ελ1}q(ε

λ
1 , τα)I{Jτα=2}

]
+ Eελ1

[
I{τ−α<ελ1}q(ε

λ
1 , τ−α)I{Jτ−α=1}

]
+ Eελ1

[
I{τ−α<ελ1}q(ε

λ
1 , τ−α)I{Jτ−α=2}

]
. (6.4.9)

In order to compute the expectation terms in (6.4.9), we need expressions for the (state-

dependent) option price PR and Delta ∆R under the two state regime-switching model.

However, it is well known that this model implicitly implies the incompleteness of the

underlying financial markets. In other words, there are infinitely many equivalent mar-

tingale measures. See Naik (1993) for more details.

Various approaches have been proposed to select an equivalent martingale measure for op-

tion pricing in an incomplete market. In essence, these methods choose the (unique) mar-

tingale measures that optimize certain criteria, which include minimizing the quadratic

utility of the losses caused by incomplete hedging (Follmer and Schweizer (1991), Follmer

and Sondermann (1986) and Schweizer (1996)) and an utility optimization problem based

on marginal rate of substitution (Davis (1997)).
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Gerber and Shiu (1994) pioneered the use of the Esscher transform, a time-honored tool

in actuarial science introduced by Esscher (1932), for derivative pricing in incomplete

market. It is shown that the martingale measure induced by Esscher transform max-

imizes the expected power utility. In our analysis, we adopt a particular form of the

Esscher transform introduced in Elliott et al. (2005) to determine the equivalent martin-

gale measure for pricing under the regime switching model. The choice of this version of

the Esscher transform has been justified by Siu (2008) and Siu (2011) using a saddle point

of a stochastic differential game and the minimization of relative entropy, respectively.

Suppose the continuous Markov chain underlying the regime switching model is Jt, the

risk free interest rate is r and the dynamic of logarithm return process is

Xt = X0 +

∫ t

0

(
µJs −

1

2
σ2
Js

)
ds+

∫ t

0

σJsdWs,

where Jt ∈ {1, 2}, Wt is a standard Brownian motion under the physical probability

measure and Wt is independent of ξt.

Following Lin et al. (2009), define

θ?t =
µJt − r
σJt

and a new probability measure Qθ?

dQθ?

dP
|Gt = Λ?

t =
e−

∫ t
0 θ

?
udWu

EP

[
e−

∫ t
0 θ

?
udWu|FJt

] ,
where FJt and FWt are the filtration generated by {ξt} and {Wt} respectively, Gt =

FJt ∨ FWt is the minimal σ-algebra containing both FJt and FWt .

Since Λ?
t is Gt adapted and

dΛ?
t

Λ?
t

= −θ?t dWt,
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From
dΛ?t
Λ?t

= −θ?t dWt, we know that {Λ?
t} is a ({Gt}, P )-(local)-martingale. If {θ?t } satis-

fies the Novikov’s condition, {Λ?
t} is a ({Gt}, P )-martingale. Then by Girsanov’s theorem,

W̄t = Wt + θ?t dt, t ≥ 0 is a ({Gt}, Qθ?)-standard Brownian motion.

The sub-account account value St = eXt has the following dynamics under Qθ?

dSt
St

= rdt+ σJtdW̄t,

and because we do not have any other securities or derivatives in our incomplete market

model, we assume the intensity matrix Q of ξt is observable/estimable.

The state-dependent price of the put option at any time t < T is given by the Qθ?

expectation of its discounted payoff

PR(St, Jt) = EQθ? ,t
[
e−r(T−t)(K − ST )+

]
. (6.4.10)

This expectation is computed by first conditioning the path of J from t to T to get

EQθ? ,t
[
e−r(T−t)(K − ST )+|Js, t < s ≤ T

]
= Ke−r(T−t)N(−d2)− Ste−d(T−t)N(−d1),

where

d1 =
log(St

K
) + (r − d)(T − t) + 1

2

∫ T
t
σ2
ξs
ds√∫ T

t
σ2
ξs
ds

=
log(St

K
) + (r − d)(T − t) + 1

2
[σ2

1Z1 + σ2
2(T − t− Z1)]√

σ2
1Z1 + σ2

2(T − t− Z1)
,

d2 = d1 −
√
σ2

1Z1 + σ2
2(T − t− Z1)

with Z1 the occupation time of J in state 1 over the interval [t, T ].

Then the unconditional expectation is taken w.r.t. Z1, whose density can be found in
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Naik (1993)

f1(x, T − t)

= e−λ1x−λ2(T−t−x)[δ0(T − t− x)

+ (
λ1λ2x

T − t− x
)

1
2B1(2[λ1λ2x(T − t− x)]

1
2 ) + λ1B0(2[λ1λ2x(T − t− x)]

1
2 )] (6.4.11)

if Jt = 1 and

f2(x, T − t)

= e−λ1x−λ2(T−t−x)[δ0(x)

+ (
λ1λ2(T − t− x)

x
)

1
2B1(2[λ1λ2x(T − t− x)]

1
2 ) + λ2B0(2[λ1λ2x(T − t− x)]

1
2 )]

(6.4.12)

if Jt = 2, where the intensity matrix of Jt is Q =

−λ1 λ1

λ2 −λ2

 under Qθ? , δ0 is the

Dirac’s delta funtion and Bp(x) is the modified Bessel function

Bp(x) =
∞∑
k=0

(x/2)2k+p

k!(k + p)!
.

So

PR(St, Jt) = EZ1

[
Ke−r(T−t)N(−d2)− Ste−d(T−t)N(−d1)

]
,

and

∆R(St, Jt) =
∂PR(St, Jt)

∂St

= EZ1

[
∂

∂St

(
Ke−r(T−t)N(−d2)− Ste−d(T−t)N(−d1)

)]
= EZ1

[
−e−d(T−t)N(−d1)

]
.
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At this point, we remark that the increased computational complexity due to the ab-

sence of closed form expressions for the price and Delta of the put option is offset in

part by the use of a discrete distribution as an approximation to the continuous, state-

dependent density of the hitting time. Indeed, the integral w.r.t. the hitting time is now

substantially reduced to a simple sum with just a few terms.

6.5 The Management Fee

In this section, we address some technical issues related to the application of the “Per-

centile Premium Principle” to calculate the fair value of the management fee under the

regime switching GBM model.

As usual, the cost of continuous hedging is given by the price of the put option PR(S0, J0),

which we have obtained in Section 6.4. The expected revenue, on the other side, is taken

under the Qθ? measure,

EQθ? [

∫ T

0

e−rtδStdt].

Recall that dSt
St

= rdt+ σJtdW̄t under Qθ? , we have EQθ? [St] = S0e
rt and therefore

EQθ? [

∫ T

0

e−rtδStdt] = δS0T.

The regular fee, which covers the cost of continuous hedging cost, is then the solution to

PR(S0, J0) = δS0T .

To determine the loading, we use the equation

95% quantile of rebalancing cost = expected revenue,
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where the LHS is computed by the semi-analytic algorithm and RHS is taken under the

physical measure P

EP [

∫ T

0

e−rtδStdt] =

∫ T

0

e−rtδEP (St)dt =

∫ T

0

e−rtδS0E
P (eXt)dt.

Now we show how to compute EP (eXt). Suppose X0 = 0, J0 = 1, the drift and volatility

of X are µi and σi in state i ∈ {1, 2} (we write the drift as µi for convenience, whereas

it should be µi − δ − 1
2
σ2
i after the management fee is deducted).

According to Theorem 6.2.1,

eαXt−θ(α)thJt(α),

is a martingale, where the intensity matrix of Jt is Q =

−λ λ

v −v

, θ(α) is defined in

(6.2.6), h1(α) = −λ, h2(α) = ϕ1(α) − λ − θ(α) and ϕi(α) = µiα + 1
2
σ2
i α

2, i = 1, 2. Let

α = 1, we have

EP [eXt−θ(1)thJt(1)] = hJ0(1) = −λ,

or equivalantly

EP [eXthJt(1)] = −λeθ(1)t. (6.5.13)

The LHS of (6.5.13) can be decomposed to

EP [eXthJt(1)I{Jt=1}] + EP [eXthJt(1)I{Jt=2}]

= −λEP [eXtI{Jt=1}] + (ϕ1(1)− λ− θ(1))EP [eXtI{Jt=2}].

So

−λEP [eXtI{Jt=1}] + (ϕ1(1)− λ− θ(1))EP [eXtI{Jt=2}] = −λeθ(1)t. (6.5.14)

Since we have two values for θ(1) (given by (6.2.6)), (6.5.14) offers two equations, from

which EP [eXtI{Jt=1}] and EP [eXtI{Jt=2}] can be solved. Sum them together, we get
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λ = 0.5
v = 1

λ = 0.5
v = 2

λ = 1
v = 0.5

λ = 1
v = 2

λ = 2
v = 0.5

λ = 2
v = 1

Regular Fee 0.1026 0.1001 0.1100 0.1038 0.1146 0.1120
Loading 0.0110 0.0091 0.0093 0.0089 0.0072 0.0078

Table 6.5.3: The Management fee for discrete hedging. The common parameters are:
T = 3, S0 = K = 50, r = 0.02, α = 0.05, µ1 = 0.1, µ2 = 0.15, σ1 = 0.3, σ2 = 0.4, d =
0.03, J0 = 1.

EP [eXt ].

In Table 6.5.3, we calculate the regular fee and loading for different transition rates of

the two states.

Under a GBM model with no regime switching, the regular fee/loading is 0.0945/ for

state 1: µ = 0.1, σ = 0.3 and 0.1220/ for state 2: µ = 0.15, σ = 0.4. Comparing these

values with those in Table 6.5.3, we observe an interesting disparity between continuous

and discrete hedging, in terms of the cost. With the introduction of regime switching,

the regular fee-the cost of continuous hedging-lies strictly within its two extremes (the

value for a single state), while the loading-the cost of discrete hedging-becomes uniformly

larger, in response to the increased level of stochasticity.

There is no obvious trend among the discrete hedging costs for different transition rates.

As we have commented in Section 5.1, the mean return rate µ and the volatility σ have

opposite impacts on the loading, whereas µ and σ in one state should in principle be

uniformly larger or smaller than they are in the other state, for higher returns usually

come with higher risks.

6.6 Application to Structured Product based VA

It is possible to generalize the algorithm for vanilla put option to any VA product with

a path-independent payoff. In this section, we consider, under the regime switching

GBM model, the hedging cost analysis of the Structured Product based VA with buffer

protection, introduced in Section 5.3.1.
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The generalization is straightforward since the only part we need to modify in the original

algorithm is the function hR(S0, J0). Denote by hspR(S0, J0) the expectation of first re-

balancing cost, given the initial sub-account value S0 and initial state of the underlying

Markov chain J0

e−r(τ1∧ε
λ
1 )
[
P spR

τ1∧ελ1
−∆spR

0 ed(τ1∧ελ1 )Sτ1∧ελ1 −M
spR
0 er(τ1∧ε

λ
1 )
]
,

where P spR
t ,∆spR

t ,M spR
t are the price, Delta and money account value for an option with

payoff (5.3.15), respectively; τ1 is the hitting time of the band and ελ1 is the exponential

maturity of the contract.

In Table 6.6.4 and 6.6.5, we calculate the management fee of the spVA under regime

switching GBM model for several contract and model parameters, which lead to the

following observations

1. Like the case of the GBM model, the regular fee obtained under the regime switch-

ing GBM model is also negative, exposing the fact that the policyholder essentially

assumes a short put position;

2. The regular fee is independent of µ; Moreover, if the underlying Markov chain

spends more time in the high volatility state (as the intensities change from λ =

1, v = 2 to λ = 2, v = 1), the regular fee decreases. This is consistent with our

earlier finding for the spVA under the GBM model, that the higher the volatility,

the lower the regular fee;

3. In contrast with our earlier finding that the increase in µ or σ will result in smaller

loading, the loading in the case of regime switching GBM model varies oppositely.

When the underlying Markov chain spends more time in the state in which both µ

and σ are higher, the loading increases;

4. The impact of b and c on the regular fee and the loading are the same as in the
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b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee -0.0630 -0.0763 -0.0897 -0.0549 -0.0691 -0.0833
loading 0.0087 0.0091 0.0096 0.0077 0.0081 0.0090

Table 6.6.4: Management fee for spVA under the regime switching GBM model. b is
the buffer level and c the cap level. The common parameters are: T = 3, S0 = 50, µ1 =
0.1, µ2 = 0.15, σ1 = 0.3, σ2 = 0.4, r = 0.02, α = 0.05, λ = 1, v = 2.

b = 0.1
c = 0.2

b = 0.1
c = 0.3

b = 0.1
c = 0.4

b = 0.2
c = 0.2

b = 0.2
c = 0.3

b = 0.2
c = 0.4

regular fee -0.0681 -0.0815 -0.0950 -0.0594 -0.0737 -0.0880
loading 0.0092 0.0097 0.0104 0.0082 0.0090 0.0094

Table 6.6.5: Management fee for spVA under the regime switching GBM model. b is
the buffer level and c the cap level. The common parameters are: T = 3, S0 = 50, µ1 =
0.1, µ2 = 0.15, σ1 = 0.3, σ2 = 0.4, r = 0.02, α = 0.05, λ = 2, v = 1.

case of GBM model.

121



Chapter 7

Future Work and Conclusion

In the future, we plan to generalize the semi-analytic algorithm for the hedging cost

analysis of more VA products, especially those with high-water-mark and withdrawal

features. In this chapter, we first present some preliminary results that we have ob-

tained for the high-water-mark VA in Section 7.1. The discrete hedging problem for the

GMWB, however, is extremely challenging. Even in the continuous setting, the price of

the GMWB can only be calculated by Monte Carlo simulation or sophisticated analytical

approximation. Finally we conclude the thesis in Section 7.2.

7.1 Preliminary Results on the High-Water-Mark VA

A high-water-mark VA is very similar to the floating strike European lookback option

with payoff MT − ST , where ST is the value of the sub-account at maturity T and

MT = max0≤t≤T St is the running maximum of S. For this kind of VA, we consider the

following 4 discrete hedging strategies

1. St based: we rebalance the hedging portfolio whenever the value of the underlying

asset St hits a two-sided band with width α: [Ste
−α, Ste

α];
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St based Mt based Mt and St based ∆t based
mean -0.4182 -7.2049 1.2970 -0.2740
std 2.6744 18.8359 6.5807 1.5499
skewness -2.2890 0.0701 1.2038 -0.1121
kurtosis 20.2518 2.9146 5.6948 4.8534
90% quartile 1.9511 17.9791 10.1311 1.5488
95% quartile 2.8603 24.0801 13.7253 2.1594
97.5% quartile 3.7876 29.0879 17.2060 2.7790
99% quartile 5.1369 35.1116 21.7860 3.6232

Table 7.1.1: Summary statistics: the cost distribution of the 4 hedging strategies for a high-water-mark VA. The

common parameters are T = 3, S0 = 50, r = 0.02, µ = 0.1, σ = 0.3. To make a fair comparison, the bandwidth parameter

α are tuned so that the hedging frequency of the 4 hedging strategies are roughly the same. In particular, St based:

α = 0.05 with average number of rebalance 100; Mt based: α = 0.003 with average number of rebalance 106; Mt and St

based: α = 0.016 with average number of rebalance 101; ∆t based: α = 0.11 with average number of rebalance 99.

2. Mt based: we rebalance the hedging portfolio whenever Mt-the running maximum

of St-reaches a new level Mte
α;

3. Mt and St based: we rebalance the hedging portfolio whenever Mt rises to Mte
α or

St falls to Ste
−α;

4. ∆t based: we rebalance the hedging portfolio whenever the absolute change of the

option Delta exceed α(in other words, the band is [∆t − α,∆t + α]).

Table 7.1.1 summarize the distributional statistics of the these four strategies. Clearly,

the two-sided underlier-based hedging is no longer the favorite, as the ∆t based exhibits

smaller variance, smaller kurtosis and lighter right tail for a given hedging frequency.

So we turn to the analysis of the ∆t based discrete hedging. According to Proposition

6.7.2 of Musiela and Rutkowski (2011), the time t price of a high-water-mark VA is

LPt = −sN(−d̂) +Me−rτN(−d̂+σ
√
τ) + s

σ2

2r
N(d̂)− e−rτsσ

2

2r
(
M

s
)2rσ−2

N(d̂−2rσ−1
√
τ),

(7.1.1)
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where s = St,M = Mt, τ = T − t, r is the risk free interest rate and d̂ =
log(s/M)+(r+ 1

2
σ2)τ

σ
√
τ

.

The analysis of the ∆t based discrete hedging requires the (two-sided) hitting times den-

sities of ∆t. Interestingly, ∆t turns out to be a (though highly nonlinear) function of

only two variables-the time to maturity τ and the ratio Mt

St
(of course, Delta depends on

other model parameters, such as r and σ. But here we only look at time-varying ones).

So as a first attempt, we have identified the two-sided hitting time densities of Mt

St
.

Assuming a GBM model with St = S0e
Xt and Xt = (µ−d− 1

2
σ2)t+σBt = αt+σBt, X0 =

0, then Mt

St
= eX̄t−Xt , where Bt is a standard Brownian motion under the physical mea-

sure P and X̄t = max0≤s≤tXs. So the two-sided hitting problem of Mt

St
can be translated

to that of the reflected processes X̄t −Xt.

We define, in a more general sense, the reflected process of Xt by Yt = (s∨X̄t)−Xt, Y0 =

s− x = z ≥ 0. For k > z > 0, we are interested in the following stopping times of Yt

T0,k := inf{t ≥ 0 : Yt /∈ (0, k)};

Tk: the first time when Yt hits k without hitting 0 earlier;

T0: the first time when Yt hits 0 without hitting k earlier.

Note that Tk <∞(T0 <∞) implies T0 =∞(Tk =∞).

From X0 = x < s and the definition of Yt, we know the first time Yt hits 0 is the

first time Xt rises to s and before that, Yt = s−Xt. So

Tk = inf{t : Yt = k, Yu > 0(0 ≤ u ≤ t)}

= inf{t : Xt = s− k,Xu < s(0 ≤ u ≤ t)},

i.e. Tk is the two-sided stopping time τs−k of Xt, with X0 = x, hitting s− k before s.

Similarly, T0 is the two-sided stopping time τs of Xt, with X0 = x, hitting s before s− k.

According to Proposition 1 of Avram et al. (2004), the Laplace transform of Tk and T0
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are

Ex(e
−qTk) = Ex[e

−qTkI{τs<τs−k}] + Ex[e
−qTkI{τs>τs−k}]

= Ex[e
−qTkI{τs>τs−k}] = Ex[e

−qτs−kI{τs>τs−k}]

= Z(q)(x− s+ k)−W (q)(x− s+ k)
Z(q)(k)

W (q)(k)
(7.1.2)

and

Ex(e
−qT0) = Ex[e

−qT0I{τs<τs−k}] + Ex[e
−qT0I{τs>τs−k}]

= Ex[e
−qτsI{τs<τs−k}]

=
W (q)(s− x+ k)

W (q)(k)
(7.1.3)

respectively.

W (q)(x) and Z(q)(x) in (7.1.2) and (7.1.3) are called the scale functions and admit explicit

forms for drifted Brownian motion Xt

W (q)(x) =
2

σ2ε
eγx sinh(εx),

Z(p)(x) = eγx cosh(εx)− γ

ε
eγx sinh(εx),

γ = − α

σ2
,

ε = ε(q) =

√
α2

σ4
+

2q

σ2
=

√
γ2 +

2q

σ2
.

With these specifications, (7.1.2) and (7.1.3) become

Ex(e
−qTk) = eγm cosh(εm)− eγm sinh(εm) cosh(εk)

sinh(εk)

= eγm
sinh(εz)

sinh(εk)
,

m = k − z > 0 (7.1.4)
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and

Ex(e
−qT0) = eγ(m−k) sinh(εm)

sinh(εk)
. (7.1.5)

The inverse transform of (7.1.4) and (7.1.5) can be written in closed forms, thanks to

Roberts G.E. and Kaufman H. (1966). In particular, the inverse transform of (7.1.4), i.e.

the density of Tk is

fTk(t) = −eγmσ
2

2
e−

σ2γ2

2
t 1

σ
√

πt
2

∞∑
n=−∞

[
e−

2k2

σ2t
( z

2k
+ 1

2
+n)2 2k

σ2t
(
z

2k
+

1

2
+ n)

]
, (7.1.6)

and the inverse transform of (7.1.5), i.e. the density of T0 is

fT0(t) = −eγ(m−k)σ
2

2
e−

σ2γ2

2
t 1

σ
√

πt
2

∞∑
n=−∞

[
e−

2k2

σ2t
(m

2k
+ 1

2
+n)2 2k

σ2t
(
m

2k
+

1

2
+ n)

]
.(7.1.7)

Note that once Yt hits 0, the band for re-balancing will become one-sided, since Yt cannot

assume negative values. So we also need the density of the one-sided hitting time, which

is defined as

σ̄k = inf{t : Yt = k, Y0 = 0}.

Theorem 1 in Avram et al. (2004) provides the Laplace transform of σ̄k

E0[e−qσ̄k ] = Z(u)(k)−W (u)(k)
uW (u)(k)

W (u)′(k)

= eγk cosh(εk)− γ

ε
eγk sinh(εk)−

2q
σ2 e

γk sinh2(εk)

γε sinh(εk) + ε2 cosh(εk)
. (7.1.8)

Unfortunately, we are not able to invert (7.1.8) analytically. Instead, we use the method

developed in Beylkin and Monzon (2005) to approximate (7.1.8) with exponential sums∑M
m=1 ωme

tmu. As we have seen in Chapter 6, this is equivalent to approximate a con-

tinuous r.v. with a discrete one. Figure 7.1.1 shows the satisfactory accuracy of this
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approximation.

Next, we want to find the density of Yt ∈ dy with Y0 = s − x = z > 0, given that Yt

Figure 7.1.1: Exponential sum approximation to the Laplace transform of
σ̄k. k = 1. The parameters in the approximation are M = 10, ω =
[0.0000, 0.0317, 0.1411, 0.2206, 0.2327, 0.1929, 0.1205, 0.0496, 0.0103, 0.0006], t =
[2.6696,−1.5012,−3.2368,−6.2839,−11.1481,−18.4692,−29.3484,−45.7304,−71.2230,−114.2089]

did not hit 0 or k in the time interval [0, t). This can be first translated to the problem

of finding the density of Xt ∈ d(s − y) with X0 = x, given that Xt did not hit s − k or

s during [0, t), and then to finding the density of Xt ∈ d(k − y) with X0 = k − z, given

that Xt did not hit 0 or k during [0, t). The Laplace transform of the last density, called

the potential measure, is provided in Theorem 8.7 of Kyprianou A. E. (2006)

u(q)(k − z, k − y) =

∫ ∞
0

e−qtPz(Yt ∈ dy, T0,k > t)dt

=

∫ ∞
0

e−qtPk−z(Xt ∈ d(k − y), τ0 ∧ τk > t)dt

=
W (q)(m)W (q)(y)

W (q)(k)
−W (q)(h)

=
2

σ2ε
eγh
(

sinh(εm) sinh(εy)

sinh(εk)
− sinh(εh)I{h>0}

)
,

m = k − z > 0,

h = y − z. (7.1.9)
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The inversion is also achieved by exponential sum approximation. See Figure 7.1.2 for

the result. As we mentioned before, when Yt hits 0, the band turns to one-sided, so the

Figure 7.1.2: Exponential sum approximation to u(q)(k − z, k − y).
k = 1, y = 0.6, z = 0.5. The parameters in the approxima-
tion are M = 6, ω = [1.2166, 1.0187, 1.5790, 0.3438, 0.0520, 0.0021], t =
[−0.2676,−3.4871,−1.3696,−6.8517,−11.9951,−20.2963].

potential measure also needs to be adjusted. Specifically, we are interested in PY0=0(Yt ∈

dy, σ̄k > t). From Theorem 8.11 of Kyprianou A. E. (2006), we know

Ū (q)(0, dy) =

∫ ∞
0

e−qtPY0=0(Yt ∈ dy, σ̄k > t)dt

=

[
W (q)(k)

W (q)′(y)

W (k)′(k)
−W (q)(y)

]
dy

=
2

σ2ε
eγy
[
sinh(εk)

γ
ε

sinh(εy) + cosh(εy)
γ
ε

sinh(εk) + cosh(εk)
− sinh(εy)

]
. (7.1.10)

Again, the sum of exponential approximation is used, as shown in Figure 7.1.3.

So far, we have obtained the hitting time densities and the potential measures for

the two-sided stopping times of the ratio Mt

St
. Since ∆t of the high-water-mark VA is a

function of Mt

St
and the time to maturity, the quantities we have found here form a basis

for the computation of their counterparts in terms of ∆t.
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Figure 7.1.3: Exponential Sum Approximation to Ū (q)(0, dy). k =
1, y = 0.5. The parameters in the approximation are: M = 10, ω =
[0.5085, 1.7775, 2.6773, 2.9029, 2.5599, 1.8144, 0.9581, 0.3255, 0.0545, 0.0025], t =
[−0.8801,−2.3806,−5.0701,−9.2649,−15.3960,−24.1686,−36.7642,−55.1767,−83.0301,−128.7477].

7.2 Conclusion

In this thesis, we first investigate various discrete hedging strategies for put option and

compare their relative efficiencies based on the severity of extreme losses. We identify the

two-sided underlier-based hedging as the most suitable in that it produces the lightest

right tail for a given hedging frequency. Then we assume the GBM model to develop a

semi-analytic framework for the cost analysis of move-based discrete hedging and with

the resulting cost distribution, we propose the “Percentile Premium Principle”, which

breaks the premium an insurer should charge into two parts-the regular fee for covering

the cost of continuous hedging and the loading for the additional cost arising from discrete

re-balances. We demonstrate the rationale for the new premium principle by applying,

with necessary extensions, the semi-analytic algorithm to the pricing of some popular

VA designs, including GMMB, annual ratchet VA and structured product based VA with

buffer/contingent protection. It turns out that the loading, once deemed negligible by

most VA providers, is too significant to be ignored. Finally, we generalize the algorithm

to the case of the regime switching GBM model with two regimes, which allows a better
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modeling of the underlying economy over long period.

The key idea behind our semi-analytic algorithm is maturity randomization, which is first

introduced for financial application in Carr (1998). The option value suffers no time decay

once we replace the fixed maturity by an independent exponential r.v.. This characteris-

tic paves the way for a recursive formulation of each re-balancing cost. We also showed

the total expected cost associated with the random maturity is the Laplace transform

of that with the fixed maturity, so the latter can be retrieved through numerical inversion.

130



Bibliography

Angelini F. and Herzel S. (2009). Measuring the Error of Dynamic Hedging: a Laplace

Transform Approach. The Journal of Computational Finance, 13(2), 47-72.

AnnuityDigest. http://www.annuitydigest.com/b/what-driving-rush-variable-annuity-

exit

Asmussen S. and Kella O. (2000). A Multi-dimensional Martingale for Markov Additive

Processes and Its Applications. Advances in Applied Probability, 32(2), 376-393.

AXA Equitable. Structured Capital Strategies.

http://www.axa-equitable.com/Elements/channel/products/structured-capital-

strategies.html

Avram F., Kyprianou A. E. and Pistorius M. R. (2004). Exit Problems for Spectrally

Negative Levy Processes and Applications to (Canadized) Russian Options. The An-

nals of Applied Probability, 14(1), 215-238.

Bauer D., Kling A. and Russ J. (2008). A Universal Pricing Framework for Guaranteed

Minimum Benefits in Variable Annuities. ASTIN Bulletin, 38(2), 621-651.

Belanger A., Forsyth P.A. and Labahn G. (2009). Valuing the Guaranteed Minimum

Death Benefit Clause with Partial Withdrawals. Applied Mathematical Finance, 16,

451-496.

131



Bertsimas D., Kogan L. and Lo A. (2000). When is Time Continuous? Journal of Finan-

cial Economics, 55(2), 173-204.

Beylkin G. and Monzon L. (2005). On Approximation of Functions by Exponential Sums.

Applied and Computational Harmonic Analysis, 19, 17-48.

Black F. and Scholes M. (1973). The Pricing of Options and Corporate Liabilities. Journal

of Political Economy, 81, 637-654.

Blamont D. and Sagoo P. (2009). Pricing and Hedging of Variable Annuities. Life &

Pensions, 2, 39-44.

Boyle P. and Emanuel D. (1980). Discretely Adjusted Option Hedges. Journal of Financial

Economics, 8, 259-282.

Boyle P., Kolkiewicz A.W. and Tan K.S. (2001). Valuation of the Reset Options Embed-

ded in Some Equity-linked Insurance Products. North American Actuarial Journal,

5(3), 1-18.

Boyle P. and Draviamb T. (2007). Pricing Exotic Options under Regime Switching. In-

surance: Mathematics and Economics, 40(2), 267-288.

Brancik L. (2011). Numerical Inverse Laplace Transforms for Electrical Engineering

Simulation, MATLAB for Engineers - Applications in Control, Electrical Engineering,

IT and Robotics. InTech. Available from: http://www.intechopen.com/books/matlab-

for-engineersapplications-in-control-electrical-engineering-it-and-robotics/numerical-

inverse-laplace-transforms-forelectrical-engineering-simulation

Buffington J. and Elliott R.J. (2002). American Options with Regime Switch- ing. Inter-

national Journal of Theoretical and Applied Finance, 5, 497-514.

Carr P. (1998). Randomization and the American put. Review of Financial Studies, 11,

597-626.

132



Cheah P., Fraser D. and Reid N. (1993). Some Alternatives to Edgeworth. Canadian

Journal of Statistics, 21, 131-138.

Chi Y. and Lin X.S. (2012). Are Flexible Premium Variable Annuities Under-priced?

ASTIN Bulletin, forthcoming.

Coleman T.F., Kim Y., Li Y. and Patron, M. (2007). Robustly Hedging Variable Annu-

ities with Guarantees under Jump and Volatility Risks. Journal of Risk and Insurance,

74, 347-376.

Dai M., Kuen Kwok Y. and Zong J. (2008). Guaranteed Minimum Withdraw Benefit in

Variable Annuities. Mathematical Finance, 18, 595-611.

Davis, M. (1997). Option Pricing in Incomplete Markets. In Mathematics of Derivative

Securities, ed. M. A. H. Dempster and S. R. Pliska, 216-226. Cambridge University

Press.

Deng G., Husson T. and McCann, C.J. (2012). Structured Product Based Variable Annu-

ities. 2012 Academy of Financial Services Annual Meeting Paper. Available at SSRN:

http://ssrn.com/abstract=2049513 or http://dx.doi.org/10.2139/ssrn.2049513

Dupire B. (2005). Optimal Process Approximation: Applica-

tion to Delta Hedging and Technical Analysis. Quantitative fi-

nance: Developments, Applications and Problems, Cambridge UK.

http://www.newton.ac.uk/programmes/DQF/seminars/070714501.pdf

Durrett R. (2010). Probability: Theory and Examples, 4th edition. Cambridge University

Press.

Elliott R.J., Chan L. and Siu T.K. (2005). Option Pricing and Esscher Trans form Under

Regime Switching. Annals of Finance, 1(4), 423-432.

133



Elliott R., Siu T. K., Chan L. and Lau J. W. (2007). Pricing Options under a Generalized

Markov-modulated Jump-diffusion Model. Stochastic Analysis and Applications, 25(4),

821-843.

Esscher F. (1932). On the Probability Function in the Collective Theory of Risk. Scan-

dinavian Actuarial Journal, 15, 175-195.

Follmer H. and Schweizer M. (1991). Hedging of Contingent Claims under Incomplete

Information. In Applied Stochastic Analysis, ed. M. H. A. Davis, and R. J. Elliott,

389-414. Gordon and Breach.

Follmer H. and Sondermann D. (1986). Hedging of Contingent Claims under Incomplete

Information. In Contributions to Mathematical Economics, ed. W. Hildenbrand and

A. Mas-Colell, 205-223. North Holland.

Forsyth P., Vetzal K. and Windcliff H. (2003). Hedging Segregated Fund Guarantees,

Chapter 10, The Pension Challenge: Risk Transfers and Retirement Income Security,

Ed. O. S. Mitchell, and K. Smetters, 214-237. Oxford University Press.

Gerber H. and Shiu E. (1994). Option Pricing by Esscher Transforms (with discussions).

Transactions of the Society of Actuaries, 46, 99-191.

Glasserman P. (2003). Monte Carlo Methods in Financial Engineering, Springer, New

York.

Goldfeld M. and Quandt E. (1973). A Markov Model for Switching Regressions. Journal

of Econometrics, 1, 3-16.

Hamilton D. (1989). A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle. Econometrica, 57, 357-384.

Hayashi T. and Mykland P. (2005). Evaluating Hedging Errors: An Asymptotic Ap-

proach. Mathematical Finance, 15(2), 309-343.

134



Hardy M.R. (2001). A Regime-Switching Model of Long-Term Stock Returns. North

American Actuarial Journal, 5(2), 41-53.

Hardy M.R. (2003). Investment Guarantees: Modeling and Risk Management for Equity-

linked Life Insurance. Wiley (New York).

Hardy M.R. (2004). Ratchet Equity Indexed Annuities. In 14th Annual International

AFIR Colloquium.

He H., Keirstead W.P. and Rebholz J. (1998). Double Lookbacks. Mathematical Finance,

8, 201-228.

Henrotte P. (1993). Transaction Costs and Duplication Strategies. Working Paper. Stan-

ford University.

Hollenbeck K. (1998). INVLAP.M: A Matlab Function for Numerical Inversion of Laplace

Transforms by the de Hoog Algorithm. http://www.isva.dtu.dk/staff/karl/invlap.htm

Hull J. (2011). Options, Futures, and Other Derivatives, 8th edition. Prentice Hall.

Insured Retirement Institute (2011). The 2011 IRI Fact Book, http://www.IRIonline.org

Jaimungal S. and Young V. (2005). Pricing Equity-linked Pure Endowments with Risky

Assets that Follow Levy Processes. Insurance: Mathematics and Economics, 36,(3),

329-346.

Jaimungal S., Donnelly R. and Rubisov D. (2012). Valuing GWBs with Stochastic Interest

Rates and Volatility. http://papers.ssrn.com/sol3/papers.cfm?abstract id=1984885

Karatzas I. and Shreve S.E. (1991). Brownian Motion and Stochastic Calculus, 2nd edi-

tion. Springer.

135



Kim J. and Levisohn B. (2010). Structured Notes: Not

as Safe as They Seem. The Wall Street Journal.

http://online.wsj.com/article/SB10001424052748704804504575606843404836032.html

Kyprianou A. E. (2006). Introductory Lectures on Fluctuations of Levy Processes with

Applications. Springer.

Lin X.S. (1998). Double Barrier Hitting Time Distributions with Applications to Exotic

Options. Insurance: Mathematics and Economics, 23, 45-58.

Lin X.S. and Tan K.S. (2003). Valuation of Equity-indexed Annuities under Stochastic

Interest Rates. North American Actuarial Journal, 7(3), 72-91.

Lin, X. S. (2006). Introductory Stochastic Analysis for Finance and Insurance. John

Wiley & Sons.

Lin X.S., Tan K.S. and Yang H. (2009). Pricing Annuity Guarantees under a Regime-

switching Model. North American Actuarial Journal, 13(3), 316-338.

Marquardt T., Platen E. and Jaschke S. (2008). Valuing Guaranteed Minimum Death

Benefit Options in Variable Annuities under a Benchmark Approach. Available at:

http://www.business.uts.edu.au/qfrc/research/research papers/rp221.pdf

Marshall C., Hardy M. and Saunders D. (2010). Valuation of a Guaranteed Minimum

Income Benefit. North American Actuarial Journal, 14(1), 38-58.

Martellini L. and Priaulet P. (2002). Competing Methods for Option Hedging in the

Presence of Transaction Costs. The Journal of Derivatives, Spring 2002, 9(3), 26-38.

McDonald R. (2009). Derivatives Markets,3rd edition. Prentice Hall.

McNeil A., Frey R. and Embrecht P. (2005). Quantitative Risk Management: Concepts,

Techniques, and Tools. Princeton University Press.

136



Melnikov A. and Romanyuk Y. (2008). Efficient Hedging and Pricing of Equity-linked

Life Insurance Contracts on Several Risky Assets. International Journal of Theoretical

and Applied Finance, 11(3), 295-320.

Milevsky M. and Posner S. (2001). The Titanic Option: Valuation of the Guaranteed

Minimum Death Benefit in Variable Annuities and Mutual Funds. The Journal of Risk

and Insurance, 68(1), 93-128.

Milevsky M.A. and Salisbury T.S. (2006). Financial Valuation of Guaranteed Minimum

Withdrawal Benefits. Insurance: Mathematics and Economics, 38(1), 21-38.

Moller T. (2001). Hedging Equity-linked Life Insurance Contracts. North American Ac-

tuarial Journal, 5(2), 79-95.

Musiela M. and Rutkowski M. (2011). Martingale Methods in Financial Modeling, 2nd

edition. Springer.

Naik V. (1993). Option Valuation and Hedging Strategies with Jumps in the Volatility

of Asset Returns. Journal of Finance, 48(5), 1969-84.

Ng A.C. and Li J.S. (2011). Valuing Variable Annuity Guarantees with the Multivariate

Esscher Transform. Insurance Mathematics and Economics, 49, 393-400.

Oliver Wyman Limited (2007). VA VA Voom: Variable Annuities Are in Pole

Position to Meet the Requirements of the European Asset Protection Market.

http://www.mmc.com/knowledgecenter/OliverWymanVariableAnnuities.pdf

Peng J., Leung K. and Kowk Y. (2010). Pricing Guaranteed Minimum Withdrawal Ben-

efits under Stochastic Interest Rates. Quantitative Finance, 12(6), 933-941.

Piscopo G. and Haberman S. (2011). The Valuation of Guaranteed Lifelong Withdrawal

Benefit Options in Variable Annuity Contracts and the Impact of Mortality Risk. North

American Actuarial Journal, 15(1), 59-76.

137



Quandt E. (1958). The Estimation of Parameters of Linear Regression System Obeying

Two Separate Regimes. Journal of the American Statistical Association, 55, 873-880.

Roberts G.E. and Kaufman H. (1966). Table of Laplace Transforms. Philadelphia Saun-

ders.

Samuelson P.A. (1973). Mathematics of Speculative Price. SIAM Review, 15(1), 1-42.

Schweizer M. (1996). Approximation Pricing and the Variance-Optimal Martingale Mea-

sure. Annals of Probability, 24, 206-236.

Shah P. and Bertsimas D. (2008). An Analysis of the Guaranteed Withdrawal Benefits

for Life Option. http://papers.ssrn.com/sol3/papers.cfm?abstract id=1312727

Siu T. K. (2005). Fair Valuation of Participating Policies with Surrender Options and

Regime Switching. Insurance: Mathematics and Economics, 37(3), 533-552.

Siu T.K. (2008). A Game Theoretic Approach to Option Valuation Under Markovian

Regime-Switching Models. Insurance: Mathematics and Economics 42(3), 1146-1158.

Siu T. K., Lau J. W. and Yang H. (2008). Pricing Participating Products under a Gener-

alized Jump-Diffusion. Journal of Applied Mathematics and Stochastic Analysis, 2008,

Article ID 474623, 30 pages.

Siu T.K. (2011). Regime Switching Risk: To Price or Not To Price?. International Journal

of Stochastic Analysis, 2011, Article ID 843246, 14 pages.

Surkov V., Kenneth J. and Jaimungal S. (2007). Fourier Space Time Stepping for Option

Pricing with Levy Models. Journal of Computational Finance, 12(2), 1-29.

Taylor S.J. (2005). Asset Price Dynamics, Volatility, and Prediction. Princeton University

Press.

138



Toft K. (1996). On the Mean-Variance Trade-off in Option Replication with Transactions

Costs. The Journal of Financial and Quantitative Analysis, 31(2), 233-263.

Wang Y. (2009). Quantile Hedging for Guaranteed Minimum Death Benefits. Insurance:

Mathematics and Economics, 45(3), 449-458.

Windcliff H., Forsyth P. and Vetzal K. (2001). Valuation of Segregated Funds: Shout

Options with Maturity Extensions. Insurance: Mathematics and Economics, 29(1),

1-21.

139


