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Abstract

In this thesis I investigate the impact that the choice of model may have on predictions of
giant hogweed population dynamics. It has been shown in two case studies that population
growth rates predicted by matrix population models may be biased if the number of plants
sampled is low and plants are classified based on a continuous measure of their size [79].
These same studies have shown that integral projection models do not provide biased
estimates of population growth rates for populations with few plants sampled. In chapter 2
I construct a density-independent integral projection model for giant hogweed population
dynamics and I use it to verify that the population growth rates do not significantly differ
from a previously published matrix model of giant hogweed population dynamics [39].
This research indicates that the conclusions made using the matrix population model are
unaffected by the decision to discretize plant size.

A second major topic of research for giant hogweed populations is to predict the rate
at which the species spreads. It has been shown that the rate of spread of a plant may be
affected by the number of seeds produced by the population [68]. In chapter 3 I develop two
density-dependent integral projection models for giant hogweed populations and compare
the total seed production predicted by each model. In both models I allow for recruitment
to be limited by competition among seedlings. However, in the second model I also allow
the probability of flowering to depend on intraspecific density. I find that the model with
density-dependent flowering has oscillatory seed production and that the model predicts
significantly fewer seeds every other year compared to the model with density-independent
flowering. I conclude that accounting for competition among adult plants may affect pre-
dictions of the rate of spread of giant hogweed.
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and coauthors [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Population growth rate (λ), bootstrap estimate of population growth rate
(λb), and bootstrap 95% confidence interval (CI-, CI+) as the bootstrap
replicate sample size (N) increases. Bootstrap values were computed using
5,000 bootstrap samples. All data collected by Hüls and coauthors [39]. . . 22
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Chapter 1

Literature Review

The spread of H. mantegazzianum
is likely to continue through much
of southern Canada over the next
25-100 yr with worsening
ecological, economic, and health
effects

Page et al., 2006 [69]

1.1 Background and motivation

Giant hogweed (Heracleum mantegazzianum Somm. & Lev.) is a large, monocarpic peren-
nial terrestrial plant native to the Caucasus mountain range [93]. The species is highly
invasive, having successfully invaded 19 countries in Europe over the past 70 years, and is
in the process of colonizing northeastern and northwestern North America [69]. As with
many invasive, non-native plants, giant hogweed poses a serious threat to biodiversity in
its invaded habitat [76]. Giant hogweed plants are able to suppress native plant species
due to their large size and rapid sprouting in the spring [93] and due to their production
of allelopathic chemicals that inhibit germination of competitors [42].

In addition to the impact on native flora, giant hogweed is a pest to humans. Giant
hogweed plants produce phototoxic furanocoumarins as an insecticide, but these fura-
nocoumarins will also cause third-degree burns or blindness in humans [93]. Finally, as
an invasive riverside plant giant hogweed frequently blocks access to amenity areas [86]
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and, during winter, plants die back leading to bare ground which makes the riverbank
more susceptible to erosion [86]. For these reasons giant hogweed has been designated as
a noxious weed in numerous jurisdictions, including the United States [1] and Ontario [2].

There has been more research on the European hogweed invasion since the invasion
began earlier and is more advanced than the invasion in North America; however, giant
hogweed invasion in North America remains a serious threat [69, 72, 90]. Although the
species is unlikely to be eradicated in either Europe or North America, there is a silver
lining in that much of what has been learned from the invasion of Europe may be applied
to mitigate the effects of giant hogweed invasion in North America. In addition to in situ
evaluations of giant hogweed control strategies, mathematical models of giant hogweed
population dynamics have been constructed to better understand factors influencing giant
hogweed invasion and control [38, 39, 60, 62, 63, 73, 72].

1.2 Matrix population models

1.2.1 Introduction to matrix models

For many plant species, including giant hogweed, the vital rates of individuals within
a population differ with the age, stage, or size of the individual. To account for this
heterogeneity, structured population models can be used which allow for the vital rates
of individuals to be dependent on their state. Allowing vital rates to depend on state is
particularly important for modelling invasive species since researchers can determine which
individuals have the largest impact on population growth [18]. This knowledge may be
used to develop effective management strategies.

By far the most common type of structured model used to describe plant population
dynamics are matrix population models, with one recent study finding 355 out of 396
plant population modelling papers surveyed incorporating matrix models in some capacity
[16]. Matrix models are discrete-time population models in which individuals are classified
into a finite number of discrete classes [12]. The class of an individual is assumed to be
representative of its state so that the vital rates of the individual are solely determined by
the class it occupies.

To model the dynamics of a given population, matrix population models assume the
number of individuals in each class in the next time-step will rely on how many individuals
transition to that state. More specifically, matrix models assume the number of individuals
in each class after one time-step may be written as a linear combination of the current
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number of individuals in each class. The advantage of this approach is that simple matrix
models are easy to construct, easy to parameterize, and methods to analyse matrix models
are well developed.

For deterministic, density-independent matrix models of the form n(t+ 1) = An(t) the
population vector, n(t), will converge to a stable population distribution dependent on the
demographic matrix, A [12]. Once the population has reached its stable distribution, the
population vector at the next time step will be a multiple of the current population vector.
That is, n(t+ 1) = λn(t) for some value λ. The largest λ that satisfies the equation is the
dominant eigenvalue, which is the population growth rate in a matrix model. In addition,
sensitivity and elasticity analysis may be performed to determine how small perturbations
in the elements of A affect population growth rate [12].

1.2.2 Previous matrix models for giant hogweed

Hüls and coauthors collected data from the Hesse region of Central Germany from 2002-
2004 [38, 39, 71] while Pergl and coauthors collected data from the Slavkovský les region in
the Western part of the Czech Republic from 2002-2005 [71, 72, 75]. Both sets of authors
classified individuals into three stages of small, medium, or large vegetative plants along
with a fourth stage for flowering plants. The classification made by Hüls and coauthors was
dependent on plant height and the laminar width of the largest leaf while the classification
made by Pergl and coauthors defined seedlings as small plants, juveniles as medium sized
plants, and rosette plants as large plants. In both studies, the state of each plant was
recorded every year which allowed the authors to determine the probability a plant in one
class may transition to another state. Each research group then used the transition data
to construct density-independent matrix models to predict the size and structure of the
population in future years (Figure 1.1).

In addition to classification based on size, Hüls and coauthors classified each 2.5 m2

plot for which they collected data as either dense or open stands depending on the dom-
inance of giant hogweed in the area [39]. The authors had originally hypothesized that
open stands occur at the front of giant hogweed invasions and that these sparse stands are
precursors to dense stands. However, the authors’ analysis of their matrix model indicated
that open stands do not have a higher intrinsic population growth rate than dense stands.
They concluded that dense stands are saturated with large individuals which suppress ger-
mination while open stands are likely limited by irregular disturbances such as by mowing
or grazing. Furthermore, the authors found that population growth rate in dense stands is
more sensitive to survival of existing plants while population growth rate is more sensitive
to the growth of individuals in open stands.

3
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*

* *

Figure 1.1: Life cycle diagram of the matrix models developed by Hüls and coauthors [38]
and by Pergl and coauthors [73]. Nodes pictured represent (S) small vegetative plants, (M)
medium vegetative plants, (L) large vegetative plants, and (R) reproductive plants. Dashed
lines indicate reproduction. Arrows marked with an asterisk (*) indicate transitions that
were included in the model developed by Hüls and coauthors but not the model developed
by Pergl and coauthors. Retrogression is possible due to grazing or as a response to stress
[85].
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For 2002-2003, Hüls and coauthors found that populations were in decline [39]. The
authors attributed this decline to the unusually hot and dry conditions of the summer of
2003. These conditions led to low productivity which resulted in increased mortality. They
found that plants responded to this increased mortality by increasing reproductive output
to take advantage of the decrease in ground cover. Pergl and coauthors [71] compared
their results to those of Hüls and coauthors and found that their surveyed populations are
decreasing in the Czech Republic, complementing the conclusion by Hüls and coauthors
that populations are decreasing in Germany. However, the German and Czech study
periods overlapped and thus the decrease in populations in the Czech Republic may also
be due to the extreme temperature during the study period.

1.3 Integral projection models

1.3.1 Why an integral projection model?

A major drawback of matrix projection models, such as those developed by Hüls and
coauthors [38, 39, 71] and Pergl and coauthors [71, 72, 73], is that they require modellers
to classify plants into discrete stages in their life-cycle. In a plant such as giant hogweed,
the divisions between classes are often based on continuous variables. The resulting classes
are constructed arbitrarily with little regard for the underlying biology of the plant. For
example, in the matrix model by Hüls and coauthors stage 1 plants were defined as having
laminar width between 3.5-20 cm and height less than 50 cm while stage 2 plants have
laminar width between 20-50 cm and height greater than 50 cm but not reaching the
canopy. The matrix models cannot account for variation in vital rates for plants within
each class. As a result, the choice of boundaries between classes may have an impact
on model predictions [79]. Additionally, the number of classes has been shown to bias
predicted population growth rate, and population growth rate may be underestimated
when there are not very many individuals [79].

There are several continuous size individual-based models (IBMs) for giant hogweed
[96, 63, 60, 61, 62]. The hypotheses in this thesis may be answered using IBMs similar
to previously published IBMs; however, they do not offer any advantages over integral
projection models. Furthermore, the hypotheses in this thesis relate to previously published
matrix models. I opt to use integral projection models throughout this thesis due to their
structural similarity to matrix models.
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1.3.2 Overview of integral projection models

In his 1998 dissertation Easterling introduced integral projection models (IPMs) [25].
These models are discrete-time, size-structured population models that allow for individ-
uals within a population to be described by a continuous trait using an integral operator
[25] (as cited in [24]). This type of model allows researchers to avoid arbitrary classifica-
tions of individuals based on size by allowing vital rates in the population to depend on a
continuous measure of size. For example, we may use the height of a plant as the relevant
trait, in which case the population may be represented by a size distribution n(x, t) where
x is the height of an individual, t is the time, and n(·, t) is the distribution of individuals
at time t. Projection from one time-step to the next relies on a kernel, K(y, x), that yields
the probability that a plant will transition from state x to state y over a timestep. This
kernel is comprised of various size-dependent vital rates functions that may be determined
through regression. The expected population at a given size in the next time step is depen-
dent on the contribution of every plant that may transition to that size. Thus we integrate
the kernel multiplied by the size distribution at time t over the size x to get the projected
size distribution at the next time-step. Mathematically, this is written as:

n(y, t+ 1) =

∫
ω

K(y, x)n(x, t)dx (1.1)

The form of the kernel will be determined by the life cycle of the species and parametriza-
tion is then an exercise in statistical regression to fit survival, growth, and reproduction
components of the kernel. The survival and reproduction functions are typically found
using logistic regression while the growth function may be found using linear or non-linear
regression. Since being introduced by Easterling, IPMs have been developed to accom-
modate discrete states, time lags, spatial structure, environmental stochasticity, and de-
mographic stochasticity [26]. Additionally, in making the adjustment from matrix models
to IPMs, the potential for analysis is not greatly diminished. The theory used to analyze
IPMs is slightly less developed; however, most of the useful properties of matrix models
such as the population growth rate, stable size distribution, and net reproductive ratio
may still be computed for IPMs [24, 26].
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1.3.3 Density-dependent integral projection models

The probability of survival, probability of flowering, expected increase in plant size, and
expected number of recruits are all functions that may depend on the presence of other
plants. Accounting for the competition among giant hogweed plants will therefore be
necessary when modelling the course of giant hogweed invasion since plant density will
change over time. However, there are limitations to the construction of density-dependent
IPMs.

As is necessary for density-dependent matrix models, the forms of the vital rate func-
tions must be restricted in order to parameterize the model. However, density-dependent
IPMs have an advantage over matrix models in that they may be parameterized in cases
where matrix models cannot. In particular, in matrix models each element may depend on
giant hogweed density, but not every transition will have enough observations for such a
function to be parameterized. This limitation is overcome in integral projection models by
assuming that population dynamics are describes using a continuous kernel and assuming
that the functions describing the kernel may be fit using regression.

1.4 Outline of thesis

This thesis is divided into two main chapters. In the first chapter I develop a density-
independent integral projection model analogous to the matrix model constructed by Hüls
and coauthors [39]. I compare the predicted population growth rates for each model to
determine if the conclusions originally reached by Hüls and coauthors are affected by their
use of a matrix model, as implied by the results of Ramula and coauthors [79]. In the second
chapter I develop a density-dependent integral projection model in order to examine the
transient and asymptotic behaviour of giant hogweed populations. I use this model to
determine the impact that competition among adult plants will have on seed production in
giant hogweed stands. The two chapters are united in that they investigate how increasing
model complexity affect our understanding of giant hogweed spread.
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Chapter 2

An Integral Projection Model for
Giant Hogweed Management
Decisions

Les fleurs sont si contradictoires!

Antoine de Saint-Exupéry,
Le Petit Prince

2.1 Introduction

A fundamental concern in the management of invasive species is to assess the rate at which
invasive population size changes. For many populations, researchers construct matrix
models in which individuals are classified into discrete stages based on the individual’s
state and use these models to determine long-term population growth rates [12]. However,
the population growth rate predicted by a matrix model may be biased if this classification
is based on a continuous measure of size and the sample size is small [20, 79]. This potential
for bias in estimated population growth rate may affect management priorities or may lead
officials to underestimate the threat of an invasive species.

Giant hogweed (Heracleum mantegazzianum Somm. & Lev.) is an invasive species
that has become naturalized in parts of Europe and North America [69]. Giant hogweed
plants pose a threat to biodiversity in its invaded ranges [76], can negatively affect human
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health [93], and facilitate riverside erosion [86]. These potential impacts have prompted
researchers to evaluate control strategies for the species. For example, Hüls and coauthors
[39] investigated the relation between populations in dense, monospecific stands near the
centre of infestations and populations in open stands near the margins that were intermixed
with surrounding vegetation. The authors collected demographic data from the two types of
giant hogweed stands and used the data to parameterize matrix models for the populations
[39]. The authors noted that if the population growth rate in open stands was higher than
the population growth rate in dense stands then they may represent the front of an invasion
and should be prioritized for control. Using their matrix model, Hüls and coauthors found
no significant difference in population growth rates between the stand types. Since open
stands do not represent the front of the invasion, the authors concluded that they should
not be prioritized for control. However, the use of a stage-structured model for giant
hogweed populations may be unsuitable to address the authors’ hypothesis. In particular,
the low sample size of the open stand data set may produce a biased estimate of the
population growth rate [20, 79], which in turn may affect the conclusions made by Hüls
and coauthors.

Integral projection models (IPMs) are an alternative to matrix models that avoid dis-
cretizing populations that have continuous traits such as size [24]. Previous authors have
speculated that avoiding this discretization would prevent bias in the predicted popula-
tion growth rate since plants vital rate functions would be more precise [27]. Ramula
and coauthors tested the impact that sample size has on matrix models and IPMs and
found that for large demographic data sets IPMs yield the same population growth rate as
matrix models [79]. As sample size decreased, the authors found that the mean estimate
of population growth rate predicted by the IPMs remained the same; however, the mean
estimate of population growth rate predicted by the matrix models changed. Ramula and
coauthors concluded that matrix models may yield biased predictions of population growth
rate when the data set used to parameterize the model is small. For both of the species
studied by Ramula and coauthors, the population growth rate predicted by the matrix
model decreased once the sampled population dropped below 300 plants.

The results of Hüls and coauthors may be affected since the data sets used to param-
eterize their matrix model vary in size [39]. The open stand data set is small enough to
produce biased estimates of population growth rate. In contrast, the dense stand data set
should yield an unbiased estimate of population growth rate. The conclusions of Hüls and
coauthors that depend on these predicted population growth rates could therefore change
with the use of an integral projection model. This possibility that the selection of the mod-
elling approach may affect management decisions is my primary motivation for revisiting
the data set collected by Hüls and coauthors.
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In this chapter I investigate whether the decision to use a matrix model for giant hog-
weed population dynamics affected the conclusions made by Hüls and coauthors [39]. The
results of Ramula and coauthors imply that the demographic data set used to parameter-
ize the matrix model for dense stands is large enough to produce an unbiased estimate of
population growth rate [79]. However, the data set of plants in open stands is too small to
guarantee that the estimate of population growth rate is unbiased. To test this hypothesis
I constructed an integral projection model and parameterized it for both stand types using
data collected by Hüls and coauthors during the 2002-2003 growing season. I then used
the population growth rates predicted by the integral projection model to revisit the con-
clusion made by Hüls and coauthors that open stands are not precursors to dense stands.
My analysis will demonstrate whether the choice between using a matrix model or integral
projection model for populations with a low number of records may affect management
recommendations.

2.2 Methods

2.2.1 Study species

Heracleum mantegazzianum is a monocarpic perennial species in the family Apiaceae [69]
that propagates exclusively by seed [78]. Seeds undergo dormancy breaking via wet and
cold stratification [58] and typically germinate in spring the year after they set, but under
suitable conditions may germinate the same year in autumn [93]. In the year a plant germi-
nates it will direct much of its resources towards its taproot [69], causing the accumulation
of aboveground biomass to be slow the first year [93]. Growth is much more vigorous in
subsequent years once the root system is developed. After 3-5 years of growth plants will
have accumulated enough resources to begin flowering [69].

If root reserves are sufficient at the beginning of the growing season a plant will initiate
flowering that year [69]. Plants that will flower begin the year with vigorous vegetative
growth, followed by stem elongation and umbel formation sometime between late April
and early June [10, 93]. This vegetative growth and stem elongation causes flowering
plants to grow extremely large, with most flowering plants between 3 m and 4 m tall and
some recorded up to 5.5 m in height [78]. Flowering typically occurs over 5 or 6 weeks in
early-mid summer while seeds ripen later in the summer in August and September [69].

Occurance of H. mantegazzianum in its invaded range may be limited to sparse stands
of only a few individuals, linear stands along dispersal corridors, or dominant stands in
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which the species attains nearly 100% ground cover [39]. Plants have an affinity for sites
that have been disturbed by human activity or flooding. Once established, plants suppress
competing species and promote the growth of conspecifics [39].

2.2.2 Experimental data collection

I used the data set collected in Germany by Hüls and coauthors to parameterize my model
[39]. I opted to use these data since the difference in the size of the open stand data set and
the size of the dense stand data set may be large enough to influence the conclusions of the
authors’ original paper [20, 79]. Annual transition data for vegetative plants were collected
from seventy-six plots located in five sites in Germany between 2002 and 2004 by Dr.
Jörg Hüls and coauthors [38, 39]. Sites were located in Allendorf, Druseltal, Frankenberg
(Burgwald), Kassel (Dönche), and Viermünden (Table 2.1). I ultimately did not use data
collected from Allendorf since the site was disturbed by cattle. Measurements of height,
the petiole diameter for the largest leaf, and laminar width of the largest leaf were recorded
in 2002 and 2003 for all plants that were 10 cm in height or taller. Data were also collected
on individuals in 2004; however, since the data set was originally intended to parameterize
a matrix model, plants were classified on site without recording morphological data during
data collection in 2004. As a result, I used only the 2002-2003 data sets collected by Hüls
and coauthors to parameterize the model.

Table 2.1: Site information for data collected by Hüls and coauthors [39]. The maximum
distance between sites is 56 km.

Site
Position

Elevation Area
Number of Number of

Lat (N) Lon (E) Plots Individuals

Burgwald 51◦01’37” 8◦45’03” 330m 600 16 216
Dönche 51◦17’50” 9◦25’22” 290m 4500 18 126
Druseltal 51◦18’15” 9◦24’49” 335m 30 10 27
Viermünden 51◦05’28” 8◦49’41” 315m 1400 16 216

2.2.3 Model formulation

The matrix model of Hüls and coauthors consisted of four classes in total: three for vege-
tative plants classified by size and one for reproductive plants [39]. In order to be able to
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compare my model predictions to the prediction made by Hüls and coauthors, I first con-
structed an integral projection model as similar as possible to the original matrix model.
Instead of discretizing vegetative plants based on size I used plant height (cm) as a con-
tinuous measure of plant size. Since the species is monocarpic I did not include a separate
class for reproductive plants.

If we let n(x, t) be the size distribution of plants at time t with lower and upper bounds
L and U , respectively, then the population distribution at the next time step will be
governed by the integral equation [24]:

n(y, t+ 1) =

∫ U

L

K(y, x)n(x, t)dx (2.1)

for an appropriate kernel K(y, x). The kernel may be decomposed into the sum of survival-
growth (P (y, x)) and fecundity (F (y, x)) parts so that [24]:

K(y, x) = P (y, x) + F (y, x). (2.2)

The survival-growth kernel is the product of the probability a plant of size x is still a
vegetative plant the next year multiplied by the probability the plant will grow to size y.
The probability a plant remains vegetative may itself be decomposed into the product of
surviving to the next year, ps(x), and the probability the plant does not flower, 1− pr(x),
where pr(x) is the probability a plant of size x flowers [83]. I defined the growth kernel,
G(y, x), to be the conditional probability that a plant of height x that remains vegetative
will have height y in the next year. Thus the survival-growth kernel may be written as
[83]:

P (y, x) = ps(x)[1− pr(x)]G(y, x). (2.3)

The fecundity kernel is the product of the expected number of new plants that survive
until the annual census multiplied by their expected size distribution [52]. I defined recruits
to be plants that germinated and established earlier in the year of the census that have at
least one leaf with a laminar width of 3.5 cm or greater. First-year plants that did not have
a leaf with a laminar width of at least 3.5 cm were not included in the census since their
survival to the following year was negligible [39]. The expected number of recruits is the
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product of the probability a plant of size x survives one more year and the probability that
the plant reproduces in that year, ps(x)pr(x), multiplied by the expected number of recruits
produced by one flowering plant, fe. I assumed mixing-at-birth for recruit size distribution
[13], meaning that the size of the parent plant does not affect recruit size. Under this
assumption I denoted recruit size distribution by c0(y). Altogether, the fecundity kernel
may be written as [52]:

F (y, x) = ps(x)pr(x)fec0(y). (2.4)

Thus population dynamics will be described entirely by the integral equation:

n(y, t+ 1) =

∫ U

L

ps(x) [(1− pr(x))G(y, x) + pr(x)fec0(y)]n(x, t)dx. (2.5)

2.2.4 Parameterization

Bounds on plant size

The lower and upper bounds of plant size, L and U , must be chosen carefully in integral
projection models in order to minimize the number of plants that are needlessly excluded
by the model. This phenomenon, known as unintentional eviction, occurs when plants
are projected to have a size smaller than the lower bound or larger than the upper bound
[27, 101]. Since only plants within the bounds are included in the population vector, plants
that are projected to leave the bounds are “evicted” from the population and no longer
have an impact on population dynamics.

The lower and upper bounds were initially selected to be the heights of the shortest
(10 cm) and tallest (228 cm) plants, respectively. However, plants may be slightly shorter
or taller than these bounds and so I extend the bounds to L = 5 cm and U = 250 cm. I
used the process outlined by Williams and coauthors to determine if unintentional eviction
affects my results [101].

In my model eviction may occur either in the fecundity kernel or the survival-growth
kernel. Eviction through the fecundity kernel was prevented numerically by truncating
and normalizing the recruit size distribution, c0(y). Unfortunately, eviction through the
survival-growth kernel is more difficult to mitigate.
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The unconditional probability of eviction through the survival-growth kernel is a func-

tion defined to be ρ(x) = ps(x)
[
1−

∫ U

L
G(y, x)dy

]
. A maximum of 0.016% of plants may

be evicted in open stands while a maximum of 10.3% of plants may be evicted in dense
stands. However, the maximum percent of evicted plants is not useful without accounting
for the size distribution of plants.

A more meaningful measure of eviction is to take the inner product between the un-
conditional probability of eviction and the stable size distribution. I first break down the
unconditional probability of eviction into the probability of eviction through the lower
bound, ρL(x) = ps(x)

∫ L

−∞G(y, x)dy, and the probability of eviction through the upper

bound, ρU(x) = ps(x)
∫∞
U
G(y, x)dy. I found the inner product between the probabilities

of eviction with the stable size distribution to determine the proportion of plants that
are evicted through each bound at the stable size distribution. For open stands, I found
that 0.00022% of plants are evicted through the lower bound while 0.00000051% of plants
are evicted through the upper bound. For dense stands, I found that 2.13% of plants
are evicted through the lower bound and 0.041% of plants are evicted through the upper
bound.

I then determined the rate at which eviction will decrease as the bounds change. For
open stands, the rate at which eviction decreases as the lower bound decreases is dλL =
9.3× 10−7 and the rate at which eviction decreases as the upper bound increases is dλU =
4.6 × 10−9. For dense stands, the corresponding rates of change are dλL = 0.00845 and
dλU = 0.000441. None of these values are particularly concerning except for dλL for open
stands.

In order to determine if eviction through the lower bound in dense stands is a problem,
I lowered L to the minimum physically possible height of 0 cm and recomputed the popu-
lation growth rate. Since the population growth rates were identical up to two significant
figures, I concluded that a minimum bound of L = 5 cm is reasonable to use in the model.

Probability of survival and reproduction

Both the probability of survival and the probability of flowering for the data collected by
Hüls and coauthors [39] were fit using logistic regression with height as the explanatory
variable (Figure 2.1). For direct comparison to the predictions of the matrix model, the
probability of survival and probability of flowering were fit once using only plants from
open stands then again using only plants from dense stands.
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Figure 2.1: Data and best-fit functions for relationships between plant height and vital
rates for open and dense stands. Survival probability fit using logistic regression (a, b),
probability of reproduction fit using logistic regression (c, d), and expected height of sur-
viving plants fit using linear regression (e, f) in open (a, c, e), and dense (b, d, f) stands
of giant hogweed in the Hesse region of Germany. Ticks on the figures fit using logistic
regression represent data points with plant height indicated. Plants that survive (a, b) and
plants that flower (c, d) have ticks on the top while plants that do not survive (a, b) or do
not flower (c, d) have ticks on the bottom. All data collected by Hüls and coauthors [39].
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Inter-annual growth

Inter-annual growth was fit for both open and dense stands using linear regression (Fig-
ure 2.1). I also fit inter-annual growth using several nonlinear parametric functions and
compared these fits to the linear model using the Akaike information criterion (AIC; Ta-
ble 2.3) [9]. Since weak nonlinearity has been previously shown to significantly affect
predicted population growth rate [19], I tested to see if any of the nonlinear models with
a lower AIC value yielded different values for predicted population growth rate. In addi-
tion to the parametric nonlinear models, I fit a generalized additive model using the gam
function from the mgcv package in R [102]. The generalized additive model was fit using
default parameters and the results of the IPM that used the GAM growth function was
compared to the results of the IPM that assumed the growth function was linear [82].

The suitability of the linear regression was evaluated by testing if the data is ho-
moskedastic and whether residuals are normally distributed. I used the Breusch-Pagan
test to test for heteroskedasticity and the Shapiro-Wilk test to check if residuals are nor-
mally distributed. Furthermore, in order to determine the impact that nonnormal variance
in residuals may have on estimated population growth rate I fit both a linear model and a
generalized additive model that each had their error distribution determined using kernel
density estimation [82].

Recruitment

The expected number of recruits, fe, was determined using the same method as Hüls and
coauthors [39]. In order to find the expected number of recruits I determined the total
number of new plants in each stand type and divided by the total number of flowering plants
in the respective stand type. Instead of categorizing these plants by stage as was done in
the matrix model, recruit size was assumed to follow a log-normal distribution; however,
in order to prevent unintentional eviction I used a truncated log-normal distribution in
the numerical implementation. The validity of assuming a log-normal distribution was
tested by log-transforming the height of each recruit and using the Shapiro-Wilk test for
normality.

Outliers

One plant was removed from the analysis of open stands since its height in 2003 was clearly
recorded incorrectly. The plant reportedly decreased in size from 85 cm to 7 cm, yet the
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Table 2.2: Vital rate function forms and parameter estimates for the integral projection
model. Standard errors for parameter estimates are in parentheses. All data collected by
Hüls and coauthors [39].

Function Stand type Fitted function

Survival (ps)
Open Logit(ps(z)) = −0.845(0.873) + 0.041(0.014)z
Dense Logit(ps(z)) = −0.251(0.241) + 0.021(0.004)z

Reproduction (pr)
Open Logit(pr(z)) = −2.645(0.973) + 0.036(0.012)z
Dense Logit(pr(z)) = −4.156(0.451) + 0.032(0.004)z

Growth (G)
Open G(z1, z) = 75.96(12.64) + 0.38(0.18)z +N (0, 22.152)
Dense G(z1, z) = 32.70(5.25) + 0.68(0.07)z +N (0, 38.402)

Mean recruits (fe)
Open fe = 0.62
Dense fe = 0.92

Recruit size (c0)
Open ln(z1) ∼ N (4.17, 0.282)
Dense ln(z1) ∼ N (3.78, 0.562)

plant remained a stage 2 individual (>50 cm) with a laminar width of 61 cm for its largest
leaf. In addition to this record, one outlier was removed from the analysis of dense stands
since it had an unusually large height increase from 32 cm to 228 cm in one year. When
growth was fit the standard deviation of the residuals was 37 cm while the residual for this
point was 155 cm. Since its growth was more than four standard deviations larger than
the mean increase I concluded height was recorded incorrectly for this plant as well and
removed it from the data set for dense stands.

2.2.5 Life cycle analysis

The population growth rate for each model was determined by finding the dominant eigen-
value of the demographic kernel, defined to be the largest value of λ that satisfies [24]:

λw(y) =

∫ U

L

K(y, x)w(x)dx (2.6)

for some function w(x) called the right eigenvector. The eigenvalue and right eigenvector
were computed numerically by first using the midpoint rule to produce a matrix equation,
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n(t+1) = An(t), to approximate the IPM. The code for this approximation was extensively
modified from code provided by Rees and coauthors [82] and may be found on UWSpace. I
then found the largest λ and its corresponding right eigenvector w that satisfy the equation
λw = Aw.

A unique population growth rate and corresponding right eigenvector are guaranteed
since the kernel is power positive [27]. The dominant right eigenvector of the IPM represents
the stable size distribution of the population which is the size distribution the population
will converge to over time. In addition to the right eigenvector, there is a left eigenvector
corresponding to the dominant eigenvalue that satisfies:

λv(x) =

∫ U

L

K(y, x)v(y)dy. (2.7)

The dominant left eigenvector is also guaranteed to exist since the kernel is power positive
and the dominant left eigenvector provides the relative reproductive values for the popu-
lation [26]. The relative reproductive values are a measure of how a plant of a given size
will impact future population size.

2.2.6 Bootstrap confidence intervals

I used bootstrapping to compare between different values for population growth rate and
to compare mean observed plant height to the mean height predicted by the IPM. For
population growth rate and mean predicted height, I computed 5,000 bootstrap samples
for both the open stand data set and the dense stand data set. Each bootstrap sample was
used to reparameterize the integral projection model, which was then used to determine
the bootstrap statistics, h̄b and λb. The bootstrap 95% confidence intervals were given by
the 2.5% and 97.5% quantiles of the bootstrap distribution. It should be noted that any
bootstrap sample that had two or fewer recruits were discarded and another sample drawn
in its place. This requirement was necessary to ensure the recruit size distribution could
be determined for the IPM. Bootstrapping for mean observed height was performed at the
same time as population growth rate.
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2.3 Results

2.3.1 Results of statistical analysis

Inter-annual growth

I found that the linear model yielded the second lowest AIC value for the dense stand data
set and the fifth lowest AIC value for the open stand data set. However, the differences
in AIC values between the linear model and nonlinear models were small enough to not
be of much concern (∆AIC < 4; Table 2.3). Furthermore, I found that the estimates of
population growth rate provided by the nonlinear models were identical to the estimates of
population growth rate provided by the linear model up to two significant figures. Since the
potential presence of nonlinearity did not affect population growth rate and the quality
of the fit (as measured by AIC) was only slightly improved by including nonlinearity I
decided to use the linear model for growth.

Table 2.3: Evaluation of the linear and nonlinear functions used to model inter-annual
growth of giant hogweed in Germany [39]. The best performing fit for each data set is in
bold.

Form df
AIC

Open stands Dense stands

y = ax+ b 2 302 2416
y = ax2 + bx 2 303 2425
y = ax2 + bx+ c 3 302 2417
y = axe−bx 2 299 2421
y = a(1− e−bx) 2 298 2420
y = ax/(b+ x) 2 299 2418
y = axb 2 300 2415

The Breusch-Pagan test failed to reject the hypothesis that the data is homoskedastic
in both open stands (p = 0.23) and dense stands (p = 0.074). The Shapiro-Wilk test failed
to reject the hypothesis that residuals are normally distributed for open stands (p = 0.84);
however, the test does reject the hypothesis that residuals are normally distributed for dense
stands (p = 0.016). The predicted population growth rate for populations in dense stands
was determined in three ways: using linear regression for growth with normally distributed
errors, using linear regression for growth with the error distribution found using kernel
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density estimation, and using a generalized additive model with the error distribution found
using kernel density estimation. The predicted population growth rates found using each of
the three methods were identical up to two significant figures. Therefore, I concluded that
the growth kernel may be represented by a Gaussian conditional probability distribution
with mean scaling linearly with height and constant variance.

Recruitment

I log-transformed the heights of all seedlings and tested the normality of the distribution
using the Shapiro-Wilk test. The Shapiro-Wilk test yielded p = 0.68 for recruits in open
stands, p = 0.77 for recruits in dense stands, and p = 0.58 for recruits in the combined
data set. These results indicate that I cannot reject the hypothesis that recruit size follows
a log-normal distribution. However, I note that the high p-value for open stands may
be due to the low sample size which makes the null hypothesis unlikely to be rejected.
A histogram of log-transformed recruit height in open stands indicates the distribution
may be uniform (Figure 2.2); however, since the sample size is low and the recruit size
distribution in dense stands appears to be log-normal (Figure 2.2), I assumed that the
distribution in open stands is log-normal as well.
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Figure 2.2: Histogram of the observed distribution of recruit size and fitted log-normal
distribution for open (n=8, a) and dense (n=67, b) stands of giant hogweed in the Hesse
region of Germany. All data collected by Hüls and coauthors [39].

20



2.3.2 Results of demographic analysis

The population growth rates I calculated from the integral projection model are much less
than one, like those found by Hüls and coauthors using a matrix model [39], and indicate
that populations in both open and dense stands are in decline (Table 2.4). Similar to the
results of the matrix model, the bootstrap confidence intervals for population growth rate
in open and dense stands overlap. This overlap indicates that the difference in population
growth rates between the two stand types is not statistically significant.

Table 2.4: Population growth rate (λ), bootstrap estimate of population growth rate (λb),
and bootstrap 95% confidence interval (CI-, CI+). Bootstrap values were computed using
5,000 bootstrap samples. All data collected by Hüls and coauthors [39].

Stand type Model N λ λb (CI-, CI+)

Open
Matrix 103 0.76 0.77 (0.55, 1.05)
IPM 103 0.69 0.72 (0.45, 1.13)

Dense
Matrix 554 0.75 0.75 (0.70, 0.81)
IPM 554 0.73 0.73 (0.67, 0.79)

The large confidence interval for open stands in consistent with the results of Ramula
and coauthors [79]. To determine if sample size affects my results, I performed bootstrap-
ping with larger sample sizes for each replicate (Table 2.5). As sample size increased, the
size of the confidence intervals decreased. However, even with the increased sample size
I conclude that there is no significant difference in population growth rate between open
and dense stands.

The stable size distributions for open and dense stands were computed and compared
to the observed size distributions (Figure 2.3). The mean values for plant height from the
stable size distributions are 86 cm for open stands and 77 cm for dense stands. In contrast,
the mean heights determined from data recorded in 2003 are 95 cm for open stands and
73 cm for dense stands. The bootstrap confidence intervals for the predicted and observed
values of height overlap in both open and dense stands (Table 2.6). Therefore, the mean
heights at stable size distribution are not significantly different than their corresponding
observed heights. These results are in contrast to the matrix model which determined that
the mean predicted height for open stands is significantly higher than the mean observed
height [39].
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Table 2.5: Population growth rate (λ), bootstrap estimate of population growth rate (λb),
and bootstrap 95% confidence interval (CI-, CI+) as the bootstrap replicate sample size
(N) increases. Bootstrap values were computed using 5,000 bootstrap samples. All data
collected by Hüls and coauthors [39].

Stand type N λ λb (CI-, CI+)

Open

100 0.69 0.72 (0.44, 1.15)
200 0.69 0.70 (0.50, 0.96)
300 0.69 0.70 (0.53, 0.91)
400 0.69 0.70 (0.55, 0.88)
500 0.69 0.69 (0.56, 0.85)
600 0.69 0.69 (0.57, 0.84)

Dense

100 0.73 0.74 (0.59, 0.92)
200 0.73 0.73 (0.63, 0.86)
300 0.73 0.73 (0.65, 0.83)
400 0.73 0.73 (0.66, 0.81)
500 0.73 0.73 (0.67, 0.81)
600 0.73 0.73 (0.67, 0.79)
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Figure 2.3: Histogram of observed size distribution in 2003 vs predicted stable size dis-
tribution for open (a) and dense (b) stands. All data collected by Hüls and coauthors
[39].
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Table 2.6: Mean plant height (h̄), bootstrap mean plant height (h̄b), and bootstrap 95%
confidence intervals (CI-, CI+). Bootstrap values were computed using 5,000 bootstrap
samples. All data collected by Hüls and coauthors [39].

Stand type Source h̄ h̄b (CI-, CI+)

Open
Observed 95 95 (87, 103)
Predicted 86 87 (76, 98)

Dense
Observed 73 73 (68, 78)
Predicted 77 78 (73, 84)

2.3.3 Impact of outliers

I re-parameterized the integral projection model using both the open and dense stand data
sets without outliers to see how the exclusion of these plants affect model predictions. In
both cases the population growth rate was unaffected by the removal of outliers up to two
significant figures.

2.4 Discussion

In this chapter I developed a density-independent integral projection model for giant hog-
weed and parameterized it using two different data sets collected by Hüls and coauthors
[39]. I found that the decision to categorize plants into discrete stages based on size had
no significant impact on the conclusions of Hüls and coauthors and therefore did not affect
the authors’ suggested management priorities. This result does not support the hypothesis
that model discretization significantly affects predicted population growth rate [20, 79].

Several authors have concluded that matrix models will not be biased for large demo-
graphic data sets [20, 79]. The threshold for this bias to become negligible is dependent
on both the life history of the plant and how many plants were sampled. Ramula and
coauthors determined that for the monocarpic perennial Cirsium palustre both the matrix
model and the integral projection model are unbiased for a data set consisting of more
than 300 records, resulting in nearly identical predicted values for population growth rate
[79]. This claim is supported by my result that the matrix model and IPM do not produce
significantly different values for population growth rate in dense stands with numerous
individuals (n = 554 plants). However, due to the large size of the confidence intervals,
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my analysis does not support the conclusion made by Ramula and coauthors that bias in
estimated population growth rate becomes significant for smaller data sets.

When parameterized using a small demographic data set (n = 103 plants), the boot-
strap distributions derived from each model have large variance [79]. The large variance
in each estimate for population growth rate makes it difficult to derive strong conclusions
from either model. Ramula and coauthors reported that, for small demographic data sets
(fewer than 300 plants), IPMs have lower variance than matrix models in estimated pop-
ulation growth rate [79]. However, I did not observe this result for the open stand data
set. For both the matrix model and the IPM the bootstrap confidence interval for dense
stands is entirely within the bootstrap confidence interval for open stands.

I conclude that for both open and dense stands the management priorities recommended
by Hüls and coauthors are unaffected by their decision to use a matrix model [39]. Specif-
ically, the population growth rates predicted by the IPM support the authors’ observation
that open stands do not have a higher intrinsic population growth rate than dense stands.

The results of this chapter support the conclusion made by Hüls and coauthors that the
populations growth rate in open stands is not significantly higher than population growth
rate in dense stands [39]. The lack of a significant difference between open and dense
stands can be contrasted with barbed goatgrass (Aegilops triuncialis), a grass invasive
in North America that has been shown to have similar growth rates between ’core’ and
’edge’ populations [92]. Unlike giant hogweed, the ’core’ and ’edge’ populations of barbed
goatgrass are caused by soil conditions rather than management. Due to the rocky soil
conditions, spikes of barbed goatgrass in edge populations have an unusual ability to move
long distances and colonize new habitats. In contrast to giant hogweed, edge populations
of barbed goatgrass represent the invasion front and should be prioritized for control.

More similar to giant hogweed, some invasive species have two distinct subpopulations
caused by control measures. For example, invasive lionfish species (Pterois volitans and
Pterois miles) in the Caribbean are controlled by culling; however, due to diving lim-
itations only reefs up to 30 m deep may be targeted for control [5]. This inability to
cull populations in mesophotic reefs creates two subpopulations, one with low population
density and one with high populations density, similar to open and dense stands of giant
hogweed. Andradi-Brown and coauthors found that the ability for lionfish to quickly repop-
ulate shallow reefs post-culling undermined management efforts. The authors concluded
that enhancing management efforts to include culling in mesophotic reefs is necessary to
control the species. Although giant hogweed is sessile and thus will replenish managed
sites more slowly, expanding management to dense stands may be necessary to control the
species.
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Even though my results support the conclusions of Hüls and coauthors [39], they dispute
the applicability of the findings of Ramula and coauthors towards the development of
management regimes for invasive or endangered populations [79]. Ramula and coauthors
concluded that small demographic data sets, such as the open stand data set, will have a
biased population growth rate which may in turn affect management decisions. However,
I found that the small size of the open stand data set makes it difficult to find significant
differences in population growth rate. These results suggest that the decision to use an
integral projection model may not reduce the difficulty in drawing conclusions from small
demographic data sets in general.

The strength of the integral projection model approach is the use of continuous vital
rate functions to construct the kernel. Unfortunately, this regression-based approach to
describe population dynamics is dependent on the how well the vital rate functions approx-
imate reality. I assumed that linear regression with normally distributed residuals would
adequately describe plant growth. I tested these assumptions in section 2.2.4 and found
that the fit could be improved upon by adding nonlinearities or by allowing residual errors
to follow a different distribution.

Dahlgren and coauthors demonstrated that nonlinearities in the fitted growth function
could have a significant impact on predicted population growth rate [19]. To address this
concern I parameterized the IPM with each nonlinear model that had a lower AIC value
than the linear model as well as a generalized additive model [82]. The population growth
rates predicted by each of these models did not differ significantly from the population
growth rate predicted by the IPM fit with linear growth. Similarly, the linear model
with non-normal error distribution and generalized additive model with non-normal error
distribution did not yield different predictions for population growth rate than the linear
model used throughout this chapter.

Although predicted population growth rate was robust to changes in the growth fit
and the error distribution, the selection of the linear fit with normal errors could affect
other results of this chapter. The stable size distributions and the bootstrap confidence
intervals for predicted population growth rate are both dependent on the form used for
growth. The use of a nonlinear function to describe growth or relaxing the assumption
that errors are normally distributed may affect the conclusions in this chapter; however,
further investigation of the impact of growth fit is beyond the scope of this chapter.

In addition to the potential issue with growth, the fit for recruitment may be problem-
atic. Since only eight recruits were present in open stands in 2003 [39], there is structural
uncertainty in the recruit size distribution which may bias the estimate of population
growth rate or stable size distribution. I used a log-normal distribution for both data sets
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since it was a good fit for recruit size distribution in dense stands and since it is a com-
monly used distribution to describe recruit size [55]. However, the recruit size distribution
may have a different form in open stands due to the difference in competitive pressure.

The uncertainty in recruit size is not the only issue with recruitment. In addition to
the low number of recruits and uncertainty in recruit size distribution, there is uncertainty
in how the number of flowering plants relates to the expected number of recruits. In
particular, there were a few plots in the Hüls data set in which recruits were recorded in
2003 yet no flowering plants were recorded in 2002. These seeds may have originated from
flowering plants just outside the plot or may have come from the seed bank [51, 57]. In
either case, due to the unknown origin of these recruits we cannot expect the number of
flowering plants to strongly correlate with the number of recruits in each plot.

As in the matrix model, the IPM predicts that populations are in decline. This decline
was explained by Hüls and coauthors as being caused by drought conditions [39]. Hüls
and coauthors found that populations rebounded in the 2004 growing season under normal
weather conditions with the matrix model predicting population growth rates well above 1.
Unfortunately, it is not possible to find the corresponding population growth rate using the
IPM since plants were classified on site during the 2004 growing season. This dependence of
population growth rate on realized weather conditions highlights the importance of multi-
year studies of invasive populations since without the 2004 census Hüls and coauthors may
have underestimated the risk of invasion by giant hogweed.

The low predicted population growth rates for giant hogweed due to the 2003 drought is
not unusual; however, it is also common for invasive species to benefit from unusual weather
conditions. Jackson reports that invasion of California grasslands by annual Mediterranean
grasses was facilitated by drought conditions [41]. The author’s hypothesis was later sup-
ported by a mechanistic resource availability model developed by Evarard and coauthors
that finds that non-native annual grass species, such as great brome (bromus diandrus),
competitively exclude perennial grasses native to Californian grasslands under drought
conditions [31]. Subsequent research by Kimball and coauthors found that drought slowed
recovery of Californian shrubland during postfire succession which may allow for the con-
version of shrubland to grassland by non-native annual grasses [46].

The use of an integral projection model to estimate population growth rate for giant
hogweed populations in this chapter indicates that open stands do not have a larger growth
rate than dense stands, supporting the conclusions of Hüls and coauthors [39] that open
stands are suppressed by biotic factors such as mowing or grazing. Furthermore, I found
a practical limitation to the results of Ramula and coauthors [79] since the variance in
bootstrap estimates for population growth rate is correlated with the magnitude of bias in
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population growth rate. The high variance makes it difficult for significant differences to be
reported for small demographic data sets. This limitation is exacerbated by the difficulty
in computing bootstrap statistics using an IPM with only a few recruits.
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Chapter 3

The Impact of Density-Dependent
Flowering on H. mantegazzianum
Seed Production

3.1 Introduction

The growth of a plant population must necessarily occur in an environment with finite
resources. As a result of this resource limitation, the vital rate functions that govern plant
population dynamics will vary as population density changes. Proper understanding of the
transient and long-term dynamics of a population must therefore account for the impact of
intraspecific competition on plant survival, growth, reproduction, fecundity, germination,
and establishment. Although competition is important to account for, not each of these
vital rates will have a significant impact on spread and their inclusion may needlessly
complicate the model.

In the previous chapter I used a density-independent integral projection model to com-
pare giant hogweed populations that have been classified as either open or dense stands.
This classification was based on the level of interspecific competition giant hogweed plants
face [39]. However, it has been reported by Pergl and coauthors that flowering is delayed
in the presence of conspecifics [73] and it has been reported by Hüls and coauthors that
competition from adult conspecifics results in longer generation times and a different size
distribution [39]. In this chapter I extend the integral projection model to account for
intraspecific competition. Before I describe how this is done, I must review previously
published density-dependent models for giant hogweed.
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Previous models for giant hogweed population dynamics have either ignored intraspe-
cific density-dependence [39, 73], assumed there is a ceiling capacity below which popula-
tions are unaffected [63], or used a ceiling capacity with a smoothing function for survival
[56]. However, the imposition of a ceiling capacity is not justified and will affect population
dynamics. In particular, the predicted number of seeds produced will differ if a different
form of density-dependence is used in the model. This difference in predicted seed set may
have implications on the rate of spread of the species [68].

The most common form of density-dependence in integral projection models is recruit-
ment limitation [81]. Recruitment limitation is most commonly modelled since small plants
are more vulnerable than adult plants; however, another factor contributing to the focus
on recruitment limitation is the relative ease of analysing models with only recruitment
limitation when compared to models that account for adult density [81, 22, 23, 21]. The
dearth of IPMs that allow for competition among adult conspecifics provides additional
motivation for this chapter. This chapter will therefore have two models, one that only
accounts for competition among recruits and a second that also includes adult competition.

Each recruit will compete for available microsites and resources in order to establish.
I incorporate recruitment limitation in each of the models presented in this chapter. I
then extend one of the models to allow for adult plants to compete with one another. This
competition may result in reduced survival, growth, or probability of reproduction as adult
plants compete for resources [98]. It will be determined during parameterization which
density-dependent effects must be accounted for. However, if any of the aforementioned
vital rates are affected by density then the total seed set may be affected.

It has previously been shown that the total seed set has an impact on the rate of spread
of species, particularly when habitats are fragmented [68]. The rate of spread for giant
hogweed is highly variable and sensitive to long-distance dispersal events that colonize
disturbed sites [59, 72, 56]. The rate of spread is also dependent largely on the dispersal
of seeds along corridors such as roads and waterways [93]. The accurate prediction of seed
production in giant hogweed populations is therefore essential for realistic predictions of
the spread of the species.

However, Pergl and coauthors [73] reported that flowering of giant hogweed plants is de-
layed in stands with high population density, which will in turn affect the seed production.
Therefore, I expect that a negative relation between population density and the probability
of flowering may initially result in higher population growth rates if there are significantly
more seeds produced immediately following invasion as compared to when the populations
have reached carrying capacity. I also expect that population growth rates over time will
be lower if there are fewer seeds once populations have reached carrying capacity.
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In this chapter I test this hypothesis using a structured population model of giant
hogweed that includes negative density-dependence in two different forms; the first form
is competition between seedlings for available microsites while the second form is the
negative relation between the probability of flowering and population density. I compare
the seed number predicted by the model with and without the delay in flowering and
find that significantly fewer seeds are produced over time when the delay in flowering is
modelled. Additionally, I find the equilibria for each model and the dominant eigenvalues
for their Jacobians in order to determine if the course of invasion differs qualitatively. These
differences in predicted seed production may in turn predict a different rate of spread for
the species when competition among adult plants is accounted for.

3.2 Methods

3.2.1 Study species

Giant hogweed is a monocarpic perennial herb which may grow up to 5.5 m tall [69]. The
species is native to the Caucasus and has successfully invaded much of Europe and North
America [69]. The invasiveness of giant hogweed is bolstered by the extremely large seed
set consisting of thousands or tens of thousands of seeds which may disperse along roads
and waterways [56]. Adult plants outshade competitors and may potentially produce
allelopathic substances to encourage the establishment of their offspring [100]; however,
the large seed set left behind leads to high intraspecific competition among seedlings.
Populations are typically not seed limited, but in patchy environments seed limitation has
the potential to impact invasion speed [68].

3.2.2 Experimental data collection

I used the annual transition data collected in Germany between 2002 and 2003 by Dr. Jörg
Hüls and coauthors [39] to parameterize adult population dynamics (Table 2.1). Hüls and
coauthors collected measurements of height, the petiole diameter for the largest leaf, and
laminar width of the largest leaf for vegetative plants in each year. As was done in the
previous chapter, I used height as the measure of plant size.

Mean seed production was also recorded in the original study; however, seed production
differed greatly from most previously published estimates [66, 74, 77, 94], yet agreed with
estimates from giant hogweed populations in Ireland [10, 75]. However, it is speculated
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that the estimates of seed production from the study in Ireland are overestimated due to
the author estimating fruit number by counting both male and female flowers [75]. Rather
than use the estimates produced by Hüls and coauthors I estimated mean seed production
using a meta-analysis from the literature. Mean seed production was estimated from the
weighted mean of estimates from four sources from the literature (Table 3.1, excluding
Caffrey).

Monthly seedling survival data were collected in the original study by Hüls and coau-
thors [39]. Plots with an area of 0.1 m2 were saturated with seeds so that further addition of
seeds would not yield more seedlings (Jörg Hüls, personal communication). Hüls and coau-
thors recorded the number of surviving seedlings each month. I used the average number of
seedlings measured in July as the maximum number of seedlings per plot. However, since
plots were saturated with seeds I needed additional data to parameterize a recruitment
function with few seeds.

To finish parametrizing the model, Grguric and Cuddington set up 3 sites in Ontario
with 4 quadrants each to estimate germination (Table 3.2). Fifty seeds were sowed in each
plot in Fall of 2016 and the number of resulting seedlings recorded in Spring of 2017.

Table 3.1: Estimates of seed production from the literature.

Author(s) Location Mean seeds N Source

Caffrey Ireland 41202 80 [10]
Ochsmann Germany 9695 33 [66]
Perglova Czech Republic 20671 98 [74]
Pysek Czech Republic 16140 8 [77]
Tiley, Philp Scotland 15729 4 [94]

Weighted mean (excluding Caffrey) 17746

3.2.3 Towards a density-dependent integral projection model

State variables

In order to account for density-dependence I first needed mathematical definitions for
density. For competition between recruits I used the total number of seeds at time t,
ns(t), while for adult competition I used the total biomass in the plot, b(t). The decision
to use total plot biomass as a measure of competition was based on previous studies
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Table 3.2: Seedling germination data collected in Ontario.

Location 2016 census 2017 census Quadrant 2016 seeds 2017 seedlings

Airport Rd Oct 18 Apr 28

1 50 33
2 50 28
3 50 26
4 50 23

Hwy 9 Oct 18 Apr 28

1 50 10
2 50 21
3 50 22
4 50 12

Woodstock Oct 19 May 12

1 50 4
2 50 5
3 50 6
4 50 3

that show that the relative growth rates of target plants are significantly affected by the
biomass of neighbouring plants [32, 33, 34, 80]. Since flowering plants will be competing
for resources I needed to track the size distribution of both vegetative and flowering plants
to determine total biomass. I define nv(x, t) to be the size distribution of vegetative
plants at time t, nr(x, t) to be the size distribution of reproductive plants at time t, and
n(x, t) = [nv(x, t), nr(x, t)] to be the total state of the population at time t.

I assumed that the number of seeds produced is proportional to the number of flowering
plants. Previous authors have observed that the number of flowers will increase with plant
size; however, the majority of the excess flowers do not produce fruit [75]. Let rt(t) be
the total number of flowering plants at time t. Then rt(t) may be found by integrating

over the size distribution of flowering plants, rt(t) =
∫ U

L
nr(x, t)dx, where L and U are the

lower and upper bounds for individual size, respectively. The total number of seeds at time
t may then be expressed as an integral, ns(t) = msrt(t) =

∫ U

L
msnr(x, t)dx, where ms is

the mean number of seeds a reproductive plant produces (Table 3.1). This mean number
of seeds produced by each plant is assumed to be independent of plant density [73] and
independent of plant size [75].

The measure of adult competition used in the model was necessarily a function of plant
heights within each plot. This restriction was due to limitations in the data set collected
by Hüls and coauthors [39] and due to height being the only state variable measured in the
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model. I assumed that competition between adults is size-symmetric and dependent on
the total biomass of the population [87, 97, 98]. Unfortunately, measurements of biomass
were not collected by Hüls and coauthors. Instead, the total biomass of adult plants in the
population was estimated using the allometric scaling law of West, Brown, and Enquist
[28, 29, 30, 84, 99]. This law states that the biomass of a terrestrial plant, b0, scales with
its height, x0, to the fourth power. I applied this relation to vegetative and reproductive
plants at each height and integrated in order to find the total biomass at time t:

b(t) =

∫ U

L

x4[nv(x, t) + nr(x, t)]dx. (3.1)

The scaling law of West, Brown, and Enquist has previously been criticized for making
assumptions that do not necessarily hold for every plant species [49, 50]. Instead, other
authors give a range between 3 and 6 for the exponent [3]. I reparameterized the model
using the values of 3 and 6 for the scaling exponent and reran the simulations in the
results section to determine if this uncertainty in the allometric scaling law affects my
results. These findings are briefly mentioned in the discussion.

Vital rate functions

Excluding immigration, there are three processes that describe giant hogweed population
dynamics: the survival and growth of vegetative plants, the transition of vegetative plants
to their reproductive state, and the production of recruits by the reproductive plants. These
processes of survival-growth, reproduction, and fecundity may be governed by integral
kernels similar to the density-independent integral projection model from chapter 2.

In the recruit-limited model I assumed that the number of recruits is a monotonically
increasing, bounded function of the number of number of seeds produced in the plot. The
fecundity kernel, F , is therefore a function of the number of seeds, ns. Specifically, the
function that gives the number of surviving recruits has a Michaelis-Menten form [22].
The survival-growth and reproduction kernels are assumed to be density-independent as
in chapter 2. The recruit-limited model has the form:
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nv(y, t+ 1) =

∫ U

L

P (y, x)nv(x, t)dx+

∫ U

L

F (y, x, ns)nr(x, t)dx (3.2)

nr(y, t+ 1) =

∫ U

L

R(y, x)nv(x, t)dx, (3.3)

where P (y, x) is the survival-growth kernel, R(y, x) is the reproduction kernel, and F (y, x, ns)
is the fecundity kernel.

In the adult competition model I allowed the fecundity kernel to depend on the total
number of seeds. However, this model differs from the recruit-limited model in that I
allowed the functions describing survival, growth, and the probability of reproduction to
depend on total plant biomass. The general form of the adult competition IPM is:

nv(y, t+ 1) =

∫ U

L

P (y, x, b)nv(x, t)dx+

∫ U

L

F (y, x, ns)nr(x, t)dx (3.4)

nr(y, t+ 1) =

∫ U

L

R(y, x, b)nv(x, t)dx, (3.5)

where P (y, x, b) is the survival-growth kernel, R(y, x, b) is the reproduction kernel, and
F (y, x, ns) is the fecundity kernel.

Determining the integral kernels

The survival-growth kernel for the adult competition model has the same form as survival-
growth kernels in other IPMs for monocarpic perennials [14], albeit with vital rates depen-
dent on adult plant biomass:

P (y, x, b) = ps(x, b)[1− pr(x, b)]Gv(y, x, b), (3.6)

where ps(x, b) is the probability a plant of size x in a plot of biomass b survives to the
next census, pr(x, b) is the probability a plant of size x in a plot of biomass b reproduces
before the next census, and Gv(y, x, b) is the probability a vegetative plant of size x in a
plot of biomass b that remains vegetative grows to size y in the next census. The survival-
growth kernel for the recruit-limited model is identical except for the lack of dependence
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on biomass.

The reproduction kernel for the adult competition model is the probability a vegetative
plant survives, reproduces, and grows to a given size:

R(y, x, b) = ps(x, b)pr(x, b)Gr(y, x, b), (3.7)

where Gr(y, x, b) is the probability a plant of size x in a plot of biomass b that reproduces
grows to size y the next census. The reproduction kernel for the recruit-limited model is
identical except for the lack of dependence on biomass.

Lastly, I found the fecundity kernel for both the recruit-limited model and the adult
competition model. This kernel was found by first integrating over the fecundity kernel
multiplied by the distribution of reproductive plants. This integral must be equal to the
total number of recruits, fe(ns), multiplied by the recruit size distribution, c0(y). Therefore∫ U

L
F (y, x, ns(t))nr(x, t)dx = ge(ns(t))ns(t)c0(y) =

∫ U

L
msge(ns(t))c0(y)nr(x, t)dx, where

ge(ns) is the probability a seedling establishes when ns seeds are produced. This equality
implies that:

F (y, x, ns) = msge(ns(t))c0(y). (3.8)

3.2.4 Parameterization

Bounds on plant size

The lower bound, L, was chosen to be the same as the lower bound in the density-
independent IPM, L = 5 cm. I selected the upper bound of U = 550 cm since that
value is a commonly reported upper bound for flowering giant hogweed plants [78, 69].

Probability of survival and reproduction

I assumed that the probability of survival and the probability of reproduction were both
density-independent functions for the recruit-limited model. I used logistic regression with
height as a covariate to fit these vital rate functions. However, this assumption is not
necessarily valid since intraspecific competition for resources may affect plant survival or
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the timing of reproduction. Therefore, for the adult competition model I fit the probability
of survival and probability of reproduction using logistic regression with total plot biomass
as a covariate in addition to plant height.

I compared the AIC values of the density-independent and density-dependent fits in
order to determine if the vital rates in the adult competition model should depend on
adult biomass. I found that the probability of survival had no improvement in fit when
biomass was accounted for (Table 3.3). I therefore used the same density-independent
function as was used in the recruit-limited model for the probability of survival. However,
including biomass as a covariate in regression for the probability of reproduction did yield
a significantly better fit than the density-independent fit (∆AIC= 13, p = 0.013 from
the likelihood ratio test). Therefore, for the adult competition model I used a function
for the probability of reproduction that depends on the biomass of neighbouring plants
(Table 3.4).

Table 3.3: Impact of biomass and site-specific effects on fits for vital rate functions for giant
hogweed. Vital rates were each fit twice - the first fit does not use biomass as a covariate
in regression while the second fit does use biomass as a covariate. The best performing fit
for each data set is in bold. All data collected by Hüls and coauthors [39].

Vital Rate
Density-

df AIC
dependent?

Survival (ps)
No 2 483
Yes 3 483

Reproduction (pr)
No 2 383
Yes 3 370

Growth of vegetative plants (Gv)
No 2 2739
Yes 3 2739

Growth of reproductive plants (Gr)
No 2 1117
Yes 3 1115
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Table 3.4: The final forms of the vital rate functions. All functions were fit using data
collected by Hüls and coauthors [39]. RL=recruit-limited and AC=adult competition.
Standard error is indicated in parentheses. The Michaelis constant for mean recruits was
fit using data collected by Cuddington and Grguric.

Function Notes Fitted function

Survival (ps) Logit(ps(x)) = −0.284(0.235) + 0.023(0.004)x

Reproduction (pr)
RL Logit(pr(x)) = −3.340(0.349) + 0.028(0.004)x
AC Logit(pr(x, b)) = −2.889(0.370) + 0.030(0.004)x− 0.003(0.0008)b

Growth (G)
V Gv(y, x) = 36.68(4.96) + 0.66(0.06)x+N (0, 37.522)
R Gr(y, x) = 217.29(10.85) + 0.60(0.09)x+N (0, 36.302)

Mean recruits (fe) fe(ns) = 127.5
ns+273.4

ns

Recruit size (c0) ln(y) ∼ N (3.82, 0.552)
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Figure 3.1: Data and best-fit functions for relationships between plant height and vital
rates. Survival probability (a), expected height of vegetative (b, black dots) and reproduc-
tive plants (b, unfilled rhombi), and probabilities of reproduction for the recruit-limited
model (c) and adult competition model with zero biomass (d). All data collected by Hüls
and coauthors [39].

Inter-annual growth

I fit seven common functional forms to describe the growth of vegetative and reproductive
plants [70]. I then compared each fit using their AIC values to determine which form to
use. I found that the discrete logistic and power law fits had a slightly lower AIC value
than the linear model for growth of vegetative plants. However, this difference is very small
(∆AIC ≤ 3) and so I opted to use the linear model. For the growth of reproductive plants,
I found that the linear fit performed better than each nonlinear fit. I therefore selected
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linear functions to describe the growth rates of vegetative and reproductive plants.

To test the possibility that density may affect growth rates I fit functions for the
growth of vegetative and reproductive plants using linear regression with plant height and
population biomass as covariates. Although the AIC value for the function describing the
growth of vegetative plants was not improved by using density as a covariate, the function
describing the growth of reproductive plants did improve slightly (Table 3.3). However,
since this improvement was small (∆AIC = 2), I decided to use the linear model with only
height as a covariate for both growth functions in both models.

In order to evaluate if the linear functions are suitable, I tested both fits for het-
eroskedasticity and normality of residuals. The Breusch-Pagan test indicated that the
hypothesis that variance is constant cannot be rejected (p = 0.0887 for vegetative plant
growth and p = 0.06978 for flowering plant growth) and therefore the assumptions of
homoskedasticity are not violated. Similarly, the Shapiro-Wilk test does not reject the
hypothesis that residuals are normally distributed (p = 0.1223 for vegetative plant growth
and 0.2917 for flowering plant growth). I therefore concluded that the growth kernel is a
Gaussian conditional probability distribution with mean scaling linearly with height and
constant variance.

Expected number of recruits

Like Eager and coauthors [22], I used a Michaelis-Menten function to describe the expected
number of recruits for a given number of seeds. The Michaelis-Menten function was derived
from first principles by Eager and coauthors by assuming seeds compete for available
microsites in which the seeds may establish. Let ns be the number of seeds, fe(ns) be
the total number of recruits that will result from ns seeds, α be the maximum number of
seedlings a plot may sustain, β be the number of seeds that would result in α/2 seedlings,
and ge(ns) be the probability a seed germinates and establishes given ns seeds. The form
used for recruitment is:

fe(ns) =
α

β + ns

ns = ge(ns)ns. (3.9)

I used a combination of data collected by Hüls and coauthors [39] and data collected by
Cuddington and Grguric to parameterize the recruitment function.

Hüls and coauthors [39] conducted seed sowing experiments in which 0.1 m2 plots were
saturated with giant hogweed seeds. The exact number of seeds used in the experiments
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is unknown and so I cannot use regression to fit the Michaelis-Menten function. However,
by assuming a sufficiently large number of seeds were used in each experiment, I can
assume that the mean number of seedlings in each plot is the expected maximum number
of seedlings that may establish in 0.1 m2. The mean number of seedlings that established
in these plots was 5.1. Since the plots in which Hüls and coauthors collected all their
other data each have an area of 2.5 m2, this translates to a maximum seedling capacity of
α = 127.5.

In order to determine β, I used the data collected by Cuddington and Grguric in which
50 seeds were each sowed in twelve 1 m2 plots (Table 3.2). The mean number of seedlings
which resulted were 16 seedlings/m2. In a plot with an area of 2.5 m2, this is equivalent
to 125 seeds sowed and a resulting 40 seedlings. Therefore:

fe(125) =
127.5

β + 125
125 = 40, (3.10)

which implies that β = 273.4375.

Recruit size distribution

As was done in chapter 2, I assumed that recruit size follows a log-normal distribution. I
tested this assumption by log-transforming recruit height and using the Shapiro-Wilk test
for normality. The Shapiro-Wilk test did not reject the hypothesis that the log-transformed
values are normally distributed (p = 0.58). I denote the recruit size distribution by c0(y)
(Table 3.4). Unintentional eviction was prevented by truncating the distribution at L = 5
cm and U = 550 cm and normalizing.
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Figure 3.2: Number of seedlings as a function of the seed set in the plot (a) and histogram
of observed distribution of recruit size along with the fitted log-normal distribution for
stands of giant hogweed in the Hesse region of Germany (n = 75, b).

Site-specific effects

I used mixed-effects modelling with a random intercept to test whether any vital rate func-
tions were significantly affected by sampling from different sites [7]. The AIC values for the
mixed-effects models for survival, reproduction, and the growth of vegetative plants were
higher than their corresponding fixed-effects models. The AIC value for the mixed-effects
model for the growth of reproductive plants was lower than the AIC value for the corre-
sponding fixed-effects model. However, this difference was not significant as determined by
the likelihood-ratio test (∆AIC < 2; p = 0.07345). Therefore, I did not use mixed-effects
modelling in the final model.

Outliers

I removed the same two outliers that were excluded from the density-independent model
in the previous chapter. However, there was the potential for more outliers to be identi-
fied since the density-dependent model must necessarily track the heights of reproductive
plants. I found one reproductive plant that had the magnitude of its residual for growth
more than 4 times larger than the standard deviation of the residuals for the function
describing the growth of reproductive plants. This plant appears to have had its height
recorded incorrectly and so I excluded it from the density-dependent model.
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3.2.5 Simulation results

The initial population in each simulation was one seed and no vegetative plants nor flower-
ing plants. These initial conditions were selected to simulate the local population dynamics
of a population from the start of an invasion. Populations were simulated for 30 years to
determine how seed production changes over the course of an invasion.

The number of seeds produced in the second year were compared to determine how
short distance dispersal would be affected. The number of seeds produced in years 3-7 were
compared to determine if seed production was significantly affected early in the invasion.
Finally, the number of seeds produced annually once populations became established were
compared to estimate the relative likelihood of overcoming significant barriers to dispersal,
such as forests or managed sites.

3.2.6 Equilibrium size distribution and stability

I determined the existence of an equilibrium for the recruit-limited model and its stabliity
using the same technique presented by Rebarber and coauthors [81]. I then modified
this technique to find the equilibrium for the adult competition model. Stability of the
equilibrium for the adult competition model was determined by computing the dominant
eigenvalue of the Jacobian using methods modified from Ellner and Rees [27].

3.3 Results

3.3.1 Stability results for each model

The recruit-limited model satisfies the conditions outlined by Rebarber and coauthors to
guarantee the existence of a globally asymptotically stable equilibrium [81]. However, the
model that allows for adult competition does not satisfy these conditions and so simulations
were performed to determine stability. Simulation results indicate that populations are
oscillatory with a period of two years (Figure 3.3). This behaviour was confirmed by
modifying the results of Rebarber and coauthors [81] to find the equilibrium for the adult
competition model numerically. The Jacobian of this equilibrium has a dominant eigenvalue
of -1.04, confirming that the population dynamics around the equilibrium are unstable and
oscillatory.
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3.3.2 Seed production predicted by each model

The expected number of seeds produced in the second year is predicted to be 1037 seeds
in the recruit-limited model and 1504 seeds in the adult competition model. Similarly, the
expected number of seeds in the third year is predicted to be 1013 seeds in the recruit-
limited model and 1220 seeds in the adult competition model. A second generation of
plants may sprout by the fourth year, bringing the expected number of seeds up to 226142
in the recruit-limited model and 313768 in the adult competition model. However, none of
these increases in seed production are significant (Table 3.5). Furthermore, these increases
in seed production are transient behaviour.
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Figure 3.3: Number of seeds in each year predicted by the recruit-limited model (circles)
and the model with adult competition (rhombi).

Starting in the fifth year, the density-dependent probability of flowering results in
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Table 3.5: Bootstrap mean seed production and confidence intervals for years 2, 3, 4, 5, 6,
7, 29, and 30. RL=recruit-limited and AC=adult competition. 500 bootstrap simulations
were performed for each model.

Year Model Mean seeds Bootstrap CI Plot biomass Flowering Plants

2
RL 1038 (745, 1344) 4 0.059
AC 1501 (1020, 1981) 5 0.086

3
RL 1012 (823, 1215) 53 0.057
AC 1218 (1036, 1414) 57 0.069

4
RL 226298 (150294, 307064) 899 12.84
AC 311849 (213527, 406929) 1183 18.01

5
RL 443927 (331568, 566017) 1822 25.21
AC 63781 (5744, 208389) 426 2.50

6
RL 651931 (507199, 802756) 2717 36.99
AC 505463 (291989, 767949) 2524 29.85

7
RL 794209 (635208, 963349) 3352 45.03
AC 29916 (4, 217112) 423 0.14

29
RL 969529 (808318, 1149654) 4168 54.87
AC 2974 (0.1384728, 4120) 303 0.0013

30
RL 969529 (808318, 1149654) 4168 54.87
AC 832050 (53407, 1261324) 3930 46.44

oscillations in seed production in the adult competition model (Figure 3.3). In odd years,
the seed production predicted by the model with adult competition is significantly lower
than the seed production predicted by the recruit-limited model. However, in even years
the number of seeds produced does not significantly differ between the models.

3.3.3 Differences in mean plant size

The mean height of vegetative plants was observed to be 75 cm with a 95% confidence
interval of (71 cm, 80 cm) in 2003. This confidence interval overlapped with the bootstrap
equilibrium mean height of vegetative plants predicted by the recruit-limited model, as
well as the mean plant heights predicted for each year in the adult competition model
(Table 3.6). These bootstrap confidence intervals indicate that there is no significant
difference between the observed mean height and the mean heights predicted by either
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model.

The mean height of reproductive plants was observed to be 283 cm with a 95% con-
fidence interval of (275 cm, 291 cm) in 2003 (Table 3.6). This confidence interval over-
lapped with the bootstrap equilibrium mean height of reproductive plants predicted by
the recruit-limited model. The confidence interval also overlapped with the corresponding
95% confidence interval predicted by the model with competition among adults. However,
the bootstrap confidence interval for the mean height of reproductive plants predicted by
the adult competition model in odd years did not overlap with the confidence interval of
observed heights of reproductive plants in 2003. This result indicates there is a significant
difference between the mean height of reproductive plants in odd years predicted by the
model with adult competition when compared to the observed mean height of reproductive
plants.

Table 3.6: Bootstrap observed mean height and predicted mean height of vegetative and
reproductive plants. 500 bootstrap simulations were performed for each model. All heights
presented in centimeters.

Plant type Source Year Bootstrap mean Bootstrap CI

Vegetative

Observed 2003 75 (71, 80)

Recruit-limited 30 69 (63, 74)
Adult Competition 29 76 (66, 97)
Adult Competition 30 83 (73, 102)

Reproductive

Observed 2003 283 (275, 291)

Recruit-limited 30 280 (271, 290)
Adult Competition 29 323 (295, 389)
Adult Competition 30 293 (279, 327)

3.4 Discussion

In this chapter I demonstrated that competition among adult giant hogweed plants results
in significantly fewer seeds produced long-term, without a significant difference in initial
seed production. I therefore suggest that modelling the delay in flowering may result in
significantly lower rates of spread of giant hogweed [68]. In addition, the model with adult
competition predicts oscillations in giant hogweed seed production. This prediction is in
contrast with the model without adult competition which found that populations converge
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to a stable equilibrium [81]. The number of seeds produced in the more fruitful years of
the adult competition model is not significantly less than the number of seeds produced
in the recruit-limited model. However, the number of seeds produced in less fruitful years
of the adult competition model is significantly lower than the number of seeds predicted
by the recruit-limited model. Therefore, the results of this chapter suggest the long-term
population growth rate and rate of spread will be lower in the model with adult competition.

In order to parameterize this model, I had to combine data from a few different sources.
I used data collected by Hüls and coauthors [39] to parameterize functions that describe
survival, reproduction, and growth of adult plants. However, the open stand data set and
dense stand data set were insufficient on their own to parameterize the model. Therefore,
I combined the open and dense stand data sets to use in this chapter. Hüls and coauthors
state that the stand types differ in the level of interspecific competition for each stand;
however, in practice the authors classified stands based on the ground cover of giant hog-
weed. The differences between open and dense stands should therefore be accounted for
by the measure of intraspecific competition used in this chapter, which will correlate with
giant hogweed ground cover. Unfortunately, even after aggregating the data collected by
Hüls and coauthors the data was still insufficient to parameterize the model.

To complete the data collection, Cuddington and Grguric collected recruit germination
and survival data at three sites in Southern Ontario. The combination of this data set
with the data set collected in Germany was necessary to parameterize the function for the
expected number of recruits. Climatic conditions are somewhat different between the two
locations and it is not known how results will change if recruitment data were collected
at the same time as the adult plant demographic data. Although this model may not
necessarily describe population dynamics in Germany or Canada, it will provide insights
into the general course of giant hogweed establishment and long-term population dynamics.
Unfortunately, the collection of adult data and recruit data in two separate locations does
introduce an additional issue in the model.

As a result of the collection of demographic data in two locations, it was not possible
to determine the effect that adult plants have on the survival and growth of recruits. This
interaction is typically ignored in density-dependent models similar to the model presented
in this chapter; however, competition between adult plants and seedlings will affect the
equilibrium and may affect the results of my stability analysis [21]. In addition to the
lack of adult-recruit interaction, I was unable to model the seed bank for this species
[51, 57, 23]. The seed bank may help dampen or eliminate oscillations in the model if
enough seeds persist in the seed bank to fill in after less fruitful years.

Finally, in order to get a measure of density I assumed that competition was propor-
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tional to the biomass of all plants in the plot. This assumption is based off the work
of West, Brown, and Enquist who derived allometric scaling relations between different
measures of plant size [28, 29, 30, 84, 99]. Numerous researchers have criticised the result
[49, 50, 3], arguing that the exponent will be species-dependent. Instead, the exponent for
the model is likely in the range from 3 to 6 [40, 3].

I reran the simulations from subsection 3.3.2 with an exponent of 3 and with an expo-
nent of 6 to determine if the uncertainty in the scaling law affects model results. Simulating
population growth using the relation for biomass M ∝ h6 yields dynamics that are qual-
itatively the same as the results given in subsection 3.3.2; however, using the relation
M ∝ h3 predicts that populations will initially reach a high density before settling into a
low equilibrium density. Therefore, the uncertainty in the allometric scaling law could lead
to drastically different conclusions. In addition, another assumption in my model may be
causing oscillations.

I assumed that competition was symmetric since asymmetric competition is more dif-
ficult to model and more computationally expensive. However, it has previously been
shown that models with symmetric competition may predict oscillations where similar
models with asymmetric competition do not [67, 11]. To my knowledge oscillations have
not been observed in giant hogweed populations, and so it is possible that the assump-
tion that competition is symmetric may be leading to inaccurate population dynamics.
However, even if the oscillations are an artefact of the choice of model, the impact of the
density-dependent flowering will likely affect the conclusions of previously published matrix
models and integral projection models.

Among matrix models, Pergl and coauthors developed a stochastic matrix model with
a given probability for seeds to disperse a long distance away from the mother plant [72].
The authors then simulated the spread of giant hogweed with several different probabilities
of long-distance dispersal and found that the values that best agreed with observed rates
of spread is between 0.1% and 7.5%. However, the matrices used in the simulation model
were density-independent and did not account for the decrease in seed production that may
occur in high density populations. This decrease in seed production may lead to different
estimates of the probability of long-distance dispersal. Furthermore, Moenickes and Thiele
developed a spatial matrix model to determine the factors that will have a significant
impact on the rate of spread of the species [56]. However, the hypotheses the authors test
each relate to various methods of spread, recruitment limitation, or succession, without
concern for the importance of seed production on the rate of spread.

Among individual-based models, Wadsworth and Collingham produced an IBM that
does not account for a decrease in seed production [96] and Nehrbass and coauthors produce
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four individual-based models in their investigation of giant hogweed spread and control
that assume a simple ceiling carrying capacity for the number of plants [63, 60, 61, 62].
In each of these models, population density may have a significant impact on the timing
of flowering which in turn may have a significant impact on the results of these studies.
However, further research is necessary to understand the implications my results may have
on previous studies, if at all.

In each of these previous models, accounting for the delay in flowering may result in
significantly fewer seeds being produced in some years. This decrease in seed production is
likely to affect predictions of population spread. Pachepsky and Levine [68] observed that
decreased seed production resulted in a lower rate of invasion in patchy habitats. This
result is applicable to giant hogweed spread since the pattern of spread is typically patchy
followed by infilling [62, 54]. The density-dependent decrease in seed production could
have an impact on previous models of giant hogweed spread.

Integrodifference models are commonly used to determine the rate of spread for invasive
plants [48]. These models make use of a dispersal kernel to describe the dispersal of seeds
and the dispersal kernel is commonly assumed to have exponentially bounded tails since
leptokurtic dispersal kernels can lead to an unbounded rate of spread. With such dispersal
kernels the invasion front moves at a constant speed. Furthermore, van den Bosch and
coauthors demonstrate that in the absence of an Allee effect and the absence of long-
distance dispersal the rate of spread is only dependent on the population growth rate
at the front of the invasion [95]. However, most invasive plants have some long-distance
dispersal that creates irregular invasion fronts and allow for plants that aren’t at the front
of the invasion to influence the rate of spread.

One particularly well-studied example of long-distance dispersal is the post-glacial mi-
gration of trees that occurred in the early Holocene. Clark used an integrodifference equa-
tion model to predict the rate of spread for various tree species and found that a leptokurtic
dispersal kernel is necessary to explain the observed rates of spread [15]. More recently,
Neubert and Caswell predicted the rate of spread of teasel in North America using a stage-
structured integrodifference model, yet the predicted rate of 0.5639 m/yr is well below the
observed rate of 27 km/yr [64]. The authors concluded that the large discrepancy between
observed and predicted invasion speed was due to long-distance dispersal along waterways
or multiple introductions of the species.

Similarly, Jongejans and coauthors used a stage-structured integrodifference model to
predict the spread of musk thistle (Carduus nutans) in various non-native ranges [44]. The
authors predicted spread rates of 7 m/yr, 9 m/yr, and 29 m/yr in Australia, Kansas, and
New Zealand respectively. Jongejans and coauthors followed up with an integrodifference
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model coupled with an IPM for musk thistle that predicted a rate of spread of 13.9 m/yr
in New Zealand [43]. However, each estimate differed greatly from the observed spread
rates of 146 m/yr in Pennsylvania. The authors concluded that the rate of spread in both
of their models was underestimated since they did not account for long-distance dispersal.
Rather than a uniformly advancing invasion front as predicted by Kot and coauthors [48],
the front of musk thistle invasion is highly irregular due to long-distance dispersal. This
pattern of invasion is relevant to this chapter since giant hogweed invasion may be driven by
long-distance dispersal [72]. The density-dependent dynamics described in this chapter will
be necessary to understand for giant hogweed spread due to it’s sensitivity to long-distance
dispersal.

The work in this chapter advances our understanding of the growth of giant hogweed
in environments with limited resources. In particular, this work demonstrates that the
predicted number of seeds produced by giant hogweed populations may be significantly
affected if flowering is allowed to depend on density. This density-dependent flowering
may in turn affect the rate of spread of the species and may need to be accounted for in
future models of giant hogweed spread.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis I developed several models for giant hogweed population dynamics and in-
vestigated how model complexity may affect predicted population parameters.

From the results of chapter 2 I concluded that using an integral projection model rather
than a matrix model did not change the main conclusion made by Hüls and coauthors [39].
That is, the integral projection model did not predict a significant difference in population
growth rates between open and dense stands.

I concluded from the results of chapter 3 that allowing adult plants to compete with one
another may result in significantly fewer seeds produced every other year. This decrease
in seed production may lead to lower predictions for the rate of spread of the species [68].
Furthermore, as a result of the oscillations predicted by the adult competition model, the
species may be forced to take advantage of invasion windows in order to establish new
stands [37]. This result may impact previously published models of giant hogweed spread
[96, 72, 56].

4.2 Future work

Endless research topics may be found by investigating how model complexity affects pre-
dicted population dynamics. A natural extension to the work presented in chapter 2 is
to determine if population parameters other than population growth rate are affected by
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the use of a matrix model or an integral projection model. Specifically, the predicted net
reproductive ratio and predicted generation time for a population could be biased if pre-
dicted by a matrix model. Such results could further the research performed by Ramula
and coauthors that proved that population growth rate may be biased by the discretization
used to create some matrix models [79].

The work in chapter 3 was focussed on the impact that competition may have on total
seed production and the possibility that the difference in seed production may lead to a
higher or lower rate of spread. This work may be extended by developing stochastic, spatial
integral projection models with and without adult competition and verifying if the rate of
spread differs between the models. Such work would drastically improve the conclusions
of chapter 3 by determining if a significantly different rate of spread is found, rather than
simply speculating.
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[38] Jörg Hüls. Populationsbiologische untersuchung von heracleum mantegazzianum
somm. et lev. Subpopulationen unterschiedlicher Individuendichte. Dissertation, Uni-
versity of Giessen, 2005.
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Stöcklin. Evolutionary demography of long-lived monocarpic perennials: a time-
lagged integral projection model. Journal of Ecology, 96(4):821–832, 2008.

[53] Monte Lloyd and Henry S Dybas. The periodical cicada problem. i. population
ecology. Evolution, 20(2):133–149, 1966.
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as a tool for assessing the regional dynamics of the invasive plant species heracleum
mantegazzianum. Journal of Applied Ecology, 42(6):1042–1053, 2005.

[60] Nana Nehrbass and Eckart Winkler. Is the giant hogweed still a threat? an
individual-based modelling approach for local invasion dynamics of heracleum man-
tegazzianum. Ecological Modelling, 201(3):377–384, 2007.

[61] Nana Nehrbass, Eckart Winkler, et al. Model-assisted evaluation of control strate-
gies for heracleum mantegazzianum. Ecology and Management of Giant Hogweed
(Heracleum Mantegazziannum), page 284, 2007.

[62] Nana Nehrbass, Eckart Winkler, Jana Müllerová, Jan Pergl, Petr Pyšek, and Irena
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Population dynamics of heracleum mantegazzianum. Ecology and management of
giant hogweed, pages 92–111, 2007.
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Appendix A

Chapter 2 Code

A.1 Determining Population Growth Rates

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− I n i t i a l i z a t i o n
3
4 # Clear workspace
5 rm( l i s t=l s ( ) )
6
7 # Library
8 l i b r a r y (MASS) # Needed f o r ’ f i t d i s t r ’ f unc t i on
9 l i b r a r y ( lmtes t ) # Needed f o r ’ bptest ’ f unc t i on

10 l i b r a r y (mgcv) # Needed f o r GAM f i t t i n g
11
12 # These are d e c i s i o n s that must be made
13 exc lude o u t l i e r s <− T
14 growth model <− ” l i n e a r ” # can be ” l i n e a r ” , ” r i c k e r ” , ” ske l lam ” ,

” bevholt , ”power ” , or ”gam”
15 normal var iance <− T
16
17
18 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 ## −− Read in the data and d e f i n e s t a t e v a r i a b l e
20
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21 ########################################################
22 # Data c o l l e c t e d by Huls and coauthors :
23 # joerghuels@web . de
24 #
25 # Each row conta in s data f o r one p lant
26 #
27 # The f i r s t column has an ID f o r the p lant
28 # The f i r s t l e t t e r o f the ID i n d i c a t e s the s i t e : A=Al lendor f ,
29 # D=Druse l ta l , F=Frankenberg , K=Kassel , V=Viermunden
30 # The second l e t t e r i n d i c a t e s the stand type
31 # A,B,C,D,E=Dense stand ; X=Open stand
32 # The Roman numerals i n d i c a t e the p l o t
33 # The number i n d i c a t e s the p lant
34 #
35 # Stage , he ight , l e a f stem diameter , and l e a f blade width
36 # were recorded f o r 2002 and 2003
37 # Al l measurements are in cm
38 # Stage 5 i n d i c a t e s the p lant died that year
39 ########################################################
40
41 hmdata <− read . csv ( ” . / data /IPMdata . csv ” , na . s t r i n g s=” ” )
42
43 # I use he ight as the s t a t e v a r i a b l e
44 hmdata [ ”h” ] <− hmdata [ [ ” Height2002 ” ] ]
45 hmdata [ ”h1” ] <− hmdata [ [ ” Height2003 ” ] ]
46
47
48 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 ## −− Remove Al l endor f data , d i v id e p l o t s based on dens i ty
50
51 # The s i t e i s the f i r s t l e t t e r o f the ID
52 hmdata [ ” s i t e ” ] <− subs t r ( hmdata$ID , 1 , 1 ) # f i r s t l e t t e r o f

i n d i v i d u a l ID
53
54 # Remove Al l endo r f data due to graz ing damage
55 hmdata <− hmdata [ hmdata$ s i t e !=”A” , ]
56
57 # The dens i ty i s the second l e t t e r o f the ID
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58 hmdata [ ” dens ” ] <− i f e l s e ( subs t r ( hmdata$ID , 2 , 2 )==”X” , ”Low” , ”High
” )

59
60 # Determine the p l o t number
61 hmdata [ ” p l o t ” ] <− subs t r ( hmdata$ID , 1 , as . numeric ( l app ly ( as .

cha rac t e r ( hmdata$ID) , nchar ) )−2)
62
63
64 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 ## −− Surv iva l , reproduct ion , and c l a s s i f i c a t i o n ( i . e . s e e d l i n g

or adul t )
66
67 # 1 means survived , 0 means did not surv ive , NA means f l owered (

so o f course i t ’ s dead )
68 hmdata [ ” surv ived ” ] <− i f e l s e ( hmdata [ [ ” Stage2002 ” ] ] == 4 , NA,

i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 5 , 0 , 1) )
69
70 # 1 means reproduced , 0 means did not reproduce , NA means

i n d i v i d u a l d ied without reproduc ing
71 hmdata [ ” reproduced ” ] <− i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 4 , 1 ,

i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 5 , NA, 0) )
72
73 # I f a p lant was recorded in 2003 but not 2002 i t was a s e e d l i n g

in 2002
74 hmdata [ ” c l a s s ” ] <− i f e l s e ( i s . na ( hmdata [ [ ” Stage2002 ” ] ] ) , ” Seed l ing

” , ”Adult” )
75
76
77 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 ## −− Create another dataframe without the o u t l i e r
79
80 # Help i d e n t i f y o u t l i e r s
81 out1 <− as . cha rac t e r ( hmdata [ hmdata$h>80 & hmdata$h1<10 & ! i s . na (

hmdata$h) & ! i s . na ( hmdata$h1 ) , ”ID” ] )
82 out2 <− as . cha rac t e r ( hmdata [ hmdata$h<50 & hmdata$h1>200 & hmdata$

reproduced==0 & ! i s . na ( hmdata$h) & ! i s . na ( hmdata$h1 ) , ”ID” ] )
83 out3 <− as . cha rac t e r ( hmdata [ i s . na ( hmdata$h) & i s . na ( hmdata$h1 ) , ”

ID” ] )
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84
85 # Take a look at the o u t l i e r s
86 hmdata [ hmdata$ID==out1 , ]
87 hmdata [ hmdata$ID==out2 , ]
88 hmdata [ hmdata$ID==out3 , ]
89
90 # Create a new data frame without them
91 hmdata no o u t l i e r <− hmdata [ hmdata$ID !=out1 & hmdata$ID !=out2 &

hmdata$ID !=out3 , ]
92
93
94 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 ## −− S p l i t s i n g l e data frame in to one f o r s e e d l i n g s and one f o r

adul t p l ant s
96
97 s e ed l i ngda ta <− hmdata [ hmdata$ c l a s s==” Seed l ing ” , ]
98 adultdata <− hmdata [ hmdata$ c l a s s !=” Seed l ing ” , ]
99

100 s e ed l i ngda ta no o u t l i e r <− hmdata no o u t l i e r [ hmdata no o u t l i e r $
c l a s s==” Seed l ing ” , ]

101 adultdata no o u t l i e r <− hmdata no o u t l i e r [ hmdata no o u t l i e r $
c l a s s !=” Seed l ing ” , ]

102
103
104 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 ## −− The data s e t to perform r e g r e s s i o n on
106
107 # Which subset o f data to use
108 i f ( exc lude o u t l i e r s ) {
109 dat <− adultdata no o u t l i e r
110 } e l s e {dat <− adultdata }
111
112 dat low <− dat [ dat$ dens==”Low” , ]
113 dat high <− dat [ dat$ dens==”High” , ]
114
115
116 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
117 ## −− Pro bab i l i t y o f s u r v i v a l
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118
119 # L o g i s t i c r e g r e s s i o n f o r s u r v i v a l p r o b a b i l i t y depending on l e a f

stem diameter
120 surv f i t low <− glm ( surv ived ˜ h , data=dat low , fami ly=” binomial

” )
121 surv f i t high <− glm ( surv ived ˜ h , data=dat high , fami ly=”

binomial ” )
122
123 # Surv iva l f unc t i on
124 p s <− f unc t i on (h , dens ){
125 tempdf <− data . frame (h=h)
126 i f ( dens==”Low” ) {out<−p r e d i c t ( surv f i t low , tempdf , type=”

response ” )}
127 e l s e {out<−p r e d i c t ( surv f i t high , tempdf , type=”

response ” )}
128 re turn ( out )
129 }
130
131
132 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133 ## −− Pro bab i l i t y o f r eproduct ion
134
135 # L o g i s t i c r e g r e s s i o n f o r p r o b a b i l i t y o f r eproduct ion depending

on l e a f stem diameter
136 repr f i t low <− glm ( reproduced ˜ h , data=dat low , fami ly=”

binomial ” )
137 repr f i t high <− glm ( reproduced ˜ h , data=dat high , fami ly=”

binomial ” )
138
139 # Reproduction func t i on
140 p r <− f unc t i on (h , dens ){
141 tempdf <− data . frame (h=h)
142 i f ( dens==”Low” ){out<−p r e d i c t ( repr f i t low , tempdf , type=”

response ” )}
143 e l s e {out<−p r e d i c t ( repr f i t high , tempdf , type=”

response ” )}
144 re turn ( out )
145 }
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146
147
148 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
149 ## −− Determine growth
150
151 # I need to exc lude f l o w e r i n g p lant s and dead p lant s
152 dat adul t <− dat [ dat$ Stage2003 !=4 & dat$ Stage2003 !=5 , ]
153 dat adul t low <− dat adul t [ dat adul t $ dens==”Low” , ]
154 dat adul t high <− dat adul t [ dat adul t $ dens==”High” , ]
155
156 # Linear r e g r e s s i o n
157 i f ( growth model==” l i n e a r ” ) {
158 grow f i t low <− lm( h1˜h , data=dat adul t low )
159 grow f i t high <− lm( h1˜h , data=dat adul t high )
160 } e l s e i f ( growth model==” r i c k e r ” ) {
161 r i c k fun <− f unc t i on (x , c o e f s ) {a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ;

r e turn ( a∗x∗exp(−b∗x ) )}
162 grow f i t low <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat adul t low

, s t a r t=l i s t ( a=1,b=0.01) )
163 grow f i t high <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat adul t

high , s t a r t=l i s t ( a=1,b=0.01) )
164 } e l s e i f ( growth model==” ske l lam ” ) {
165 s k e l fun <− f unc t i on (x , c o e f s ) {a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ;

r e turn ( a∗(1−exp(−b∗x ) ) )}
166 grow f i t low <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat adul t low

, s t a r t=l i s t ( a=100 ,b=0.01) )
167 grow f i t high <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat adul t

high , s t a r t=l i s t ( a=100 ,b=0.01) )
168 } e l s e i f ( growth model==”power” ) {
169 powr fun <− f unc t i on (x , c o e f s ) {a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn

( a∗xˆb)}
170 grow f i t low <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat adul t low

, s t a r t=l i s t ( a=1,b=1) )
171 grow f i t high <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat adul t

high , s t a r t=l i s t ( a=1,b=1) )
172 } e l s e i f ( growth model==” bevho l t ” ) {
173 bvht fun <− f unc t i on (x , c o e f s ) {a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ;

r e turn ( a∗x/ (b+x ) )}
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174 grow f i t low <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat adul t low
, s t a r t=l i s t ( a=1,b=1) )

175 grow f i t high <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat adul t
high , s t a r t=l i s t ( a=1,b=1) )

176 } e l s e i f ( growth model==”gam” ) {
177 grow f i t low <− gam( h1˜ s (h) , data=dat adul t low )
178 grow f i t high <− gam( h1˜ s (h) , data=dat adul t high )
179 } e l s e {rm}
180
181
182 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
183 ## −− Growth ke rne l
184
185 # Def ine growth ke rne l
186 g k <− f unc t i on ( h1 , h , dens ) {
187
188 # Def ine n i c e data frame to use
189 newdata <− data . frame (h=h)
190
191 # Two ca s e s : open or dense stands
192 i f ( dens==”Low” ) {
193 h1bar <− p r e d i c t ( grow f i t low , newdata=newdata , type=”

response ” )
194 r e s <− r e s i d u a l s ( grow f i t low )
195 df r e s <− df . r e s i d u a l ( grow f i t low )}
196 e l s e {
197 h1bar <− p r e d i c t ( grow f i t high , newdata=newdata , type=”

response ” )
198 r e s <− r e s i d u a l s ( grow f i t high )
199 df r e s <− df . r e s i d u a l ( grow f i t high )}
200
201 # I need standard e r r o r and est imated standard dev i a t i on
202 s s e <− sum( r e s ˆ2)
203 sdhat <− s q r t ( s s e / df r e s )
204
205 # Two ca s e s : normal var iance or nonparametric var i ance
206 # see ’ kernelExample .R’ from Rees , Childs , E l l n e r (2014)
207 i f ( normal var iance ) {
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208 out <− dnorm( h1 , mean=h1bar , sd=sdhat )
209 } e l s e {
210 bw <− bw. SJ ( r e s ) ; alpha <− sdhat / s q r t ( sdhatˆ2+bwˆ2) ; bw r e s

<− alpha∗ r e s
211 kfun <− f unc t i on (h) {mean(dnorm(h , mean=bw res , sd=bw) ) } ; kfun

<− Vecto r i z e ( kfun )
212 out <− kfun ( h1−h1bar )}
213
214 # Fina l ly , output the growth
215 re turn ( out )
216 }
217
218
219 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
220 ## −− Recruitment func t i on
221
222 # Expected number o f o f f s p r i n g
223 expected o f f s p r i n g <− f unc t i on ( dens ) {
224 num new <− nrow ( s e ed l i ngda ta [ s e ed l i ngda ta $ dens==dens , ] )
225 num f low <− nrow ( dat [ dat$ Stage2002==4 & dat$ dens==dens , ] )
226 re turn (num new/num f low )
227 }
228
229 # Fit r e c r u i t s i z e to a log−normal d i s t r i b u t i o n
230 r s i z e <− f i t d i s t r ( s e ed l i ngda ta $ Height2003 , ” lognormal ” ) $ es t imate
231 r s i z e l o <− f i t d i s t r ( s e ed l i ngda ta [ s e ed l i ngda ta $ dens==”Low” , ] $

Height2003 , ” lognormal ” ) $ es t imate
232 r s i z e h i <− f i t d i s t r ( s e ed l i ngda ta [ s e ed l i ngda ta $ dens==”High” , ] $

Height2003 , ” lognormal ” ) $ es t imate
233
234 # Function f o r p r o b a b i l i t y o f r e c r u i t s i z e
235 r e c r u i t s i z e <− f unc t i on ( zvec , dens ) {
236 i f ( dens==”Low” ) {my d i s t <− r s i z e l o }
237 e l s e i f ( dens==”High” ) {my d i s t <− r s i z e h i }
238 e l s e {my d i s t <− r s i z e }
239 re turn ( dlnorm ( zvec , meanlog=my d i s t [ ”meanlog” ] , sd log=my d i s t [ ”

sd log ” ] , l og=F) )
240 }
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241
242
243 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
244 ## −− Kernel f u n c t i o n s
245
246 # Surv iva l−growth ke rne l
247 P k <− f unc t i on (h , meshpts , dens ) {
248 fxn <− f unc t i on ( z1 , z , dens ) {
249 re turn (p s ( z , dens )∗(1−p r ( z , dens ) )∗g k ( z1 , z , dens ) )}
250 re turn (h∗ ( outer ( meshpts , meshpts , fxn , dens ) ) )}
251
252 # Reproduction ke rne l
253 R k <− f unc t i on (h , meshpts , dens , combine repr ) {
254 fxn <− f unc t i on ( z1 , z , dens ) {
255 re turn (p s ( z , dens )∗p r ( z , dens )∗ expected o f f s p r i n g ( dens )∗

r e c r u i t s i z e ( z1 , combine repr ) / (h∗sum( r e c r u i t s i z e ( meshpts ,
combine repr ) ) ) )}

256 re turn (h∗ ( outer ( meshpts , meshpts , fxn , dens ) ) )}
257
258
259 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
260 ## −− Find k e r n e l s and populat ion growth r a t e s
261
262 # Function to do so
263 ipm ke rne l <− f unc t i on (h , meshpts , dens , combine repr ) {
264 surv growth <− P k (h , meshpts , dens )
265 f e cund i ty <− R k (h , meshpts , dens , combine repr )
266 ke rne l <− surv growth + fecund i ty
267 re turn ( ke rne l )}
268
269 # Spec i f y bounds , mesh , spac ing
270 L <− 5
271 U <− 250
272 m <− 1000
273 h <− (U−L) /m
274 meshpts <− L + ( 1 :m)∗h − h/2
275
276 # Find k e r n e l s
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277 k l o <− ipm ke rne l (h , meshpts , ”Low” , ”Low” )
278 k h i <− ipm ke rne l (h , meshpts , ”High” , ”High” )
279
280 # Find e i g e n v a l u e s o f k e r n e l s
281 lam l o <− Re( e igen ( k lo , only . va lue s=T) $ va lue s [ 1 ] )
282 lam hi <− Re( e igen ( k hi , only . va lue s=T) $ va lue s [ 1 ] )
283
284 # Print out the f i n a l va lue s
285 lam l o
286 lam hi
287
288
289 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
290 ## −− Find e i g e n v e c t o r s
291
292 # Find e i g e n v e c t o r s o f k e r n e l s
293 v l o <− Re( e igen ( t ( k l o ) ) $ ve c t o r s [ , 1 ] )
294 v h i <− Re( e igen ( t ( k h i ) ) $ ve c t o r s [ , 1 ] )
295 w l o <− Re( e igen ( k l o ) $ ve c t o r s [ , 1 ] )
296 w hi <− Re( e igen ( k h i ) $ ve c t o r s [ , 1 ] )
297
298 # Normalize e i g e n v e c t o r s
299 v l o <− v l o /sum( v l o )
300 v h i <− v hi /sum( v hi )
301 w l o <− w l o /sum(w l o )
302 w hi <− w hi /sum(w hi )

A.2 Diagnostics

A.2.1 Unintentional Eviction

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Compute e p s i l o n s and rhos
3
4 # Functions to i n t e g r a t e over
5 not e v i c t e d <− f unc t i on (x , dens ) {
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6 he lpe r fxn <− f unc t i on ( y ) {g k (y , x , dens )}
7 i n t e g r a t e ( he lpe r fxn , L ,U)}
8
9 ne l o <− f unc t i on ( x ) {not e v i c t e d (x , ”Low” )}

10 ne h i <− f unc t i on ( x ) {not e v i c t e d (x , ”High” )}
11
12 # I n t e g r a t e over growth f u n c t i o n s
13 temp l o <− l app ly ( meshpts , ne l o )
14 temp hi <− l app ly ( meshpts , ne h i )
15
16 # Find c o n d i t i o n a l and uncond i t i ona l e v i c t i o n
17 eps l o <− rep . i n t (0 , t imes=m)
18 eps h i <− rep . i n t (0 , t imes=m)
19 rho l o <− rep . i n t (0 , t imes=m)
20 rho h i <− rep . i n t (0 , t imes=m)
21
22 f o r ( i in 1 :m) {
23 eps l o [ i ] <− 1−temp l o [ [ i ] ] $ va lue
24 eps h i [ i ] <− 1−temp hi [ [ i ] ] $ va lue
25 rho l o [ i ] <− p s ( meshpts [ i ] , ”Low” )∗ eps l o [ i ]
26 rho h i [ i ] <− p s ( meshpts [ i ] , ”High” )∗ eps h i [ i ]
27 }
28
29 # Maximum va lues
30 max( rho l o )
31 max( rho h i )
32
33 # Plot c o n d i t i o n a l and uncond i t i ona l e v i c t i o n
34 par ( mfrow=c (2 , 2 ) )
35 p l o t ( meshpts , eps lo , x lab=” Height ” , ylab=” e p s i l o n ” , main=”Open

stands ” )
36 p lo t ( meshpts , eps hi , x lab=” Height ” , ylab=” e p s i l o n ” , main=”Dense

stands ” )
37 p lo t ( meshpts , rho lo , x lab=” Height ” , ylab=”rho” , main=”Open stands ” )
38 p lo t ( meshpts , rho hi , x lab=” Height ” , ylab=”rho” , main=”Dense stands ” )
39 par ( mfrow=c (1 , 1 ) )
40
41
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42 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 ## −− Compute e v i c t i o n at the s t a b l e s i z e d i s t r i b u t i o n
44
45 # Proba b i l i t y o f e v i c t i o n below L
46 L e v i c t e d <− f unc t i on (x , dens ) {
47 he lpe r fxn <− f unc t i on ( y ) {p s (x , dens )∗g k (y , x , dens )}
48 i n t e g r a t e ( he lpe r fxn ,− In f , L)}
49
50 rho l o L <− f unc t i on ( x ) {L e v i c t e d (x , ”Low” )}
51 rho h i L <− f unc t i on ( x ) {L e v i c t e d (x , ”High” )}
52 temp l o L <− l app ly ( meshpts , rho l o L)
53 temp hi L <− l app ly ( meshpts , rho h i L)
54 rho l o L vec <− array ( as . numeric ( u n l i s t ( l app ly ( 1 :m, func t i on ( i ){as

. numeric ( temp l o L [ [ i ] ] $ va lue ) }) ) ) )
55 rho h i L vec <− array ( as . numeric ( u n l i s t ( l app ly ( 1 :m, func t i on ( i ){as

. numeric ( temp hi L [ [ i ] ] $ va lue ) }) ) ) )
56
57 # Proba b i l i t y o f e v i c t i o n above U
58 U e v i c t e d <− f unc t i on (x , dens ) {
59 he lpe r fxn <− f unc t i on ( y ) {p s (x , dens )∗g k (y , x , dens )}
60 i n t e g r a t e ( he lpe r fxn ,U, I n f )}
61
62 rho l o U <− f unc t i on ( x ) {U e v i c t e d (x , ”Low” )}
63 rho h i U <− f unc t i on ( x ) {U e v i c t e d (x , ”High” )}
64 temp l o U <− l app ly ( meshpts , rho l o U)
65 temp hi U <− l app ly ( meshpts , rho h i U)
66 rho l o U vec <− array ( as . numeric ( u n l i s t ( l app ly ( 1 :m, func t i on ( i ){as

. numeric ( temp l o U [ [ i ] ] $ va lue ) }) ) ) )
67 rho h i U vec <− array ( as . numeric ( u n l i s t ( l app ly ( 1 :m, func t i on ( i ){as

. numeric ( temp hi U [ [ i ] ] $ va lue ) }) ) ) )
68
69 # Unintent iona l e v i c t i o n
70 format (w l o %∗% rho l o L vec , s c i e n t i f i c=F)
71 format (w l o %∗% rho l o U vec , s c i e n t i f i c=F)
72
73 w hi %∗% rho hi L vec
74 w hi %∗% rho hi U vec
75
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76
77 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 ## −− Computing d lambda
79
80 # Find d lambdas
81 inner l o L <− rho l o L vec %∗% w l o
82 inner h i L <− rho h i L vec %∗% w hi
83
84 inner l o U <− rho l o U vec %∗% w l o
85 inner h i U <− rho h i U vec %∗% w hi
86
87 inner l o <− v l o %∗% w l o
88 inner h i <− v hi %∗% w hi
89
90 dlam l o L <− v l o [ 1 ] ∗ i nne r l o L / inner l o
91 dlam hi L <− v hi [ 1 ] ∗ i nne r h i L / inner h i
92 dlam l o U <− v l o [m] ∗ i nne r l o U / inner l o
93 dlam hi U <− v hi [m] ∗ i nne r h i U / inner h i
94
95 # Print thems
96 dlam l o L
97 dlam l o U
98 dlam hi L
99 dlam hi U

100
101 dlam l o L + dlam l o U
102 dlam hi L + dlam hi U

A.2.2 Form of Growth

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Table 2 . 2 : Forms f o r growth ( and f i r s t paragraph )
3
4 # Functions f o r the forms
5 quad fun <− f unc t i on (x , c o e f s ) {
6 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗xˆ2+b∗x )}
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7 quad3 fun <− f unc t i on (x , c o e f s ) {
8 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; c<−c o e f s [ 3 ] ; r e turn ( a∗xˆ2+b∗x+c )}
9 r i c k fun <− f unc t i on (x , c o e f s ) {

10 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗x∗exp(−b∗x ) )}
11 s k e l fun <− f unc t i on (x , c o e f s ) {
12 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗(1−exp(−b∗x ) ) )}
13 bvht fun <− f unc t i on (x , c o e f s ) {
14 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗x/ (b+x ) )}
15 powr fun <− f unc t i on (x , c o e f s ) {
16 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗xˆb)}
17
18 # Fit the f i t s
19 dat asymp <− dat adul t low
20 quad f i t <− n l s ( h1 ˜ quad fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
21 quad3 f i t<− lm( h1˜ poly (h , 2 ) , data=dat asymp)
22 r i c k f i t <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=0.01) )
23 s k e l f i t <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=100 ,b=0.01) )
24 bvht f i t <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
25 powr f i t <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
26
27 # AIC f o r the above f i t s
28 AIC( grow f i t low )
29 AIC( quad f i t )
30 AIC( quad3 f i t )
31 AIC( r i c k f i t )
32 AIC( s k e l f i t )
33 AIC( bvht f i t )
34 AIC( powr f i t )
35
36 # Fit some more f i t s
37 dat asymp <− dat adul t high
38 quad f i t <− n l s ( h1 ˜ quad fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
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39 quad3 f i t<− lm( h1˜ poly (h , 2 ) , data=dat asymp)
40 r i c k f i t <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=0.01) )
41 s k e l f i t <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=100 ,b=0.01) )
42 bvht f i t <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
43 powr f i t <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
44
45 # AIC f o r even more f i t s
46 AIC( grow f i t high )
47 AIC( quad f i t )
48 AIC( quad3 f i t )
49 AIC( r i c k f i t )
50 AIC( s k e l f i t )
51 AIC( bvht f i t )
52 AIC( powr f i t )

A.2.3 Normality of Residuals and Homoskedasticity

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Normality o f r e s i d u a l s and h e t e r o s k e d a s t i c i t y ( second

growth paragraph )
3
4 # Low dens d i a g n o s t i c s
5 p l o t ( dat adul t low$h , dat adul t low$h1 )
6 p l o t ( dat adul t low$h , grow f i t low$ r e s i d u a l s )
7 p l o t ( dat adul t low$h , hat ( model . matrix ( grow f i t low ) ) )
8 p l o t ( dat adul t low$h , cooks . d i s t anc e ( grow f i t low ) )
9 qqnorm ( grow f i t low$ r e s i d u a l s )

10 shap i ro . t e s t ( grow f i t low$ r e s i d u a l s )
11 bptes t ( grow f i t low )
12 AIC( grow f i t low )
13
14 # High dens d i a g n o s t i c s
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15 p lo t ( dat adul t high $h , dat adul t high $h1 )
16 p lo t ( dat adul t high $h , grow f i t high $ r e s i d u a l s )
17 p l o t ( dat adul t high $h , hat ( model . matrix ( grow f i t high ) ) )
18 p l o t ( dat adul t high $h , cooks . d i s t anc e ( grow f i t high ) )
19 qqnorm ( grow f i t high $ r e s i d u a l s )
20 shap i ro . t e s t ( grow f i t high $ r e s i d u a l s )
21 bptes t ( grow f i t high )
22 AIC( grow f i t high )

A.2.4 Log-normality of the Recruit Size Distribution

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Test f i t o f r e c r u i t d i s t ’ n
3
4 df <− s e ed l i ngda ta $h1
5 df l o <− s e ed l i ngda ta [ s e ed l i ngda ta $ dens==”Low” , ] $h1
6 df h i <− s e ed l i ngda ta [ s e ed l i ngda ta $ dens==”High” , ] $h1
7
8 t . t e s t ( l og ( df l o ) , l og ( df h i ) , pa i r ed=F, var . equal=F, conf . l e v e l

=0.95)
9 shap i ro . t e s t ( l og ( df ) )

10 shap i ro . t e s t ( l og ( df l o ) )
11 shap i ro . t e s t ( l og ( df h i ) )
12 sd ( l og ( df l o ) )
13 sd ( l og ( df h i ) )

A.3 Bootstrapping

A.3.1 Bootstrap population growth rate

1 boots t rap he lpe r <− f unc t i on ( adul t dat , s e e d l i n g dat ) {
2
3 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ## −− The data s e t to perform r e g r e s s i o n on
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5
6 # Which subset o f data to use
7 dat <− adult dat
8
9 # Use t h i s one f o r growth

10 #dat adul t <− dat [ dat$ Stage2003 !=1 & dat$ Stage2003 !=4 & dat$
Stage2003 !=5 , ]

11 dat adul t <− dat [ dat$ Stage2003 !=4 & dat$ Stage2003 !=5 , ]
12
13 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 ## −− Surv iva l and reproduct ion
15
16 # L o g i s t i c r e g r e s s i o n
17 surv f i t <− glm ( surv ived ˜h , data=dat , fami ly=” binomial ” )
18 repr f i t <− glm ( reproduced ˜h , data=dat , fami ly=” binomial ” )
19
20 # Response f u n c t i o n s
21 p s <− f unc t i on (h){ r e turn ( p r e d i c t ( surv f i t , data . frame (h=h) ,

type=” response ” ) )}
22 p r <− f unc t i on (h){ r e turn ( p r e d i c t ( repr f i t , data . frame (h=h) ,

type=” response ” ) )}
23
24 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ## −− Growth
26
27 # Fit growth
28 grow f i t <− lm( h1˜h , data=dat adul t )
29
30 # Growth ke rne l
31 g k <− f unc t i on ( h1 , h) {
32 h1bar <− p r e d i c t ( grow f i t , newdata=data . frame (h=h) , type=”

response ” )
33 sdhat <− s q r t (sum( r e s i d u a l s ( grow f i t ) ˆ2) / df . r e s i d u a l ( grow f i t

) )
34 re turn (dnorm( h1 , mean=h1bar , sd=sdhat ) )}
35
36 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 ## −− Recruitment ke rne l
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38
39 # Expected number o f o f f s p r i n g (num new / num f l o w e r i n g )
40 expected o f f s p r i n g <− nrow ( s e e d l i n g dat ) /nrow ( dat [ dat$ Stage2002

==4 ,])
41
42 # Fit r e c r u i t s i z e to a log−normal d i s t r i b u t i o n
43 r s i z e <− f i t d i s t r ( s e e d l i n g dat$ Height2003 , ” lognormal ” ) $

es t imate
44
45 # Function f o r p r o b a b i l i t y o f r e c r u i t s i z e
46 r e c r u i t s i z e <− f unc t i on ( zvec ) { r e turn ( dlnorm ( zvec , meanlog=r

s i z e [ ”meanlog” ] , sd log=r s i z e [ ” sd log ” ] , l og=F) )}
47
48 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 ## −− Implement k e r n e l s
50
51 # Surv iva l−growth
52 P k <− f unc t i on (h , meshpts ) {
53 fxn <− f unc t i on ( z1 , z ) { r e turn (p s ( z )∗(1−p r ( z ) )∗g k ( z1 , z ) )}
54 re turn (h∗ ( outer ( meshpts , meshpts , fxn ) ) )}
55
56 # Reproduction
57 R k <− f unc t i on (h , meshpts , dens , combine repr ) {
58 fxn <− f unc t i on ( z1 , z ) { r e turn (p s ( z )∗p r ( z )∗ expected

o f f s p r i n g ∗ r e c r u i t s i z e ( z1 ) )}
59 re turn (h∗ ( outer ( meshpts , meshpts , fxn ) ) )}
60
61 # Ful l k e rne l
62 ipm ke rne l <− f unc t i on (h , meshpts ) { r e turn (P k (h , meshpts )+R k (h ,

meshpts ) )}
63
64 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 ## −− Find growth ra t e
66
67 # Spec i f y bounds , mesh , spac ing
68 L <− 5
69 U <− 250
70 m <− 100
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71 h <− (U−L) /m
72 meshpts <− L + ( 1 :m)∗h − h/2
73
74 # Determine k e r n e l s and e i g e n v e c t o r s
75 P <− P k (h , meshpts )
76 R <− R k (h , meshpts )
77 ke rne l <− P+R
78 fund mat <− R %∗% s o l v e ( diag (m)−P)
79
80 w <− Re( e igen ( ke rne l ) $ ve c t o r s [ , 1 ] )
81 w <− w/sum(w)
82
83 # Determine va lue s to r epo r t
84 he ight <− w %∗% meshpts
85 lambda <− Re( e igen ( ke rne l ) $ va lue s [ 1 ] )
86 R0 <− Re( e igen ( fund mat) $ va lue s [ 1 ] )
87 Tval <− l og (R0) / log ( lambda )
88 re turn ( l i s t ( ” he ight ”=height , ”lambda”=lambda , ”R0”=R0 , ”Tval”=Tval

) )
89 }
90
91
92 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 ## −− Function to v e r i f y i f subset i s ok f o r boots t rapp ing
94
95 v e r i f y sample <− f unc t i on ( dat ) {
96 # By d e f a u l t i t should be f i n e , I j u s t need to check i f the re

might be a problem
97 out <− 0
98 # These subse t s w i l l help , I remove ”NA’ s ”
99 seed dat <− dat [ dat$ c l a s s==” Seed l ing ” , ]

100 ad l t dat <− dat [ dat$ c l a s s !=” Seed l ing ” & ! i s . na ( dat$ surv ived ) , ]
101 # More h e l p f u l subs e t s : f i r s t d i g i t i s su rv iva l , second i s

r eproduct ion
102 s r dat 00 <− ad l t dat [ ad l t dat$ surv ived ==0,]
103 s r dat 10 <− ad l t dat [ ad l t dat$ surv ived==1 & ad l t dat$

reproduced ==0,]
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104 s r dat 11 <− ad l t dat [ ad l t dat$ surv ived==1 & ad l t dat$
reproduced ==1,]

105 # Need to have enough s e e d l i n g s to parameter i ze
106 i f ( nrow ( seed dat )<=2) {out <− NA}
107 # Return whether the data s e t i s ok or not
108 re turn ( out )
109 }
110
111
112 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 ## −− Function f o r boots t rapp ing
114
115 boots t rap main <− f unc t i on ( dat , sample s i z e , N) {
116 # Number o f rows to sample from
117 nr <− nrow ( dat )
118 # Vector to s t o r e output
119 he i gh t s <− array (NA, dim=c (N) )
120 lambdas <− array (NA, dim=c (N) )
121 R0s <− array (NA, dim=c (N) )
122 Ts <− array (NA, dim=c (N) )
123 # Index
124 i = 1
125 j = 0
126 # Bootstrap step
127 whi l e ( i <= N) {
128 # Randomly sample from data s e t
129 i n d i c e s <− sample . i n t ( nr , sample s i z e , r e p l a c e=T)
130 dat new <− dat [ i nd i c e s , ]
131 v e r f <− v e r i f y sample ( dat new)
132 # Check to see i f data w i l l work
133 i f ( ! i s . na ( v e r f ) ) {
134 out <− boots t rap he lpe r ( dat new [ dat new$ c l a s s !=” Seed l ing ”

, ] , dat new [ dat new$ c l a s s==” Seed l ing ” , ] )
135 he i gh t s [ i ] <− out$ he ight
136 lambdas [ i ] <− out$lambda
137 R0s [ i ] <− out$R0
138 Ts [ i ] <− out$Tval
139 p r i n t ( i )
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140 i <− i+1
141 }
142 e l s e {
143 p r i n t ( c ( i , ”bad” ) )
144 j <− j+1
145 }
146 }
147 p r i n t ( c ( ”There were” , j , ” e r r o r s ” ) )
148 re turn ( l i s t ( ” he i gh t s ”=he ights , ” lambdas”=lambdas , ”R0s”=R0s , ”Ts”=

Ts) )
149 }
150
151
152 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 ## −− Bootstrap
154
155 # Subset data in to high and low
156 dat l o <− hmdata no o u t l i e r [ hmdata no o u t l i e r $ dens==”Low” , ]
157 dat h i <− hmdata no o u t l i e r [ hmdata no o u t l i e r $ dens==”High” , ]
158
159 # Compute the boots t rap con f idence i n t e r v a l s
160 boot d i s tn l o <− boots t rap main ( dat lo , nrow ( dat l o ) ,5000)
161 boot d i s tn h i <− boots t rap main ( dat lo , nrow ( dat h i ) ,5000)
162
163 # Break in to c o n s t i t u e n t par t s
164 h d i s tn l o <− boot d i s tn l o $ he i gh t s
165 h d i s tn h i <− boot d i s tn h i $ he i gh t s
166
167 lam d i s tn l o <− boot d i s tn l o $ lambdas
168 lam d i s tn h i <− boot d i s tn h i $ lambdas
169
170 # Ensure each value i s v a l i d
171 l ength ( lam d i s tn l o [ lam d i s tn lo <0])
172 l ength ( lam d i s tn h i [ lam d i s tn hi <0])
173 l ength ( lam d i s tn l o [ i s . na ( lam d i s tn l o ) ] )
174 l ength ( lam d i s tn h i [ i s . na ( lam d i s tn h i ) ] )
175
176 # Bootstrap means
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177 h boot mu l o <− mean(h d i s tn l o )
178 h boot mu hi <− mean(h d i s tn h i )
179
180 lam boot mu l o <− mean( lam d i s tn l o )
181 lam boot mu hi <− mean( lam d i s tn h i )
182
183 # Bootstrap con f idence i n t e r v a l s
184 h boot c i h i <− q u a n t i l e (h d i s tn hi , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
185 h boot c i l o <− q u a n t i l e (h d i s tn lo , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
186
187 lam boot c i h i <− q u a n t i l e ( lam d i s tn hi , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
188 lam boot c i l o <− q u a n t i l e ( lam d i s tn lo , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
189
190
191 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192 ## −− Height t ab l e
193
194 # Using normal boots t rapp ing sample s i z e
195 w l o %∗% meshpts
196 h boot mu l o
197 h boot c i l o
198
199 w hi %∗% meshpts
200 h boot mu hi
201 h boot c i h i
202
203
204 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
205 ## −− Populat ion growth ra t e t ab l e
206
207 # Using normal boots t rapp ing sample s i z e
208 lam l o
209 lam boot mu l o
210 lam boot c i l o
211
212 lam hi
213 lam boot mu hi
214 lam boot c i h i
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215
216
217 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 ## −− Upsampling data
219
220 # Bootstrap
221 boot d i s tn l o 100 <− boots t rap main ( dat lo , 100 ,5000)
222 boot d i s tn l o 200 <− boots t rap main ( dat lo , 200 ,5000)
223 boot d i s tn l o 300 <− boots t rap main ( dat lo , 300 ,5000)
224 boot d i s tn l o 400 <− boots t rap main ( dat lo , 400 ,5000)
225 boot d i s tn l o 500 <− boots t rap main ( dat lo , 500 ,5000)
226 boot d i s tn l o 600 <− boots t rap main ( dat lo , 600 ,5000)
227
228 boot d i s tn h i 100 <− boots t rap main ( dat hi , 100 ,5000)
229 boot d i s tn h i 200 <− boots t rap main ( dat hi , 200 ,5000)
230 boot d i s tn h i 300 <− boots t rap main ( dat hi , 300 ,5000)
231 boot d i s tn h i 400 <− boots t rap main ( dat hi , 400 ,5000)
232 boot d i s tn h i 500 <− boots t rap main ( dat hi , 500 ,5000)
233 boot d i s tn h i 600 <− boots t rap main ( dat hi , 600 ,5000)
234
235 # Give name to boots t rap d i s t r i b u t i o n s
236 lam d i s tn l o 100 <− boot d i s tn l o 100$ lambdas
237 lam d i s tn l o 200 <− boot d i s tn l o 200$ lambdas
238 lam d i s tn l o 300 <− boot d i s tn l o 300$ lambdas
239 lam d i s tn l o 400 <− boot d i s tn l o 400$ lambdas
240 lam d i s tn l o 500 <− boot d i s tn l o 500$ lambdas
241 lam d i s tn l o 600 <− boot d i s tn l o 600$ lambdas
242
243 lam d i s tn h i 100 <− boot d i s tn h i 100$ lambdas
244 lam d i s tn h i 200 <− boot d i s tn h i 200$ lambdas
245 lam d i s tn h i 300 <− boot d i s tn h i 300$ lambdas
246 lam d i s tn h i 400 <− boot d i s tn h i 400$ lambdas
247 lam d i s tn h i 500 <− boot d i s tn h i 500$ lambdas
248 lam d i s tn h i 600 <− boot d i s tn h i 600$ lambdas
249
250 # Compute boots t rap means
251 lam boot mu l o 100 <− mean( lam d i s tn l o 100)
252 lam boot mu l o 200 <− mean( lam d i s tn l o 200)
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253 lam boot mu l o 300 <− mean( lam d i s tn l o 300)
254 lam boot mu l o 400 <− mean( lam d i s tn l o 400)
255 lam boot mu l o 500 <− mean( lam d i s tn l o 500)
256 lam boot mu l o 600 <− mean( lam d i s tn l o 600)
257
258 lam boot mu hi 100 <− mean( lam d i s tn h i 100)
259 lam boot mu hi 200 <− mean( lam d i s tn h i 200)
260 lam boot mu hi 300 <− mean( lam d i s tn h i 300)
261 lam boot mu hi 400 <− mean( lam d i s tn h i 400)
262 lam boot mu hi 500 <− mean( lam d i s tn h i 500)
263 lam boot mu hi 600 <− mean( lam d i s tn h i 600)
264
265 # Compute boots t rap CIs
266 lam boot c i l o 100 <− q u a n t i l e ( lam d i s tn l o 100 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
267 lam boot c i l o 200 <− q u a n t i l e ( lam d i s tn l o 200 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
268 lam boot c i l o 300 <− q u a n t i l e ( lam d i s tn l o 300 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
269 lam boot c i l o 400 <− q u a n t i l e ( lam d i s tn l o 400 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
270 lam boot c i l o 500 <− q u a n t i l e ( lam d i s tn l o 500 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
271 lam boot c i l o 600 <− q u a n t i l e ( lam d i s tn l o 600 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
272
273 lam boot c i h i 100 <− q u a n t i l e ( lam d i s tn h i 100 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
274 lam boot c i h i 200 <− q u a n t i l e ( lam d i s tn h i 200 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
275 lam boot c i h i 300 <− q u a n t i l e ( lam d i s tn h i 300 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
276 lam boot c i h i 400 <− q u a n t i l e ( lam d i s tn h i 400 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
277 lam boot c i h i 500 <− q u a n t i l e ( lam d i s tn h i 500 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
278 lam boot c i h i 600 <− q u a n t i l e ( lam d i s tn h i 600 , probs=c

( 0 . 0 2 5 , 0 . 9 7 5 ) )
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279
280 # Print va lue s
281 lam boot mu l o 100
282 lam boot c i l o 100
283
284 lam boot mu l o 200
285 lam boot c i l o 200
286
287 lam boot mu l o 300
288 lam boot c i l o 300
289
290 lam boot mu l o 400
291 lam boot c i l o 400
292
293 lam boot mu l o 500
294 lam boot c i l o 500
295
296 lam boot mu l o 600
297 lam boot c i l o 600
298
299
300 lam boot mu hi 100
301 lam boot c i h i 100
302
303 lam boot mu hi 200
304 lam boot c i h i 200
305
306 lam boot mu hi 300
307 lam boot c i h i 300
308
309 lam boot mu hi 400
310 lam boot c i h i 400
311
312 lam boot mu hi 500
313 lam boot c i h i 500
314
315 lam boot mu hi 600
316 lam boot c i h i 600
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A.4 Methods Plots

A.4.1 Plot vital rate functions

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Plot v i t a l r a t e s
3
4 # Spec i f y data s e t to use
5 dat <− adultdata no o u t l i e r
6
7 # Real data to p l o t ( t i c k s or po in t s as nece s sa ry )
8 # Surv iva l t i c k s
9 dat surv <− dat [ ! i s . na ( dat$ surv ived ) , ]

10 dat surv l o <− dat surv [ dat surv $ dens==”Low” , ]
11 dat surv h i <− dat surv [ dat surv $ dens==”High” , ]
12 # Reproduction t i c k s
13 dat repr <− dat [ ! i s . na ( dat$ reproduced ) , ]
14 dat repr l o <− dat repr [ dat repr $ dens==”Low” , ]
15 dat repr h i <− dat repr [ dat repr $ dens==”High” , ]
16 # Growth po in t s
17 dat veg <− dat [ dat$ Stage2003 !=4 & dat$ Stage2003 !=5 & ! i s . na ( dat$h

) , ]
18 dat veg l o <− dat veg [ dat veg$ dens==”Low” , ]
19 dat veg h i <− dat veg [ dat veg$ dens==”High” , ]
20
21 # Make l i n e s that w i l l be p l o t t ed
22 xmax l o <− 150
23 xmax hi <− 220
24
25 x l o <− seq (0 ,xmax lo , l ength =100)
26 x h i <− seq (0 ,xmax hi , l ength =100)
27
28 s l o <− p s ( x lo , ”Low” )
29 s h i <− p s ( x hi , ”High” )
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30
31 r l o <− p r ( x lo , ”Low” )
32 r h i <− p r ( x hi , ”High” )
33
34 # PLOTS
35 par ( mfrow=c (3 , 2 ) )
36 dx <− 0 .03
37 dy <− 1
38 l i n e f r a c <− 1
39 s c a l e t ex t <− 1 .3
40
41 p lo t ( x lo , s lo , type=” l ” , lwd=2, xlim=c (0 ,xmax l o ) , yl im=c (0 , 1 ) ,
42 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y o f s u r v i v a l ” ,

cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
43 po in t s ( dat surv l o $h , dat surv l o $ survived , pch=” | ” , cex=l i n e f r a c )
44 mtext ( ” ( a ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
45 p l o t ( x hi , s hi , type=” l ” , lwd=2, xlim=c (0 ,xmax hi ) , yl im=c (0 , 1 ) ,
46 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y o f s u r v i v a l ” ,

cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
47 po in t s ( dat surv h i $h , dat surv h i $ survived , pch=” | ” , cex=l i n e f r a c )
48 mtext ( ” (b) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
49
50 p lo t ( x lo , r lo , type=” l ” , lwd=2, xlim=c (0 ,xmax l o ) , yl im=c (0 , 1 ) ,
51 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y o f f l o w e r i n g ” ,

cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
52 po in t s ( dat repr l o $h , dat repr l o $ reproduced , pch=” | ” , cex=l i n e f r a c

)
53 mtext ( ” ( c ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
54 p l o t ( x hi , r hi , type=” l ” , lwd=2, xlim=c (0 ,xmax hi ) , yl im=c (0 , 1 ) ,
55 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y o f f l o w e r i n g ” ,

cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
56 po in t s ( dat repr h i $h , dat repr h i $ reproduced , pch=” | ” , cex=l i n e f r a c

)
57 mtext ( ” (d) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
58
59 p lo t ( dat veg l o $h , dat veg l o $h1 , pch=16, xlim=c (0 ,xmax l o ) , yl im=c

(0 ,220) ,
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60 xlab=” Height in 2002 (cm) ” , ylab=” Height in 2003 (cm) ” , cex .
lab=s c a l e text , cex . a x i s=s c a l e t ex t )

61 segments (min ( dat veg l o $h) , y0=as . numeric ( p r e d i c t ( grow f i t low ,
data . frame (h=min ( dat veg l o $h) ) ) ) ,

62 max( dat veg l o $h) , y1=as . numeric ( p r e d i c t ( grow f i t low ,
data . frame (h=max( dat veg l o $h) ) ) ) , lwd=2)

63 mtext ( ” ( e ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
64 p l o t ( dat veg h i $h , dat veg h i $h1 , pch=16, xlim=c (0 ,xmax hi ) , yl im=c

(0 ,220) ,
65 xlab=” Height in 2002 (cm) ” , ylab=” Height in 2003 (cm) ” , cex .

lab=s c a l e text , cex . a x i s=s c a l e t ex t )
66 segments (min ( dat veg h i $h) , y0=as . numeric ( p r e d i c t ( grow f i t high ,

data . frame (h=min ( dat veg h i $h) ) ) ) ,
67 max( dat veg h i $h) , y1=as . numeric ( p r e d i c t ( grow f i t high ,

data . frame (h=max( dat veg h i $h) ) ) ) , lwd=2)
68 mtext ( ” ( f ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
69
70 par ( mfrow=c (1 , 1 ) )

A.4.2 Plot recruit size distribution

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Plot r e c r u i t s i z e d i s tn
3
4 # Spec i f y data s e t to use
5 dat <− s e ed l i ngda ta no o u t l i e r
6 dat r e c r l o <− dat [ dat$ dens==”Low” , ] $ Height2003
7 dat r e c r h i <− dat [ dat$ dens==”High” , ] $ Height2003
8
9 # Make l i n e s to p l o t

10 xmin l o <− min( dat r e c r l o )
11 xmax l o <− max( dat r e c r l o )
12 x l o <− seq ( xmin lo , xmax lo , l ength =100)
13 y l o <− r e c r u i t s i z e ( x lo , ”Low” )
14
15 xmin h i <− min( dat r e c r h i )
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16 xmax hi <− max( dat r e c r h i )
17 x h i <− seq ( xmin hi , xmax hi , l ength =100)
18 y h i <− r e c r u i t s i z e ( x hi , ”High” )
19
20 # PLOTS
21 par ( mfrow=c (1 , 2 ) )
22 d i s t n c e <− 0 .02 # −0.22
23 s c a l e t ex t <− 1
24 h i s t ( dat r e c r lo , breaks =7, xlim=c ( xmin lo −5,xmax l o ) , yl im=c

( 0 , 0 . 0 5 ) ,
25 xlab=” Recru i t he ight (cm) ” , ylab=” Proport ion o f r e c r u i t s ” ,
26 cex . lab=s c a l e text , cex . a x i s=s c a l e text , main=”” , f r e q=FALSE)
27 l i n e s ( x lo , y lo , type=” l ” , lwd=2)
28 mtext ( ” ( a ) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
29 h i s t ( dat r e c r hi , breaks =9, xlim=c ( xmin hi−2,xmax hi ) , yl im=c

( 0 , 0 . 0 2 ) ,
30 xlab=” Recru i t he ight (cm) ” , ylab=” Proport ion o f r e c r u i t s ” ,
31 cex . lab=s c a l e text , cex . a x i s=s c a l e text , main=”” , f r e q=FALSE)
32 l i n e s ( x hi , y hi , type=” l ” , lwd=2)
33 mtext ( ” (b) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
34 par ( mfrow=c (1 , 1 ) )

A.5 Results Plots

A.5.1 Plot predicted size distribution vs observations

1 # Main data frames
2 dat a <− adultdata no o u t l i e r [ adultdata no o u t l i e r $ Stage2003 !=4 , ]
3 dat s <− s e ed l i ngda ta no o u t l i e r
4
5 # Neat l i t t l e data frames
6 ad l t l o <− dat a [ dat a$ dens==”Low” , ]
7 ad l t h i <− dat a [ dat a$ dens==”High” , ]
8 seed l o <− dat s [ dat s $ dens==”Low” , ]
9 seed h i <− dat s [ dat s $ dens==”High” , ]

10
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11 # I s o l a t e he i gh t s w/o NAs
12 h ad l t l o <− ad l t l o $h1 [ ! i s . na ( ad l t l o $h1 ) ]
13 h seed l o <− seed l o $h1 [ ! i s . na ( seed l o $h1 ) ]
14 h ad l t h i <− ad l t h i $h1 [ ! i s . na ( ad l t h i $h1 ) ]
15 h seed h i <− seed h i $h1 [ ! i s . na ( seed h i $h1 ) ]
16
17 # Combine adul t and s e e d l i n g data
18 observed l o <− c (h ad l t lo , h seed l o )
19 observed h i <− c (h ad l t hi , h seed h i )
20
21 # Pred icted va lue s
22 pred i c t ed l o <− w l o /h
23 pred i c t ed h i <− w hi /h
24
25 # Mean he i gh t s
26 mean h l o prd <− w l o %∗% meshpts
27 mean h hi prd <− w hi %∗% meshpts
28 mean h l o obs <− mean( observed l o )
29 mean h hi obs <− mean( observed h i )
30
31 mean h l o obs
32 mean h l o prd
33 mean h hi obs
34 mean h hi prd
35
36 # Values are found by running ’ ch2 boots t rapp ing .R’ and added

manually
37 # I do not do t h i s programmatica l ly s i n c e running the
38 # boots t rap f i l e every time I want to make t h i s f i g
39 boot summary l o <− c (86 .65732 , 94 .60086 , 102 .26890)
40 boot summary h i <− c (67 .99328 , 73 .05466 , 78 .14434)
41
42 # PLOTS
43 par ( mfrow=c (1 , 2 ) )
44 d i s t n c e <− 0 .02
45 s c a l e t ex t <− 1
46 h i s t ( observed lo , breaks =10, f r e q=F, xlim=c (0 ,U) ,
47 xlab=” Height ” , ylab=” Proport ion ” , main=”” ,
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48 cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
49 l i n e s ( meshpts , p r ed i c t ed lo , lwd=2)
50 mtext ( ” ( a ) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
51 h i s t ( observed hi , breaks =10, f r e q=F, xlim=c (0 ,U) ,
52 xlab=” Height ” , ylab=” Proport ion ” , main=”” ,
53 cex . lab=s c a l e text , cex . a x i s=s c a l e t ex t )
54 l i n e s ( meshpts , p r ed i c t ed hi , lwd=2)
55 mtext ( ” (b) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
56 par ( mfrow=c (1 , 1 ) )
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Appendix B

Chapter 3 Code

B.1 Simulation Function

1 # Import l i b r a r i e s
2 l i b r a r y ( lme4 ) # f o r mixed−e f f e c t s mode l l ing
3 l i b r a r y (MASS) # f o r f i t t i n g negat ive b inomia l s
4 l i b r a r y ( lmtes t ) # f o r per forming l i k e l i h o o d r a t i o t e s t s
5
6
7 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 ## −− Read in the data
9

10 # The same data as was used in Chapter 2
11 hmdata <− read . csv ( ” . / data /HuelsNewData . csv ” , na . s t r i n g s=” ” )
12
13 # The number o f s e e d l i n g s per p l o t
14 s e e d l i n g numbers <− read . csv ( ” . / data / HuelsSeedl ingData . csv ” , na .

s t r i n g s=” ” )
15
16
17 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 ## −− Def ine s t a t e v a r i a b l e
19
20 # I use he ight as the s t a t e v a r i a b l e
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21 hmdata [ ”h” ] <− hmdata [ [ ” Height2002 ” ] ]
22 hmdata [ ”h1” ] <− hmdata [ [ ” Height2003 ” ] ]
23
24
25 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 ## −− Create columns f o r s i t e and p lo t
27
28 # The s i t e i s the f i r s t l e t t e r o f the ID
29 hmdata [ ” s i t e ” ] <− subs t r ( hmdata$ID , 1 , 1 ) # f i r s t l e t t e r o f

i n d i v i d u a l ID
30
31 # Determine the p l o t number
32 hmdata [ ” p l o t ” ] <− subs t r ( hmdata$ID , 1 , as . numeric ( l app ly ( as .

cha rac t e r ( hmdata$ID) , nchar ) )−2)
33
34
35 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 ## −− Remove bad data
37
38 # Remove Al l endo r f data due to graz ing damage
39 hmdata <− hmdata [ hmdata$ s i t e !=”A” , ]
40
41
42 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 ## −− Find biomass in each p l o t
44
45 # NOTES:
46 # mass exp : ” Global a l l o c a t i o n r u l e s f o r pat t e rn s o f biomass

p a r t i t i o n i n g in seed p lant s ”
47 # I d iv id e by 100 to convert to meters ( so the numbers are a

rea sonab l e s i z e )
48
49 # Estimate biomass o f each plant
50 e u c l i d <− 3 # exponent=1
51 wbe <− 4 # one−f our th law o f West , Brown , and Enquist
52 o t l <− 9/2 # one−th i rd law
53 upper exp <− 6 # max value
54 mass exp <− wbe
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55
56 hmdata [ ”mass” ] <− i f e l s e ( ! i s . na ( hmdata$h) , ( hmdata [ ”h” ] / 100) ˆmass

exp , 0 )
57 hmdata [ ”mass1” ] <− i f e l s e ( ! i s . na ( hmdata$h1 ) , ( hmdata [ ”h1” ] / 100) ˆ

mass exp , 0 )
58
59 # Find the dens i ty o f each p l o t based on biomass
60 dens df <− aggregate ( mass ˜ plot , hmdata , sum)
61 names ( dens df ) [ names ( dens df )==”mass” ] <− ” dens ”
62 dens1 df <− aggregate ( mass1 ˜ plot , hmdata , sum)
63 names ( dens1 df ) [ names ( dens1 df )==”mass1” ] <− ” dens1 ”
64
65 # Merging the data frames to get s e e d l i n g s / p l o t and biomass / p l o t
66 hmdata <− merge (hmdata , s e e d l i n g numbers , by=” p lo t ” )
67 hmdata <− merge (hmdata , dens df , by=” p lo t ” )
68 hmdata <− merge (hmdata , dens1 df , by=” p lo t ” )
69
70
71 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 ## −− Surv iva l , reproduct ion , and c l a s s i f i c a t i o n ( i . e . s e e d l i n g

or adul t )
73
74 # 1 means survived , 0 means did not surv ive , NA means f l owered (

so o f course i t ’ s dead )
75 hmdata [ ” surv ived ” ] <− i f e l s e ( hmdata [ [ ” Stage2002 ” ] ] == 4 , NA,

i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 5 , 0 , 1) )
76
77 # 1 means reproduced , 0 means did not reproduce , NA means

i n d i v i d u a l d ied without reproduc ing
78 hmdata [ ” reproduced ” ] <− i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 4 , 1 ,

i f e l s e ( hmdata [ [ ” Stage2003 ” ] ] == 5 , NA, 0) )
79
80 # I f a p lant was recorded in 2003 but not 2002 i t was a s e e d l i n g

in 2002
81 hmdata [ ” c l a s s ” ] <− i f e l s e ( i s . na ( hmdata [ [ ” Stage2002 ” ] ] ) , ” Seed l ing

” , ”Adult” )
82
83
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84 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 ## −− Remove o u t l i e r s
86
87 # Remove o u t l i e r s ( has to be done AFTER mass c a l c s )
88 hmdata <− hmdata [ hmdata$ID !=”KXIII09” & hmdata$ID !=”VCI04” , ]
89
90 # Remove a reproduc t ive o u t l i e r
91 hmdata <− hmdata [ hmdata$ reproduced==0 | hmdata$h1>100 | i s . na (

hmdata$ reproduced ) , ]
92
93
94 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 ## −− S p l i t s i n g l e data frame in to one f o r s e e d l i n g s and one f o r

adul t p l ant s
96
97 s e ed l i ngda ta <− hmdata [ hmdata$ c l a s s==” Seed l ing ” , ]
98 hmdata <− hmdata [ hmdata$ c l a s s !=” Seed l ing ” , ]
99

100
101 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 ## −− The data s e t to perform r e g r e s s i o n on
103
104 # Which subset o f data to use
105 dat <− hmdata
106
107
108 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109 ## −− Pro bab i l i t y o f s u r v i v a l
110
111 # L o g i s t i c r e g r e s s i o n f o r s u r v i v a l p r o b a b i l i t y depending on l e a f

stem diameter
112 surv f i t <− glm ( surv ived ˜ h , data=dat , fami ly=” binomial ” )
113
114 # Surv iva l f unc t i on
115 p s <− f unc t i on (h) {
116 tempdf <− data . frame (h=h)
117 re turn ( p r e d i c t ( surv f i t , tempdf , type=” response ” ) )
118 }
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119
120
121 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 ## −− Pro bab i l i t y o f r eproduct ion
123
124 # L o g i s t i c r e g r e s s i o n f o r p r o b a b i l i t y o f r eproduct ion depending

on l e a f stem diameter
125 repr f i t r l <− glm ( reproduced ˜ h , data=dat , fami ly=” binomial ” )
126 repr f i t ac <− glm ( reproduced ˜ h+dens , data=dat , fami ly=”

binomial ” )
127
128 # Reproduction func t i on
129 # I have two ca s e s s i n c e I have two models
130 p r <− f unc t i on (h , dens , modl ) {
131 dens <− as . numeric ( dens )
132 i f ( modl==” r l ” ) {
133 tempdf <− data . frame (h=h)
134 my f i t <− repr f i t r l }
135 e l s e i f ( modl==”ac” ) {
136 tempdf <− data . frame (h=h , dens=dens )
137 my f i t <− repr f i t ac}
138 re turn ( p r e d i c t (my f i t , tempdf , type=” response ” ) )
139 }
140
141
142 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 ## −− Expected s i z e i n c r e a s e ( non−f l o w e r i n g p lant s )
144
145 # I need to exc lude f l o w e r i n g p lant s and dead p lant s . . .
146 hmdata adul t <− hmdata [ hmdata$ Stage2003 !=4 & hmdata$ Stage2003 !=

5 , ]
147 # . . . and don ’ t f o r g e t s e e d l i n g s
148 hmdata adul t <− hmdata adult [ ! i s . na ( hmdata adult $ Height2002 ) , ]
149
150 # Fit growth us ing a l i n e a r model
151 grow f i t a <− lm( h1˜h , data=hmdata adult )
152
153 # Def ine growth ke rne l
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154 g a <− f unc t i on ( h1 , h) {
155 newdata <− data . frame (h=h)
156 h1bar <− p r e d i c t ( grow f i t a , newdata=newdata , type=” response ”

)
157 r e s <− r e s i d u a l s ( grow f i t a )
158 df . r e s <− df . r e s i d u a l ( grow f i t a )
159 s s e <− sum( r e s ˆ2)
160 sdhat <− s q r t ( s s e / df . r e s )
161 re turn (dnorm( h1 , mean=h1bar , sd=sdhat ) )
162 }
163
164
165 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 ## −− Expected s i z e i n c r e a s e ( f l o w e r i n g p lant s )
167
168 # I only inc lude f l o w e r i n g p lant s
169 hmdata f low <− hmdata [ hmdata$ Stage2003 ==4,]
170
171 # Fit growth us ing a l i n e a r model
172 grow f i t r <− lm( h1˜h , data=hmdata f low )
173
174 # Def ine growth ke rne l
175 g r <− f unc t i on ( h1 , h) {
176 newdata <− data . frame (h=h)
177 h1bar <− p r e d i c t ( grow f i t r , newdata=newdata , type=” response ”

)
178 r e s <− r e s i d u a l s ( grow f i t r )
179 df . r e s <− df . r e s i d u a l ( grow f i t r )
180 s s e <− sum( r e s ˆ2)
181 sdhat <− s q r t ( s s e / df . r e s )
182 re turn (dnorm( h1 , mean=h1bar , sd=sdhat ) )
183 }
184
185
186 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
187 ## −− Number o f r e c r u i t s
188
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189 # Number o f s eeds ( from meta−a n a l y s i s ) , num produced i s indep o f
he ight

190 mean seeds <− f unc t i on ( z ) {
191 re turn ( rep (17746 , t imes=length ( z ) ) )
192 }
193
194 # Expected number o f s eeds per p l o t
195 s e e d l i n g numbers$ Seeds2002 <− s e e d l i n g numbers$NumFlow2002∗mean

seeds (1 )
196 s e e d l i n g pos <− s e e d l i n g numbers [ s e e d l i n g numbers$ Seeds2002 !=0 , ]

# only p l o t s that have seeds
197
198 # Seed l ing s u r v i v a l parameters
199 # max s e e d l i n g s <− 127 .5 #max s e e d l i n g s <− mean( s e e d l i n g pos$

Seed l ings2003 )
200 # prob surv <− 0 .32
201 alpha <− 127 .5
202 beta <− 273.4375
203
204 # Function to re turn expected number o f s e e d l i n g s g iven number o f

f l o w e r i n g p lant s
205 expected s e e d l i n g s <− f unc t i on ( ns ) {
206 num s e e d l i n g s <− alpha∗ns/ ( beta+ns )
207 re turn (num s e e d l i n g s )
208 }
209
210 per cap i ta o f f s p r i n g <− f unc t i on ( ns ) {
211 num o f f s p r i n g <− alpha / ( beta+ns )
212 re turn (num o f f s p r i n g )
213 }
214
215
216 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
217 ## −− Recru i t s i z e
218
219 # Fit r e c r u i t s i z e to a log−normal d i s t r i b u t i o n
220 r s i z e <− f i t d i s t r ( s e ed l i ngda ta $ Height2003 , ” lognormal ” ) $ es t imate
221
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222 # Function f o r p r o b a b i l i t y o f r e c r u i t s i z e
223 r e c r u i t s i z e <− f unc t i on ( zvec ) {
224 re turn ( dlnorm ( zvec , meanlog=r s i z e [ ”meanlog” ] , sd log=r s i z e [ ”

sd log ” ] , l og=F) )
225 }
226
227
228 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
229 ## −− Implement k e r n e l s
230
231 # Surv iva l−growth
232 P k <− f unc t i on (h , meshpts , dens , modl ) {
233 fxn <− f unc t i on ( z1 , z , params ) {
234 dens <− params [ 1 ] ; modl <− params [ 2 ]
235 re turn (p s ( z )∗(1−p r ( z , dens , modl ) )∗g a ( z1 , z ) )}
236 params <− c ( dens , modl )
237 re turn (h∗ ( outer ( meshpts , meshpts , fxn , params ) ) )}
238
239 # Reproduction
240 R k <− f unc t i on (h , meshpts , dens , modl ) {
241 fxn <− f unc t i on ( z1 , z , params ) {
242 dens <− params [ 1 ] ; modl <− params [ 2 ]
243 re turn (p s ( z )∗p r ( z , dens , modl )∗g r ( z1 , z ) )}
244 params <− c ( dens , modl )
245 re turn (h∗ ( outer ( meshpts , meshpts , fxn , params ) ) )}
246
247 # Fecundity
248 F k <− f unc t i on (h , r e c r u i t d i s t , ns ) {
249 s e e d l i n g s <− expected s e e d l i n g s ( ns )
250 o f f s p r i n g <− r e c r u i t d i s t ∗ s e e d l i n g s#∗h #(no need to mult ip ly by

h)
251 re turn ( o f f s p r i n g )}
252
253 F k mod <− f unc t i on (h , r e c r u i t d i s t , ns ) {
254 per cap i ta <− per cap i ta o f f s p r i n g ( ns )∗mean seeds (1 )
255 matrix <− h∗ outer ( r e c r u i t d i s t , rep ( per capita , t imes=m) ,FUN=”∗” )
256 re turn ( matrix )
257 }
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258
259 # −− −− #
260 # | P F | #
261 # | R 0 | #
262 # −− −− #
263
264
265 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
266 ## −− Functions to update s t a t e
267
268 # For both types o f s imu la t i on s
269
270 update seeds <− f unc t i on (h , nr ) {
271 ns <− sum( nr )∗h∗mean seeds (1 )
272 re turn ( ns )}
273
274 update adu l t s <− f unc t i on (h , meshpts , r e c r u i t d i s t , dens , nt , nr , modl )

{
275 ns <− sum( nr )∗h∗mean seeds (1 )
276 r e c r u i t s <− F k (h , r e c r u i t d i s t , ns )
277 s u r v i v o r s <− P k (h , meshpts , dens , modl ) %∗% nt
278 nt1 <− r e c r u i t s + s u r v i v o r s
279 re turn ( nt1 )}
280
281 update adu l t s ws <− f unc t i on (h , meshpts , r e c r u i t d i s t , dens , ns , nt , nr

, modl ) {
282 #ns <− sum( nr )∗h∗mean seeds (1 )
283 r e c r u i t s <− F k (h , r e c r u i t d i s t , ns )
284 s u r v i v o r s <− P k (h , meshpts , dens , modl ) %∗% nt
285 nt1 <− r e c r u i t s + s u r v i v o r s
286 re turn ( nt1 )}
287
288 update f l o w e r i n g <− f unc t i on (h , meshpts , dens , nt , modl ) {
289 nr <− R k (h , meshpts , dens , modl ) %∗% nt
290 re turn ( nr )}
291
292 update dens i ty <− f unc t i on (h , weights , nt , nr , area f rac , q u a l i t y ) {
293 i f ( i s . na ( q u a l i t y ) | sum( nt+nr )==0) { r e turn (0 ) }
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294 e l s e { r e turn ( ( weights %∗% ( nt+nr )∗h) / ( area f r a c ∗ q u a l i t y ) ) }}
295
296
297 # Function to s imulate populat ion dynamics
298 master l o c a l s imu la t i on ws <− f unc t i on (L ,U,m, num steps , ns i n i t ,

nt i n i t , nr i n i t , modl ) {
299
300 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
301 ## −− I n i t i a l p r o c e s s i n g
302
303 # Design mesh
304 h <− (U−L) /m
305 meshpts <− L + ( 1 :m)∗h − h/2
306 weights <− ( meshpts/ 100) ˆmass exp
307 r e c r u i t d i s t <− r e c r u i t s i z e ( meshpts )
308 p r i n t ( ” Status : meshes made” )
309
310 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
311 ## −− Run the s imu la t i on
312
313 # I n i t i a l i z e v e c t o r s
314 ns <− rep (0 , t imes=num step s +1)
315 nt <− array (0 , dim=c (num st ep s +1,m) )
316 nr <− array (0 , dim=c (num st ep s +1,m) )
317 dt <− rep (0 , t imes=num step s +1)
318
319 # I n i t i a l va lue s
320 ns [ 1 ] <− ns i n i t
321 nt [ 1 , ] <− nt i n i t
322 nr [ 1 , ] <− nr i n i t
323 dt [ 1 ] <− update dens i ty (h , weights , nt [ 1 , ] , nr [ 1 , ] , 1 ,1 )
324 p r i n t ( ” Status : s imu la t i on i n i t i a l i z e d ” )
325
326 # Loop through each time step
327 f o r ( t in 1 :num st ep s ) {
328 nt [ t +1 ,] <− update adu l t s ws (h , meshpts , r e c r u i t d i s t , dt [ t ] , ns [

t ] , nt [ t , ] , nr [ t , ] , modl )
329 nr [ t +1 ,] <− update f l o w e r i n g (h , meshpts , dt [ t ] , nt [ t , ] , modl )
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330 ns [ t +1] <− update seeds (h , nr [ t +1 , ] )
331 dt [ t +1] <− update dens i ty (h , weights , nt [ t +1 , ] , nr [ t +1 , ] , 1 ,1 )
332 p r i n t ( ns [ t +1])
333 }
334
335 # Return the dens i ty over time
336 re turn ( l i s t ( ” adu l t s ”=nt , ” f l o w e r i n g ”=nr , ” d e n s i t i e s ”=dt , ” seeds ”=

ns ) )
337 }

B.2 Diagnostics

B.2.1 Form of Growth

1 # Library
2 l i b r a r y ( lme4 )
3
4 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 ## −− Other forms f o r growth
6
7 # Functions f o r the forms
8 quad fun <− f unc t i on (x , c o e f s ) {
9 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗xˆ2+b∗x )}

10 quad3 fun <− f unc t i on (x , c o e f s ) {
11 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; c<−c o e f s [ 3 ] ; r e turn ( a∗xˆ2+b∗x+c )}
12 r i c k fun <− f unc t i on (x , c o e f s ) {
13 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗x∗exp(−b∗x ) )}
14 s k e l fun <− f unc t i on (x , c o e f s ) {
15 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗(1−exp(−b∗x ) ) )}
16 bvht fun <− f unc t i on (x , c o e f s ) {
17 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗x/ (b+x ) )}
18 powr fun <− f unc t i on (x , c o e f s ) {
19 a<−c o e f s [ 1 ] ; b<−c o e f s [ 2 ] ; r e turn ( a∗xˆb)}
20
21 # Fit the f i t s
22 dat asymp <− hmdata adult [ ! i s . na ( hmdata adult $ Height2002 ) , ]
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23 l i n e f i t <− lm( h1 ˜ h , data=dat asymp)
24 quad f i t <− n l s ( h1 ˜ quad fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
25 quad3 f i t<− lm( h1˜ poly (h , 2 ) , data=dat asymp)
26 r i c k f i t <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=0.01) )
27 s k e l f i t <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=100 ,b=0.01) )
28 bvht f i t <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
29 powr f i t <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
30
31 # AIC f o r the above f i t s
32 round (AIC( l i n e f i t ) )
33 round (AIC( quad f i t ) )
34 round (AIC( quad3 f i t ) )
35 round (AIC( r i c k f i t ) )
36 round (AIC( s k e l f i t ) )
37 round (AIC( bvht f i t ) )
38 round (AIC( powr f i t ) )
39
40 # Fit some more f i t s
41 dat asymp <− hmdata f low
42 l i n e f i t <− lm( h1 ˜ h , data=dat asymp)
43 quad f i t <− n l s ( h1 ˜ quad fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
44 quad3 f i t<− lm( h1˜ poly (h , 2 ) , data=dat asymp)
45 r i c k f i t <− n l s ( h1 ˜ r i c k fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=0.01) )
46 s k e l f i t <− n l s ( h1 ˜ s k e l fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=100 ,b=0.01) )
47 bvht f i t <− n l s ( h1 ˜ bvht fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
48 powr f i t <− n l s ( h1 ˜ powr fun (h , c ( a , b ) ) , data=dat asymp , s t a r t=

l i s t ( a=1,b=1) )
49
50 # AIC f o r even more f i t s
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51 round (AIC( l i n e f i t ) )
52 round (AIC( quad f i t ) )
53 round (AIC( quad3 f i t ) )
54 round (AIC( r i c k f i t ) )
55 round (AIC( s k e l f i t ) )
56 round (AIC( bvht f i t ) )
57 round (AIC( powr f i t ) )

B.2.2 Density-Dependence and Site-Specific Effects

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Test dens i ty−dependence and s i t e−s p e c i f i c e f f e c t s
3
4 # Surv iva l
5 surv f i t o r i g <− glm ( surv ived ˜ h , data=dat , fami ly=” binomial ” )
6 surv f i t dens <− glm ( surv ived ˜ h+dens , data=dat , fami ly=”

binomial ” )
7 surv f i t s i t e <− glmer ( surv ived ˜ h+(1 |h) , data=dat , fami ly=”

binomial ” )
8
9 AIC( surv f i t o r i g )

10 AIC( surv f i t dens )
11 AIC( surv f i t s i t e )
12
13 # Reproduction
14 repr f i t o r i g <− glm ( reproduced ˜ h , data=dat , fami ly=” binomial ” )
15 repr f i t dens <− glm ( reproduced ˜ h+dens , data=dat , fami ly=”

binomial ” )
16 repr f i t s i t e <− glmer ( reproduced ˜ h+(1 |h) , data=dat , fami ly=”

binomial ” )
17
18 AIC( repr f i t o r i g )
19 AIC( repr f i t dens )
20 AIC( repr f i t s i t e )
21 l r t e s t ( repr f i t or ig , r epr f i t dens )
22
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23 # Vegetat ive growth
24 grow f i t a o r i g <− lm( h1˜h , data=hmdata adult )
25 grow f i t a dens <− lm( h1˜h+dens , data=hmdata adult )
26 grow f i t a s i t e <− lmer ( h1˜h+(1 |h) , data=hmdata adult )
27
28 AIC( grow f i t a o r i g )
29 AIC( grow f i t a dens )
30 AIC( grow f i t a s i t e )
31 l r t e s t ( grow f i t a or ig , grow f i t a dens )
32
33 # Vegetat ive growth
34 grow f i t r o r i g <− lm( h1˜h , data=hmdata f low )
35 grow f i t r dens <− lm( h1˜h+dens , data=hmdata f low )
36 grow f i t r s i t e <− lmer ( h1˜h+(1 |h) , data=hmdata f low )
37
38 AIC( grow f i t r o r i g )
39 AIC( grow f i t r dens )
40 AIC( grow f i t r s i t e )
41 l r t e s t ( grow f i t r or ig , grow f i t r dens )
42 l r t e s t ( grow f i t r or ig , grow f i t r s i t e )

B.2.3 Normality of Residuals and Homoskedasticity

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Normality o f r e s i d u a l s and h e t e r o s k e d a s t i c i t y
3
4 # For v e g e t a t i v e p lant s
5 p l o t ( hmdata adult $h , grow f i t a$ r e s i d u a l s )
6 shap i ro . t e s t ( grow f i t a$ r e s i d u a l s )
7 bptes t ( grow f i t a )
8
9 # For r eproduc t ive p lant s

10 p l o t ( hmdata f low $h , hmdata f low $h1 )
11 p lo t ( hmdata f low $h , grow f i t r $ r e s i d u a l s )
12 shap i ro . t e s t ( grow f i t r $ r e s i d u a l s )
13 bptes t ( grow f i t r )
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B.2.4 Log-normality of the Recruit Size Distribution

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Test r e c r u i t f i t
3
4 shap i ro . t e s t ( l og ( s e ed l i ngda ta $ Height2003 ) )
5 sd ( l og ( s e ed l i ngda ta $ Height2003 ) )
6 qqnorm ( log ( s e ed l i ngda ta $ Height2003 ) )

B.3 Bootstrapping

B.3.1 Bootstrap population growth rate

1 # Library to t e s t i f i n t e r v a l s over lap
2 l i b r a r y ( DescTools )
3
4 # Function to s imulate populat ion given a boots t rap r e p l i c a t e
5 boots t rap he lpe r <− f unc t i on ( adul t dat , s e e d l i n g dat , modl , L ,U,m) {
6
7 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 ## −− The data s e t to perform r e g r e s s i o n on
9

10 # Which subset o f data to use
11 dat <− adult dat
12
13 # Use t h i s one f o r growth
14 dat adul t <− dat [ dat$ Stage2003 !=4 & dat$ Stage2003 !=5 , ]
15 dat f low <− dat [ dat$ Stage2003 ==4,]
16
17 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 ## −− Preamble to f i n d i n g e q u i l i b r i a
19
20 # Spec i f y mesh and weights
21 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
22 weights <− ( meshpts/ 100) ˆmass exp
23
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24 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ## −− Surv iva l and reproduct ion
26
27 # Surv iva l
28 surv f i t <− glm ( surv ived ˜h , data=dat , fami ly=” binomial ” )
29 p s <− f unc t i on (h) { r e turn ( p r e d i c t ( surv f i t , data . frame (h=h) ,

type=” response ” ) )}
30
31 # Growth
32 i f ( modl==” r l ” ) {
33 repr f i t <− glm ( reproduced ˜h , data=dat , fami ly=” binomial ” )
34 p r <− f unc t i on (h , dens ) {
35 re turn ( p r e d i c t ( repr f i t , data . frame (h=h) , type=” response ” ) )

}
36 } e l s e i f ( modl==”ac” ) {
37 repr f i t <− glm ( reproduced ˜h+dens , data=dat , fami ly=” binomial

” )
38 p r <− f unc t i on (h , dens ) {
39 re turn ( p r e d i c t ( repr f i t , data . frame (h=h , dens=dens ) , type=”

response ” ) )}
40 }
41
42 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 ## −− Growth
44
45 # Fit growth
46 grow f i t a <− lm( h1˜h , data=dat adul t )
47 grow f i t r <− lm( h1˜h , data=dat f low )
48
49 # Growth ke rne l
50 g a <− f unc t i on ( h1 , h) {
51 h1bar <− p r e d i c t ( grow f i t a , newdata=data . frame (h=h) , type=”

response ” )
52 sdhat <− s q r t (sum( r e s i d u a l s ( grow f i t a ) ˆ2) / df . r e s i d u a l ( grow

f i t a ) )
53 re turn (dnorm( h1 , mean=h1bar , sd=sdhat ) )}
54 g r <− f unc t i on ( h1 , h) {
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55 h1bar <− p r e d i c t ( grow f i t r , newdata=data . frame (h=h) , type=”
response ” )

56 sdhat <− s q r t (sum( r e s i d u a l s ( grow f i t r ) ˆ2) / df . r e s i d u a l ( grow
f i t r ) )

57 re turn (dnorm( h1 , mean=h1bar , sd=sdhat ) )}
58
59 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 ## −− Number o f r e c r u i t s
61
62 # Seed l ing s u r v i v a l parameters
63 # max s e e d l i n g s <− 127 .5 #max s e e d l i n g s <− mean( s e e d l i n g pos$

Seed l ings2003 )
64 # prob surv <− 0 .32
65 alpha <− 127 .5
66 beta <− 273.4375
67
68 # Function to re turn expected number o f s e e d l i n g s g iven number

o f f l o w e r i n g p lant s
69 expected s e e d l i n g s <− f unc t i on ( ns ) {
70 num s e e d l i n g s <− alpha∗ns/ ( beta+ns )
71 re turn (num s e e d l i n g s )
72 }
73
74 per cap i ta o f f s p r i n g <− f unc t i on ( ns ) {
75 num o f f s p r i n g <− alpha / ( beta+ns )
76 re turn (num o f f s p r i n g )
77 }
78
79 # Fit r e c r u i t s i z e to a log−normal d i s t r i b u t i o n
80 r s i z e <− f i t d i s t r ( s e e d l i n g dat$ Height2003 , ” lognormal ” ) $

es t imate
81
82 # Function f o r p r o b a b i l i t y o f r e c r u i t s i z e
83 r e c r u i t s i z e <− f unc t i on ( zvec ) { r e turn ( dlnorm ( zvec , meanlog=r

s i z e [ ”meanlog” ] , sd log=r s i z e [ ” sd log ” ] , l og=F) )}
84
85 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 ## −− Find k e r n e l s
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87
88 # Surv iva l−growth
89 P k <− f unc t i on (h , meshpts , dens ) {
90 fxn <− f unc t i on ( z1 , z , dens ) {
91 re turn (p s ( z )∗(1−p r ( z , dens ) )∗g a ( z1 , z ) )}
92 re turn (h∗ ( outer ( meshpts , meshpts , fxn , dens ) ) )}
93
94 # Reproduction
95 R k <− f unc t i on (h , meshpts , dens ) {
96 fxn <− f unc t i on ( z1 , z , dens ) {
97 re turn (p s ( z )∗p r ( z , dens )∗g r ( z1 , z ) )}
98 re turn (h∗ ( outer ( meshpts , meshpts , fxn , dens ) ) )}
99

100 # Fecundity
101 F k <− f unc t i on (h , r e c r u i t d i s t , ns ) {
102 s e e d l i n g s <− expected s e e d l i n g s ( ns )
103 o f f s p r i n g <− r e c r u i t d i s t ∗ s e e d l i n g s#∗h #(no need to mult ip ly

by h?)
104 re turn ( o f f s p r i n g )}
105
106 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 ## −− Functions to update s t a t e
108
109 update seeds <− f unc t i on (h , nr ) {
110 ns <− sum( nr )∗h∗mean seeds (1 )
111 re turn ( ns )}
112
113 update adu l t s ws <− f unc t i on (h , meshpts , r e c r u i t d i s t , dens , ns , nt ,

nr , modl ) {
114 r e c r u i t s <− F k (h , r e c r u i t d i s t , ns )
115 s u r v i v o r s <− P k (h , meshpts , dens ) %∗% nt
116 nt1 <− r e c r u i t s + s u r v i v o r s
117 re turn ( nt1 )}
118
119 update f l o w e r i n g <− f unc t i on (h , meshpts , dens , nt , modl ) {
120 nr <− R k (h , meshpts , dens ) %∗% nt
121 re turn ( nr )}
122
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123 update dens i ty <− f unc t i on (h , weights , nt , nr , area f rac , q u a l i t y )
{

124 i f ( i s . na ( q u a l i t y ) | sum( nt+nr )==0) { r e turn (0 ) }
125 e l s e { r e turn ( ( weights %∗% ( nt+nr )∗h) / ( area f r a c ∗ q u a l i t y ) ) }}
126
127 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128 ## −− Function to i t e r a t e
129
130 master l o c a l s imu la t i on ws <− f unc t i on (L ,U,m, num steps , ns

i n i t , nt i n i t , nr i n i t , modl ) {
131
132 # Design mesh
133 h <− (U−L) /m
134 meshpts <− L + ( 1 :m)∗h − h/2
135 weights <− ( meshpts/ 100) ˆmass exp
136 r e c r u i t d i s t <− r e c r u i t s i z e ( meshpts )
137 p r i n t ( ” Status : meshes made” )
138
139 # I n i t i a l i z e v e c t o r s
140 ns <− rep (0 , t imes=num step s +1)
141 nt <− array (0 , dim=c (num st ep s +1,m) )
142 nr <− array (0 , dim=c (num st ep s +1,m) )
143 dt <− rep (0 , t imes=num step s +1)
144
145 # I n i t i a l va lue s
146 ns [ 1 ] <− ns i n i t
147 nt [ 1 , ] <− nt i n i t
148 nr [ 1 , ] <− nr i n i t
149 dt [ 1 ] <− update dens i ty (h , weights , nt [ 1 , ] , nr [ 1 , ] , 1 ,1 )
150
151 # Loop through each time step
152 f o r ( t in 1 :num st ep s ) {
153 nt [ t +1 ,] <− update adu l t s ws (h , meshpts , r e c r u i t d i s t , dt [ t ] ,

ns [ t ] , nt [ t , ] , nr [ t , ] , modl )
154 nr [ t +1 ,] <− update f l o w e r i n g (h , meshpts , dt [ t ] , nt [ t , ] , modl )
155 ns [ t +1] <− update seeds (h , nr [ t +1 , ] )
156 dt [ t +1] <− update dens i ty (h , weights , nt [ t +1 , ] , nr [ t +1 , ] ,

1 ,1 )
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157 }
158
159 # Return the dens i ty over time
160 re turn ( l i s t ( ” adu l t s ”=nt , ” f l o w e r i n g ”=nr , ” d e n s i t i e s ”=dt , ” seeds ”

=ns ) )
161 }
162
163 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164 ## −− Run the s imu la t i on
165
166 # I n i t i a l i z e
167 num st ep s <− 30
168 ns i n i t <− 1
169 nt i n i t <− rep (0 , l ength=m)
170 nr i n i t <− rep (0 , l ength=m)
171
172 # Run s imu la t i on s
173 sim r e s <− master l o c a l s imu la t i on ws (L ,U,m, num steps , ns i n i t

, nt i n i t , nr i n i t , modl )
174
175 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 ## −− Return th ings
177
178 # Return the number o f s eeds and d i s t r i b u t i o n o f adul t and

f l o w e r i n g p lant s
179 re turn ( l i s t ( ” seeds ”=sim r e s $ seeds , ” adu l t s ”=sim r e s $ adults , ”

f l o w e r i n g ”=sim r e s $ f l o w e r i n g ) )
180 }
181
182
183 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
184 ## −− Function f o r boots t rapp ing
185
186 boots t rap main <− f unc t i on ( dat , N, modl ) {
187 # I n i t i a l i z e th ing s
188 L <− 5 ; U <− 550 ; m <− 50
189 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
190 weights <− ( meshpts/ 100) ˆmass exp
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191 # Number o f rows to sample from
192 nr <− nrow ( dat )
193 # Vectors to s t o r e i n i t i a l seed va lue s
194 seeds0 <− array (NA, dim=c (N) )
195 seeds1 <− array (NA, dim=c (N) )
196 seeds2 <− array (NA, dim=c (N) )
197 seeds3 <− array (NA, dim=c (N) )
198 seeds4 <− array (NA, dim=c (N) )
199 seeds5 <− array (NA, dim=c (N) )
200 seeds6 <− array (NA, dim=c (N) )
201 seeds7 <− array (NA, dim=c (N) )
202 # Vectors to s t o r e asymptot ic seed va lue s
203 seeds29 <− array (NA, dim=c (N) )
204 seeds30 <− array (NA, dim=c (N) )
205 # Vectors to s t o r e he i gh t s o f v e g e t a t i v e plants , r ep roduc t ive

plants , and biomass
206 # NOTE: ’ s ’ means ’ s imulated ’ whi l e ’ o ’ means ’ observed ’
207 he ight as29 <− array (NA, dim=c (N) )
208 he ight f s 2 9 <− array (NA, dim=c (N) )
209 he ight as30 <− array (NA, dim=c (N) )
210 he ight f s 3 0 <− array (NA, dim=c (N) )
211 he ight ao <− array (NA, dim=c (N) )
212 he ight f o <− array (NA, dim=c (N) )
213 biomass <− array (NA, dim=c (N) )
214 # Index
215 i = 1
216 # Bootstrap step
217 whi l e ( i <= N) {
218 # Randomly sample from data s e t
219 i n d i c e s <− sample . i n t ( nr , nr , r e p l a c e=T)
220 dat new <− dat [ i nd i c e s , ]
221 dat adul t <− dat new [ dat new$ Stage2003 !=4 & dat new$ Stage2003

!=5 , ]
222 dat f low <− dat new [ dat new$ Stage2003 ==4,]
223 # Do boots t rapp ing
224 out <− boots t rap he lpe r ( dat new [ dat new$ c l a s s !=” Seed l ing ” , ] ,

dat new [ dat new$ c l a s s==” Seed l ing ” , ] , modl , L ,U,m)
225 # Give u s e f u l names to f i n a l v e r s i o n s
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226 num st ep s <− l ength ( out$ seeds )
227 ad l t 2 l a s t <− out$ adu l t s [num steps −1 ,] /sum( out$ adu l t s [num

steps −1 , ] )
228 f low 2 l a s t <− out$ f l o w e r i n g [num steps −1 ,] /sum( out$ f l o w e r i n g [

num steps −1 , ] )
229 ad l t l a s t <− out$ adu l t s [num steps , ] /sum( out$ adu l t s [num steps

, ] )
230 f low l a s t <− out$ f l o w e r i n g [num steps , ] /sum( out$ f l o w e r i n g [num

steps , ] )
231 # Get s t a t i s t i c s
232 seeds0 [ i ] <− out$ seeds [ 1 ]
233 seeds1 [ i ] <− out$ seeds [ 2 ]
234 seeds2 [ i ] <− out$ seeds [ 3 ]
235 seeds3 [ i ] <− out$ seeds [ 4 ]
236 seeds4 [ i ] <− out$ seeds [ 5 ]
237 seeds5 [ i ] <− out$ seeds [ 6 ]
238 seeds6 [ i ] <− out$ seeds [ 7 ]
239 seeds7 [ i ] <− out$ seeds [ 8 ]
240 seeds29 [ i ] <− out$ seeds [num steps −1]
241 seeds30 [ i ] <− out$ seeds [num st ep s ]
242 biomass [ i ] <− weights %∗% ( out$ adu l t s [num steps , ]+ out$

f l o w e r i n g [num steps , ] ) ∗ h
243 he ight as29 [ i ] <− meshpts %∗% ad l t 2 l a s t
244 he ight f s 2 9 [ i ] <− meshpts %∗% flow 2 l a s t
245 he ight as30 [ i ] <− meshpts %∗% ad l t l a s t
246 he ight f s 3 0 [ i ] <− meshpts %∗% flow l a s t
247 he ight ao [ i ] <− mean( dat adul t $h1 , na . rm=T)
248 he ight f o [ i ] <− mean( dat f low $h1 )
249 p r i n t ( i )
250 i <− i+1
251 }
252 re turn ( l i s t ( ” seeds0 ”=seeds0 , ” seeds1 ”=seeds1 , ” seeds2 ”=seeds2 , ”

seeds3 ”=seeds3 ,
253 ” seeds4 ”=seeds4 , ” seeds5 ”=seeds5 , ” seeds6 ”=seeds6 , ”

seeds7 ”=seeds7 ,
254 ” seeds29 ”=seeds29 , ” seeds30 ”=seeds30 , ” biomass ”=

biomass ,
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255 ” he ight as29 ”=he ight as29 , ” he ight f s 2 9 ”=he ight f s29
,

256 ” he ight as30 ”=he ight as30 , ” he ight f s 3 0 ”=he ight f s30
,

257 ” he ight ao”=he ight ao , ” he ight f o ”=he ight f o ) )
258 }
259
260
261 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
262 ## −− Run boots t rap s imu la t i on s
263
264 # Subset data in to high and low
265 dat <− rbind (hmdata , s e ed l i ngda ta )
266
267 # Compute the boots t rap con f idence i n t e r v a l s
268 # Took 65 seconds when N=100 f o r each
269 tm <− proc . time ( )
270 boot d i s tn r l <− boots t rap main ( dat , 500 , ” r l ” )
271 boot d i s tn ac <− boots t rap main ( dat , 500 , ”ac” )
272 p r i n t ( proc . time ( )−tm)
273
274
275 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
276 ## −− Seed in fo rmat i ons
277
278 # Get seed numbers
279 s0 d i s tn r l <− boot d i s tn r l $ seeds0
280 s1 d i s tn r l <− boot d i s tn r l $ seeds1
281 s2 d i s tn r l <− boot d i s tn r l $ seeds2
282 s3 d i s tn r l <− boot d i s tn r l $ seeds3
283 s4 d i s tn r l <− boot d i s tn r l $ seeds4
284 s5 d i s tn r l <− boot d i s tn r l $ seeds5
285 s6 d i s tn r l <− boot d i s tn r l $ seeds6
286 s7 d i s tn r l <− boot d i s tn r l $ seeds7
287 s29 d i s tn r l <− boot d i s tn r l $ seeds29
288 s30 d i s tn r l <− boot d i s tn r l $ seeds30
289
290 s0 d i s tn ac <− boot d i s tn ac$ seeds0
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291 s1 d i s tn ac <− boot d i s tn ac$ seeds1
292 s2 d i s tn ac <− boot d i s tn ac$ seeds2
293 s3 d i s tn ac <− boot d i s tn ac$ seeds3
294 s4 d i s tn ac <− boot d i s tn ac$ seeds4
295 s5 d i s tn ac <− boot d i s tn ac$ seeds5
296 s6 d i s tn ac <− boot d i s tn ac$ seeds6
297 s7 d i s tn ac <− boot d i s tn ac$ seeds7
298 s29 d i s tn ac <− boot d i s tn ac$ seeds29
299 s30 d i s tn ac <− boot d i s tn ac$ seeds30
300
301 # Bootstrap means
302 s0 boot mu r l <− mean( s0 d i s tn r l )
303 s1 boot mu r l <− mean( s1 d i s tn r l )
304 s2 boot mu r l <− mean( s2 d i s tn r l )
305 s3 boot mu r l <− mean( s3 d i s tn r l )
306 s4 boot mu r l <− mean( s4 d i s tn r l )
307 s5 boot mu r l <− mean( s5 d i s tn r l )
308 s6 boot mu r l <− mean( s6 d i s tn r l )
309 s7 boot mu r l <− mean( s7 d i s tn r l )
310 s29 boot mu r l <− mean( s29 d i s tn r l )
311 s30 boot mu r l <− mean( s30 d i s tn r l )
312
313 s0 boot mu ac <− mean( s0 d i s tn ac )
314 s1 boot mu ac <− mean( s1 d i s tn ac )
315 s2 boot mu ac <− mean( s2 d i s tn ac )
316 s3 boot mu ac <− mean( s3 d i s tn ac )
317 s4 boot mu ac <− mean( s4 d i s tn ac )
318 s5 boot mu ac <− mean( s5 d i s tn ac )
319 s6 boot mu ac <− mean( s6 d i s tn ac )
320 s7 boot mu ac <− mean( s7 d i s tn ac )
321 s29 boot mu ac <− mean( s29 d i s tn ac )
322 s30 boot mu ac <− mean( s30 d i s tn ac )
323
324 # Bootstrap con f idence i n t e r v a l s
325 s0 boot c i r l <− q u a n t i l e ( s0 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
326 s1 boot c i r l <− q u a n t i l e ( s1 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
327 s2 boot c i r l <− q u a n t i l e ( s2 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
328 s3 boot c i r l <− q u a n t i l e ( s3 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
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329 s4 boot c i r l <− q u a n t i l e ( s4 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
330 s5 boot c i r l <− q u a n t i l e ( s5 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
331 s6 boot c i r l <− q u a n t i l e ( s6 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
332 s7 boot c i r l <− q u a n t i l e ( s7 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
333 s29 boot c i r l <− q u a n t i l e ( s29 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
334 s30 boot c i r l <− q u a n t i l e ( s30 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
335
336 s0 boot c i ac <− q u a n t i l e ( s0 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
337 s1 boot c i ac <− q u a n t i l e ( s1 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
338 s2 boot c i ac <− q u a n t i l e ( s2 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
339 s3 boot c i ac <− q u a n t i l e ( s3 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
340 s4 boot c i ac <− q u a n t i l e ( s4 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
341 s5 boot c i ac <− q u a n t i l e ( s5 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
342 s6 boot c i ac <− q u a n t i l e ( s6 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
343 s7 boot c i ac <− q u a n t i l e ( s7 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
344 s29 boot c i ac <− q u a n t i l e ( s29 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
345 s30 boot c i ac <− q u a n t i l e ( s30 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
346
347
348 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
349 ## −− Seed tab l e
350
351 # Compare second year
352 s2 boot mu r l
353 s2 boot c i r l
354
355 s2 boot mu ac
356 s2 boot c i ac
357
358 # Compare th i rd year
359 s3 boot mu r l
360 s3 boot c i r l
361
362 s3 boot mu ac
363 s3 boot c i ac
364
365 # Compare four th year
366 s4 boot mu r l
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367 s4 boot c i r l
368
369 s4 boot mu ac
370 s4 boot c i ac
371
372 # Compare f i f t h year
373 s5 boot mu r l
374 s5 boot c i r l
375
376 s5 boot mu ac
377 s5 boot c i ac
378
379 # Compare s i x t h year
380 s6 boot mu r l
381 s6 boot c i r l
382
383 s6 boot mu ac
384 s6 boot c i ac
385
386 # Compare seventh year
387 s7 boot mu r l
388 s7 boot c i r l
389
390 s7 boot mu ac
391 s7 boot c i ac
392
393 # Compare twenty−ninth year
394 s29 boot mu r l
395 s29 boot c i r l
396
397 s29 boot mu ac
398 s29 boot c i ac
399
400 # Compare t h i r t i e t h year
401 s30 boot mu r l
402 s30 boot c i r l
403
404 s30 boot mu ac
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405 s30 boot c i ac
406
407 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
408 ## −− Check i f the d i f f e r e n c e s are s i g n i f i c a n t
409
410 s2 boot c i r l %ove r l ap s% s2 boot c i ac
411 s3 boot c i r l %ove r l ap s% s3 boot c i ac
412 s4 boot c i r l %ove r l ap s% s4 boot c i ac
413 s5 boot c i r l %ove r l ap s% s5 boot c i ac
414 s6 boot c i r l %ove r l ap s% s6 boot c i ac
415 s7 boot c i r l %ove r l ap s% s7 boot c i ac
416
417 s29 boot c i r l %ove r l ap s% s29 boot c i ac
418 s30 boot c i r l %ove r l ap s% s30 boot c i ac
419
420
421 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
422 ## −− Height in fo rmat ion
423
424 # Get he i gh t s and biomass
425 has29 d i s tn r l <− boot d i s tn r l $ he ight as29
426 has29 d i s tn ac <− boot d i s tn ac$ he ight as29
427 hf s29 d i s tn r l <− boot d i s tn r l $ he ight f s 2 9
428 hf s29 d i s tn ac <− boot d i s tn ac$ he ight f s 2 9
429
430 has30 d i s tn r l <− boot d i s tn r l $ he ight as30
431 has30 d i s tn ac <− boot d i s tn ac$ he ight as30
432 hf s30 d i s tn r l <− boot d i s tn r l $ he ight f s 3 0
433 hf s30 d i s tn ac <− boot d i s tn ac$ he ight f s 3 0
434
435 hao d i s tn r l <− boot d i s tn r l $ he ight ao
436 hao d i s tn ac <− boot d i s tn ac$ he ight ao
437 hfo d i s tn r l <− boot d i s tn r l $ he ight f o
438 hfo d i s tn ac <− boot d i s tn ac$ he ight f o
439
440 b d i s tn r l <− boot d i s tn r l $ biomass
441 b d i s tn ac <− boot d i s tn ac$ biomass
442
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443
444 # Bootstrap means
445 has29 boot mu r l <− mean( has29 d i s tn r l )
446 has29 boot mu ac <− mean( has29 d i s tn ac )
447 hf s29 boot mu r l <− mean( h f s29 d i s tn r l )
448 hf s29 boot mu ac <− mean( h f s29 d i s tn ac )
449
450 has30 boot mu r l <− mean( has30 d i s tn r l )
451 has30 boot mu ac <− mean( has30 d i s tn ac )
452 hf s30 boot mu r l <− mean( h f s30 d i s tn r l )
453 hf s30 boot mu ac <− mean( h f s30 d i s tn ac )
454
455 hao boot mu r l <− mean( hao d i s tn r l )
456 hao boot mu ac <− mean( hao d i s tn ac )
457 hfo boot mu r l <− mean( hfo d i s tn r l )
458 hfo boot mu ac <− mean( hfo d i s tn ac )
459
460 b boot mu r l <− mean(b d i s tn r l )
461 b boot mu ac <− mean(b d i s tn ac )
462
463 # Bootstrap con f idence i n t e r v a l s
464 has29 boot c i r l <− q u a n t i l e ( has29 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
465 has29 boot c i ac <− q u a n t i l e ( has29 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
466 hf s29 boot c i r l <− q u a n t i l e ( h f s29 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
467 hf s29 boot c i ac <− q u a n t i l e ( h f s29 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
468
469 has30 boot c i r l <− q u a n t i l e ( has30 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
470 has30 boot c i ac <− q u a n t i l e ( has30 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
471 hf s30 boot c i r l <− q u a n t i l e ( h f s30 d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
472 hf s30 boot c i ac <− q u a n t i l e ( h f s30 d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
473
474 hao boot c i r l <− q u a n t i l e ( hao d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
475 hao boot c i ac <− q u a n t i l e ( hao d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
476 hfo boot c i r l <− q u a n t i l e ( hfo d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
477 hfo boot c i ac <− q u a n t i l e ( hfo d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
478
479 b boot c i r l <− q u a n t i l e (b d i s tn r l , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
480 b boot c i ac <− q u a n t i l e (b d i s tn ac , probs=c ( 0 . 0 2 5 , 0 . 9 7 5 ) )
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481
482
483 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
484 ## −− Height t ab l e
485
486 # Heights o f v e g e t a t i v e p lant s
487 # NOTE: No need f o r hao boot mu ac or has29 boot mu r l ( or t h e i r

CIs ) . . .
488 # . . . s i n c e they ’ re the same as hao boot mu r l and has30 boot mu

r l
489
490 hao boot mu r l
491 hao boot c i r l
492
493 has30 boot mu r l
494 has30 boot c i r l
495
496 has29 boot mu ac
497 has29 boot c i ac
498
499 has30 boot mu ac
500 has30 boot c i ac
501
502 # Heights o f f l o w e r i n g p lant s
503
504 hfo boot mu r l
505 hfo boot c i r l
506
507 hf s30 boot mu r l
508 hf s30 boot c i r l
509
510 hf s29 boot mu ac
511 hf s29 boot c i ac
512
513 hf s30 boot mu ac
514 hf s30 boot c i ac
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B.4 Determine Equilibrium and Stablility

B.4.1 Determine equilibrium

1 l i b r a r y ( grDev ices )
2
3
4 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 ## −− Find dominant e i g enva lue o f P
6
7 L <− 5 ; U <− 550 ; m <− 1000
8 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
9

10 P <− P k (h , meshpts ,1000000 , ”ac” )
11 Re( e i gen (P, only . va lue s=T) $ va lue s [ 1 ] )
12
13
14 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 ## −− Code d i s c r e t i z a t i o n
16
17 # Params
18 L <− 5 ; U <− 550 ; m <− U−L
19 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
20 weights <− ( meshpts/ 100) ˆmass exp
21 r e c r u i t d i s t <− r e c r u i t s i z e ( meshpts )
22
23 # Which model to use
24 modl <− ” r l ”
25
26 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 ## −− Various he lpe r f u n c t i o n s
28
29 # Helper func t i on f o r A(b)
30 A <− f unc t i on (b , modl ) {
31 P mat <− P k (h , meshpts , b , modl )
32 R mat <− R k (h , meshpts , b , modl )
33 Z mat <− matrix (0 , nrow=m, nco l=m)
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34 tmp <− cbind ( rbind (P mat ,R mat) , rbind (Z mat , Z mat) )
35 re turn (tmp)
36 }
37
38 # Helper func t i on f o r n s ˆ∗
39 f i n d ns <− f unc t i on ( pe ) {
40 ns s t a r <− 0
41 i f ( pe<alpha ) {
42 ns s t a r <− ( alpha−pe∗beta ) /pe}
43 #ns s t a r <− pe∗beta / ( alpha−pe )}
44 re turn ( ns s t a r )
45 }
46
47 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 ## −− Find equ i l ib ium f o r r e c r u i t−l i m i t e d model
49
50 # S t a b i l i t y rad iu s
51 q <− t ( rbind ( matrix (0 , nrow=m, nco l =1) , matrix (h∗mean seeds (1 ) , nrow=

m, nco l =1) ) )
52 c0 <− rbind ( as . matrix ( r e c r u i t s i z e ( meshpts ) ) , matrix (0 , nrow=m, nco l

=1) )
53 tmp <− A(0 , ” r l ” )
54 fund mat <− s o l v e ( diag (2∗m)−tmp)
55 pe r l <− 1/ ( q%∗%fund mat%∗%c0 )
56
57 # Equi l ibr ium seeds
58 ns eq r l <− f i n d ns ( pe r l )
59
60 # Equi l ibr ium
61 n eq r l <− drop ( pe r l ∗ns eq r l ) ∗ ( fund mat%∗%c0 )
62 nt eq r l <− n eq r l [ 1 :m]
63 nr eq r l <− n eq r l [ (m+1) : ( 2 ∗m) ]
64
65 # Equi l ibr ium biomass
66 b eq r l <− ( nt eq r l+nr eq r l )%∗%weights
67 b eq r l
68
69
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70 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 ## −− Find equ i l i b r ium dens as a func t i on o f $b$
72
73 # I n i t i a l i z e
74 N <− 100
75 max dens <− 4000
76 b vec <− as . matrix ( seq (1 ,max dens , l ength=N) )
77 pe vec <− array (0 , dim=N)
78 ns vec <− array (0 , dim=N)
79 n eq vec <− array (0 , dim=c (N, 2 ∗m) )
80 bs new <− array (0 , dim=N)
81
82 # Precompute these ve c t o r s f o r speeeeed
83 q <− t ( rbind ( matrix (0 , nrow=m, nco l =1) , matrix (h∗mean seeds (1 ) , nrow=

m, nco l =1) ) )
84 c0 <− rbind ( as . matrix ( r e c r u i t s i z e ( meshpts ) ) , matrix (0 , nrow=m, nco l

=1) )
85
86 # pˆ∗ e = 1/ ( qˆT ( I−A(b) )ˆ{−1} c 0)
87 ptm <− proc . time ( )
88 f o r ( i in 1 :N) {
89 b <− b vec [ i ]
90 tmp <− A(b , ”ac” )
91 fund mat <− s o l v e ( diag (2∗m)−tmp)
92 pe vec [ i ] <− 1/ ( q%∗%fund mat%∗%c0 )
93 ns vec [ i ] <− f i n d ns ( pe vec [ i ] )
94 n eq vec [ i , ] <− fund mat%∗%c0 ∗ ( pe vec [ i ] ∗ns vec [ i ] )
95 bs new [ i ] <− update dens i ty (h , weights , n eq vec [ i , 1 :m] , n eq vec [

i , (m+1) : ( 2 ∗m) ] , 1 , 1 )
96 p r i n t ( i )
97 }
98 p r i n t ( proc . time ( )−ptm)
99

100
101 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 ## −− Find the biomass which g i v e s the equ i l i b r i um s i z e

d i s t r i b u t i o n
103
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104 # Params
105 L <− 5 ; U <− 550 ; m <− U−L
106 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
107 weights <− ( meshpts/ 100) ˆmass exp
108 r e c r u i t d i s t <− r e c r u i t s i z e ( meshpts )
109
110 # I n i t i a l i z e
111 b l <− 2142
112 b u <− 2146
113 b m <− (b l+b u) /2
114 b approx <− 2500
115 e r r <− b approx−b m
116 t o l <− 0.00001
117
118 # Precompute these ve c t o r s f o r speeeeed
119 q <− t ( rbind ( matrix (0 , nrow=m, nco l =1) , matrix (h∗mean seeds (1 ) , nrow=

m, nco l =1) ) )
120 c0 <− rbind ( as . matrix ( r e c r u i t s i z e ( meshpts ) ) , matrix (0 , nrow=m, nco l

=1) )
121
122 # Run the loop
123 whi l e ( abs ( e r r ) > t o l ) {
124 i f ( err >0) {b l <− b m}
125 i f ( err <0) {b u <− b m}
126 b m <− (b l+b u) /2
127 fund mat <− s o l v e ( diag (2∗m)−A(b m, ”ac” ) )
128 pe <− 1/ ( q%∗%fund mat%∗%c0 )
129 ns <− f i n d ns ( pe )
130 bar n <− fund mat%∗%c0 ∗ drop ( pe∗ns )
131 b approx <− update dens i ty (h , weights , bar n [ 1 :m] , bar n [ (m+1) : ( 2 ∗

m) ] , 1 , 1 )
132 e r r <− b approx−b m
133 pr in t ( e r r )
134 }
135 b approx
136
137 # Give b e t t e r names to the f i n a l va lue s
138 pe ac <− pe
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139 ns eq ac <− ns
140 n eq ac <− bar n
141 nt eq ac <− n eq ac [ 1 :m]
142 nr eq ac <− n eq ac [ (m+1) : ( 2 ∗m) ]
143 b eq ac <− b approx
144
145
146 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
147 ## −− Save e q u i l i b r i a f o r l a t e r use in s t a b i l i t y a n a l y s i s
148
149 wr i t e . csv (n eq r l , f i l e=” equ i l i b r i um r l . csv ” )
150 wr i t e . csv (n eq ac , f i l e=” equ i l i b r i um ac . csv ” )
151
152
153 ###

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

154 ### −−−− COMPARE RESULTS VS REALITY
155 ###

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

156
157 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 ## −− Compare biomasses
159
160 # Equi l ibr ium biomasses
161 b eq r l
162 b eq ac
163
164 # vs max observed biomass
165 max( hmdata$dens , hmdata$ dens1 )
166
167
168 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169 ## −− Compare seed product ion and number o f f l o w e r i n g p lant s
170
171 # Equi l ibr ium seeds
172 ns eq r l
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173 ns eq ac
174
175 # Equi l ibr ium f l o w e r i n g p lant s
176 ns eq r l / (mean seeds (1 ) )
177 ns eq ac/ (mean seeds (1 ) )
178
179 # Equi l ibr ium f l o w e r i n g p lant s ( a l t . . . should equal above )
180 sum( nr eq r l )∗h
181 sum( nr eq ac )∗h
182
183 # Observed f l o w e r i n g p lant s
184 t o t a l f l o w e r i n g <− sum( hmdata$ reproduced , na . rm=T)
185 t o t a l p l o t s <− l ength ( l e v e l s ( as . f a c t o r ( hmdata$ p l o t ) ) )
186
187 t o t a l f l o w e r i n g / t o t a l p l o t s
188
189
190 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191 ## −− Compare number o f v e g e t a t i v e p lant s
192
193 # Equi l ibr ium v e g e t a t i v e p lant s
194 sum( nt eq r l )∗h
195 sum( nt eq ac )∗h
196
197 # Observed v e g e t a t i v e p lant s ( i n c l u d i n g s e e d l i n g s )
198 hmdata veg <− rbind ( seed l ingdata , hmdata adult )
199 t o t a l v e g e t a t i v e <− nrow ( hmdata veg )
200 t o t a l v e g e t a t i v e / t o t a l p l o t s
201
202
203 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
204 ## −− Compare mean he i gh t s
205
206 # Mean he i gh t s from r e c r u i t−l i m i t e d model
207 sum( nt eq r l ∗meshpts ) /sum( nt eq r l )
208 sum( nr eq r l ∗meshpts ) /sum( nr eq r l )
209
210 # Mean he i gh t s from adult compet i t ion model
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211 sum( nt eq ac∗meshpts ) /sum( nt eq ac )
212 sum( nr eq ac∗meshpts ) /sum( nr eq ac )
213
214 # Observed mean he i gh t s in 2003
215 mean( hmdata veg$h1 )
216 mean( hmdata f low $h1 )

B.4.2 Determine stability of equilibrium

1 # Helper f u n c t i o n s f o r computing the Jacobian
2 dP fun <− f unc t i on ( z1 , z , dens ) {
3 gamma <− as . numeric ( c o e f f i c i e n t s ( repr f i t ac ) [ 3 ] )
4 re turn(−gamma∗p s ( z )∗p r ( z , dens , ”ac” )∗(1−p r ( z , dens , ”ac” ) )∗g a (

z1 , z ) )}
5 dR fun <− f unc t i on ( z1 , z , dens ) {
6 gamma <− as . numeric ( c o e f f i c i e n t s ( repr f i t ac ) [ 3 ] )
7 re turn (gamma∗p s ( z )∗p r ( z , dens , ”ac” )∗(1−p r ( z , dens , ”ac” ) )∗g r (

z1 , z ) )}
8 dF fun<− f unc t i on ( z1 , z , ns ) {
9 re turn(−alpha∗mean seeds (1 ) ∗ r e c r u i t s i z e ( z1 ) / ( ( beta+ns ) ˆ2) )}

10
11 # Compute K
12 P mat <− P k (h , meshpts , b eq ac , ”ac” )
13 R mat <− R k (h , meshpts , b eq ac , ”ac” )
14 F mat <− F k mod(h , r e c r u i t d i s t , ns eq ac )
15 Z mat <− matrix (0 , nrow=m, nco l=m)
16 K <− cbind ( rbind (P mat ,R mat) , rbind (F mat , Z mat) )
17
18 # Compute Q1
19 dP mat <− h∗ outer ( meshpts , meshpts , dP fun , b eq ac )
20 dR mat <− h∗ outer ( meshpts , meshpts ,dR fun , b eq ac )
21 dZ mat <− matrix (0 , nrow=m, nco l=m)
22 dK mat <− cbind ( rbind (dP mat ,dR mat) , rbind (dZ mat , dZ mat) )
23 Q1 <− dK mat %∗% n eq ac
24
25 # Compute W1
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26 W1 <− as . matrix ( ( meshpts/ 100) ˆmass exp )
27 W1 <− rbind (W1,W1)
28
29 # Compute Q2
30 dZ mat <− matrix (0 , nrow=m, nco l=m)
31 dF mat <− h∗ outer ( meshpts , meshpts , dF fun , ns eq ac )
32 dK mat <− cbind ( rbind (dZ mat , dZ mat) , rbind (dF mat , dZ mat) )
33 Q2 <− dK mat %∗% n eq ac
34
35 # Compute W2
36 Z vec <− matrix (0 , nrow=m, nco l =1)
37 one vec <− matrix (1 , nrow=m, nco l =1)
38 W2 <− rbind (Z vec , one vec )∗mean seeds (1 )
39
40 # Compute J
41 J <− K + outer ( t (Q1) ,W1,FUN=”∗” ) [ , , , ] + outer ( t (Q2) ,W2,FUN=”∗” )

[ , , , ]
42
43 # Determine s t a b i l i t y
44 Re( e i gen (J , only . va lue s=T) $ va lue s [ 1 ] )

B.5 Methods Plots

B.5.1 Plot vital rate functions

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Plot v i t a l r a t e s
3
4 # Spec i f y data s e t to use
5 dat <− hmdata
6
7 # Real data to p l o t ( t i c k s or po in t s as nece s sa ry )
8 dat surv <− dat [ ! i s . na ( dat$ surv ived ) , ]
9 dat repr <− dat [ ! i s . na ( dat$ reproduced ) , ]

10 dat veg <− dat [ dat$ Stage2003 !=4 & dat$ Stage2003 !=5 & ! i s . na ( dat$
h) , ]
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11 dat f l o <− dat [ dat$ Stage2003 ==4,]
12
13 # Make po in t s that w i l l be p l o t t ed
14 xmax <− 220
15 x vec <− seq (0 ,xmax , l ength =100)
16 s vec <− p s ( x vec )
17 r r l vec <− p r ( x vec , 0 , ” r l ” )
18 r ac vec <− p r ( x vec , 0 , ”ac” )
19
20 # These va lue s are used to c r e a t e segments in the growth p lo t
21 ga min x <− min( dat veg$h)
22 ga min y <− as . numeric ( p r e d i c t ( grow f i t a , data . frame (h=ga min x ) )

)
23 ga max x <− max( dat veg$h)
24 ga max y <− as . numeric ( p r e d i c t ( grow f i t a , data . frame (h=ga max x ) )

)
25
26 gr min x <− min( dat f l o $h)
27 gr min y <− as . numeric ( p r e d i c t ( grow f i t r , data . frame (h=gr min x ) )

)
28 gr max x <− max( dat f l o $h)
29 gr max y <− as . numeric ( p r e d i c t ( grow f i t r , data . frame (h=gr max x ) )

)
30
31 # PLOTS
32 par ( mfrow=c (2 , 2 ) )
33 dx <− 0 .03
34 dy <− 1
35 l i n e f r a c <− 1
36 s c a l e t ex t <− 1 .3
37
38 p lo t ( x vec , s vec , type=” l ” , lwd=2, xlim=c (0 ,xmax) , yl im=c (0 , 1 ) ,
39 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y ” , cex . lab=s c a l e

text , cex . a x i s=s c a l e t ex t )
40 po in t s ( dat surv $h , dat surv $ survived , pch=” | ” , cex=l i n e f r a c )
41 mtext ( ” ( a ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
42
43 p lo t ( dat veg$h , dat veg$h1 , pch=16, xlim=c (0 ,xmax) , ylim=c (0 ,400) ,
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44 xlab=” Height in 2002 (cm) ” , ylab=” Height in 2003 (cm) ” , cex .
lab=s c a l e text , cex . a x i s=s c a l e t ex t )

45 po in t s ( dat f l o $h , dat f l o $h1 , pch=23)
46 segments ( ga min x , y0=ga min y , ga max x , y1=ga max y , lwd=2)
47 segments ( gr min x , y0=gr min y , gr max x , y1=gr max y , lwd=2)
48 mtext ( ” (b) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
49
50 p lo t ( x vec , r r l vec , type=” l ” , lwd=2, xlim=c (0 ,xmax) , yl im=c (0 , 1 ) ,
51 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y ” , cex . lab=s c a l e

text , cex . a x i s=s c a l e t ex t )
52 po in t s ( dat repr $h , dat repr $ reproduced , pch=” | ” , cex=l i n e f r a c )
53 mtext ( ” ( c ) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
54
55 p lo t ( x vec , r ac vec , type=” l ” , lwd=2, xlim=c (0 ,xmax) , yl im=c (0 , 1 ) ,
56 xlab=” Height o f p lant (cm) ” , ylab=” Pro bab i l i t y ” , cex . lab=s c a l e

text , cex . a x i s=s c a l e t ex t )
57 po in t s ( dat repr $h , dat repr $ reproduced , pch=” | ” , cex=l i n e f r a c )
58 mtext ( ” (d) ” , s i d e =3, adj=dx , padj=dy , l i n e =−1.3)
59
60 par ( mfrow=c (1 , 1 ) )

B.5.2 Plot recruit size distribution

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Plot r e c r u i t s i z e d i s tn
3
4 # Spec i f y data s e t to use
5 dat <− s e ed l i ngda ta
6 dat r e c r <− dat$ Height2003
7
8 # Vectors to help p l o t f e
9 ns vec <− seq (0 ,10000 , l ength =1000)

10 f e vec <− expected s e e d l i n g s ( ns vec )
11
12 # Vectors to help p l o t s i z e d i s t r i b u t i o n
13 xmin <− min( dat r e c r )
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14 xmax <− max( dat r e c r )
15 x vec <− seq (xmin , xmax , l ength =100)
16 y vec <− r e c r u i t s i z e ( x vec )
17
18 # PLOTS
19 par ( mfrow=c (1 , 2 ) )
20 d i s t n c e <− 0 .02
21 s c a l e t ex t <− 1
22
23 p lo t ( ns vec , f e vec , type=” l ” , lwd=2,
24 xlab=”Number o f s eeds ” , ylab=”Number o f s e e d l i n g s ” ,
25 cex . lab=s c a l e text , cex . a x i s=s c a l e text , main=”” )
26 mtext ( ” ( a ) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
27
28 h i s t ( dat recr , breaks =7, xlim=c ( xmin−5,xmax) , yl im=c ( 0 , 0 . 0 2 1 ) ,
29 xlab=” Recru i t he ight (cm) ” , ylab=” Proport ion o f r e c r u i t s ” ,
30 cex . lab=s c a l e text , cex . a x i s=s c a l e text , main=”” , f r e q=FALSE)
31 l i n e s ( x vec , y vec , type=” l ” , lwd=2)
32 mtext ( ” (b) ” , s i d e =3, adj=di s tnce , l i n e =−1.3)
33
34 par ( mfrow=c (1 , 1 ) )

B.6 Results Plots

B.6.1 Simulate for 30 years

1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Run s imu la t i on s
3
4 # Run s imu la t i on s t a r t i n g from equ i l i b r i um
5 L <− 5 ; U <− 550 ; m <− U−L
6 num st ep s <− 30
7
8 # With seeds
9 ns i n i t <− 1

10 nt i n i t <− rep (0 ,m)
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11 nr i n i t <− rep (0 ,m)
12
13 sim r e s r l <− master l o c a l s imu la t i on ws (L ,U,m, num steps , ns

i n i t , nt i n i t , nr i n i t , ” r l ” )
14 sim r e s ac <− master l o c a l s imu la t i on ws (L ,U,m, num steps , ns

i n i t , nt i n i t , nr i n i t , ”ac” )
15
16
17 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 ## −− Seed product ion r e s u l t s
19
20 # Number o f year s in which adul t compet i t ion model p r e d i c t s more

seeds
21 year overtook <− 0
22 whi l e ( sim r e s ac$ seeds [ year overtook +1] >= sim r e s r l $ seeds [ year

overtook +1]) {
23 year overtook <− year overtook+1
24 }
25 year overtook
26 years more <− year overtook−1
27
28 # Comparison o f asymptot ic behaviour
29 lower seed <− min( t a i l ( sim r e s ac$ seeds , 2 ) )
30 upper seed <− max( t a i l ( sim r e s ac$ seeds , 2 ) )
31 vs r l <− 1−upper seed /max( sim r e s r l $ seeds )
32
33 lower seed
34 upper seed
35 vs r l
36
37 # Plot i n i t i a l seed product ion and long−term seed product ion
38 p lo t ( 0 :num steps , sim r e s r l $ seeds , c o l=” black ” , pch=20,
39 xlab=”Year” , ylab=”Number o f s eeds ” )
40 po in t s ( 0 :num steps , sim r e s ac$ seeds , c o l=” black ” , pch=18)

B.6.2 Mean height comparison
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1 ### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## −− Mean he ight c a l c u l a t i o n s
3
4 # Observed mean he ight o f r e c r u i t s , v e g e t a t i v e plants , and

f l o w e r i n g p lant s
5 mean( s e ed l i ngda ta $h1 )
6 mean( hmdata adult $h1 )
7 mean( hmdata f low $h1 )
8
9 # Mean o f r e c r u i t s p r ed i c t ed by r e c r u i t s i z e d i s t ’ n

10 h <− (U−L) /m; meshpts <− L + ( 1 :m)∗h − h/2
11 meshpts %∗% r e c r u i t s i z e ( meshpts )
12
13 # Mean o f adul t p l ant s p r ed i c t ed at equ i l i b r i um
14 weighted d i s tn <− sim r e s r l $ adu l t s [num steps , ] /sum( sim r e s r l $

adu l t s [num steps , ] )
15 meshpts %∗% weighted d i s tn
16
17 # Mean o f f l o w e r i n g p lant s p r ed i c t ed at equ i l i b r i um
18 weighted d i s tn <− sim r e s r l $ f l o w e r i n g [num steps , ] /sum( sim r e s r l

$ f l o w e r i n g [num steps , ] )
19 meshpts %∗% weighted d i s tn
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