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2016

Modeling time varying volatility and correlation in financial time series is an important

element in derivative pricing, risk management and portfolio management. The main goal

of this thesis is to investigate the performance of multivariate GARCH model in stochastic

correlation forecast and apply theses techniques to develop a new model to enhance the dy-

namic portfolio performance in several context, including hedge fund portfolio construction.

First, we examine the performance of various univariate GARCH models and regime-

switching stochastic volatility models in crude oil market. Then these univariate models

discussed are extended to multivariate settings and the empirical evaluation provides

evidence on the use of the orthogonal GARCH in correlation forecasting and risk manage-

ment performance when an equally weighted portfolio is considered.

The recent financial turbulence exposed and raised serious concerns about the optimal

portfolio selection problem in hedge funds. The dynamic portfolio construction perfor-

mance of a broad set of multivariate stochastic volatility models is examined in a fund of

hedge fund context. It provides further evidence on the use of the orthogonal GARCH in

dynamic portfolio constructions and risk management.

Further in this work, a new portfolio optimization model is proposed in order to improve

the dynamic portfolio performance. We enhance the safety-first model with standard

deviation constraint and derive an analytic formula by filtering the returns with GH

skewed t distribution and OGARCH. It is found that the proposed model outperforms
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the classical Mean-Variance model and Mean-CVAR model during financial crisis period

for a fund of hedge fund.
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Chapter 1

Introduction

1.1 Background

Modeling time varying volatility and correlation in financial time series is an important

element in derivative pricing , risk management and portfolio allocation. Higher volatilities

increase the risk of assets, and higher correlations cause an increased risk in portfolios.

ARCH and Garch models have been applied to model volatility with a great success to

capture some stylized facts of financial time series, such as time-varying volatility and

volatility clustering. The Autoregressive Conditional Heteroscedasticity (ARCH) model

was first introduced in the seminal paper of Engle (1982). Bollerslev (1986) generalized

the ARCH model (GARCH) by modeling the conditional variance to depend on its lagged

values as well as squared lagged values of disturbance.

As stock returns evolve, their respective volatilities also tend to move together overtime,

across both assets and markets. Following the great success of univariate GARCH model

in modeling the volatility, a number of multivariate GARCH models have been developed

by Bollerslev et al. (1988), Engle and Kroner (1995) and Silvennoinen and Teräsvirta

(2009). The Dynamic Conditional Correlation Multivariate GARCH (Engle, 2002) has

been widely used to model the stochastic correlation in energy and commodity market; see

Bicchetti and Maystre (2013), Creti and Joëts (2013) and Wang (2012). The correlation

in crude oil and natural gas markets has been modeled by the orthogonal GARCH in the

paper of Alexander (2004) and the generalized orthogonal GARCH model by Van der

Weide (2002) is also developed. Regime switching models have become very popular in

financial modeling since the seminal contribution of Hamilton (1989). Hamilton first

proposed the Markov switching model (MSM) to model the real GNP in the US. Since

then, these models have been widely used to model and forecast business cycles, foreign

exchange rates and the volatility of financial time series. The hedge fund industry has
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1 Introduction

grown rapidly in recent years and has become more and more important as an alternative

investment class. The recent financial turbulence exposed and raised serious concerns

about the optimal portfolio selection problem in hedge funds. Many papers have examined

portfolio optimization in a hedge fund context. The structures of hedge fund return and

covariance are crucial in portfolio optimization. The non-normal characteristics of hedge

fund returns have been widely described in the literature. Kat and Brooks (2001) find

that the hedge fund returns exhibit significant degrees of negative skewness and excess

kurtosis. According to Getmansky et al. (2004) and Agarwal and Naik (2004), the returns

of hedge fund return are not normal and serially correlated.

The Mean-Variance portfolio optimization model proposed by Markowitz (1952) has

become the foundation of modern finance theory. It assumes that asset returns follow

the multivariate Gaussian distribution with constant parameters. However, it is well-

established that the financial time series have asymmetric returns with fat-tail, skewness

and volatility clustering characteristics. It takes standard deviation as a risk measure,

which treats both upside and downside payoffs symmetrically.

The safety-first model is first introduced by Roy (1952) and the model is extended by

Telser (1955) and Kataoka (1963). In recent years, many safety-first modeled have been

developed and discussed due to the growing practical relevance of downside risk. Chiu

and Li (2012) develop a modified safety-first model and have studied its application in

financial risk management of disastrous events, Norkin and Boyko (2012) have improved

the safety-first model by introducing one-sided threshold risk measures. The Kataoka’s

safety-first model with a constraint of mean return is studied by Ding and Zhang (2009).

1.2 Outlines and Contributions

The main objective of this thesis is to investigate the performance of multivariate GARCH

model in stochastic volatility and correlation forecast and apply these techniques to

develop a new model to enhance the dynamic portfolio performance in several context,

including hedge fund portfolio construction.

While the main objective of the thesis is multivariate distributions, Chapter 2 aims to

examine the performance of various univariate GARCH models and regime-switching

stochastic volatility model in the crude oil market. Using daily return data from NYMX

Crude Oil market for the period 13.02.2006 up to 21.07.2009, a number of univariate

GARCH models are compared with regime-switching models. In regime-switching models,

the oil return volatility follows a dynamic process whose mean is subject to shifts, which

2



1 Introduction

is governed by a two-state first-order Markov process. It is found that GARCH models

are very useful in modeling a unique stochastic process with conditional variance, while

regime-switching models have the advantage of dividing the observed stochastic behavior

of a time series into several separate phases with different underlying stochastic processes.

Furthermore, it is shown that the regime-switching models show similar goodness-of-fit

result to GARCH modeling, while has the advantage of capturing major events affecting

the oil market.

We then extend the empirical evaluation of stochastic correlation modeling in risk analytics

from a financial perspective in Chapter 3. It provides evidence on the use of the orthogonal

GARCH in correlation forecasting and risk management. The volatilities and correlations

of S&P 500 index and US Generic Government 10 Year Yield bond index are investigated

based on the exponentially weighted moving average model (EWMA) of RiskMetrics, the

Dynamic Conditional Correlation Multivariate GARCH (DCC), the orthogonal GARCH

(OGARCH) and the generalized orthogonal GARCH (GOGARCH). The out-of-sample

forecasting performances of these models are compared by several methods. It is found

that the overall performance of multivariate Garch models is better than EWMA and

the out-of-sample sample estimation results show that OGARCH model outperforms the

other models in stochastic correlation prediction.

Chapter 4 extends the univariate models discussed in Chapter 2 to multivariate settings.

It provides further evidence on the use of the orthogonal GARCH in dynamic portfolio

forecasting and risk management. We investigate and compare the performances of the

optimal portfolio selected by using the Orthogonal GARCH (OGARCH) Model, Markov

Switching Models and the Exponentially Weighted Moving Average (EWMA) Model in

a fund of hedge funds. These models are used to calibrate the returns of four HFRX

indices from which the optimal portfolio is constructed using the Mean-Variance method.

The performance of each optimal portfolio is compared in an out-of-sample period. It is

found that OGARCH gives the best-performed optimal portfolio with the highest Sharpe

ratio and the lowest risk. Moreover, a sensitivity analysis for the parameters of OGARCH

is conducted and it shows that the asset weights in the optimal portfolios selected by

OGARCH are very sensitive to slight changes in the input parameters. Although there

has been much work done on the comparisons of different multivariate Garch models and

Markov Switching Models, this is the first work to compare the performance of optimal

portfolios in a hedge fund context.

In Chapter 5, we enhance the safety-first model with standard deviation constraint and

derive an analytic formula by filtering the returns with GH skewed t distribution and

3
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OGARCH. The analytical solution to classical mean-variance model is also given in terms

of parameters in GH skewed t distribution and OGARCH model. Then the parameters

are estimated by EM algorithm. The optimal hedge fund portfolios are selected by

Mean-Variance, mean-CVaR and safety-first models in 2008 financial crisis and stable

period (2013-2014) and the portfolio performances are compared in risk measurement.

The efficient frontier is also presented. In the out-of-sample tests, Mean-CVaR model

gives the highest mean return in the post-crisis period, while the modified safety-first

model provides some improvements over the other two models during the financial crisis

period. The enhanced safety-first model achieves the best risk-adjusted returns in both

periods.

1.3 Future Research

Stochastic correlation forecast under multivariate GARCH models have been studied by

many researchers, but it still needs further research in many directions. One direction is

to develop a regime-switching OGARCH model.

More research needs to be carried out on dynamic portfolio optimization for heavy-tailed

assets. One direction is to develop a multi-period extension of the single period safety-first

portfolio optimization model we have developed in Chapter 5. Another possible direction

would be considering multivariate skewed t and independent component analysis (ICA) in

estimating the assets distributions directly.

4



Chapter 2

Risk Modeling in Crude Oil Market

2.1 Introduction

Risk analysis of crude oil market has always been the core research problem that deserves

lots of attention from both the practice and academia. Risks occur mainly due to the

change of oil prices. During the 1970s and 1980s there were a great deal increases in

oil price. Such price fluctuations came to new peaks in 2007 when the price of crude

oil doubled during the financial crisis. These fluctuations of double digit numbers in

short periods of time continued between 2007 and 2008, when we see highly volatile oil

prices. These fluctuations would not be worrisome if oil wouldn’t be such an important

commodity in the world’s economy. When the oil prices become too high and the volatility

increases, it has a direct impact on the economy in general and thus affects the government

decisions regarding the market regulation and thus the firm and individual consumer

incomes (Bacon and Kojima, 2008).

Price volatility analysis has been a hot research area for many years. Commodity markets

are characterized by extremely high levels of price volatility. Understanding the volatility

dynamic process of oil price is a very important and crucial way for producers and countries

to hedge various risks and to avoid the excess exposures to risks (Bacon and Kojima, 2008).

To deal with different phases of volatility behavior and the dependence of the variability

of the time series on its own past, models allowing for heteroscedasticity like ARCH,

GARCH or regime-switching models have been suggested by researchers. The former

two are very useful in modeling a unique stochastic process with conditional variance;

the latter has the advantage of dividing the observed stochastic behavior of a time series

into several separate phases with different underlying stochastic processes. Both types of

models are widely used in practice.

5



2 Risk Modeling in Crude Oil Market

Hung et al. (2008) employ three GARCH models, i.e., GARCH-N, GARCH-t and GARCH-

HT, to investigate the influence of fat-tailed innovation process on the performance of

energy commodities VaR estimates. Kazmerchuk et al. (2005) consider a continuous-time

limit of GARCH(1,1) model for stochastic volatility with delay and the model fit well for

the market with delayed response. Narayan et al. (2008) use the exponential GARCH

models to evaluate the impact of oil price on the nominal exchange rate. To validate

cross-market hedging and sharing of common information by investors, Malik and Ewing

(2009) employ bivariate GARCH models to estimate the relations between five different

US sector indexes and oil prices. The continuous time GARCH (1,1) model is also used for

volatility and variance swaps valuations in the energy market (Swishchuk, 2013, Swishchuk

and Couch, 2010). On the other side, regime-switching has been used a lot in modeling

stochastic processes with different regimes. Alizadeh et al. (2008) introduce a Markov

regime switching vector error correction model with GARCH error structure and show how

portfolio risks are reduced using state dependent hedge ratios. Agnolucci (2009) employs

a two regime Markov-switching EGARCH model to analyze oil price change and find

the probability of transition across regimes. Klaassen (2002) develops a regime-switching

GARCH model to account for the high persistence of shocks generated by changes in

the variance process. Oil shocks were found to contribute to a better description of the

impact of oil on output growth (Cologni and Manera, 2009). There is no clear evidence

regarding which approach outperforms the other one.

Fan et al. (2008) argue that GED-GARCH-based VaR approach is more realistic and

more effective than the well-recognized historical simulation with ARMA forecasts in an

empirical study. Aloui and Mabrouk (2010) find that the FIAPARCH model outperforms

the other models in the VaR’s prediction and GARCH models also perform better than

the implied volatility by inverting the Black equation. According to Agnolucci (2009), the

GARCH model performs best when assuming GED distributed errors. Clear evidences of

regime-switching have been discovered in the oil market. Fong and See (2001) believe that

regime switching models provide a useful framework for the evolution of volatility and

and forecasts of oil futures with short-term volatility. The regime-switching stochastic

volatility model performs well in capturing major events affecting the oil market (Vo, 2009).

This chapter will focus on volatility modeling in crude oil market using both regime-

switching stochastic volatility model and GARCH models. The next section will review

various types of volatility models. We will then look at crude market data in Section 3.

Computation and results analysis are presented in Section 4. The last section concludes

the chapter.
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2 Risk Modeling in Crude Oil Market

2.2 Volatility Models

2.2.1 Historical Volatility

We suppose that εt is the innovation in mean for log returns. To estimate the volatility at

time t over the last N days we have

VH,t =

[
1

N

N−1∑
i=0

ε2

]1/2
(2.1)

This is actually an N-day simple moving average volatility, where the historical volatility

is assumed to be constant over the estimation period and the forecast period. To involve

the long-run or unconditional volatility using all previous returns available at time t, we

have many variations of the simple moving average volatility model (Fama, 1970).

ARMA (R,M) model

Given a time series Xt, the autoregressive moving average (ARMA) model is a very useful

for predicting future values in time series where there are both an autoregressive (AR)

part and a moving average (MA) part. The model is usually then referred to as the

ARMA(R,M) model where R is the order of the first part and M is the order of the second

part.

The following ARMA(R,M) model contains the AR(R) and MA(M) models:

Xt = c+ εt +
R∑
i=1

ϕiXt−i +
M∑
j=1

θjεt−j (2.2)

where ϕi and θj for any i = 1, . . . , R, j = 1, . . . ,M are parameters for AR and MA parts

respectively.

ARMAX(R,M, b) model

To include the AR(R) and MA(M) models and a linear combination of the last b terms of

a known and external time series dt, one can have a model of ARMAX(R,M, b) with R

autoregressive terms, M moving average terms and b exogenous inputs terms.

Xt = c+ εt +
R∑
i=1

ϕiXt−i +
M∑
j=1

θjεt−j +
b∑

k=1

ηkdt−k (2.3)

7



2 Risk Modeling in Crude Oil Market

where η1, . . . , ηb are the parameters of the exogenous input dt.

ARCH(q)

Autoregressive Conditional Heteroscedasticity (ARCH) type modeling is the predominant

statistical technique employed in the analysis of time-varying volatility. In ARCH models,

volatility is a deterministic function of historical returns.

The original ARCH(q) formulation proposed by Engle (1982) models conditional variance

σ2
t as a linear function of the first q past squared innovations:

σ2
t = c+

q∑
i=1

αiε
2
t−i (2.4)

This model allows today’s conditional variance to be substantially affected by the (large)

square error term associated with a major market move (in either direction) in any of the

previous q periods. It thus captures the conditional heteroscedasticity of financial returns

and offers an explanation of the persistence in volatility.

A practical difficulty with the ARCH(q) model is that in many of the applications a long

length q is called for.

GARCH(p,q)

The Generalized Autogressive Conditional Heteroscedasticity (GARCH) developed by

Bollerslev and Wooldridge (1992) generalizes the ARCH model by allowing the current

conditional variance to depend on the past conditional variances as well as past squared

innovations.

The GARCH(p,q) model is defined as

σ2
t = L+

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiσ
2
t−i (2.5)

where L denotes the long-run volatility. L, α, β are constants and
∑q

j=1 αj +
∑p

i=1 βi < 1.

By accounting for the information in the lag(s) of the conditional variance in addition

to the lagged squared returns, the GARCH model reduces the number of parameters

required. In most cases, one lag for each variable is sufficient.

8
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The GARCH(1,1) model is given by:

σ2
t = L+ β1σ

2
t−1 + α1ε

2
t−1 (2.6)

GARCH can successfully capture thick tailed returns and volatility clustering. It can also

be modified to allow for several other stylized facts of asset returns.

EGARCH

The Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH)

model introduced by Nelson (1991) builds in a directional effect of price moves on condi-

tional variance. Large price declines, for instance may have a larger impact on volatility

than large price increases.

The general EGARCH(p,q) model for the conditional variance of the innovations, with

leverage terms and an explicit probability distribution assumption, is

log σ2
t = L+

p∑
i=1

βi log σ
2
t−i +

q∑
j=1

βj

[
|εt−j|
σt−j

− E

{
|εt−j|
σt−j

}]
+

q∑
j=1

Lj

(
εt−j
σt−j

)
(2.7)

where E
{

|εt−j |
σt−j

}
= E {|zt−j|} =

√
2
π
for the normal distribution and

E
{

|εt−j |
σt−j

}
= E {|zt−j|} =

√
v−2
π

Γ( ν−1
2

)

Γ( ν
2
)

for the Student’s t distribution with degree of

freedom ν > 2.

GJR(p,q)

GJR(p,q) model is an extension of an equivalent GARCH(p,q) model with zero leverage

terms. Thus, estimation of initial parameter for GJR models should be identical to those

of GARCH models. The difference is the additional assumption with all leverage terms

being zero:

σ2
t = L+

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

LjSt−jε
2
t−j (2.8)

where St−j = 1 if εt−j < 0, St−j = 0 otherwise, with constraints

q∑
j=1

αj +

p∑
i=1

βi +
1

2

q∑
j=1

Lj < 1 (2.9)

for any αj ≥ 0, αj + Lj ≥ 0, Lj ≥ 0, βi ≥ 0 where i = 1, . . . , p and j = 1, . . . , q.

9
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2.2.2 Regime switching models

Markov regime-switching model has been applied in various fields such as oil and the

macroeconomic analysis (Raymond and Rich, 1997), analysis of business cycles (Hamilton,

1989) and modeling stock market and asset returns (Engel, 1994).

We now consider a dynamic volatility model with regime-switching. Suppose a time series

yt follow an AR (p) model with AR coefficients, together with the mean and variance,

depending on the regime indicator st:

yt = µst +

p∑
j=1

ϕj,styt−j + εt (2.10)

where εt ∼ i.i.dNormal(0, σ2
st). µst is the mean at state st.

The corresponding density function for yt is:

f(yt|st, yt−1) =
1√
2πσst

exp

[
− ω2

t

2σ2
st

]
= f(yt|st, yt−1, yt−p) (2.11)

where ωt = yt − µst −
∑p

j=1 ϕj,syt−j.

The model can be estimated by use of maximum log likelihood estimation. A more

practical situation is to allow the density function of yt to depend on not only the current

value of the regime indicator st but also the past values of the regime indicator st, which

means the density function should takes the form of

f(yt|St, yt−1, yt−p) (2.12)

where St−1 = st−1, st−2, . . . , s1 is the set of all the past information on st.

2.3 Data

2.3.1 Data and Sample Description

The data contains the daily closing prices of the NYMEX Crude Oil index from February

2006 to July 2009. Weekends and holidays are not included in our data thus considering

those days as non moving price days. Using the logarithm prices changes means that our

continuously compounded return is symmetric, preventing us from getting nonstationary

level of oil prices which would affect our return volatility. Table 2.1 presents the descriptive

10
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statistics of the daily crude oil price changes. In Figure 2.1 we show a plot of the Crude

Oil daily price movement.

2007 2008 2009

40

60

80

100

120

140

Figure 2.1: Daily price movement of crude oil from Feb. 2006-July 2009.

01/2007 01/2008 01/2009

−0.10
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0.00

0.05

0.10

0.15

Figure 2.2: Daily returns of crude oil from Feb. 2006-July 2009.

Table 2.1: Statistics on the Daily Crude Oil Index Returns from Feb. 2006 to July 2009

Statistics Value
Sample Size 881

Mean 75.53
Maxumum 145.29
Minimum 33.87

Standard Deviation 24.09
Skewness 0.92
Kurtosis 3.24

To get a preliminary view of volatility change, we show in Table 2.2 the descriptive

statistics on the Daily Crude Oil Index logreturn ranging from February 2006 to July

2009. The corresponding plot is given in Figure 2.2 .
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Table 2.2: Statistics on the Daily Crude Oil Index logreturn from February 2006 to July
2009

Statistics Value
Sample Size 880

Mean 6.4692e-006
Maxumum 0.1641
Minimum -0.1307

Standard Deviation 0.0302
Skewness 0.1821
Kurtosis 7.0637

2.3.2 Distribution Analysis

The following graph (Figure 2.3) displays a distribution analysis of our data ranging from

February 2006 up to July 2009. The data is the log return of the daily crude oil price

movements over the time period mentioned above. We can see that the best distribution

for our data is a t- Distribution which is shown by the blue line (2.3). The red line

represents the normal distribution of our data. So a conditional t- Distribution is preferred

to normal distribution in our research. An augmented Dickey-Fuller univariate unit root

test yields a resulted p-value of 1.0*e-003, 1.1*e-003 and 1.1*e-003 for lags of 0,1 and 2

respectively. All p-values are smaller than 0.05, which indicates that the time series has a

trend-stationary property.

2.4 Results

2.4.1 GARCH modeling

We first estimated the parameters of the GARCH(1,1) model using 865 observations in

Matlab, and then tried various GARCH models using different probability distributions

with the maximum likelihood estimation technique. In many financial time series the

standardized residuals zt = εt/σt usually display excess kurtosis which suggests departure

from conditional normality. In such cases, the fat-tailed distribution of the innovations

driving a dynamic volatility process can be better modeled using the Student’s t or

the Generalized Error Distribution (GED). Taking the square root of the conditional

variance and expressing it as an annualized percentage yields a time-varying volatility

estimate. A single estimated model can be used to construct forecasts of volatility over

any time horizon. Table 2.3 presents the GARCH(1,1) estimation using t-distribution.

The conditional mean process is modeled by use of ARMAX(0,0,0).

12
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Figure 2.3: Distribution fit: Normal Distribution vs. T Distribution.

Model AIC BIC lnL Parameter Value Standard Error T Statistic

Mean: AR-
MAX(0,0,0);
Variance:
GARCH(1,1)

C 6.819e-4 5.0451e-4 1.3516
K 2.216e-6 1.306e-6 1.7011

-4559.9 -4536.1 2284.97 β1 0.9146 0.0174 52.6514
α1 0.0815 0.0179 4.5539
DoF 34.603 8.4422e-7 4.0988e+7

Table 2.3: GARCH(1,1) estimation using t-distribution

Substituting these estimated values in the math model, we yield the explicit form as

follows:

yt = 6.819e− 4 + εt

σ2
t = 2.216e− 6 + 0.9146σ2

t−1 + 0.0815ε2t−1

Figure 2.4 depicts the dynamics of the innovation and standard deviation using the above

estimated GARCH model, i.e., the ARMAX(0,0,0) GARCH(1,1) with the log likelihood

value of 2284.97. We want to find a higher log likelihood value for other GARCH modeling,

so we use the same data with different models in order to increase the robustness of our

model. We now try different combinations of ARMAX and GARCH, EGARCH and GJR

models. Computation results are presented in Table 2.4.
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Figure 2.4: Innovation and Standard Deviation of crude oil daily returns by GARCH(1,1).

A general rule for model selection is that we should specify the smallest, simplest models

that adequately describe data because simple models are easier to estimate, easier to fore-

cast, and easier to analyze. Model selection criteria such as AIC and BIC penalize models

for their complexity when considering best distributions that fit the data. Therefore, we

can use log likelihood(LLC), Akaike (AIC) and Bayesian (BIC) information criteria to

compare alternative models. Usually, differences in LLC across distributions cannot be

compared since distribution functions can have different capabilities for fitting random

data, but we can use the minimum AIC and BIC, maximum LLC values as model selection

criteria (Cousineau et al., 2004).

As can be seen from Table 2.4, the log likelihood value of ARMAX(1,1,0) GJR(2,1) yields

the highest log likelihood value 2292.32 and lowest AIC value -4566.6 among all modeling

technique. Thus we conclude that GJR models should be our preferred model.

The forecasting horizon is defined to be 30 days (one month). The simulation uses 20,000

realizations for a 30-day period based on our fitted model ARAMX(1,1,0) GJR(2,1) and

the horizon of 30 days from Forecasting. In Figure 2.5 we compare the outputs from

forecasting with those derived from Simulation. The first four panels of Figure 5 compare

directly each of the outputs from ”Forecasting” with the corresponding statistical result

obtained from ”Simulation”. The last two panels of Figure 2.5 illustrate histograms from
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which we could compute the approximate probability density functions and empirical

confidence bounds. When comparing forecasting with its counterpart derived from the

Monte Carlo simulation, we show computation for four parameters in the first four panels

of Figure 2.5: the conditional standard deviations of future innovations, the MMSE

forecasts of the conditional mean of the NASDAQ return series, cumulative holding period

returns and the root mean square errors (RMSE) of the forecasted returns. The fifth panel

of Figure 2.5 uses a histogram to illustrate the distribution of the cumulative holding

period return obtained if an asset was held for the full 30-day forecast horizon. In other

words, we plot the logreturn obtained by investing in NYMEX Crude Oil index today,

and sold after 30 days. The last panel of Figure 2.5 uses a histogram to illustrate the

distribution of the single-period return at the forecast horizon, that is, the return of the

same mutual fund, the 30th day from now.

2.4.2 Markov Regime Switching modeling

We now try Markov regime switching modeling in this section. The purpose is twofold:

first, check if Markov Switching regressions can beat GARCH models in time series

modeling; second, find turmoil regimes in historical time series. We employ a Markov

regime switching computation example in Table 2.5 to illustrate our results.

The model in Table 2.5 assumes Normal distribution and allows all parameters to switch.

We use S = [111] to control the switching dynamics, where the first element of S controls

the switching dynamic of the mean equation, while the last term controls the switching

dynamic of the residual vector, including distribution parameters mean and variance. A

value of “1” in S indicates that switching is allowed in the model while a value of “0” in S

indicates that parameter is not allowed to change states. Then the model for the mean

equation is:

State 1(St = 1) State 2(St = 2)

yt = −0.0015− 0.0667yt−1 yt = 0.0012− 0.0934yt−1

εt ∼ N(0, 0.03062) εt ∼ N(0, 0.01152)
where εt is residual vector which follows a particular distribution. The transition matrix,

P =

[
0.99 0.01

0.01 0.99

]
, controls the probability of a regime switch from state 1(2) (column

1(2)) to state 2(1) (row 2(1)). The sum of each column in P is equal to one, since they

represent full probabilities of the process for each state.

In order to yield the best fitted Markov regime switching models, we now try various

parameter settings for traditional Model by Hamilton (1989) and complicated setting

using t-distribution and Generalized Error Distribution. We present computational results
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in Table 2.6, 2.7 and 2.8. A comparison of log Likelihood values indicate that complicated

setting using t-distribution and Generalized Error Distribution usually are preferred. The

best fitted Markov Regime Switching models should assume GED and allow all parameters

to change states (see Table 2.8).

We now focus on analysis using the best fitted Markov regime switching model, i.e., “MS

model,S = [11111] (GED)” in Table 2.8. Figure 2.6 presents transitional probabilities

in Markov regime switching with GED: fitted state probabilities and smoothed state

probabilities. Based on such a transitional probability figure, we can classify historical

data into two types according to their historical states.

As can be seen from Figure 2.7 and 2.8, the total historical time series are divided into two

regimes: a normal one with small change (state 2) and a turmoil one with big risk (state

1). For each state, regime Switching model identifies three periods of data. The normal

regime includes two periods: 2006-02-10 to 2006-12-11, and 2007-01-30 to 2007-10-14.

The turmoil regime also includes two periods: 2006-12-12 to 2007-01-29, and 2007-10-15

to 2009-07-07. The first turmoil lasts only one and a half months, but the second one

covers almost the total financial crisis.

2.5 Conclusion

We have examined crude oil price volatility dynamics using daily data for the period

13.02.2006 up to 21.07.2009. To model volatility, we employ the GARCH, EGARCH and

GJR models and various Markov regime switching models using the maximum likelihood

estimation technique. Codes are written in Matlab language. We have compared several

parameter settings in all models. In GARCH models, the ARMAX (1,1,0)/ GJR(2,1)

yielded the best fitted result with maximum log likelihood value of 2292.32 when assuming

that our data follow a t-distribution. Markov regime switching models generate similar

fitted result but with a bit lower log likelihood value. Markov regime switching modeling

show interesting results by classifying historical data into two states: a normal one and a

turmoil one. This can account for some market stories in financial crisis.
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Figure 2.5: simulation and forecasting

17



2 Risk Modeling in Crude Oil Market
M
o
d
el

A
IC

B
IC

ln
L

P
ar
am

et
er

V
al
u
e

S
ta
n
d
ar
d
E
rr
or

T
S
ta
ti
st
ic

M
ea
n
:
A
R
M
A
X
(1
,1
,0
)

V
a
ri
a
n
ce

:
G
A
R
C
H
(1
,1
)

C
8.
99
5e
-4

6.
68
51
e-
4

1.
34
55

ϕ
1

-0
.3
11
9

0.
43
86

-0
.7
11
1

θ 1
0.
23
63

0.
44
65

0.
52
92

-4
56
1.
0

-4
52
7.
7

22
87
.5

K
2.
05
64
e-
6

1.
25
67
e-
6

1.
63
63

β
1

0.
91
75

0.
01
69

54
.1
60
7

α
1

0.
07
90

0.
01
74

4.
54
36

D
oF

30
.1
07

1.
67
71
e-
4

1.
79
5e
+
5

M
ea
n
:
A
R
M
A
X
(1
,1
,0
)

V
a
ri
a
n
ce

:
E
G
A
R
C
H
(1
,1
)

C
6.
65
56
e-
4

6.
23
68
e-
4

1.
06
72

ϕ
1

-0
.3
06
7

0.
38
95

-0
.7
87
4

θ 1
0.
22
26

0.
39
69

0.
56
07

K
-0
.0
39
6

0.
02
97

-1
.3
33
9

-4
55
7.
8

-4
52
4.
5

22
86
.3

β
1

0.
99
50

3.
62
55
e-
3

27
4.
45
53

α
1

0.
14
59

0.
02
81

5.
19
80

L
-0
.0
31
6

0.
01
55

-2
.0
33
7

D
oF

37
.5
96

48
.4
55

0.
77
59

M
ea
n
:
A
R
M
A
X
(1
,1
,0
)

V
a
ri
a
n
ce

:
G
J
R
(1
,1
)

C
6.
91
2
e-
4

6.
39
23
e-
4

1.
08
13

ϕ
1

-0
.2
96
7

0.
44
99

-0
.6
59
6

θ 1
0.
22
18

0.
45
67

0.
48
52

K
2.
15
11
e-
6

1.
26
82
e-
6

1.
69
61

-4
56
0.
9

-4
52
2.
8

22
88
.4

β
1

0.
91
89

0.
01
68

54
.7
17
8

α
1

0.
05
92

0.
02
11

2.
87
79

L
0.
03
44

0.
02
54

1.
35
41

D
oF

38
.3
6

1.
19
67
e-
4

3.
20
54
e+

4

M
ea
n
:
A
R
M
A
X
(1
,1
,0
)

V
a
ri
a
n
ce

:
G
J
R
(2
,1
)

C
5.
64
69
e-
4

6.
46
35
e-
4

0.
87
37

ϕ
1

-0
.3
58
2

0.
40
30

-0
.8
89
1

θ 1
0.
28
43

0.
41
38

0.
68
71

K
3.
50
44
e-
6

1.
99
42
e-
6

1.
75
73

-4
56
6.
6

-4
52
3.
8

22
92
.3

β
1

0
0.
02
55

0.
00
00

β
2

0.
86
82

0.
02
94

29
.5
59
2

α
1

0.
09
10

0.
02
55

3.
57
14

L
0.
06
77

0.
03
46

1.
95
52

D
oF

50
.0
13

6.
06
89
e-
6

8.
24
09
e+

6

T
ab

le
2.
4:

V
ar
io
u
s
G
A
R
C
H

m
o
d
el
in
g

18



2 Risk Modeling in Crude Oil Market

T
ab

le
2.
5:

M
ar
ko
v
re
gi
m
e
sw

it
ch
in
g
co
m
p
u
ta
ti
on

ex
am

p
le

M
o
d
el

lo
g

N
on

S
w
it
ch
in
g

S
w
it
ch
in
g
P
ar
am

et
er
s

T
ra
n
si
ti
on

D
is
tr
ib
u
ti
on

L
ik
el
ih
o
o
d

P
ar
am

et
er

S
ta
te

1
S
ta
te

2
M
at
ri
x

M
S
M
o
d
el

22
57
.3
6

N
/A

M
o
d
el
’s
S
T
D

0.
03
06

0.
01
15

0.
99

0.
01

0.
01

0.
99

S
=

[1
11
]

In
d
ep

co
lu
m
n
1

-0
.0
01
5

0.
00
12

(N
or
m
al
)

In
d
ep

co
lu
m
n
2

-0
.0
66
7

-0
.0
93
4

19



2 Risk Modeling in Crude Oil Market

T
ab

le
2.
6:

M
ar
ko
v
R
re
gi
m
e
sw

it
ch
in
g
u
si
n
g
H
am

il
to
n
(1
98
9)
s
M
o
d
el

M
o
d
el

lo
g

N
on

S
w
it
ch
in
g

S
w
it
ch
in
g
P
ar
am

et
er
s

T
ra
n
si
ti
on

t
D
is
tr
ib
u
ti
on

L
ik
el
ih
o
o
d

P
ar
am

et
er

S
ta
te

1
S
ta
te

2
M
at
ri
x

H
am

il
to
n
(1
98
9)
’s
M
o
d
el
,

22
12
.3
8

0.
01
35

D
oF

10
0.
00

1.
54
63

1
0

0
1

S
=

[1
11
]

In
d
ep

co
lu
m
n
1

0.
00
08

-0
.0
00
2

In
d
ep

co
lu
m
n

-0
.0
01
2

0.
00
10

In
d
ep

co
lu
m
n

-0
.0
01
2

0.
00
10

H
am

il
to
n
(1
98
9)
’s
M
o
d
el

22
57
.3
4

N
/A

M
o
d
el
’s
S
T
D

0.
02
64

0.
01
13

0.
99

0.
01

0.
01

0.
99

S
=

[1
11
]

D
oF

7.
82
38

11
2.
30
94

In
d
ep

co
lu
m
n
1

-0
.0
01
2

0.
00
10

In
d
ep

co
lu
m
n
2

-0
.0
01
2

0.
00
10

20



2 Risk Modeling in Crude Oil Market

T
ab

le
2.
7:

M
ar
ko
v
re
gi
m
e
sw

it
ch
in
g
u
si
n
g
t-
d
is
tr
ib
u
ti
on

M
o
d
el

lo
g

N
on

S
w
it
ch
in
g

S
w
it
ch
in
g
P
ar
am

et
er
s

T
ra
n
si
ti
on

t
D
is
tr
ib
u
ti
on

L
ik
el
ih
o
o
d

P
ar
am

et
er

S
ta
te

1
S
ta
te

2
M
at
ri
x

M
S
M
o
d
el

21
72
.4
1

S
T
D

0.
01
28

In
d
ep

co
lu
m
n
1

0.
00
21

-0
.0
01
0

0.
45

0.
57

0.
55

0.
43

S
=

[1
11
]

D
oF

2.
95
06

In
d
ep

co
lu
m
n
2

-0
.3
92
5

0.
25
53

22
12
.3
8

N
/A

M
o
d
el
’s
S
T
D

0.
01
30

0.
01
17

0.
80

0.
98

0.
20

0.
02

S
=

[1
11
]

In
d
ep

co
lu
m
n
1

0.
00
13

-0
.0
03
4

D
oF

3.
24
08

2.
36
37

In
d
ep

co
lu
m
n
2

-0
.2
01
5

0.
90
80

22
12
.3
8

N
/A

M
o
d
el
’s
S
T
D

0.
02
62

0.
01
13

0.
80

0.
98

0.
20

0.
02

S
=

[1
11
]

In
d
ep

co
lu
m
n
1

-0
.0
01
2

0.
00
11

D
oF

7.
49
04

10
0.
00
0

In
d
ep

co
lu
m
n
2

-0
.0
73
6

-0
.0
91
5

In
d
ep

co
lu
m
n
3

-0
.0
12
1

0.
04
22

21



2 Risk Modeling in Crude Oil Market

Table 2.8: Markov regime switching using GED

Model log Switching Parameters Transition
Distribution Likelihood State 1 State 2 Matrix
MS Model 2257.36 Model’s STD 0.0029 0.0094

0.06 0.26
0.94 0.74

S = [111] Value of k 1.4987 0.8011
(GED) Indep column 1 0.0020 0.0013

Indep column 2 0.8905 0.2207
MS Model 2257.36 Model’s STD 0.0029 0.0094

0.99 0.01
0.01 0.99

S = [111] Value of k 0.7122 0.4675
(GED) Indep column 1 0.0014 0.0010

Indep column 2 0.0706 0.0848
cline3-5 Indep column 3 0.0287 0.0384
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Figure 2.6: transitional probabilities in Markov regime switching with GED
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Figure 2.7: return dynamics of two regimes from 2006.2-2009.7
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Figure 2.8: price dynamics of two regimes from 2006.2-2009.7
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Chapter 3

Stochastic correlation in risk

analytics: a financial perspective

3.1 Introduction

Risk analytics has been popularized by some of today’s most successful companies through

new theories such as enterprise risk management (Wu and Olson, 2010, Wu et al., 2010). It

drives business performance using new sources of data information and advanced modeling

tools and techniques. For example, underwriting decisions in the electric power, oil, natural

gas and basic-materials industries can be improved by advanced credit-risk analytics so

that higher revenues and lower costs are yielded through the analytics of their commodity

exposures. By incorporating, we help clients produce models with significantly higher

predictive power. Risk analytics can be correlated with the public resources management

(Chen et al., 2015).

However, investments from different sources of projects, products and markets can be

highly correlated due to the interconnections among these projects, products and markets.

Maximizing the benefit from these investments cannot be based on the data and models

individually from different sources; it may be more based on the correlation structure

dynamically from different sources. For example, value at risk (VaR) has been widely

used in financial institutions as a risk management tool after its adoption by the Basel

Committee on Banking (1996). Modeling time-varying volatility and correlation for port-

folios with a large number of assets is critical and especially valuable in VaR measurement.

Significantly higher predictive power has been observed when considering correlation

structure in VaR modeling.

Modeling time varying volatility and correlation in financial time series is an important
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3 Stochastic correlation in risk analytics: a financial perspective

element in pricing equity, risk management and portfolio management. Many multivariate

stochastic correlation models have been proposed to model the time-varying covariance

and correlations. Following the great success of univariate GARCH model in modeling the

volatility, a number of multivariate GARCH models have been developed; see Bollerslev

et al. (1988), Engle and Kroner (1995) and Silvennoinen and Teräsvirta (2009)). The dy-

namic conditional correlation Multivariate GARCH (Engle, 2002) has been widely used to

model the stochastic correlation in energy and commodity market (Bicchetti and Maystre

(2013), Creti and Joëts (2013),Wang (2012)). The correlation in crude oil and natural gas

markets has been modeled by the orthogonal GARCH in the paper of Alexander (2004)

and the generalized orthogonal GARCH model is also developed by Van der Weide (2002).

Besides the multivariate GARCH models, the exponentially weighted moving average

model (EWMA) of RiskMetrics (1996), which is the simplest matrix generalization of

a univariate volatility mode, is also very widely used in variance and covariance forecasting.

Since so many models have been developed over the years, the prediction accuracy of these

models becomes a major concern in time series data mining. A number of studies have

compared the forecasting performance of the multivariate correlation modes. In the paper

of Wong and Vlaar (2003), it shows that the DCC model outperforms other alternatives

in modeling time-varying covariance. It is noted that the optimal hedge fund portfolio

constructed by dynamic covariance models has lower risk (Giamouridis and Vrontos, 2007).

Harris and Mazibas (2010) provide further evidence that the use of multivariate GARCH

models in optimal portfolios selection has better performances than static models and also

show that exponentially weighted moving average (EWMA) model has the best perfor-

mance with superior risk-return trade-off and lower tail risk. Engle and Sheppard (2008)

compare the performance of some Large-scale multivariate GARCH models using over 50

assets and find that there is value in modeling time-varying covariance of large portfolio by

these models. Lu and Tsai (2010) also find that the multivariate GARCH models provide

a substantial improvement to the forecast accuracy of the time-varying correlation. The

out-of-sample forecasting accuracy of a range of multivariate GARCH models with a focus

on large-scale problems is also studied by Caporin (2012) and Laurent and Violante (2012).

This chapter aims to evaluate the forecasting performance of RiskMetrics EWMA, DCC,

OGARCH and GOGARCH models for the correlation between S& P 500 index and US

Generic Government 10 year yield bond index over 10 years period from 2002 to 2013. First

we estimate these models and obtain out-of-sample forecasts of time-varying correlations.

Then mean absolute error (MAE) and model confidence set (MCS) approach are applied

to assess the prediction abilities. We also compute one-step-ahead out-of-sample VaR of

an equally weighted portfolio and perform a backtesting analysis.
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3 Stochastic correlation in risk analytics: a financial perspective

The chapter proceeds as follows. Section 2 introduces stochastic correlation models namely,

the RiskMetrics EWMA model, DCC, OGARCH and GOGARCH. Section 3 presents the

evaluation measures used to compare the forecast performance of different models. Section

4 explains the data involved and presents empirical results on the forecast comparison

and section 5 concludes the chapter.

3.2 Stochastic Correlation Models

There are many methods to estimate the covariance matrix of a portfolio. In this chapter,

we compare the forecasting performance of the models that are widely adopted by market

practitioners. In this section, we review these stochastic correlation models.

Let yt be a k ×1 vector multivariate time series of daily log returns on k assets at time t :

yt = µt + εt (3.1)

E(yt|Ωt−1) = µt (3.2)

V ar(yt|Ωt−1) = E(εtε
′
t|Ωt−1) = Ht (3.3)

Where Ωt−1 denotes sigma field generated by the past information until time t-1.

3.2.1 Riskmetrics EWMA

The exponentially weighted moving average (EWMA) models are very popular among

market practitioners. The RiskMetrics EWMA model assigns the highest weight to

the latest observations and the least weight to the oldest observations in the volatility

estimation.

The multivariate form of EWMA model is defined as

Ht = λHt−1 + (1− λ)yt−1y
′
t−1 (3.4)

For each individual element, it is given by

σ2
i,j,t = λσi,t−1σj,t−1 + (1− λ)yi,t−1yj,t−1 (3.5)

λ is a decay factor, which determines the importance of historical observations used for

estimating the covariance matrix. The value of decay factor depends on the sample size
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3 Stochastic correlation in risk analytics: a financial perspective

and varies by asset class. J.P. Morgan(1996) suggests that a decay factor of 0.94 is used

for daily data set.

Given the decay factor and initial value Σ̂0, it is very easy to forecast the conditional

covariance matrix. The full sample covariance matrix Σ̂0 is defined as

Σ̂0 =
1

T − 1

T∑
t=1

(yt − ȳ)′(yt − ȳ) (3.6)

The EWMA model is very easy to implement for a larger number of assets and the

conditional covariance is always semi-definite. The conditional covariance forecasting is

also straightforward. However, EWMA model is lack of firm statistical basis and has to

estimate decay factor.

3.2.2 Multivariate GARCH Models

Following the great success of univariate GARCH model in modeling the volatility, many

multivariate GARCH models have been proposed for conditional covariance and correlation

modeling. The first direct extension of univariate Garch model is VEC-GARCH model of

(Bollerslev et al., 1988) and BEKK models (Engle and Kroner, 1995). When there is a

big data set in the portfolio, the large number of covariance is difficult to estimate and

evaluation is also complicated. A large number of unknown parameters in these models

prevents their successful application in practice.

To solve the larger-scale problems, factor and orthogonal models are introduced. (Boller-

slev, 1990) introduced constant conditional correlation (CCC) model with the restriction

of constant conditional correlation which reduces the number of parameters. By making

the conditional correlation matrix time-dependent, CCC is generalized by the dynamic

conditional correlation (DCC) model (Engle, 2002). DCC model captures the advantages

of GARCH models and simplifies the computation of multivariate GARCH.

In the DCC model, time series of daily log returns on k assets yt is conditionally multivariate

normal with mean zero. That is,

yt = εt (3.7)

Ht = DtRtDt (3.8)

Dt = diag(σ11,t, ....., σkk,t) (3.9)

where Ht is the conditional covariance matrix and Rt is the correlation matrix. Dt is a
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3 Stochastic correlation in risk analytics: a financial perspective

diagonal matrix with σ11,t,. . . , σkk,t on main diagonal, which can be estimated form the

univariate GARCH models.

As noted by (Engle, 2002), Rt is also the conditional covariance matrix of the standardized

returns. The standardized residuals zt is defined as

zt = D−1
t εt (3.10)

and

E(ztz
′
t|Ωt−1) = Rt (3.11)

In this chapter, we consider DCC GARCH (1,1) models by (Engle, 2002). That is, the

dynamics for the conditional correlations and the conditional variances follow GARCH-type

model. The DCC model can be estimated in two steps.

The first step is to estimate the conditional volatility, σkk,t by using GARCH (1,1) model

σ2
kk,t = ωk + αkε

2
k,t−1 + βkσ

2
kk,t−1 (3.12)

The second step is to estimate the time varying stochastic correlation Rt.

Qt = (1− α0 − β0)Q̄+ α0zt−1z
′
t−1 + β0Qt−1 (3.13)

Rt = diag(Qt)
−1Qtdiag(Qt)

−1 (3.14)

where Qt is a positive definite matrix defining the structure of the dynamics. Q̄ is the

unconditional covariance matrix of zt and it can be estimated by

Q̄ =
1

T

T∑
t=1

ztz
′
t (3.15)

The advantage of DCC model is that it separates the estimation of the volatility for each

time series by using single univariate models and the correlation part byimposing the

same dynamics to all the correlations. The problem is that α0 and β0 in DCC are scalars,

so all the conditional correlations follow the same dynamics, which is not flexible.

3.2.3 Orthogonal GARCH Model

In addition to the DCC model, the orthogonal GARCH (OGARCH) model is introduced

by (Alexander and Chibumba, 1997) and (Alexander, 2000) based on univariate GARCH

model and principal component analysis (PCA). The OGARCH model is computationally
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3 Stochastic correlation in risk analytics: a financial perspective

simpler than the other multivariate GARCH models for a large dimensional covariance

matrix because the large number of parameters is reduced by PCA. OGARCH model has

achieved outstanding accuracy in correlation forecasting.

In the orthogonal GARCH model, the observed time series are transformed to uncorrelated

time series by using PCA. Let Y be a multivariate time series of daily returns on k assets

with mean zero and length T and yi is the ith row of Y. Then the T ×k matrix Y can be

approximated by

Y = PW ′ (3.16)

Where the T ×k matrix P is the first n principal components of the covariance matrix

of Y for n ≤ k. W is a k ×k orthogonal matrix of the eigenvectors that are arranged in

descending order of the corresponding eigenvalues, so W = W−1.

Then we can obtain

Ht = WΣtW
′ (3.17)

Where Σt = diag(σ2
1,1,t, . . . , σ

2
n,n,t).

The conditional variance of the ith principal component pi, i = 1,. . . , N, is modeled by

GARCH (1,1) model as

pi,t = µi,t + εi,t (3.18)

σ2
i,i,t = ωi + αiεi,t−1

2 + βiσ
2
i,i,t−1 (3.19)

The OGARCH model reduces unknown parameters significantly and is widely used, but

it does not work well when the correlation of time series is very small.

3.2.4 Generalized Orthogonal GARCH Model

The GOGARCH model was first proposed by (Van der Weide, 2002) as a natural gen-

eralization of the orthogonal GARCH (OGARCH ). In OGARCH model, the matrix is

assumed to be orthogonal which only contains a very small subset of all possible invertible

matrices, while the orthogonal requirement is relaxed in GOGARCH model. (Van der

Weide, 2002) argues that OGARCH often underestimate the correlations because of the

orthogonal restriction.
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Let yt be the same time series as defined in OGARCH model and yt is transformed to a

linear combination of n uncorrelated factors εt as:

yt = Aεt (3.20)

Where A is k × k non-singular matrix. εt have unconditional unit variance Σ and

Σ = V ar(εt) = In.

Here we assume that each unobserved factor εt follows GARCH (1,1) model:

σ2
i,i,t = (1− αi − βi) + αiεi,t−1

2 + βiσ
2
i,i,t−1 (3.21)

Σt = diag(σ2
1,1,t, . . . , σ

2
n,n,t) (3.22)

Then the conditional covariance matrix of yt is given by

Ht = AΣtA
′ (3.23)

And the unconditional covariance matrix H of yt is defined as H = AΣA = AA′. Let P

and Λ be orthonormal eigenvectors of H and a diagonal matrix with the corresponding

eigenvalues respectively. Then A is decomposed by

Z = PΛ1/2L′ (3.24)

The parameters can be estimated by two-step approach proposed by (Van der Weide,

2002). First, H is estimated H by sample variance of yt and Λ can be estimated after

the estimation of H. Then L, α and β can be estimated by maximizing a multivariate

likelihood function.

3.3 Model Evaluation Measures

It is very difficult to evaluate the performances of different models because different in-

vestors have different concerns. Risk management managers care more about the extreme

returns and volatility while portfolio managers may pay more attention to the influence

of the correlations on these returns.
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Suppose the return of a portfolio return yp,t at time t is given by

yp,t = µp,t + εp,t (3.25)

µp,t =
n∑
i=1

ωi,tµi,t (3.26)

σ2
p,t = ωHtω

′ (3.27)

Where µp,t and σ
2
p,t are conditional mean and variance of the portfolio at time t respectively.

εp,t is Gaussian white noise. Ht is conditional covariance matrix defined in section 2. ωi,t

is the portfolio weight of asset i at time t and
∑n

i=1 ωi,t = 1.

The conditional distribution of return for each asset is Gaussian as defined in Section 2

(Engle, 2002), then the portfolio return is also normally distributed because the multivariate

normal distribution are closed under linear transformations; see (Pesaran and Zaffaroni,

2005), (Christoffersen, 2009). The portfolio Value-at-Risk (VaR) for 1 day horizon at α

confidence level is

V aRt+1 = µp,t + zασp,t (3.28)

Where zα is the critical value of the corresponding quantile α. Here we compute a 95%

VaR using zα = −1.65 under normal distribution and we assume µp,t is constant and

estimated by the sample mean of the portfolio return (Santos and Moura, 2012).

A number of papers (Plyakha et al., 2012) suggest that equally weighted portfolio strategy

(called ”1/N”) consistently outperforms almost other optimization strategies. Therefore,

we use an equally weighted portfolio in our analysis.

3.3.1 Mean Absolute Error

We first calculate some popular statistical loss functions in order to evaluate the out of

sample forecasting ability of different multivariate models. The loss functions we choose

to assess the performance of competing models in volatilities forecasting is mean absolute

error (MAE) which is given as follows:

MAE =
1

T

T∑
t=1

∣∣∣σ̂2
t − ht

∣∣∣ (3.29)
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Where ht and σ̂t are predicted variance and actual volatility at time t respectively. Since

the actual volatility σ is unobservable, we substitute of squared return y2t to the actual

conditional variance; see Sadorsky (2006) and Wei et al. (2010).

3.3.2 Model Confidence Set Approach

In order to select an optimal model with superior predictive ability in out-of-sample

forecasting among these different multivariate models, we consider model confidence set

(MCS) approach, the test introduced by Barndorff-Nielsen et al. (2009). The advantage of

the MCS is that it performs a joint comparison across a full set of candidate models and

does not specify a benchmark model.

Let us denote by di,j,t the loss deferential between models i and j at time t. Li,t is a loss

function for model i at time t, then the null hypothesis is given by

H0 : E[di,j,t] = E[Li,t − Lj,t] = 0,∀j, i ∈M (3.30)

Where M ⊂M0 and the starting set M0 contain all the models.

The initial step sets M =M0. MCS performs an iterative selection procedure. If the null

is rejected at a given confidence level α, the model with the worst performance is removed

from the set at step k. Repeat this procedure until the null hypothesis cannot be rejected.

In order to test H0, we use the following t-statistic ti,j:

ti,j =
d̄i,j√
ˆV ar( ¯ )di,j

(3.31)

d̄i,j =
1

T

T∑
t=1

¯di,j,t (3.32)

where ˆV ar( ¯ )di,j is an estimate of the variance of average loss differential. p value of the

test statistics and V ar(d̄i,j) are determined by using a bootstrap approach.

The range test statistics tR = maxi,j∈M |ti,j| introduced by (Barndorff-Nielsen et al., 2009)

have been used here, because it involves the fewest pairwise comparisons. The elimination

rule for the range statistics is eM = argmaxj∈Msupi∈M ti,j . The entire procedure continues

to repeat on the smaller set of models until the null hypothesis is not rejected.
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In our analysis, the following MAE based loss functions (Patton, 2011) is used:

Lmae =
∣∣∣σ̂2
t − ht

∣∣∣ (3.33)

Where the squared return is considered an unbiased proxy of the actual conditional

variance.

3.3.3 Backtesing

Value at Risk (VaR) is widely used as a measure of risk in portfolio risk management.

When we consider conditional stochastic correlations, testing the conditional accuracy of

the performance in forecasting becomes important. In order to analyze our results implied

by different time-varying volatility models, we compute one-day ahead out-of-sample VaR

and perform a backtesting analysis.

The conditional coverage test proposed by (Christoffersen, 1998) is a method to test if the

VaR violations are independent and the average number of violations is correct conditional

coverage. It is a combination of unconditional test and independence of the violations

test.

The sequence of V aRt,m violations for model m are defined by an indicator function:

It,m =

1 if yt < −V aRt,m,

0 if else.

We start by introducing a simple unconditional test for the average probability of a VaR

violation. The null hypothesis of correct unconditional coverage test is that π = α, where

π is coverage rate in a particular model.

Suppose there are T1 days in total with It,m = 1 in a sample period of T, then we get the

likelihood function

L(π) = πT1(1− π)T−T1 (3.34)

L(α) = αT11− αT−T1 (3.35)

By the likelihood ratio test we get

LRuc = −2log(L(α)/L(π)) ∼ χ2
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Under the independence hypothesis, it is assumed that the violation sequence is described

as a first order Markov sequence with transition probability matrix

π =

[
π00 π01

π10 π11

]

where πij = P (It+1 = j|It = i) for i, j = 0, 1. Note that 1− π00 = π01 and 1− π10 = π11.

The null hypothesis independence test is assumed that π01 = π11 = π. The likelihood

function for a sample of T observations is

L(π1) = π01
T01(1− π01)

T00π11
T11(1− π11)

T10 (3.36)

where Tij, i, j = 0, 1 is the number of observations with a j following an i.

Then the independence hypothesis is tested by using a likelihood ratio test

LRind = −2log(L(π)/L(π1)) ∼ χ2

Finally, the likelihood ratio of conditional coverage test is Lcc = LRuc + LRind

3.4 Empirical Results

The data used in this chapter is the daily close prices of S&P 500 index and US Generic

Government 10 Year Yield bond index. The sample period used here is Sep 9, 2002

through Sep 9, 2013, for a total of 2549 daily observations. We remove common holidays

and weekends across these time series to minimize the possibility of inducing spurious

correlation. In order to test the robust of the results, the models are applied to two

subsample periods. The first period is financial crisis period (2008.4-2009.4) and the

second is normal period (2012.10-2013.10). The historical daily returns of S&P 500 and

bond index are shown in Figure 3.1 .

First we estimate the dynamic of the conditional correlation for the full sample by using

Riskmetircs EWMA, OGARCH, GOGARCH and DCC Garch models. We compare the

implied conditional correlations in Figure 3.2 . It shows that the estimated correlation of

GOGARCH is quite stable which is around 0.5. However, the correlations estimated by the

others are very volatile and EWMA model gives the most volatile correlation curve. The

correlations under GOGARCH model have never dropped to 0.4 based on our calculation,

even when the colorations estimated by the other model are negative. Furthermore, the
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01/2005 07/2007 01/2010 07/2012

−0.05
0.00
0.05
0.10 S&P 500

01/2005 07/2007 01/2010 07/2012

−0.1

0
10-yr bond yield

Figure 3.1: Daily return of S&P 500 and 10-yr Bond Index in 2002-2012

correlation estimated by EWMA, OGARCH and DCC Garch models all increase signifi-

cantly around 2008 except GOGARCH. In Figure 3.2, a very sparse observation appears

at the end of 2005 with mainly negative correlations in 2004-2006. A peak also appears in

the conditional correlation estimated in 2008. The reason for the large positive correla-

tions is an increase in uncertainty about the economic outlook in 2008 global financial crisis.

01/200401/200601/200801/201001/2012
−0.5

0

0.5

EWMA

GO-GARCH(1,1)

O-GARCH(1,1)

DCC-GARCH(1,1)

Figure 3.2: In sample estimation of stochastic correlation between S&P 500 and 10-yr
Bond Index, 2002-2013

Now let us compare these models by investigating the forecasting performance of the

95% VaR for an equally weighted portfolio by using MAE, MCS and conditional coverage

test. We also set the number of bootstrap samples up to 10,000 in order to obtain the

distribution under the null. The critical value of LRcc statistic with two degrees of freedom

used throughout the backtesting process is 5.99 at 95% confidence level. Jorion (2001)

suggests that 95% confidence level fits well for backtesting purposes. We construct MCS

test at 10% confidence level using range statistics.

Table 3.1 illustrates some test statistics of conditional covariance estimated by EWMA,

DCC GARCH (1,1), OGARCH (1,1) and GOGRACH (1,1) for the whole period. The

36



3 Stochastic correlation in risk analytics: a financial perspective

best performance in forecasting under the in-sample analysis is OGARCH with the least

MAE. GOGARCH has largest MAE because of the flat curve in Figure 3.2. The 10%

MCS consist solely of OGARCH model and all these models except that EWMA fails

the conditional coverage test for 95% VaR. OGARCH(1,1) outperforms the other models

according to all evaluation criteria by in sample analysis.

MAE MCS LRcc(0.95)
EWMA 4.13E-05 0.0096 0.945
DCC 4.10E-05 0.0834 5.805

OGARCH 3.62E-05 1 Inf
GOGARCH 4.22E-05 0.0834 10.6589

Table 3.1: Test statistics for in sample estimation for the whole period

3.4.1 First Subsample Period

In order to examine the time-varying nature of the conditional correlations, as well as to

investigate the forecasting performance of these models in a turbulent period, we split the

data sample into 2 subsamples. In the first subsample, we only consider the first 1777

observations in order to examine the performance of the models during 2008 financial crisis

period. We split the subsample into two parts, 5.5-year estimation period which is used

for in sample estimation and the subsequent 1.5-year out of sample forecast periods. We

use a rolling window size of 1413 days to forecast the conditional covariance in financial

crisis.

Figure 3.3 presents the forecasting performance of the four models mentioned above

during 2008 financial crisis. Compared with Figure 3.2 , the estimated correlation by

GOGARCH is more volatile and the correlation reaches a peak in September and October

2008 when the subprime mortgage crisis hit its peak. Lehman Brothers filed the largest

bankruptcy in U.S. history in Sep. 2008. The correlation curves are very close to each

other always positive between April 2008 and April 2009.

Table 3.2 reports some test statistics of out of sample prediction performance of the 95%

VaR for an equally weighted portfolio by using MAE, MCS and conditional coverage test.

All these four models pass the conditional coverage test for 95% VaR during the financial

crisis period and all these models are included in MSC except EWMA. That means, all

these models perform well during the crisis period. We conclude OGARCH has the best

performance based on all the test statistics in this period.
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Figure 3.3: 1-day ahead out-of-sample conditional correlation forecast between S&P 500
and 10-yr Bond Index in 2008-2009

MAE MCS LRcc(0.95)
EWMA 1.04E-04 0.0066 0.016
DCC 9.80E-05 0.0139 1.444

OGARCH 9.61E-05 1 1.119
GOGARCH 9.71E-05 0.0165 1.119

Table 3.2: Test statistics for out-of -sample forecast in 2008-2009

3.4.2 Second Subsample Period

In the second subsample, we estimate the parameters by using the 1777 observations in

first 7 years and do one step ahead forecasts for the last 3 years with rolling window

of 1777 days. We apply the proposed models to obtain out-of-sample one-step-ahead

forecasts of the conditional covariance matrix of all assets.

From Figure 3.4 we can see the curves are overlapping and very close to each other. All

the models pass conditional coverage test based on table 3.3. EWMA and DCC both have

very volatile correlations. The 10% MCS consists OGARCH and GOGARCH. All the

test statistics shown in Table 3.3 suggest that OGARCH and GOGARCH models both

perform well and OGARCH achieves the best performance.

3.5 Conclusion

In this chapter, we investigate the forecasting ability in different market conditions of four

multivariate stochastic correlation models: EWMA, DCC, OGARCH and GOGARCH.
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Figure 3.4: 1-day ahead out-of-sample conditional correlation forecast between S&P 500
and 10-yr Bond Index in 2013

MAE MCS LRcc(0.95)
EWMA 5.11E-05 0 0.0734
DCC 5.09E-05 0.001 1.0371

OGARCH 4.90E-05 1 0.0135
GOGARCH 4.92E-05 0.161 0.2164

Table 3.3: Test statistics for out-of -sample forecast in 2013

All these models have quite good forecasting performances during 2008 financial crisis

and after 2008 crisis periods. GOGARCH and OGARCH models outperform the others.

OGARCH achieves the best performance during these two sub-periods. During the stable

market conditions, the out of sample conditional correlations are very different among

these models. OGARCH model outperforms all the other three models under stable market

conditions. We conclude that the out-of-sample forecast results show that OGARCH

model has the best performance. The overall performance of multivariate GARCH models

is better than EWMA.

Our empirical findings provide a better understanding of the dynamics in the correlations

between stock index and bond yield, which can be applied by portfolio managers, risk

management managers, policy makers and researchers. The use of OGARCH model in

estimating time-varying correlations may reduce market risk and improve the performance

of the portfolios.
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Chapter 4

Portfolio Optimization in Hedge

Funds by OGARCH and Markov

Switching Model

4.1 Introduction

The hedge fund industry has grown rapidly in recent years and has become more and

more important in alternative investment. According to the twelfth annual Alternative

Investment Survey in 2014 by Deutsche Bank, hedge funds are estimated to manage

assets of more than 3 trillion dollars by the end of 2014. The diversification benefits of

hedge funds which allow investors to hold portfolios of other investment funds rather than

investing directly in stocks, bonds and other securities are the main factor driving its

success (Martellini et al., 2007). However, the 2008 financial crisis caused assets under

management to fall sharply because of trading losses and the withdrawal of assets from

funds by investors, resulting in a decline of assets by nearly 30% in 2008 (Maslakovic, 2009).

The recent financial turbulence exposed and raised serious concerns about the optimal port-

folio selection problem in hedge funds. Many papers have examined portfolio optimization

in a hedge fund context. The structures of hedge fund return and covariance are crucial

in portfolio optimization. The non-normal characteristics of hedge fund returns have

been widely described in the literature. Kat and Brooks (2001) find that the hedge fund

returns exhibit significant degrees of negative skewness and excess kurtosis. According to

Getmansky et al. (2004) and Agarwal and Naik (2004) the returns of hedge fund return

are not normal and serially correlated.

Meanwhile, a number of empirical studies show that the correlations of hedge fund return
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time series are time-varying. Billio et al. (2012) and Blazsek and Downarowicz (2008)

have proposed more Regime-switching models to measure dynamic risk exposures of hedge

funds. A non-linear Markov switching GARCH (MS-GARCH) model is proposed by

Blazsek and Downarowicz (2013) to forecast idiosyncratic hedge fund return volatility. In

the other direction, multivariate Garch models are employed to estimate the time-varying

covariances/correlations of hedge fund returns. Giamouridis and Vrontos (2007) show that

the optimal hedge fund portfolio constructed by dynamic covariance models has lower

risk and higher out-of-sample risk-adjusted realized return. Harris and Mazibas (2010)

provide further evidence that the use of multivariate GARCH models optimal portfolios

selected by using multivariate GARCH models performance better than static models

and also show that exponentially weighted moving average (EWMA) model improves the

portfolio performance. Saunders et al. (2013) apply Markov-switching model in hedge fund

portfolio optimization and show that Markov-switching model outperforms Black-Scholes

Model and Gaussian Mixture Model.

In this chapter, we extend the results of Saunders et al. (2013) to compare the optimal

portfolio performances selected by the OGARCH model, the two-state Regime-Switching

models and the EWMA Model, using daily observations of HFRX indices for the period

2003-2014. We first detect the exact 2008 financial crisis period by using the Regime-

Switching model. Then the out-of-sample portfolio performance in the 2007-2009 financial

crisis period and the whole sample period are analyzed based on the Sharpe ratio and the

mean realized return. Another contribution of the chapter is that we calculate the asset

weight sensitivities in optimal Mean-Variance portfolio to the estimated parameters in

OGARCH model.

The rest of this chapter is organized as follows. Section 2 introduces the OGARCH model,

the Regime-Switching models and the EWMA model. The data set is described and

the out-of-sample performance of optimal portfolios is analyzed in Section 3. Section 4

discusses the asset-weight sensitivities with respect to the parameters in the OGARCH

Model. Section 5 concludes the chapter.

4.2 Methodology

In this section, we first introduce the different models that can be used to estimate the

mean and variance of hedge fund index returns. Then we describe the Mean-Variance

portfolio optimization model used for optimal portfolio selection.
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4.2.1 OGARCH Model

GARCH models have been applied to model volatility with a good success to capture

some stylized facts of financial time series, such as fat tails and volatility clustering. One

good extension from a univariate GARCH model to a multivariate case is the orthogonal

GARCH (OGARCH) model introduced by Ding (1994), Alexander and Chibumba (1997)

and Alexander (2000) which is based on univariate GARCH model and principal compo-

nent analysis. Thereafter, OGARCH has become very popular to model the conditional

covariance of financial time series.The OGARCH model is computationally simpler than

the multivariate GARCH models for a large dimensional covariance matrix and has

achieved outstanding accuracy in forecasting correlation.

In the OGARCH model, the observed time series are linearly transformed to a set of

independent uncorrelated time series by using principal component analysis. The principal

component approach is first used in a GARCH type context by Ding (1994). The OGARCH

model by Alexander (2000) is described as follows.

Let Yt be a multivariate time series of daily returns with mean zero on k assets with

length T with columns y1, . . . , yk . Then the T ×K matrix Xt whose columns x1, · · · , xk
are given by the equation

xt =
yt√
vi

where V = diag(v1, . . . , vm) with vi being the sample variance of the ith column of Yt.

Let L denote the matrix of eigenvectors of the population correlation of xt and by

lm = (l1,m, . . . , lk,m) its mth column. lm is the k ×1 eigenvector corresponding to the

eigenvalue λm. The column labelling of L has been chosen so that λ1 > λ2 > · · · > λk.

Let D be the diagonal matrix of eigenvalues. The mth principal component of the system

is defined by

pm = x1l1,m + x2l2,m + · · ·+ xklk,m

If each vector of principal components pm is placed as the columns of a T × k matrix P ,

then,

P = XL

The principal component columns in modeled by GARCH(1,1)

pt|Ψt−1 ∼ N(0,Σt)

pi,t = εi,t

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1
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where Σt is a diagonal matrix of the conditional variances of the principal components

P.Ψt−1 contains all the information available up to time t-1. The Conditional Covariance

Matrix of Xn is Dt = LΣtL
T
n and the conditional covariance matrix of Y is given by

Ht =
√
V Dt

√
V

The estimation procedure in detail is illustrated in the following section.

Model Estimation in OGARCH

Let Y be a T ×k matrix of daily returns on k assets for T days. We obtain the daily

returns from the daily closing prices by taking the natural log of the quotient of consecutive

observations; in other words

yi = log
Pi+1

Pi

where Pi is the daily closing price at time i.

Step 1: We standardize the data into a T ×k matrix X with the estimated variance and

mean for each yi and find the correlation matrix XX ′.

Step 2: Then principal components analysis is performed on XX t to get the eigenvectors

and the eigenvalues. We denote the matrix of eigenvectors by L and its mth column by

lm = (l1,m, · · · , lk,m), the k ×1 eigenvector corresponding to eigenvalue λm. The column

labeling has been chosen so that λ1 > λ2 > · · · > λk.

Step 3: We decide how many principal components we should use. If first n principal

components is chosen, the mth principal component of the system is

pm = x1l1,m + x2l2,m + · · ·+ xnln,m

where xi is the ith column of Xn, the T×n matrix extracted from X. Then the principal

components matrix P is given by a T×n matrix and we have P = XnWn.

Step 4: The conditional variance of the ith principal component pi, i = 1,,N, is estimated

by GARCH(1,1):

pi,t = εi,t

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1

Σt = diag(σ2
1,t, ..., σ

2
n,t)
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Step 5: The Conditional Covariance Matrix of Xn is Dt = WnΣtW
t
n and the conditional

covrariance matrix of Y is given by

Ht =
√
V Dt

√
V

where Wn = Lndiag(
√
λ1, . . . ,

√
λn).

The accuracy of the conditional covariance matrix Vt of the original returns, is determined

by how many components n are selected to represent the system.

4.2.2 Markov Switching Model

Regime switching models have become very popular in financial modeling since the seminal

contribution of Hamilton (1989). Hamilton first proposed the Markov switching model

(MSM) to model the real GNP in the US. Since then, these models have been widely used

to model and forecast business cycles, foreign exchange rates and the volatility of financial

time series.

Suppose the return of I hedge fund indices i ∈ {1, . . . I}) and one global stock index i = 0

follow a discrete-time Markov switching process. There exists an unobservable process

{St}Tt=1 with state space {0, 1}. Each index has a drift and volatility parameter. The

log-returns of each index are given by Ri
t = µiSt

+ σiSt
εit where (ε

0
t , . . . , ε

I
t ) is a multivariate

normal with zero mean, unit standard deviation and correlation matrix CSt . Then the

state process S is modelled as a time-homogeneous Markov chain with transition matrix

M =

(
p 1− p

1− q q

)

where p = P(St = 1|St−1 = 0) and q = P(St = 0|St−1 = 1) with initial distribution of

S as (r, 1 − r) with r = P(S1 = 0). The parameters in MSM is denoted by the vector:

θMSM = (p, q, µ0, µ1,Σ0,Σ1, r),for any p, q ∈ [0, 1], µ0, µ1 ∈ RI+1, Σ0,Σ1 ∈ R(I+1)×(I+1), r

∈ [0, 1].

The Gaussian mixture model (GMM) is considered as a special case of the Markov-switching

model where state process St is an iid. random sequence. In this case, the transition

probabilities are given by p = P(St) = 1−r and q = P(St = 0) = r with p+q = 1.Therefore,

the state process S is reduced from a Markov chain to a Bernoulli process. The transition
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matrix becomes

M =

(
p 1− p

p 1− p

)

The log-returns of each time series are iid. Gaussian mixture random vectors have

two components with component weights (p, 1 − p). The parameters are denoted by

θGMM = (p, µ0, µ1,Σ0,Σ1). For the interested reader, the model estimation procedure is

described as follows.

Model Estimation in Regime Switching

The state process S indicates whether the market is in a normal or distressed regime

and it is not directly observable based on market data. Therefore it must be estimated

indirectly using market observables as proxies to make inferences regarding its history

and parameters.

We focus on the returns of the hedge fund indices, in particular, a major stock index as

the crisis indicator to identify distressed market regimes. We use MSCI World Index as

the crisis indicator rather than the indices of various hedge funds for two reasons. First,

the MSCI World Index is the best representative of the market as a whole. The second

reason is that the high frequent data of MSCI World Index is available for longer peri-

ods and more reliable than hedge fund data. The estimator obtained by the following steps:

Step 1: Estimate the model parameters for the asset’s log-returns for i = 0 and the

parameters for the state process S when only historical data of the global stock index are

considered. Then compute the most likely sequence of states.

Step 2: After the market is separated into two regimes by step 1, the mean and variance

θMSM , θGMM can be calculated. We follow the estimation procedure described in Saunders

et al. (2013). The RHmm Package (Taramasco et al., 2013) and Matlab code by Perlin

(2010) are used to finish the calculation.

4.2.3 EWMA Model

The exponentially weighted moving average (EWMA) models are very popular among

market practitioners. The EWMA model assigns the highest weight to the latest observa-

tions and the least to the oldest observations in the volatility estimate.
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The variance Σt in mutivariate EWMA model is defined as

Σt = (1− λ)Σt−1 + λy′t−1yt−1

For each individual element, it is given by

σ2
i , j, t = (1− λ)σi,t−1σj,t−1 + λyi,t−1yj,t−1

where λ is the decay factor which determines the importance of historical observations

used for estimating the covariance matrix. The value of the decay factor depends on the

sample size and varies by asset class. J.P. Morgan(1996) suggests that a decay factor of

0.94 is used for the daily data set.

Given the decay factor and initial value Σ̂0, it is very easy to forecast the conditional

covariance matrix. Σ̂0 is usually the full sample covariance matrix, which is defined as

Σ̂0 =
1

T − 1

T∑
t=1

(yt − ȳ)′(yt − ȳ)

The EWMA model is very easy to implement for a larger number of assets since the

conditional covariance is always semi-definite. The forecast of the conditional covariance

is also straightforward. The downside of this model is a lack of firm statistical basis and

also the need to estimate the decay factor.

4.2.4 Portfolio Optimization Model

The optimal portfolio is selected by the mean variance model(MV) introduced by Markowitz

(1952). Suppose that the portfolio consists of k assets with the return ri,t for asset i at

time t and Rt = (r1,t, r2,t, ..., rk,t) . Let wi,t be the weight of the portfolio invested in

asset i at time t and wt ∈ <n is the vector weight of the portfolio at time t. Given a

risk aversion coefficient λ , the optimal portfolio weight wt is selected by minimizing the

following utility function at the beginning of time t by:

minimize{λwTt V art−1(Rt)wt − wTt Et−1(Rn,t)} (4.1)

subject to

wTt 1 = 1 (4.2)
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where V art−1(Rt) is the conditional covariance of the asset returns at t, Et−1(Rn,t)is

the conditional expected returns at t. In the following example, the same risk aversion

coefficient λ = 11.39 is used.

4.3 Empirical Results

This section presents the results of the performance of the optimal portfolios selected by

using OGARCH, MSM, GMM and EWMA models in an out-of-sample period. The weight

sensitivities with respect to the parameters in the OGARCH model are also analyzed.

The daily observations of HFRX indices for the period from April 1, 2003 to May 12 2014

and MSCI World index from January 1, 1982 to May 12, 2014 are used to estimate the

models and test the out-of-sample performance. The MSCI World Index time series is

used to identify crisis period in MSM and GMM models. Four HFRX indices are used

to construct the optimal portfolio: Equity Market Neutral (EMN), Equity Hedge (EH),

Macro (M) and Merger Arbitrage (MA). These fund indices are the same as the paper

(Saunders et al., 2013) for details).

First we use the daily returns of MSCI World Index over 30 year period(Jan.1, 1982 to

May 12, 2014) to identify the crisis. The period (32-90) is identified as the financial crisis

period (7/17/2007 to 11/2/2009) by using Viterbi path.

The parameters are estimated based on the data available in-sample-period (4/1/2003 to

4/7/2006) and the first optimal portfolio is selected on April 8, 2006. The portfolio is

rebalanced every two weeks after the first investment period based on the information

available up to the investment date. The realized portfolio returns based on the different

models in this out-of-sample period are reported in Figure 4.1. As shown in Figure 4.1 ,

the portfolio returns are very volatile during the financial crisis period and the portfolio

returns selected by OGARCH is less volatile than the others.

In Figures 4.2, 4.3,4.4 and 4.5, we illustrate the optimal weight allocations among EMN,

EH, M and MA during the out-of-sample period based on OGARCH, EWMA, MSM and

GMM. As shown in Figures 4.2 and 4.5, MSM and GMM investors put largest weights

in EMN and EH during financial crisis period. More wealth is ivested in EH by MSM

and GMM before 2008. Figure 4.4 shows that EWMA investor mainly invest in MA over

the entire out-of-sample period. The average weight allocated in MA by EWMA investor

during the financial crisis is more than 67%, while GMM investor puts almost 50% of the

wealth in EMN (see Table 4.1). Since MA fund index has the best performance during
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Figure 4.1: 10-day realized returns of the optimal portfolio selected by different models.
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Figure 4.2: MSM: optimal Portfolio Allocation. Each position along the vertical axis
represents the weight percentage of each asset in optimal portfolio.

financial crisis period, so OGARH and EWMA has better cumulative returns during this

period. After financial crisis, all the investors except GMM allocate more wealth on EH.

After 2011, EWMA investor invests all the wealth in MA.
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Figure 4.3: OGARCH: optimal weight of each asset allocated in Portfolio Allocation.

Table 4.1 presents descriptive statistics for each optimal portfolio returns selected by using

EWMA, GMM, MSM and OGARCH for the period April 2006 to May 2014. For 10-day
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Figure 4.4: EWMA: optimal weight of each asset allocated in Portfolio Allocation.
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Figure 4.5: GMM: optimal weight of each asset allocated in Portfolio Allocation.

EH(%) EMN (%) M(%) MA(%) Cum Return(%)
Average return -23.69 - 10.59 -3.95 8.93

OGARCH- average weight 18.10 2.56 29.94 49.40 5.51
EWMA- average weight 7.47 11.97 13.00 67.57 3.58
GMM- average weight 22.46 49.61 8.66 19.27 -5.17
MSM- average weight 0.63 53.59 0.43 45.34 -2.21

Table 4.1: Optimal portfolio allocation for financial crises periods 32-90. The second row
gives the average 10-day returns of each fund index.

returns of each portfolio, mean, standard deviation, 5% quantile, minimum and Sharpe

ratio are reported. As can be seen from Table 4.1, OGARCH has the lowest risk because

the standard deviation in the 5% quantile and worst case return are the smallest. EWMA

and OGARCH models outperform from regime switching models across all the measures.

Based on the Sharpe ratio, the optimal portfolio selected by OGARCH model has the

highest risk-adjusted return. Tables 4.3 and 4.4 also show that the optimal portfolio

selected by OGARCH model has the best performance during both the financial crisis

period and normal period.
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EWMA GMM MSM OGARCH
Mean(%) 0.12 -0.01 0.03 0.13

St. Dev (%) 0.77 1.07 1.03 0.61
5% Quantile -1.02 -2.31 -2.04 -0.88
Min (%) -3.60 -4.23 -4.00 -3.38

Sharpe Ratio (%) 0.159 -0.010 0.032 0.217

Table 4.2: Statistics of realized portfolio returns for the out-of-sample period. Average
10-day portfolio return(Mean), standard deviation(St. Dev), worst-case return(Min) are
in percentages.

EWMA GMM MSM OGARCH
Mean (%) 0.06 -0.27 -0.15 0.09
St. Dev (%) 1.16 1.34 1.33 0.79
5% Quantile -2.91 -3.46 -3.33 -1.42

Worst Case(%) -3.60 -4.23 -4.00 -3.38
Sharpe Ratio (%) 0.052 -0.203 -0.113 0.118

Table 4.3: Statistics of realized portfolio returns for crisis periods(32-90). Average 10-day
portfolio return(Mean), standard deviation(St. Dev), 5% quantile, worst-case return(Min)
and Sharpe ratio are in percentages.

EWMA GMM MSM OGARCH
Mean (%) 0.10 0.03 0.06 0.10
St. Dev (%) 0.36 0.48 0.51 0.35
5% Quantile -0.42 -0.71 -0.64 -0.42
Min (%) -0.96 -2.27 -2.42 -0.92

Sharpe Ratio (%) 0.271 0.068 0.118 0.273

Table 4.4: Statistics of realized portfolio returns for normal periods(145-204). Average
10-day portfolio return(Mean), standard deviation (St. Dev), 5% quantile, worst-case
return(Min) and Sharpe ratio are in percentages.

4.4 Asset Weight Sensitivities

It is worth investigating the weight sensitivities of the optimal portfolio with respect to

the parameters in OGARCH. Chopra and Ziemba (1993) show that even small changes to

the estimated expected returns or variance can produce vastly different optimal portfolios

selected by Mean-variance model. The sensitivities analysis can help to understand

the relationship between the input estimates and output optimal portfolio. The weight

sensitivities measure the weight change of each asset in the optimal portfolio to the change

of the parameters in the OGARCH model. Risk managers would want to use sensitivity

analysis to adjust the optimal portfolio weights to keep the portfolio optimized. Another

application is that it could be used to evaluate the impact that each individual or group

of assets has on the portfolio variance. This would help risk managers find the major
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sources of risk and allow them to evaluate the estimation errors.

The asset weight sensitivities can be inferred and approximated using finite differences.

For example, we try to calculate the value of the weight sensitivities of α = [α1, α2, α3, α4].

First we find the estimated parameters for α = [α1, α2, α3, α4] and get the optimal weights

of each assets w(α). Then we take the 4 = 0.01α and find the new weight w(α +4)

when α increases by 1%. The weight sensitivities with respect to α can be approximated

by w(α+4)−w(α)
4 , where w is the optimal weight. The results by using both methods are

the same as shown in Table 5.5 and 4.6.

4.4.1 Explicit Calculation

Alternatively, the value of sensitivities can be calculated directly by differentiating the

optimal conditions. We assume that the portfolio is optimized based on the Mean-Variance

model by Markowitz(1952) and short selling is allowed. If we want to know the rate of

change in the weights with respect to the estimated parameters, then we need to calculate

the sensitivities. To simply the notation, let

Ct = V art−1(Rt) = V ar[Rt|Ψt−1] = Ht

µn = Et−1(Rn,t) = E[Rt|Ψt−1] = W (µ1, ..., µk)
T

Let θi = (µi, γi, αi, βi), then the partial derivative of the variance for each asset i is

∂σ2
i,t

∂θi
=


∂σ2

i,t

∂µi
∂σ2

i,t

∂γi
∂σ2

i,t

∂αi
∂σ2

i,t

∂βi

 =


−2αiεi,t−1

1

ε2i,t−1

σ2
i,t−1

+ β
∂σ2

i,t−1

∂θi

∂µi,t
∂θi

=


1

0

0

0


Given the Lagrange multiplier ρ, the optimal condition by solving the Lagrangian for the

constraint in Markowitz’s models given by

2λCtwt − µn + ρ1 = 0 (4.3)

wT1 = 1 (4.4)
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Because the Lagrange multiplier and the optimal weight both depend on the parameter θ,

we differentiate equations above

2λC 5θ w + 2λ
∂C

∂θ
w − ∂µn

∂θ
+
∂ρ

∂θ
1 = 0 (4.5)

1T 5θ w = 0 (4.6)

We take the parameters µ1, γ1, α1 and β1for example and the derivatives of the other

parameters can be solved in the same way. Given that there are four assets in this portfolio,

we let µt = (µ1, µ2, µ3, µ4) and Σt = diag(σ2
1,t, ..., σ

2
4,t)

∂µn
∂µ1

= W
∂µt
∂µ1

= W


1

0

0

0


∂µn
∂γ1

=
∂µn
∂α1

=
∂µn
∂β1

= 0

∂Ct
∂µ1

= W



−2α1ε1,t−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ β
∂Ct−1

∂µ1

W T

∂Ct
∂γ1

= W



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ β
∂Ct−1

∂µ1

W T

∂Ct
∂α1

= W



ε21,t−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ β
∂Ct−1

∂µ1

W T

∂Ct
∂β1

= W



σ2
1,t−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+ β
∂Ct−1

∂µ1

W T
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In order to compare the sensitivities in normal and crisis periods, we consider both Period

60(normal) and 180(crisis) respectively.

The values of weight sensitivities are given in Table 4.5 in financial crisis period (period

60). The asset weight is very sensitive to the changes of the estimated parameters β, γ

and α. The different sign of the sensitivities shows that different assets respond differently

to the changes. For example, when γ increases, the weight of EH and M decrease while

the weight of EMN and MA increase. The weight sensitivities of EH, EMN and MA are

largest with respect to γ. That is, the optimal weights are very sensitive to γ. When the

parameters are estimated, we should pay attention to estimation errors.

Compared with the asset weight sensitivities in normal economic conditions shown in Table

4.6, we conclude that the weights of EMN and MA are more sensitive to the parameters

during the financial crisis period. This is reasonable because the optimal weights are more

volatile in times of financial crisis. The weight sensitivities are zero for EMN because the

weight of EMN during this period is 0 and does not change at all.

EH(%) EMN (%) M(%) MA(%)
w(γ −4) 0.0786 0.0155 0.4926 0.4133

w(γ) 0.0783 0.0157 0.4926 0.4134
w(γ +4) 0.0780 0.0160 0.4926 0.4134
w(γ)−w(γ−4)

4 -0.8266 6.0328 -0.0062 3.8991
w(γ+4)−w(γ)

4 -0.8244 6.0114 -0.0053 3.8769

w(α−4) 0.0785 0.0156 0.4926 0.4133
w(α) 0.0783 0.0157 0.4926 0.4134

w(α +4) 0.0781 0.0158 0.4927 0.4134
w(α)−w(α−4)

4 -0.5861 0.6677 0.1303 0.5240
w(α+4)−w(α)

4 -0.5853 0.6658 0.1303 0.5239

w(β −4) 0.0765 0.0170 0.4928 0.4138
w(β) 0.0783 0.0157 0.4926 0.4134

w(β +4) 0.0801 0.0145 0.4925 0.4130
w(β)−w(β−4)

4 0.1941 -0.1259 -0.0185 -0.0416
w(β+4)−w(β)

4 0.1865 -0.1258 -0.0154 -0.0401

Table 4.5: Weight sensitivities for selected values of OGARCH parameters in period 60.
The numbers in each column are in percentage. The second row gives the optimal weight
of each fund index when gamma equals γ −4
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EH(%) EMN (%) M(%) MA(%)
w(γ)−w(γ−4)

4 -1.0244 0 0.0594 -0.2115
w(γ+4)−w(γ)

4 -0.9973 0 0.0575 -0.1918
w(α)−w(α−4)

4 -0.1582 0 -inf 0.3402
w(α+4)−w(α)

4 -0.1494 0 -inf 0.3329
w(β)−w(β−4)

4 0.2179 0 -1.5047 0.0019
w(β+4)−w(β)

4 0.2099 0 -1.4782 0.0060

Table 4.6: Weight sensitivities for selected values of OGARCH parameters in period 180.
All the numbers are in percentage.

4.5 Conclusion

In this chapter, we have compared the out-of-sample performances of the optimal portfolios

selected by OGARCH, two-state Regime-Switching models (MSM and GMM) and the

EWMA Model by using four fund indices during the period 2003-2014. The mean and

variance of each fund index are estimated by the four models and then Mean-Variance

portfolio optimization model is applied to find the optimal weights. We have found that

the optimal portfolio selected by OGARCH model outperforms EWM, MSM and GMM

models with respect to the risk and returns during the whole investment period. The

portfolio obtained by using EWMA model also has better return and smaller risk than

the two Regime-Switching models.

We have also examined the weight sensitivities of the optimal portfolio with respect to the

estimated parameters in OGARCH model. The numerical results show that the weight

is very sensitive to the parameters in financial crisis period. This would indicate that

the estimation errors are also important when the mean and variance are estimated in

Mean-Variance portfolio optimization.
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Chapter 5

Portfolio Optimization Under

OGARCH with GH Skewed t

Distribution

5.1 Introduction

The Mean-Variance portfolio optimization model proposed by Markowitz (1952) has

become the foundation of modern portfolio theory. It assumes that asset returns follow the

multivariate Gaussian distribution with constant parameters. It takes standard deviation

as a risk measure, which treats both upside and downside payoffs symmetrically. Chapter

2 shows that the distribution of crude oil is skewed and asymmetric with fat-tail and the

volatility of the asset is time-varying. Chapter 3 provides further evidence that financial

time series have asymmetric returns and the correlation between the time series is very

volatile, especially in the financial crisis period.

In order to model skewness in conditional distributions of financial time series, Hansen

(1994) propose the first skewed extension to student t. Aas (2006) show that the general-

ized hyperbolic (GH) skew student t-distribution fit the financial returns better than the

other distributions.

Value-at-Risk (VaR) has been widely used as a market risk measure by practitioners.

Under the Basel II Accord, banks are required to use VaR in calculating minimum capital

requirements for market risk. Motivated by these facts, the addition of VaR constraint

to mean-variance model has been studied by many researchers. Alexander and Baptista

(2004) analyze the impact of adding VaR constraint to a single period mean-variance

model with a VaR constraint by assuming that asset returns have a multinormal distribu-
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tion. Alexander et al. (2007) then examine the impact of VaR and CVaR constraints in

the MeanVariance portfolio optimization model when the asset returns have a discrete

distribution with finitely many jump points.

Bauwens (2005) combine a new class of multivariate skew-Student distributions with a

multivariate generalized autoregressive conditional heteroscedasticity (GARCH) model.

The empirical result shows that multivariate skew-Student improves the performances of

VaR forecasts for several portfolios. Hu and Kercheval (2010) also show that the skewed t

distribution fits the equity return better and exam the efficient frontiers computed from

the mean-VaR and mean-CVaR portfolio optimization models. Liu (2012)introduces a

modified version of the mean-CVaR optimization model by filtering stock returns with

CCC-GARCH and skewed t distributions. Our work differs from these papers in that we

filter the fund returns by OGARCH model.

The safety-first model is first introduced by Roy (1952) and the model is extended by

Telser (1955) and Kataoka (1963). In recent years, many safety-first models have been

developed and discussed due to the growing practical relevance of downside risk. Chiu

and Li (2012) develop a modified safety-first model and have studied its application in

financial risk management of disastrous events, Norkin and Boyko (2012) have improved

the safety-first model by introducing one-sided threshold risk measures. The Kataoka’s

safety-first model with constraint of mean return is studied by Ding and Zhang (2009).

The first contribution of this chapter is that we filter the data by the orthogonal GARCH

model with the combination of multivariate GH skew t distributions. The second contribu-

tion is that we derive an analytic solution to the enhanced safety-first model with standard

deviation constraint. We also give the analytic solution to the Mean-Variance optimization

problem in terms of parameters under GH skewed t and OGARCH model. Furthermore,

we compare the optimal portfolio performances under Mean-CVaR, enhanced safety-first

and classic Mean-Variance model.

The remainder of this chapter is organized as follows. In Section 2 we introduce the

Orthogonal Garch model (O-GARCH) and Generalized Hyperbolic skewed t distribution

(GH skewed t). Then, we present the Mean-Variance portfolio optimization model,

enhanced safety-first model and Mean-CVaR model in Section 3. Section 4 describes the

parameter estimation method, the data used in this chapter and summary statistics of the

estimated parameters. In Section 5, we compare the optimal portfolio performances under

Mean-CVaR, enhanced safety-first and classic Mean-Variance model. Section 6 concludes

the chapter.
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5.2 Model

Let Y be a T × k matrix of daily returns and Y is obtained by taking the natural log

of the quotient of consecutive the daily closing prices; in other words, yi,t+1 = log
Pi,t+1

Pi,t

where Pi is daily closing price of asset i at time t.

Assume that

Yt = µ+H
1
2
t zt (5.1)

where Yt,µ ∈ Rk for t = 1, · · · , T , i = 1, · · · , k and Ht is the conditional covariance

matrix and we assume zt follows a generalized hyperbolic (GH) skewed t distribution.

5.2.1 Generalized hyperbolic distributions

The generalized hyperbolic (GH) distribution is first introduced by Barndorff-Nielsen

(1977) and the skewed t distribution is a special case of GH distribution with fat tails and

asymmetry characteristics. In this section, the GH distributions can be defined by using

mean-variance mixture method as presented in McNeil et al. (2010).

Definition 1. Normal Mean-Variance Mixture Distribution The random vec-

tor zt has a k dimensional multivariate normal mean-variance mixture if

zt
k
= µz + γW +

√
WAZt (5.2)

Where Z ∼ Nk(0, Id) is standard d-dimension multivariate normal distribution. W ≥ 0 is

a nonnegative, scalar-valued random variable and independent of Z. µz ∈ Rk, γ ∈ Rk and

A ∈ Rk×d.

It follows from equation (5.2) that

zt|W ∼ N(µz + γW,WΣ)

where Σ = AA′ and it is easy to calculate

E[zt] = E[E[zt|W ] = µz + γE[W ] (5.3)

Cov[zt] = E[Cov[zt|W ]] + Cov[E[zt|W ]] = E[W ]Σ + V ar[W ]γγ′ (5.4)

Definition 2. Modified Bessel Function The modified Bessel function of the sec-

ond kind with index λ is defined as given by Barndorff-Nielsen and Blaesild (1981):

Kλ(x) =
1

2

∫ ∞

0

yλ−1e−
x
2
(y+y−1)dy, x > 0
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If λ > 0, the following asymptotic property of Kλ is satisfied

Kλ(x) ∼ Γ(λ)2λ−1x−λ as x→ 0+

Where Γ(x) is the gamma function.

The modified Bessel function also has the following important properties

Kλ(x) = K−λ(x)

The GH skewed t distribution can be represented as a mean-variance mixture where the

mixing variable W follows the generalized inverse Gaussian (GIG) distribution.

Definition 3. The Generalized Inverse Gaussian Distribution (GIG). A ran-

dom variable X has a generalized inverse Gaussian (GIG) distribution, X ∼ GIG(λ, χ,

ψ) if its density is given by

f(x) =
(
√
χ/ψ)λ

2Kλ(
√
χψ)

xλ−1e−
1
2
(χx−1+ψx) (5.5)

Kλ is the modified Bessel function of the third kind with index λ and the domain of the

parameters( λ, χ, ψ) is given by

χ > 0, ψ ≥ 0 if λ < 0

χ > 0, ψ > 0 if λ = 0

χ ≥ 0, ψ > 0 if λ > 0

Definition 4. The Generalized Hyperbolic Distribution (GH) A random vec-

tor X follows the generalized hyperbolic distribution (GH), X ∼ GHk(λ, χ, ψ, µz,Σ, γ)

if X can be represented as mean-variance mixture where the mixing variable W follows the

generalized inverse Gaussian (GIG) distribution, W ∼ GIG( λ, χ, ψ) and its density is

given by

f(x) = c
Kλ− k

2
(
√

(χ+ (x− µz)TΣ−1(x− µz))(ψ + γTΣ−1γ))e(x−µz)
TΣ−1γ

(
√

(χ+ (x− µz)TΣ−1(x− µz))(ψ + γTΣ−1γ))
k
2
−λ

where the constant c is given by

c =
(
√
χψ)−λψλ(ψ + γTΣ−1γ)

k
2
−λ

(2π)
k
2 |Σ| 12Kλ(

√
χψ)
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where |Σ| is the determinant of Σ.

The characteristic function of the GH random variable X ∼ GHk(λ, χ, ψ, µz,Σ, γ) is

obtained from the mean-variance mixture definition

φX(t) = E[eit
′X ]

= E[E[eit
′X |W ]]

= E[eit
′µz+it′γW− 1

2
Wt′Σt]

= eit
′µze(it

′γ− 1
2
t′Σt)W

Suppose the density function of W is H and the Laplace-Stieltjes transform of H is defined

by

Ĥ(θ) = E[e−θW ] =

∫ ∞

0

e−θudH(u)

Then

φX(t) = eit
′µzĤ(

1

2
t′Σt− it′γ))

An important property of the GH class is that it is closed under linear operations.

Proposition 1. If X ∼ GHk(λ, χ, ψ, µz,Σ, γ), and Y = BX + b where B ∈ Rdxk and b

∈ Rd, then Y ∼ GHd(λ, χ, ψ,Bµz + b, BΣB′, Bγ).

Proof.

φY (t) = E[eit
′(BX+b)]

= eit
′bE[eit

′BX ]

= eit
′bE[eit

′Bµz+it′BγW− 1
2
Wt′BΣB′t]

= eit
′beit

′Bµze(it
′Bγ− 1

2
t′BΣB′t)W

= eit
′(Bµz+b)e(it

′Bγ− 1
2
t′BΣB′t)W

= eit
′(Bµz+b)Ĥ(−it′Bγ +

1

2
t′BΣB′t)

More specially, if B = w′ = (w1, w2, · · · , wk)′ and b = 0, then y = (w1, w2, · · · , wk)′X is

y ∼ GH1(λ, χ, ψ, w
′µz, w

′Σw,w′γ)

The generalized hyperbolic skewed t distribution is a special case of generalized hyperbolic

distribution. Suppose W ∼ GIG( λ, χ, ψ). If ψ = 0, χ = ν, λ = −1
2
ν for ν > 2, then W

follows an inverse gamma distribution (McNeil et al., 2015)
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Definition 5. Gamma distribution The random variable X has a gamma distribution,

X ∼ Gamma(α, β), if its density is

f(x) =
βα

Γ(α)
xα−1e−βx x > 0, α > 0, β > 0

Moreover, 1
X

has an inverse gamma distribution, 1
X

∼ Igamma(α, 1
β
) with the density

f(x) =

1
β

α

Γ(α)
x−(α−1)e−

1
β
x x > 0, α > 0, β > 0 (5.6)

The moments of X ∼ Gamma(α, β) given α > n is

E[xn] =
βn

(α− 1) · · · (α− n)
(5.7)

Definition 6. GH Skewed t Distribution The random variable X has a generalized hyperbolic

skewed t distribution, X Skewt ∼ (ν, µz,Σ, γ) if W ∼ Igamma(ν
2
, ν
2
) and ν > 2. The

multivariate joint density is

f(x) = c
K ν+k

2
(
√

(ν + (x− µz)TΣ−1(x− µz))γTΣ−1γ)e(x−µz)
TΣ−1γ

(
√

(ν + (x− µz)TΣ−1(x− µz))γTΣ−1γ)−
ν+k
2 + (1 + (x−µz)TΣ−1(x−µz)

ν
)
ν+k
2

where the constant c is given by

c =
21−

ν+k
2

Γ(ν
2
)(π + ν)

k
2 |Σ| 12

where |Σ| is the determinant of Σ.

Proposition 2. The mean and covariance of a GH skewed t distributed random variable

zt Skewt ∼ (ν, µz,Σ, γ), is E[zt] = µz + γ ν
ν−2

and Cov[zt] =
ν
ν−2

Σ + γγ′ 2ν2

(ν−2)2(ν−4)

Proof. By applying formulas (5.3) and (5.7), we obtain

E[zt] = µz + γ
ν
2

ν
2
− 1

= µz + γ
ν

ν − 2

Cov[zt] =
ν

ν − 2
Σ + γγ′

2ν2

(ν − 2)2(ν − 4)
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5.2.2 OGARCH

Suppose Ht can be estimated by orthogonal GARCH model. Then let Y be a multivariate

time series of daily returns with mean zero on k assets with length T with columns

y1, . . . , yk . We define the T × k matrix Xt whose columns x1, · · · , xk are given by the

equation

xt =
yt − µi√

vi

where V = diag(v1, . . . , vm) with vi being the sample variance of yt and µi is the sample

mean of yt.

Let L denote the matrix of eigenvectors of the population correlation of xt and by

lm = (l1,m, . . . , lk,m) its mth column. lm is the k ×1 eigenvector corresponding to the

eigenvalue λm. The column labelling of L has been chosen so that λ1 > λ2 > · · · > λk.

Let D be the diagonal matrix of eigenvalues. The mth principal component of the system

is defined by

pm = x1l1,m + x2l2,m + · · ·+ xklk,m

If each vector of principal components pm is placed as the columns of a T × k matrix P,

then,

P = XL

The principal component columns is modeled by GARCH(1,1)

pt|Ψt−1 ∼ N(0,Σt)

pi,t = εi,t

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1

where Σt is a diagonal matrix of the conditional variances of the principal components

P.Ψt−1 contains all the information available up to time t-1. The conditional covariance

Matrix of Xn is Dt = LΣtL
T and the conditional covariance matrix of Y is given by

Ht = E[Yt|Ψt−1] =
√
V Dt

√
V =

√
V LΣtL

T
n

√
V

5.2.3 Portfolio return distribution

Assume that the portfolio weight w = [w1, w2, . . . , wk]
T , then the portfolio return at time

t is Rt = w1y1,t + w2y2,t + · · ·+ wkyk,t = wTYt = wT (µ+H
1
2
t zt).

Proposition 3. Conditional Distribution of the portfolio The conditional distribu-

tion of the portfolio return Rt is one dimensional skewed t distribution, denoted by Rt|Ψt−1 ∼
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Skewt(ν, wT (Htµz + µ), wTHT
t ΣHtw,w

THT
t γ), if the assets zt follow a multivariate

skewed t distribution, zt ∼ Skewt(ν, µz,Σ, γ).

Proof. Substitute B = H
1
2
t and b = µ in Proposition 1, we get the conditional distribution

of the asset returns

Yt|Ψt−1 ∼ Skewt(ν,H
1
2
t µz + µ, H

1
2
T

t ΣH
1
2
t , H

1
2
T

t γ)

Then we apply Proposition 1 again by letting B = wT , b = 0 and get the conditional

return of the portfolio follows a one-dimensional skewed t distribution

Rt|Ψt−1 ∼ Skewt(ν, wT (H
1
2
t µz + µ), wTH

1
2
T

t ΣH
1
2
t w,w

TH
1
2
T

t γ)

Proposition 4. The conditional mean of the return Yt is µy,t = (H
1
2
t µz + µ) +H

1
2
T

t γ ν
ν−2

and the conditional variance is σ2
y,t = H

1
2
T

t ΣH
1
2
t

ν
ν−2

+H
1
2
T

t γγTH
1
2
t

2ν2

(ν−2)2(ν−4)

Proof. According to Aas (2006), the conditional mean and standard deviation of the asset

returns at time t is

µy,t = E[Yt|Ψt−1] = (H
1
2
t µz + µ) +H

1
2
T

t γ
ν

ν − 2
(5.8)

According to equation 5.3, the covariance of the asset returns at time t is

σ2
y,t = V ar[Yt|Ψt−1]

= H
1
2
T

t ΣH
1
2
t

ν

ν − 2
+H

1
2
T

t γγTH
1
2
t

2ν2

(ν − 2)2(ν − 4)
(5.9)

5.3 Portfolio Optimization under GH Skewed t dis-

tribution

In this section, we find the optimal portfolio weight by assuming the conditional portfolio

return follows an univariate GH skewed t distribution.

Suppose there are n risky assets and an investor can invest in all the assets. Assume

the conditional return of n risky asset at time t Yt = (y1,t, y2,t, . . . , yn,t) follows a n

dimension skewed t distribution. Now the investor tries to find the optimal weight at time

t wt = [wt,1, wt,2, . . . , wt,n]
T . Then the portfolio return at time t+1 is Rt+1 = wTt Yt+1.
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By Proposition 3, the conditional portfolio return is skewed t distributed. Given that

Rt+1 = wTt Yt+1, by Proposition 4 we have

µp,t+1 = E[Rt+1|Ψt] = wTt

[
(H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν

ν − 2

]
(5.10)

and

σ2
p,t+1 = V ar[Rt+1|Ψt] = wTt

[
H

1
2
T

t ΣH
1
2
t

ν

ν − 2
+H

1
2
T

t γγTH
1
2
t

2ν2

(ν − 2)2(ν − 4)

]
w (5.11)

5.3.1 VaR

VaR has played an important role in risk management. Instead of considering both upside

and downside payoffs, VaR measures only the downside risk of the expected return.

Definition 7. Value at Risk (VaR) Given a confidence level p ∈ (0, 1), the VaR

of a portfolio at a confidence level p over the time period t is given by the smallest number l0

such that the probability of a loss Ls over a time interval t greater than l0 is 1-p.

That is,

V aR(L) = inf{l0 : P (Ls > l0) ≤ 1− p}

= inf{FL(l0) ≥ p}

= F−1
L (p)

Where F (.) is the cumulative function of Ls and F−1 is the inverse function of FL.

Most applications of VaR are used to control the risk over short horizons, so it’s useful to

introduce the Value at Risk that employs information up to time t-1 to produce a VaR for

time period t. Let (V aRt) denote the one-day-ahead forecast of VaR which is defined as

P (Rt ≤ −V aRt−1|Ψt−1) = p (5.12)

Where Rt is the portfolio return at time t and Ψt−1 is the available information at t-1.

Proposition 5. It follows from direct computations that V aRt−1 = −µp,t + kpσp,t if the

returns follow normal or student t distributions.

Where kp is the p % left tail of the normal or student t distribution.

Unfortunately, for GH skewed t distribution, kp is complicated and generally has no

closed-form solution.
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Even though VaR is very popular, it has some drawbacks and undesirable properties such

as lack of sub-additivity and non-convexity. As mentioned in Artzner et al. (2002), it is

not a coherent measure of risk.

5.3.2 CVaR

An alternative risk measure called conditional Value-at-Risk(CVaR) is proposed by Rock-

afellar and Uryasev (2000). CVaR is defined as follows:

Definition 8. Contional Value at Risk (CVaR) Given a confidence level p ∈ (0, 1)

and a random variable loss Ls

CV aRp(Ls) = E[Ls|Ls ≥ V aRp] =
1

1− p

∫ 1

p

V aRxdx

If the cumulative function of Ls FL is continuous, then we have

CV aRp(L) =
1

1− p

∫ 1

p

V aRxdx

=
1

1− p

∫ 1

p

F−1
L (x)dx

=
1

1− p

∫ ∞

F−1
L (p)

FL(x)dx

=
1

1− p

∫ ∞

V aRp

xdFL(x)

Artzner et al. (2002) show that CVaR is a coherent risk measure and it has the following

properties

Proposition 6. Consider the space of random variables representing portfolio losses

over some time interval G and L1, L
′
2Ls ∈ G. CVaR satisfies the following properties:

1. Subadditivity: CV aR(L1 + L2) ≤ CV aR(L1) + CV aR(L2).

2. Positive Homogeneity: For any λ > 0, CV aR(λL) = λ CV aR(L)

3. Translation Invariance: For any constant a ∈ R, CV aR(a+ Ls) = a+ CV aR(Ls)

4. Monotonicity: If L1 ≤ L2, then CV aR(L1) ≤ CV aR(L2)

5. Convexity: For any λ ∈ [0, 1], CV aR(λL1 + (1 − λ)L2) ≤ λ CV aR(L1) + (1 −
λ) CV aR(L2)
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5.3.3 Mean-Variance Portfolio Optimization

Suppose that the investor wants to maximize the utility function, the classical mean-

variance portfolio optimization (MV1) is given by

Maximime wTt E[Yt+1|Ψt]−
λ

2
wTt V ar(Yt+1|Ψt)wt (5.13)

subject to

wTt 1 = 1

Define A = 1T Σ̄−11 > 0, B = 1T Σ̄−1µ̄ > 0 and C = µ̄T Σ̄−1µ̄ > 0

Theorem 1. The classical mean-variance portfolio optimization (MV1) has a unique global optimal

solution

w∗t =
1

λtΣ̄

(
µ̄− (µ̄Σ−11T − λt)1

1T Σ̄−11

)
=

1

λtΣ̄

(
µ̄− (B − λt)1

A

)
where λ ≥ 0 is a risk aversion coefficient and wt denotes the portfolio weight vector.

Proof. The Lagrangian of the optimization problem MV1 subject to variance constraints

is expressed as follows:

L(wt|Ψt) = wTt E[Yt+1|Ψt]−
λ

2
wTt V ar(Yt+1|Ψt)wt − ηt(w

T
t 1− 1)

= wTt

[
(H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν

ν − 2

]
− λ

2
wTt

[
H

1
2
T

t+1ΣH
1
2
t+1

ν

ν − 2
+H

1
2
T

t+1γγ
TH

1
2
t+1

2ν2

(ν − 2)2(ν − 4)

]
wt

− ηt(w
T
t 1− 1)

where ηt is the Lagrange multipliers for the constraint.

Using this Lagrange function, the KKT(Karush-Kuhn-Tucker) optimality conditions(Floudas

and Visweswaran, 1995) are:

∂L(wt|Ψt)

∂wt
= (H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν

ν − 2

− λ

[
H

1
2
T

t ΣH
1
2
t

ν

ν − 2
+H

1
2
T

t γγTH
1
2
t

2ν2

(ν − 2)2(ν − 4)

]
w − ηt1

= 0 (5.14)
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∂L(wt|Ψt)

∂ηt
= wTt 1− 1 = 0 (5.15)

The conditions (5.14) and (5.15) have the matrix representation:λ [H 1
2
T

t ΣH
1
2
t

ν
ν−2

+H
1
2
T

t γγTH
1
2
t

2ν2

(ν−2)2(ν−4)

]
1

1T 0

 [ wt

ηt

]
=

[
(H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν
ν−2

1

]

Then the optimal solution is given by

ηt =
µ̄Σ−11T − λt

1T Σ̄−11

and

w∗t =
1

λtΣ̄

(
µ̄− (B − λt)1

A

)
(5.16)

Where Σ̄ = H
1
2
T

t ΣH
1
2
t

ν
ν−2

+H
1
2
T

t γγTH
1
2
t

2ν2

(ν−2)2(ν−4)
and µ̄ = (H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν
ν−2

5.3.4 Safety-first Portfolio Optimization

The safety-first model aims to maximize a insured lower level of portfolio return at t Rp

for a given the tolerance level of investor to risk is p. A safety-first portfolio optimization

problem is described by

maximize Rp(w) (5.17)

subject to

wTt 1 = 1

P (Rt+1 < Rp|Ψt) ≤ p

By Tchebycheff inequality, we have

P (P (Rt+1 < Rp|Ψt) = P (Rt+1 − E(Rt+1) < Rp − E(Rt+1)|Ψt)

= P (E(Rt+1)−Rt+1 > E(Rt+1)−Rp|Ψt)

≤ V ar(Rt+1|Ψt)

(E(Rt+1|Ψt)−Rp)2
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Then the probabilistic constraint in MV2 is replaced by a stronger constraint

V ar(Rt+1|Ψt)

(E(Rt+1|Ψt)−Rp)2
≤ p

Therefore, the portfolio optimization problem (5.17) is simplified as

maximize Rp(w) (5.18)

subject to

wTt 1 = 1

V ar(Rt+1|Ψt) ≤ p(E(Rt+1|Ψt)−Rp)
2 (5.19)

or equivalently

maximize wTt E[Yt+1|Ψt]−
1
√
p

√
wTt V ar(Yt+1|Ψt)wt (5.20)

subject to

wTt 1 = 1

The classic safety-first approach only expects a higher lower insured threshold and discour-

ages the risk diversification sometimes. Therefore, a modified safety-first model(MV2) is

proposed by adding a variance constraint :

maximize wTt E[Yt+1|Ψt]−
1
√
p

√
wTt V ar(Yt+1|Ψt)wt (5.21)

subject to

wTt 1 = 1

√
wTt V ar(Yt+1|Ψt)wt ≤ c (5.22)

Proposition 7. The function f(w) = wTt E[Yt+1|Ψt]− 1√
p

√
wTt V ar(Yt+1|Ψt)wt is a concave

function for w ∈ Rn.
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Proof. Let w1,w2 ∈Rn, for any λ ∈ [0, 1], we have

λf(w1) + (1− λ)f(w2)− f(λw1 + (1− λ)w2)

= λwT1 E[Yt+1|Ψt]− λ
1
√
p

√
wT1 V ar(Yt+1|Ψt)w1 + (1− λ)wT2 E[Yt+1|Ψt]−

(1− λ)
1
√
p

√
wT2 V ar(Yt+1|Ψt)w2 − (λw1 + (1− λ)w2)E[Yt+1|Ψt]

+
1
√
p

√
(λw1 + (1− λ)w2)TV ar(Yt+1|Ψt)(λw1 + (1− λ)w2)

=
1
√
p

√
(λw1 + (1− λ)w2)TV ar(Yt+1|Ψt)(λw1 + (1− λ)w2)−

1
√
p

(
λ
√
wT1 V ar(Yt+1|Ψt)w1 + (1− λ)

√
wT2 V ar(Yt+1|Ψt)w2

)
=

1
√
p
(m− n)

Where m =
√
(λw1 + (1− λ)w2)TV ar(Yt+1|Ψt)(λw1 + (1− λ)w2)

and n = λ
√
wT1 V ar(Yt+1|Ψt)w1 + (1− λ)

√
wT2 V ar(Yt+1|Ψt)w2

Then f(w) is a concave function if m < n. ⇐⇒ m2 < n2, so we only need to prove that

wT1 V ar(Yt+1|Ψt)w2 <
√
wT1 V ar(Yt+1|Ψt)w1

√
wT2 V ar(Yt+1|Ψt)w2

Note that

(w1 + w2)
TV ar(Yt+1|Ψt)(w1 + w2) = wT1 V ar(Yt+1|Ψt)w1

+2wT1 V ar(Yt+1|Ψt)w2 + wT2 V ar(Yt+1|Ψt)w2 ≥ 0

we have √
wT1 V ar(Yt+1|Ψt)w1

√
wT2 V ar(Yt+1|Ψt)w2 ≥ wT1 V ar(Yt+1|Ψt)w2

Therefore,

λf(w1) + (1− λ)f(w2) ≤ f(λw1 + (1− λ)w2)

Theorem 2. The modified safety-first portfolio optimization problem (MV2) has a global optimal

solution.

(1) When c > 1√
A

and 0 < p < min(1, A
AC−B2 ), or when c ≤ 1√

A
and

A− 1
c2

AC−B2 < p <

min(1, A
AC−B2 ). The modified safety-first model(MV2) has a unique global optimal solution
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w, and

w =
1√

B2 − A(C − 1
p
)
Σ̄−1

µ̄+
−B +

√
B2 − A(C − 1

p
)

A
1


(2) When c < 1√

C
and 0 < p <

(
c
√
C−1

c
√
C+1

)2
there exists a unique global optimal solution

w = A−1Σ̄−11+
c(Σ̄−1µ̄−BA−1Σ̄−11)

1√
p
+ c

√
C+1

c
√
C−1

(3) For any other values of c and p, the solution does not exist.

Proof. The Lagrangian function of the optimization problem (5.21) is

L(wt|Ψt) = wTt µ̄− 1
√
p

√
wTt Σ̄wt + η(wTt 1− 1) + λ(

√
wTt Σ̄wt − c)

where η and λ are the Lagrange multipliers for the constraints.

According to Proposition 7, f(w) is a differentiable concave function. Therefore, the

problem has a global optimal solution if and only if the following KKT conditions are

satisfied

∂L(wt|Ψt)

∂wt
= µ̄− 1

√
p

(
wTt Σ̄wt

)− 1
2 Σ̄wt + η1+ λ

(
wTt Σ̄wt

)− 1
2 Σ̄wt = 0 (5.23)

∂L(wt|Ψt)

∂η
= wTt 1− 1 = 0 (5.24)

∂L(wt|Ψt)

∂λ
= wTt Σ̄wt − c ≤ 0 (5.25)

λ(
√
wTt Σ̄wt − c) = 0 (5.26)

λ ≥ 0 (5.27)

Rearrange equation (5.23), we have

w =
(Σ̄−1µ̄+ ηΣ̄−11)

√
wTt Σ̄wt

1√
p
− λ

(5.28)
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and

1

p
= λ2 + 2λ

(B + ηA)√
C

+
(B + ηA)2

C
(5.29)

From equation (5.24) and (5.28), we get

1
√
p
= λ+ (B + ηA)

√
wTt Σ̄wt (5.30)

and √
wTt Σ̄wt =

1√
p
− λ

B + ηA
(5.31)

Substitute equation (5.30) into (5.28) , we obtain

w =
(Σ̄−1µ̄+ ηΣ̄−11)

B + ηA
(5.32)

(1) If the variance constraint (5.22) is not binding, then we have λ = 0 and

µ̄− 1
√
p

(
wTt Σ̄wt

)− 1
2 Σ̄w + η1 = 0 (5.33)

From (5.24), we get

wt =
1

1T

Substitute wt =
1
1T and rearrange equation (5.28), we get the

√
p = −1T Σ̄−1(µ̄+ 1η)

√
wTt Σ̄wt

= −(B + ηA)
√
wTt Σ̄wt (5.34)

Aη2 + 2Bη + C +
1

p
= 0 (5.35)

The discriminant of the quadratic equation (5.31) ∆ = B2 − A(C − 1
p
).

If ∆ ≤ 0, the solution of (5.31) does not exist.

If ∆ = 0, B2 = A(C − 1
p
), there is a unique solution η = −B

A
. However, in this

case,
√
p = 0 which contradicts with our assumption that p > 0. Hence, η = B

A
is

rejected.
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If ∆ > 0, B2 > A(C− 1
p
), there are two distinct solutions η1 =

−B+∆
A

and η2 =
−B−∆
A

.

η2 is rejected because
√
p is negative if η2 is substituted into (5.29).

After replacing the expression for η by η1 =
−B+∆
A

in (5.29), we obtain√
wTt Σ̄wt =

1

∆
√
p
≤ c (5.36)

From equation (5.36), we have

p ≥
A− 1

c2

AC −B2

If c ≤ 1√
A
, then the unique optimal solution of (5.28) is obtained

w =
1√

B2 − A(C − 1
p
)
Σ̄−1

µ̄+
−B +

√
B2 − A(C − 1

p
)

A
1

 (5.37)

when
A− 1

c2

AC−B2 < p < min(1, A
AC−B2 ).

If c > 1√
A
, solution (5.37) exists when 0 < p < min(1, A

AC−B2 ) and variance constraint

(5.22) is binding, then we have λ > 0. We get
√
wTt Σ̄wt = c from equation (5.26)

and λ < 1√
p
. Substituting

√
wTt Σ̄wt = c into equation (5.34), we have

λ =
1
√
p
− (B + ηA)c (5.38)

Solve equation (5.29) and (5.38), we get

C

p
= (

√
Cλ+

1√
p
− λ

c
)2 (5.39)

Solve equation (5.39), we have λ1 = 1√
p
which contradicts with λ < 1√

p
and

λ2 = − c
√
C+1

c
√
C−1

if c < 1√
C
and p <

(
c
√
C−1

c
√
C+1

)2
In this case, the unique solution is

w = A−1Σ̄−11+
c(Σ̄−1µ̄−BA−1Σ̄−11)

1√
p
+ c

√
C+1

c
√
C−1
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Corollary 1. If λt =
√
B2 − A(C − 1

p
), the modified safety-first portfolio optimization

problem (MV2) has the same solution as the Mean-Variance problem (MV1) when c > 1√
A

and 0 < p < min(1, A
AC−B2 ), or when c ≤ 1√

A
and

A− 1
c2

AC−B2 < p < min(1, A
AC−B2 ).

5.3.5 Mean-CVaR Portfolio Optimization

For a given expected return of portfolio r with weight vector w, the Mean-CVaR portfolio

optimization problem (MV3) is given

minimize CV aRt(w) (5.40)

subject to

wTt 1 = 1

wTt E[Yt+1|Ψt] = r

Since the calculation of CVaR as a function of portfolio weights w and the loss distribution

FL is difficult, the following auxiliary function (Rockafellar and Uryasev, 2000) is considered

Fp(w, ξ) = ξ +
1

1− p

∫
x∈R

(wTx− ξ)+fL(x)dx (5.41)

where fL(x) is the probability density function of the loss distribution function FL(x) and

[a]+ = max(0, a). w denotes the portfolio weight. Fp(w, ξ) is a convex function of ξ and

continuously differentiable.

Theorem 3. Minimizing the CVaR of the loss of portfolio with weight w is equivalent to minimizing

Fp(w, ξ), that is,

min CV aR(w) = min Fp(w, ξ)

Proof. See Rockafellar and Uryasev (2000)

The integral in (5.41) is very difficult to calculate, so we consider the approximations

using Monte Carlo simulation. Assume that xj are independent samples for j = 1, . . . , n.

Fp(w, ξ) can be approximated by using the weighted sum of all the scenarios

ˆFp(w, ξ) = ξ +
1

(1− p)n

n∑
j=1

(wTxj − ξ)+ (5.42)
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The optimization problem(MV3) becomes

minimize ξ +
1

(1− p)n

n∑
j=1

(wTxj − ξ)+ (5.43)

subject to

wTt 1 = 1

wTt

[
(H

1
2
t+1µz + µ) +H

1
2
T

t+1γ
ν

ν − 2

]
= R

Let (wTxj − ξ)+ be replaced by auxiliary variables zi with two linear constraints zi ≥ 0

and zi ≥ wTxj − ξ for i = 1, . . . , n. Then mean-CVaR problem is equivalent to

Maximize wTt E[Yt+1|Ψt]− λ(ξ +
1

(1− p)n

n∑
j=1

zj) (5.44)

subject to

zj ≥ 0 j = 1, . . . , n

zj ≥ wTxj − ξ j = 1, . . . , n

n∑
j=1

zj = 1

Therefore, the mean-CVaR problem becomes a linear programming problem with respect

to portfolio weight w.

5.4 Parameter estimation for skewed t distribution

Given a return time series Yt in 5.2, the parameters in OGARCH model are estimated

by the procedure in appendix. µ is estimated by sample mean with µi =
1
T

∑T
t=1 Yi,t for

i = 1, 2, 3, 4. After the conditional covariance Ht in OGARCH model is determined, the

filter data zt is obtained by

zt = (Yt − µ)H
− 1

2
t

Then the multivariate skewed t distribution is calibrated to zt by applying EM Algorithm.
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EM algorithm

The EM algorithm developed by Dempster et al. (1977) is a very useful tool for the iterative

computation of maximum likelihood estimates to deal with the missing or incomplete

data problems. In each iteration of the EM algorithm, there are two steps called the

expectation step (E-step) and the maximization step (M-step). We use similar estimation

method as described in the paper by Aas (2006).

Let θ = (ν, µz,Σ, γ) and the a log-likelihood function for θ is given by

logL(θ, z) =
T∑
i=1

fZ(zi, θ) (5.45)

Where fZ(·) is GH skewed t distribution.

Note that W ∼ Igamma(ν
2
, ν
2
) and zt|W ∼ N(µz + γW,WΣ). The joint distribution of Z

and W is

fZ,W (z, w, θ) = fZ/W (z/w, µz,Σ, γ)gW (w, ν)

where gW is the density of inverse gamma (ν
2
, ν
2
). fZ/W is the density of conditional normal

distribution N(µz + γW,WΣ).

From (5.6), gW can be expressed as

gW (w) =

(
ν
2

) ν
2

Γ(ν
2
)
w−( ν

2
−1)e−

ν
2w (5.46)

fZ/W can be written as

fZ/W (z/w) =
e(z−µz)

TΣ−1γ− (z−µz)
TΣ−1(z−µz)
2w

−w
2
γTΣ−1γ

(2π)
d
2

√
|Σ|w d

2

(5.47)

The augmented log-likelihood is

logL̃(θ, z,W ) =
T∑
i=1

fZ,W (z, w, θ)

=
T∑
i=1

log fZ/W (zi/wi, µz,Σ, γ)
T∑
i=1

log gW (wi, ν)

= L1(µz,Σ, γ, z/w) + L2(ν, w)

74



5 Portfolio Optimization Under OGARCH with GH Skewed t Distribution

L1 and L2 could be maximized separately if the latent mixing variables are observable.

From (5.46) and (5.4), we get

L1(µz,Σ, γ, z/w) =
T∑
i=1

(zi − µz)
TΣ−1γ −

T∑
i=1

(zi − µz)
TΣ−1(zi − µz)

2wi

−
T∑
i=1

wi
2
γTΣ−1γ − d

2

T∑
i=1

log(wi)−
T

2
log |Σ|

− T
d

2
log2π (5.48)

L2(ν, w) = T
ν

2
log

(ν
2

)
−
(ν
2
− 1
) T∑
i=1

log wi −
ν

2

T∑
i=1

1

wi
− T log Γ(

ν

2
) (5.49)

E Step

The E-step computes the conditional expectation of the sufficient statistics of the log-

likelihood L1 and L2 given the current values of the parameters, which are W, W−1 and

log W. This involves the calculation of the following conditional expectations.

e
[k]
i = E[Wi|zi, θ[k]]

ζ
[k]
i = E[W−1

i |zi, θ[k]]

ξ
[k]
i = E[logWi|zi, θ[k]]

It can be shown that the conditional density function of W is GIG distribution. That is,

W |z ∼ GIG(−d+ ν

2
, (z − µz)

TΣ−1(z − µz) + ν, γTΣ−1γ)

The moments of the GIG(a, b, c) distribution are given by Karlis (2002)

E(xr) =
b

c

rKa+c(bc)

Ka(bc)

Define A = (z − µz)
TΣ−1(z − µz) + v and B = γTΣ−1γ, then we have

e
[k]
i =

(
A[k]

B[k]

) 1
2 K ν+d−2

2

√
A[K] +B[K]

K ν+d
2

√
A[K] +B[K]

(5.50)
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ζ
[k]
i =

(
A[k]

B[k]

)− 1
2 K ν+d+2

2

√
A[K] +B[K]

K ν+d
2

√
A[K] +B[K]

(5.51)

According to E(logW ) = ∂E(W r)
∂r

∣∣∣
r=0

(Menćıa and Sentana, 2005)

ξ
[k]
i =

1

2
log

(
A[k]

B[k]

) ∂K
− ν+d

2 +α

√
A[K]+B[K]

∂α

∣∣∣∣∣
α=0

K ν+d
2

√
A[K] +B[K]

(5.52)

M Step

In M-step, the parameters are computed by maximizing the log-likelihood function (5.48)

and (5.49). Take partial derivative of L1 with respect to γ, Σ, µz,

∂L1

∂γ
=

T∑
i=1

(zi − µz)
TΣ−1 − 2

T∑
i=1

wi
2
γTΣ−1 = 0 (5.53)

∂L1

∂µz
= −

T∑
i=1

Σ−1γ +
T∑
i=1

Σ−1(zi − µz)

wi
= 0 (5.54)

∂L1

∂Σ−1
=

T∑
i=1

(zi − µz)
Tγ −

T∑
i=1

(zi − µz)(zi − µz)
T

2wi

−
T∑
i=1

wi
2
γγT +

T

2
ΣT = 0

(5.55)

Solve equation (5.54) we have

µz =

∑T
i=1

zi
wi

−
∑T

i=1 γ∑T
i=1

1
wi

(5.56)

Substitute (5.56) into (5.53) and solve γ

γ =

∑T
i=1w

−1
i (zi − z̄i)

T−1
∑T

i=1wiw
−1
i + T

(5.57)
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Σ =
1

T

(
T∑
i=1

(zi − µz)(zi − µz)
T

2wi
−

T∑
i=1

wi
2
γγT

)
(5.58)

The parameter ν is given by solving the equation below numerically.

∂L2

∂ν
=

T

2
log

(ν
2

)
+
T

2
− 1

2

T∑
i=1

log wi −
1

2

T∑
i=1

1

wi
−
T Γ′(ν

2
)

Γ(ν
2
)

= 0 (5.59)

Let ē = 1
T

∑T
i=1 ei, ζ̄ = 1

T

∑T
i=1 ζi, and ξ̄ =

1
T

∑T
i=1 ξi. The initial value for µz, Σ and γ

are the sample mean, sample covariance and zero vector respectively.

Then according to equation (5.50), (5.51) and (5.52), we can compute e
[k]
i , ζ

[k]
i and ξ

[k]
i at

step k.

Next the parameters are updated by

γ[k+1] =
T−1

∑T
i=1 e

[k]
i (z̄ − zi)

ē[k]ζ̄ [k] + 1

µ[k+1]
z =

T−1
∑T

i=1 e
[k]
i zi − γ[k]

ē[k+1]

Σ[k+1] =
1

T

(
T∑
i=1

e
[k]
i (zi − µ[k+1]

z )(zi − µ[k+1]
z )T − ζ̄ [k]γ[k+1]γ[k+1]T

)
ν [k+1] is given as the solution to the following equation

log
(ν
2

)
+ 1− ξ̄[k] − ē[k] −

Γ′(ν
2
)

Γ(ν
2
)
= 0

5.5 Numerical Result

The data used in this section is the daily returns of four HFRX indices (EH, EMN, M

and MA) covering the period from April 1, 2003 to May 12, 2014. We consider portfolios

composed of these four indices.

In Table 5.1 and 5.2, we present summary statistics. Note that the average daily return

of MA is the highest, while the average return on EMN is negative. The large kurtosis

indicates that all the return time series have fat tails. Table 5.2 shows that the correlations

of these returns are positive and the covariance of M is largest.
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mean skewness kurtosis
EH 0.005 -0.8406 8.63
EMN -0.001 -0.1857 20.36
M 0.004 -1.0434 10.58
MA 0.016 1.5449 70.64

Table 5.1: Statistics of daily returns of fund indices: Mean of daily returns of the fund
indices in percentage

EH EMN M MA
EH 1.673 0.1633 0.420 0.6086
EMN 0.163 0.6644 0.1623 0.0606
M 0.420 0.1623 1.705 0.1085
MA 0.607 0.0606 0.1085 0.8063

Table 5.2: Covariance of daily returns of the fund indices (10−5)

Then the daily return data are filtered by OGARCH model with Gaussian innovations

and the standardized filtered time series zt is calibrated by the multivariate GH skewed t

distribution. Figure 5.1 shows the stochastic correlation of HFRX indices of daily returns

estimated by OGARCH model.

01/2005 07/2007 01/2010 07/2012

−0.5

0

0.5

Figure 5.1: The correlation of HFRX indices daily returns estimated by OGARCH model.

Figure 5.2 displays normal QQ plots of the filtered returns. The marginal densities of

the filtered series are skewed and have fatter tails than Gaussian distribution. Therefore,

we fit GH skew t, student t, NIG, GH and Variance Gamma distributions to the filtered

data. Table 5.3 presents parameters estimated by various distributions and log likelihood

statistics. The GH skew t distribution has the largest log likelihood, so it fits the best,

while Gaussian distribution has the smallest log likelihood. From Figure 5.3 we can see

that GH skew t distribution has a better fit to the data.
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Figure 5.2: QQ-plot versus normal distribution of filtered daily returns of HFRX indices.

5.5.1 Efficient Frontier

In this section, we solve the Mean-Variance, enhanced safety first and Mean-CVaR port-

folio optimization problems by assuming GH skewed t distribution and plot efficient

frontiers versus different risk measures. First, we calibrate the mean and covariance of a

multivariate GH skewed t to our filtered data, and forecast one week ahead covariance

and mean of weekly return on May 12, 2014. Then we calculate the optimal portfolios by

using different optimization models.

Figure 5.4 displays the efficient frontiers for Mean-Variance and Mean-CVaR portfolio

optimization models. According to Figure 5.4, for a given return, the Mean-CVaR portfolio
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Figure 5.3: QQ-plot versus GH skewed t distribution of filtered daily returns of HFRX
indices.

has a higher standard deviation than the Mean-Variance portfolio. That means that

Mean-CVaR portfolios can protect against the situations of extreme loss better.

5.5.2 Portfolio Performance Analysis

In this section, the performances of the optimal portfolios selected by using Mean-Variance,

enhanced safety-first and Mean-CVaR models are compared in 2008 financial crisis period.

The weekly returns of HFRX indices for the period from April 1, 2003 to Dec. 31 2007

are used to estimate the parameters and then the first optimal portfolio is selected on
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Figure 5.4: Mean-Variance efficient frontier vs 0.95 Mean-CVaR .

Dec. 31, 2007. The portfolio is rebalanced every week after the first investment period

based on the information available up to the investment date. For each model, the weight

of each fund index is between -1 and 1. We assume λ equals to 1 in Mean-Variance model

and the probability p is 0.05 in enhanced safety-first model. The 0.95-CVaR is considered

in the mean-CVaR model. The historical weekly returns are shown in Figure 5.5.
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−0.06

−0.04
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0.00

0.02

Figure 5.5: The weekly returns of HFRX indices from 2003-2014 .

Portfolio performance in 2008

The realized portfolio returns based on the different models in the out-of-sample period

(2007.12.31-2008.12.31) are plotted in Figure 5.6 and main statistics is reported in Table

5.4. As shown in Figure 5.6, the portfolio returns selected by minimizing 0.95-CVaR

are more volatile. The optimal portfolio returns are very close for Mean-Variance and

safety-first models. The optimal portfolio returns selected by the safety-first model have

the highest mean and smallest standard deviation. The Mean-Variance model gives the

maximum return. As can be observed in figures 5.6, the weekly returns do not vary much
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between these three portfolios for most weeks. The most significant difference is that the

losses are larger for Mean-CVaR and Mean-Variance models in October 2008. For a risk

averse investor, the safety-first strategy is preferred in the financial crisis period.

Portfolio performance in 2013-2014

The second out-of-sample period is chosen from May 2013 to May 2014. From Figure 5.5

we can see that the weekly returns are very stable in this period. Table 5.5 shows that

Mean-CVaR model has the highest return and outperforms Mean-Variance model based on

all the statistics. Both the portfolio sets selected by the Mean-CVaR and Mean-Variance

methods yield a significantly higher return for this period. Both Table 5.5 and Figure 5.7

show that portfolio returns selected by the safety-first model are more stable. Compare

Table 5.4 and 5.5, we find that the average return of portfolios selected by the enhanced

safety-first model in 2008 is even better than that in 2013-2014. Meanwhile, the difference

in rates of mean return in this period is much smaller than during the financial crisis period.

According to Table 5.5, the enhanced safety-first has the smallest daily return, standard

deviation and return spread between min and max returns, while classic Mean-Variance

model yields the best return. The Sharpe ratio of enhanced safety-first model is the largest,

which means the enhanced safety-first model achieves the best risk-adjusted return. For a

risk averse investor, the enhanced safety-first model is the best choice.
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−0.010

0.000
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M-V

Safety-first

Figure 5.6: The realized weekly returns of optimal portfolios in 2008.

5.6 Conclusion

In this chapter, we enhance the safety-first model with standard deviation constraint

and derive an analytic formula by filtering the returns with GH skewed t distribution

and OGARCH. The solution is also given for classical mean-variance model in terms

of parameters in GH skewed t distribution and OGARCH model. Then we compare
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Figure 5.7: The realized weekly returns of portfolio for 2013.4-2014.4 .

the performances of the optimal portfolio selected by Mean-Variance, Mean-CVaR and

enhanced safety-first models in 2008 financial crisis and stable period(2013-2014). The

efficient frontier is also presented. It shows that Mean-CVaR model gives the highest mean

return in the post-crisis period, while the enhanced safety-first model outperforms the

other two models during the financial crisis period. Meanwhile, the enhanced safety-first

model achieves the best risk-adjusted returns in both periods. For a risk averse investor,

the enhanced safety-first model should be considered.
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CVAR(0.95) Mean-Variance Safety-first
Mean 0 0.038 0.071
St. Dev 0.61 0.53 0.22

5% Quantile -0.68 -0.46 -0.39
Min -3.63 -3.10 -0.46
Max 0.47 0.50 0.44

Sharpe Ratio 0 0.072 0.323

Table 5.4: Statistics of realized portfolio returns for the out-of-sample period(2007-2008).
average portfolio return(Mean), standard deviation(St.Dev), worst-case return(Min) are
in percentages.

CVAR(0.95) Mean-Variance Safety-first
Mean 0.046 0.044 0.033
St. Dev 0.29 0.31 0.10

5% Quantile -0.35 -0.39 -0.11
Min -0.56 -0.56 -0.17
Max 1.03 1.03 0.27

Sharpe Ratio 0.158 0.147 0.33

Table 5.5: Statistics of realized portfolio returns for the out-of-sample period (2013-2014).
mean, standard deviation(St. Dev), worst-case return(Min) are in percentages.
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