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This dissertation contains three essays on observable covariates in option pricing. In the first essay,

I propose firm-specific public news arrival from Factiva database as an observable covariate in equity

options market and study how the public news arrival is priced. I first establish the empirical relationship

between the firm-specific public news arrival and jumps in individual equity returns. Subsequently, I

build a continuous-time stochastic volatility jump diffusion model where news arrivals driving the jump

dynamics. When estimated on equity options data for 20 individual firms, the premia placed on jump

frequency and size turn out to be consistent with the theories highlighting both positive and negative

effects of public news arrival.

The second essay, based on a joint work with Peter Christoffersen, Bruno Feunou and Chayawat

Ornthanalai, studies how the stock market illiquidity affects the market crash risk. Our empirical

approach is to estimate a continuous-time model with stochastic volatility and dynamic crash probability

where stock market illiquidity is used as an observable covariate driving the crash probability. While the

crash probability is time-varying, its dynamic depends only weakly on return variance once we include

market illiquidity as an economic variable in the model. This finding suggests that the relationship

between variance and jump risk found in the literature is largely due to their common exposure to market

illiquidity. Our study highlights the importance of equity market frictions in index return dynamics and

explains why prior studies find that crash risk increases with market uncertainty level.

The third essay, based on a joint work with Peter Christoffersen and Bruno Feunou, proposes the

realized jump variation measure constructed from the intraday S&P500 returns data as an observable

covariate that helps pricing of index options. The volatility and jump intensity dynamics in the model

are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because

the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete

time, allowing for straightforward filtering and estimation of the model. When estimated on S&P500

index options and returns the new model performs well compared with standard benchmarks.
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Chapter 1

The Price of News Arrivals:

Evidence from Equity Options

1.1 Introduction

One of the first empirical puzzles found in the financial literature is the leptokurtic distribution of stock

returns. Earlier research tried to explain the puzzle by the so called Mixture of Distributions Hypothesis

(MDH) (e.g., Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983)). MDH conjectures that

trading activities are triggered by randomly spaced arrivals from a latent information process. However,

the biggest problem with the empirical testing of MDH lies in the latent nature of the information process.

The literature has thus largely focused on testing the implications of MDH, namely the volume-volatility

relationship. Instead of relying on the implications of the hypothesis, in this paper, I directly test the

role of specific information process, the firm-specific public news arrival, and how the uncertainty of its

arrival is priced in the market.

To construct a measure of public news arrival, I use one of the most widely used database, Factiva.

For each of the 20 firms in my sample, I construct two measures of public news arrival. The first is a

simple count of the daily number of news articles appearing in the database while the second measures

the news tone associated with individual article by applying the textual analysis technique developed in

Loughran and McDonald (2011).

Large amounts of public news arrival coincides with large discrete movements in daily stock returns.

For example, Microsoft’s stock price dropped by 14.47% on Apr 3rd, 2000 following a judge’s ruling that

Microsoft had violated antitrust laws. Of course, the day came with excessive amount of news articles,

1
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348 news articles in my sample compared to the average news articles per day of 71, reporting the judge’s

ruling. On the theoretical side, Andersen (1996) proposes a modified Mixture of Distributions Hypothesis

where the information arrival induces Poisson-type jumps in returns and finds strong empirical support.

Along these lines, I conjecture that public news arrivals are related to the stock return jumps, rather

than its continuous movements, and I find supporting empirical evidences.

Detecting jumps in stock returns has been one of the most active research area in financial economet-

rics in last decade.1 I employ the method developed in Lee and Mykland (2008) to identify individual

daily stock returns as jump or no jump days. Using the identified jump days, I find strong evidence

linking public news count with the probability of jumps. In particular, the news tone that measures the

tone of each news article, does not have a significant relationship to the occurrence of jumps, but it is

strongly correlated with the size of a jump conditional on its occurrence. This evidence is consistent with

Tetlock (2007) who has found the correlation between pessimistic tones extracted from the Wall Street

Journal and large negative returns. I also find additional evidence from the equity options market using

the slope of the implied volatility surface. Both news counts and news tones are shown to be related

with the IV-SKEW that proxies for the embedded risk-adjusted jump risk.

I then use the findings from the daily returns as a guidance to build a continuous time stochastic-

volatility jump-diffusion model of daily returns, with the goal to study the market price of risk associated

with the public news arrival. The major innovation of the model is to feature a time-varying jump-

intensity where its variation solely depends on the observed public news arrival. By fitting the model

to the daily returns, news arrivals, and equity options prices, I find a significant positive risk premium

associated with the public news innovation while the actual jump size due to the news carries a large

negative risk premium. This suggests that a public news arrival is not viewed as redundant, but rather

viewed as something investors prefer to have. Through this public news interpretation, I am able to

both reconcile and explain the previously documented puzzling positive jump-timing risk premium.

There are mainly two channels for public news and its contents to cause stock returns to jump.

The first channel is by influencing the beliefs of either noise or liquidity traders. The seminal paper by

De Long, Shleifer, Summers, and Waldmann (1990) studies how noise trader risk can explain various

empirical puzzles, while Campbell, Grossman, and Wang (1993) focuses on how sudden changes in

liquidity traders can affect short-term returns. Tetlock (2007) provides empirical evidence consistent

with these theoretical models. On the other hand, public news arrival can be viewed as a resolution

of information asymmetry. If the public news articles do contain information that was only know to a

group of privately informed investors, the arrival of such news instantaneously resolves the information

1For reference, see Huang and Tauchen (2005) and Gilder, Shackleton, and Taylor (2014) for concise summary.



Chapter 1. The Price of News Arrivals: Evidence from Equity Options 3

asymmetry, thus causing the stock price to jump.

Furthermore, it is not clear how the public information should be priced in the market. If the noise

trading effect is true, then public information is nothing more than exogenous shocks that cause short-

term market movements that in turn quickly revert to the fundamental, hence should carry a negative

risk premium. On the other hand, if the public information indeed resolves the information asymmetry,

then it should carry a positive risk premium as shown in Easley and O’hara (2004). My findings suggest

that, at least when using Factiva based news counts and contents as a proxy for public information,

both theories co-exist in the market. Specifically, the positive jump-timing risk premium can be viewed

as evidence of resolution of information asymmetry via a public news arrival story. On the other hand,

the significantly negative jump-size premium can be viewed as a negative risk premium associated with

risk aversion against the effect of noise trading induced price jumps. Thus, I conclude that public news

arrival is an important economic factor that is strongly priced in the market, and the resulting evidences

are consistent with both views from the previous theories.

This paper is perhaps most closely related to the work by Engle, Hansen, and Lunde (2012). They

use the same news dataset from Factiva and study whether the news information can improve the

forecasting power of daily realized volatility. In contrast, I emphasize the contemporaneous relationship

between news arrival and stock return jumps. Also, I focus on using news arrivals as an exogenous

observable to extract the risk premium associated with it instead of forecasting. In this respect, Lee

(2012)’s work serves as good evidence why I focus on jumps. Lee (2012) finds that there is a higher

chance of observing intra-day jumps in returns during scheduled firm-specific news announcement times.

I follow the same intuition, with the notable difference that I study the impact of a daily time-series of

news arrival instead of focusing on specific events. In other words, I am specifically interested in the

role played by the unexpected and mostly unscheduled component of public news arrival.

There exists an extensive amount of literature studying the time-varying jump-intensity in returns

and options prices.2 The typical approach, mostly taken for its analytical tractability, is to assume an

affine functional form for the jump-intensity in the latent variance process.3 However, this approach

does not allow for separate interpretations of the diffusive variance risk premium and jump-timing risk

premium because two come from the same source. Particularly, two risk premiums are forced to have the

same sign, which is not a required restriction. Perhaps due to this analytical complexity, the jump-timing

premium has been mostly neglected and assumed away from in most studies. My model contributes to

2Too cite few, see Andersen, Benzoni, and Lund (2002), Eraker (2004), Broadie, Chernov, and Johannes (2007),
Christoffersen, Jacobs, and Ornthanalai (2012), Ornthanalai (2014), and Andersen, Fusari, and Todorov (2015b).

3Maheu and McCurdy (2004), Santa-Clara and Yan (2010) and Maheu, McCurdy, and Zhao (2013) are notable excep-
tions where the jump-intensity process is modeled as a separate latent process.
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this literature by proposing to bypass this issue by allowing a purely public news dependent process that

enters the jump-intensity equation, thus allowing one to identify the two premiums separately.

In terms of methodology, my paper is also related to the literature on explaining derivatives prices

using economic co-variates. Usage of stochastic co-variates has been a popular approach in the credit

derivatives literature.4 There are way fewer studies linking economic co-variates to the pricing of options,

perhaps due to the different modeling approach and difficulties associated with assigning appropriate

co-variates. I contribute to this literature by proposing an observed news process as a possible candidate

for an economic co-variate.

The remainder of the paper is organized as follows. Section 2 describes the dataset used for the

analysis and provides preliminary non-parametric evidence from both equity and options markets. In

Section 3, I develop the structural model that builds on the findings from Section 2 and discuss the

estimation strategy. Section 4 focuses on the resulting implications from the estimated parameters and

its properties. Section 5 concludes.

1.2 Data and Non-Parametric Analysis

In this section, I first describe the data sets used in the paper. I then perform non-parametric analysis

to look for the evidence that links firm-specific news arrivals to jumps in returns.5 The result not only

indicates that firm-specific news arrival is related to return jumps, but also provides good intuition on

how the parametric models should be structured.

1.2.1 Data

The main variable of interest is firm-specific news arrival. The focus of this paper is placed on the

role played by the daily arrival of firm-specific news instead of specific corporate events with large news

flows, including both scheduled and unscheduled. Therefore, I require a comprehensive database that

contains as many firm-specific news articles as possible. In this regard, I use Factiva database to search

for comprehensive list of news articles.6 Due to the technological advances such as Internet, the number

of daily news articles have dramatically increased since the early 2000s. For this reason, I start my

sample period on January, 2000 and ends on July, 2012 to avoid issues with obvious trend in news data.

Factiva database conveniently identifies each news article by its own ticker, which allows me to easily

4See Altman (1968), Shumway (2001), Duffie, Saita, and Wang (2007), Dionne, Gauthier, Hammami, Maurice, and
Simonato (2011), etc.

5The dataset and most of non-parametric analysis in this section are taken from Jeon, McCurdy, and Zhao (2016).
6Bajgrowicz and Scaillet (2011) and Engle, Hansen, and Lunde (2012) also use Factiva database.
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merge CRSP database with Factive news articles at daily level by its unique ticker. I identify 20 firms

with the most amount of news articles for this study as the firms with smaller variation in its amount

of daily news flow would not provide as much reliable conclusions as the firms with large amount of

news flows. For each firm, I simply count the number of news articles with its ticker that appears in the

Factiva database.7 Table 1.1 shows descriptive statistics of daily news counts for 20 selected firms. The

mean number of news articles observed each day is around 44 while median number is 32, indicating

that significant amount of weight is placed on the large news counts outlier. Table 1.1 also shows that

daily news counts are highly volatile. Standard deviation of each firm is very large, sometime being

much bigger than the mean, indicating that there are significant variation associated with the amount

of news flowing into the equity market.

Besides the absolute number of news articles, its individual content might be also relevant for in-

vestors. To quantify the individual content, I rely on the recent development in textual analysis to

measure the tone of each individual news articles. Due to the limitation of computing power and re-

sources, I only download the first paragraph of each article. Then, I count the number of positive and

negative words used in the first paragraph using the words list provided by Loughran and McDonald

(2011). The final measure of news tone of each individual article is simply the difference between the

percentage of positive and negative words. To ensure that longer articles carry more weight, I value-

weight them by the number of words in each article everyday. Table 1.2 shows descriptive statistics of

daily news tones for 20 selected firms. News tone measure of 0 thus corresponds to the neutral news

tone day that had equal amount of positive and negative wordings. The news tone is negative in average

with an exception of IBM and Cisco. Similar to the news counts reported in Table 1.1, the news tones

are also highly volatile.

1.2.2 Evidences from Daily Jump Detection

In this section, I show preliminary evidence on the relationship between firm-specific news arrivals and

daily return jumps. In order to classify each day as jump day or no jump day, I rely on the non-parametric

method developed in Lee and Mykland (2008). Their method first normalizes each return observation

by the non-parametric spot variance estimator, and then it is being compared to the specific quantiles

provided by the limiting distributions of interest.8 To be conservative, I consider four different statistics

that differ in its significance level and asymptotic distributions. Specifically, J99 and J95 denote the

7Ederington and Lee (1993), Mitchell and Mulherin (1994), and Berry and Howe (1994) show that simple count of
number of news articles is a good measure of public information arrival.

8I have used the corrections pointed out by Gilder, Shackleton, and Taylor (2014) in deriving the quantiles of the
asymptotic distribution.
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jumps detected at 99% and 95% significance level using Gumbel distribution as in Lemma 1 of Lee and

Mykland (2008), while J099 and J095 denote the jumps detected at 99% and 95% significance level using

more relaxed normal distribution as in Theorem 1 of Lee and Mykland (2008).9

Having identified the jumps at daily level for individual securities, I first run the following pooled

logit regression to test whether the jumps are more likely to occur on days with more news arrivals.

NewsCount and NewsTone denote the daily count and tone of news articles described in the previous

section, where I standardize them to have same mean and standard deviation across 20 firms.

logit(pit) = a+ b1 ×NewsCountit + b2 ×NewsToneit + b3 × reti,t−1 + εit (1.1)

Table 1.3 reports the pooled logit regression result for four different threshold of detecting jumps.

Same findings hold across all four cases: more news counts are associated with higher probability of

having jump while news tone does not have statistically significant relationship to the probability of

jump. The result shows that jumps are more likely to occur when excessive amount of information flows,

regardless of its actual content.

Next, I further explore the role of news tone given that it does not affect the occurrence of jumps

itself. Tetlock (2007) shows that the level of news pessimism extracted from Wall Street Journal is

related to the downward pressure on market prices. In other words, the news tone is linked to the size of

the market price movements, or jumps. Motivated by this, I run the following regression to test whether

the news tone matters for the size of jumps conditional on having jumps.

rit|Jump = a+ b1 ×NewsCountit + b2 ×NewsToneit + εit (1.2)

For each of four jump detection statistics, I first take subsamples classified as jump days only. Then,

I assume the entire daily return of those days are due to the jump component. Table 1.4 reports the

OLS regression result. First panel provides the estimates of coefficients when entire subsample of jump

days are used. Again, no qualitative differences are found among four different jump detection statistics.

NewsTone variable shows statistically significant positive coefficient, meaning negative NewsTone comes

with negative jump returns which is consistent with Tetlock (2007). Coefficients estimates for NewsCount

shows much weaker statistical significance and even has a negative sign. The potential issue with

NewsCount variable is that it can take only positive values while the dependent variable, size of jump

9Each of four statistics {J99, J95, J099, J095} thus identifies the jump day if the absolute value of daily return is above
{5.1024, 4.4881, 3.2283, 2.4565} times of the daily spot volatility.
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return, can be both positive and negative. Thus, I further divide the jump days into two subsamples,

one with positive jump returns and other with negative jump returns.

Middle panel reports the result for positive jumps only subsample. First and most interestingly,

the significance associated with NewsTone variable disappears and the sign becomes negative. In other

words, the actual content of news matters less for positive jump returns and actually it even reduces

the size of jumps, given that NewsTone will be in general positive on those days. Second, NewsCount is

now strongly related with the size of jumps, carrying a statistically significant positive coefficient.

Bottom panel shows the coefficient estimates on negative jumps only subsample. In this case, all

coefficients for both NewsTone and NewsCount are statistically significant at 1% level. The signs of

estimated coefficients for NewsTone and NewsCount are positive and negative, respectively, indicating

that pessimistic news tone and more number of negative news come with larger negative returns. Looking

at the size of the coefficients, NewsTone dominates the NewsCount in its impact on the jump returns.

Using the estimated coefficients from the J99 statistic in column (1), one standard deviation decrease in

NewsTone decreases jump size by 1.47% while one standard deviation increase in NewsCount decreases

jump size by 0.66%.

The subsample results are largely consistent with the findings by Chen and Ghysels (2011). Using

intra-day returns as the sign of news, they find that moderately good news actually reduces the volatility

while bad news and very good news increase volatility. News tone result implies the same conclusion

that negative news tone increases volatility via having larger jump sizes while positive news actually

reduces, or does not impact, volatility.

1.2.3 Evidences from Implied Volatility

Having established the linkage between news measures and jumps in the previous section, I now move

on to find evidences from the options market. Options market reflects investor’s risk-adjusted expec-

tation, thus reveals forward-looking information. The most well-known pattern of implied volatility is

perhaps around the scheduled earnings announcement (Rogers, Skinner, and Buskirk (2009)). Empiri-

cally, implied volatility spikes a day before the earnings announcement, then shows a slight drop on the

announcement date, and large drops follow. One way to think about earnings announcement is to classify

it as a day with large information arrival, as the number of news counts is excessively high around the

earnings announcement date. However, there is a fundamental difference between earnings announce-

ment date and other dates with large news flows. That is, the timing of earnings announcements is

known in advance, while other large news flows come at surprise without fixed date in advance.
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Figure 1.2 compares the behavior of implied volatility in [-5,+5] days window around scheduled

earnings announcement date and unscheduled large news flow dates. The top panel plots the average

one-month maturity at-the-money (ATM) implied volatility within 5 days window around the quarterly

earnings announcement dates. Similarly, in the bottom panel, I plot the average ATM implied volatilities

for four dates each year with largest news count that does not belong to within 5 days of quarterly

earnings announcement dates. First, top panel reveals consistent pattern with what was reported in

the literature, both peak a day before and a large drop afterwards, around the scheduled earnings

announcement dates. On the other hand, bottom panel shows very different pattern. The level of

average implied volatility now peaks on the day of large news flow instead of the day before. Also, there

is no large drop in average implied volatility afterwards, but it rather persists. With this interesting

differences between the impact of scheduled and unscheduled news in mind, I move on to study how the

jump risk component in equity options is related to the public news arrival.

To measure perceived jump risk embedded in equity options prices, I choose the steepness of volatility

smirk, or implied volatility skew (IV-SKEW), as the measure of investor’s risk aversion to expected

negative jumps. This measure was explored in Xing, Zhang, and Zhao (2010) where they show the

predictability of cross-sectional returns using IV-SKEW. I closely follow their definition of IV-SKEW

where I use Black-Scholes delta as the definition of moneyness where Xing, Zhang, and Zhao (2010) uses

the ratio of the strike price to the stock price. To construct IV-SKEW measure, I first obtain end-of-day

option prices and implied volatility as well as Black-Scholes delta from IVY OptionMetrics database for

20 firms in my sample. The sample period is again from Jan, 2000 to Jul, 2012. Then, for each day with

options traded, I choose OTM puts with maturity being closest to 30 days and BS-delta value being

closest to -0.25. Similarly, I choose ATM calls by looking for options having maturity closest to 30 days

and BS-delta closest to 0.5. The final daily measure of IV-SKEW is computed as the difference between

the implied volatilities of average OTM puts and ATM calls selected.

IV-SKEWit = IVOTMP
it − IVATMC

it (1.3)

The famous volatility smirk puzzle basically translates to this measure of IV-SKEW being positive.

I also find this in my sample where the average daily IV-SKEW is 3.86%. Larger IV-SKEW reflects

larger risk-adjusted expected jump risk for investors. Hence, I next run the simple linear regression of

news variables from the previous section on the IV-SKEW. To avoid noise associated with daily measure

of IV-SKEW, I average them at monthly level as well as all explanatory variables. Following equation

summarizes the regression model used.
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IV-SKEWit = a+ b1NewsCountit + b2NewsToneit + b3ATM IV + εit (1.4)

Table 1.5 summarizes the result where column (1), (2), and (3) report different combinations while

column (4) reports the full model result. The resulting estimates of coefficients are all statistically

significant in all models and generally agrees with the results from Table 1.4. For instance, NewsCount

is positively related with the IV-SKEW, meaning that more news comes with steeper smirk. Also note

that sign for NewsTone variable is negative, indicating pessimistic news content also makes IV smirk

steeper. In terms of its magnitude, one standard deviation increase in NewsCount will increase IV-

SKEW by 0.17% while one standard deviation decrease in NewsTone will increase IV-SKEW by 0.61%.

Given that IV-SKEW embeds both information about the occurrence and size of jumps, where it is hard

to disentangle them non-parametrically under the risk-neutral measure, the results are largely consistent

with the findings from Table 1.3 and Table 1.4.

Having preliminary evidences above established, I next move on to build a reduced-form model that

features findings of this section. The goal of reduced-form study is to identify the prices associated with

the inherent news arrival process, which is shown to be related to stock return jumps.

1.3 Reduced-Form Model of News and Jumps

In this section, I build a reduced-form model of stock price process that features the empirical findings of

the previous section. Specifically, I embed the news process, to be filtered from the observed information

from daily news counts and news tones, in the standard affine stochastic volatility jump-diffusion model.

Then, I discuss the risk-neutralization of the process that delivers closed-form option pricing formula.

Lastly, I outline the two-step filtering process used to estimate parameters and infer the latent states of

the proposed dynamics from the observable data.

1.3.1 Reduced-Form Model of Stock Price Dynamics

I begin by specifying the process governing the log stock variance, spot variance, and news under the

physical measure (P). I use St, Vt, and It to denote stock price, spot variance, and spot news at time t.

The following dynamics fully describe the process of three factors under the physical measure P:
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d log(St) = (µ− 1

2
Vt − ξλt)dt+

√
Vt(
√

1− ρ2dW 1
t + ρdW 2

t ) + qtdNt (1.5)

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t (1.6)

dIt = κI(θI − It)dt+ σI
√
ItdW

3
t (1.7)

where µ denotes the return drift of individual equity. For simplicity, I treat µ as a constant and fix

it at the sample average of daily returns throughout the paper. All Brownian motions dW i
t , i = 1 to 3

are assumed to be independent to each other.

I assume standard square-root process for the variance and news process, Vt and It, as in Heston

(1993). The log stock price log(St) also follows standard jump-diffusion process with qtdNt representing

the compound Poisson distributed jump process with time-varying intensity λt. Each individual jump is

assumed to be independent and identically distributed normal distribution with mean jump size η and

jump standard deviation δ. The jump compensation term ξ is set to be equal to e(η+ 1
2 δ

2) − 1 to ensure

log stock price is a martingale process.

What is new to the model is the specification of jump intensity, λt, dynamics. Standard assumptions

made in the literature is to define it as either a constant or an affine function of spot variance Vt.
10 In

this paper, I take different approach to use observed firm-specific news flow to anchor the jump intensity

in contrast to using latent process Vt. The empirical findings of the previous section ensures the validity

of this specification which I re-confirm in the reduced-form estimation later. To keep the model within

affine class for the analytical tractability, I impose the following affine functional form of jump intensity:

λt = γ0 + γ1It (1.8)

where γ0 is a constant term that captures the residual of jump-intensity not explained by the news

process It. This specification belongs to the two-factor affine stochastic volatility jump-diffusion frame-

work and thus the option pricing can be done analytically using the general result of Duffie, Pan, and

Singleton (2000).

Note that I only model the dynamics of individual firm’s returns, thus abstracting away from the

potential factor structure in returns.11 I do so because the paper focuses on firm-level dynamics and

10For example, see Pan (2002) and Bates (2006).
11The factor structure and pricing of idiosyncratic risk in equity options markets have been started to gain attention

only recently. See Christoffersen, Fournier, and Jacobs (2015), Gourier (2016), and Bégin, Dorion, and Gauthier (2016)
for the recent development in this subject.
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risk premium only, instead of at portfolio level. Thus, the loss by not considering the potential factor

structure is rather minimal while the gain from analytical tractability is huge.

1.3.2 Risk Neutralization

The model has three sources of diffusive risk represented by Brownian increments and one source of

jump risk. I impose linear form of price of risk for three diffusive Brownian motions to preserve same

square-root functional form under the risk-neutral measure as in Heston (1993). As discussed in Pan

(2002), the pricing kernel for jump risk under the incomplete market can take virtually any arbitrary

form by allowing it to change its entire distribution.

In this paper, I only consider two sources of jump risk premium, namely jump-timing and jump-

size premium. Because the jump intensity λt is driven by the news process that is independent of the

diffusive variance process Vt, the risk premium imposed on the Brownian motion dW 3
t , denoted by λI ,

effectively controls the jump-timing premium by allowing risk-neutral jump-intensity to differ from its

physical counterpart. Lastly, jump-size premium is introduced by simply shifting the mean of normally

distributed individual jumps by the amount of ηQ − η. Below summarizes the change of measure where

λV and λI denote the diffusive risk premium placed on variance and news, respectively.

dW 2,Q
t = dW 2

t + λV σ
√
Vtdt (1.9)

dW 3,Q
t = dW 3

t + λIσI
√
Itdt (1.10)

ηQ = η + (ηQ − η) (1.11)

I do not specify the risk premium associated with the Brownian motion dW 1
t associated with log

stock price as it has to be fixed to have risk-neutral drift equal to the risk-free rate r. Under this change

of measure, the risk-neutral dynamics preserves the following same functional form:

d log(St) = (r − 1

2
Vt − ξQλt)dt+

√
Vt(
√

1− ρ2dW 1,Q
t + ρdW 2,Q

t ) + qQt dNt (1.12)

dVt = κ∗(θ∗ − Vt)dt+ σ
√
VtdW

2,Q
t (1.13)

dIt = κ∗I(θ
∗
I − It)dt+ σI

√
ItdW

3,Q
t (1.14)

where the mapping between physical and risk-neutral parameters are given by:
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κ∗ = κ+ λV σ (1.15)

κ∗I = κI + λIσI (1.16)

θ∗ =
κθ

κ∗
(1.17)

θ∗I =
κIθI
κ∗I

(1.18)

1.3.3 Filtering and Estimation

As all latent state continuous models do, my model also needs to jointly estimate the parameters and

filter the latent states. Given that my focus is on identifying the risk premiums associated with news

process, I follow the approach from Christoffersen, Heston, and Jacobs (2013) and perform a sequential

estimation.12 Specifically, the estimation procedure is divided into two steps. The first step identifies all

parameters and spot states under the physical measure only using the daily returns and observed news

data. Then, I take the physical parameters and states as given in the second step and only estimates

the risk premium parameters using equity options data. Pros of this approach is that I can avoid the

difficulty of weighting the likelihood between physical and risk-neutral counterparts. Meanwhile, the

obvious cons of this approach is that it is not statistically efficient as the joint estimation procedure.

Since my focus is placed heavily on the qualitative outcome of resulting pricing kernel estimates rather

than exactly quantifying the risks, I argue that sequential estimation procedure is better-suited for my

model.

Estimated under the Physical Measure

I first define the state-space system by discretizing P-measure equations (1.5), (1.6), and (1.7) using

Euler scheme at daily interval. The discretized state-space equations are written as below:

rt+1 = (µ− 1

2
Vt − ξλt)∆t+

√
∆tVt(

√
1− ρ2ε1t+1 + ρε2t+1) +

Nt+1∑
j=0

yj,t+1 (1.19)

Vt+1 = Vt + κ(θ − Vt)∆t+ σ
√

∆tVtε
2
t+1 (1.20)

It+1 = It + κI(θI − It)∆t+ σI
√

∆tItε
3
t+1 (1.21)

Nt+1 ∼ Poisson(γ0 + γ1It) (1.22)

12Christoffersen, Fournier, and Jacobs (2015) and Andersen, Fusari, and Todorov (2015b) take the opposite approach by
starting from the risk-neutral measure and sequentially estimate risk premium parameters by matching it to the physical
measure.
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where the innovation terms εit+1 for i = 1 to 3 are i.i.d. standard normal random variables, the

counting process Nt+1 denotes the number of jumps between time t and t+ 1 = t+ ∆t, and individual

jump terms yj,t+1 are i.i.d. normally distributed random variables with mean η and standard deviation

δ. I set the daily time interval to ∆t to be 1/252 so that all parameters are expressed in annual terms.

Under the physical probability measure, I have three observables, namely daily returns, news count,

and news tone. In order to simplify the filtering procedure while maintaining the empirical findings from

the previous section, I first construct the tone-adjusted news count measure as follows:

Ĩt = NewsCount× exp(−NewsTone) (1.23)

The intuition behind this measure is as follows. It was shown that negative news tones emphasize the

size of jumps where positive news tones reduces the size of jumps (although statistically less significant)

in Table 1.4. Since the size of individual jumps is fixed to be constant, η, in the model, I effectively

embed the effect of news tone on the jump size into the news count measure by the above adjustment.

The negative news tone thus results in higher tone-adjusted news count Ĩt as exp(−NewsTone) is greater

than 1 when NewsTone is negative, and positive news tone will lower the tone-adjusted news count in

the same fashion.

After the adjustment, I end up with two observables under the physical probability measure, daily

log-returns rt+1 and tone-adjusted news count Ĩt. They are linked to the state equation by the simple

measurement relationship that the daily log-returns are observed without an error and the news process

It is observed with normally distributed measurement error (Ĩt = It+εmt ). Then, I estimate the physical

parameters and filter the latent states at the same time by maximizing the likelihood of observing daily

log-returns and tone-adjusted news count via Particle Filtering (PF) algorithm.

Pricing Kernel Parameter Estimation

Given the estimated physical parameters and latent states from the previous section, I next estimate

parameters associated with pricing kernel where I treat all else being fixed. The end-of-day options

prices for 20 firms in the sample are obtained from OptionMetrics database. I follow literature and pick

only Wednesday prices in order to avoid potential issues using daily data.13 Commonly-used option data

filters, such as strictly positive volume and in-violation of put-call parity, are applied to raw data. For

each day, I pick options with maturity between 15 and 250 calendar days to ensure only liquid options

13I use the previous business day if Wednesday turns out to be holiday. See Dumas, Fleming, and Whaley (1998) for
more detailed description of advantage using Wednesday options data.
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are considered. Lastly, I pick six strike prices with the highest trading volume for each fixed maturity

every Wednesday.

Since I am dealing with the individual equity options that are American, I follow Broadie, Chernov,

and Johannes (2007) and convert them into the corresponding European options prices.14 All put options

are converted into corresponding call options via put-call parity for the ease of implementation later.

This leaves us with a total of 191,625 options for 20 individual firms.

The pricing kernel equations defined in (1.9), (1.10), and (1.11) mean that there are only three extra

parameters to be estimated once physical parameters and states are fixed. The estimation is performed

by minimizing vega-weighted root mean squared error (VWRMSE) proposed by Trolle and Schwartz

(2009). It is based on simplifying assumption that vega-weighted option errors are i.i.d. normally

distributed. Thus, I estimate three parameters ΘQ = {λV , λI , ηQ − η} by minimizing the following

VWRMSE-based likelihood:

Θ̃Q = arg min
Θ
−1

2

N∑
i=1

[log(VWRMSE2) + e2
i /VWRMSE2] (1.24)

VWRMSE =

√√√√ 1

N

N∑
i=1

e2
j =

√√√√ 1

N

N∑
i=1

((CMkt
i − CMod

i (Θ))/BSVMkt
i )2 (1.25)

where CMkt
i , CMod

i , and BSViMkt denote market price of call option, model-implied price of call

option, and market-implied Black-Scholes Vega, respectively.

The option pricing formula is available in closed-form up to the Fourier transform, as the model falls

into the class of affine stochastic-volatility jump-diffusion model. The following proposition summarizes

the characteristic function of the log-spot stock price under the physical measure. Since the model

preserves identical functional form under the risk-neutral measure, the same formula is applied with the

appropriate parameter mappings.

Proposition 1 Denote the risk-neutral characteristic function of log-spot price by

Et[exp(iu log(St+τ )])] = Siut f(u, τ, Vt, It). Then function f is given by

f(u, τ, Vt, Lt) = exp(A(u, τ) +B1(u, τ)Vt +B2(u, τ)It)

A,B1, and B2 are given as the solution to the following Ricatti ODE with the initial conditions A(0) =

14OptionMetrics provides implied volatility computed using CRR binomial-tree model, zero-rates, and ex-post divided
rates that are sufficient for this conversion.
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B1(0) = B2(0) = 0.

dA

dτ
= (r − ξγ0)iu+ γ0θu + κθB1 + κIθIB2 (1.26)

dB1

dτ
= −1

2
u(i+ u)− (κ− ρσiu)B1 +

1

2
σ2B2

1 (1.27)

dB2

dτ
= γ1θu − γ1ξiu− κIB2 +

1

2
σ2
IB

2
2 (1.28)

where θu = exp(θiu − 1
2δ

2u2) − 1. All three ODEs have closed-form analytical solution similar to the

Heston (1993)’s expression.

Proof. Direct application of Duffie, Pan, and Singleton (2000) result.

Once the characteristic function is available in the closed-form, European call options can be valued

using the following formula following Heston (1993).

Ct = StP1 −Ke−rτP2 (1.29)

where the P1 and P2 probabilities are computed using Fourier inversion:

P1 =
1

2
+

1

π

∫ ∞
0

Re[
eiu log(

St
K )f(u+ 1, τ, Vt, It)

iuSterτ
]du (1.30)

P2 =
1

2
+

1

π

∫ ∞
0

Re[
eiu log(

St
K )f(u, τ, Vt, It)

iu
]du (1.31)

The integrands in the above expression vanish quickly and can be computed effectively using a numerical

integration scheme such as quadrature.

1.4 Estimation Results

1.4.1 Physical Parameter Estimates

Table 1.6 reports parameter estimates for 20 firms in the sample. For brevity, I omit the parameter

estimates associated with the information process It.

The speed of mean-reversion parameter κ for the diffusive variance Vt has average of 1.90 in average.

Cisco has the slowest mean-reversion speed having estimated κ equal to 0.10 while Pfizer mean-reverts

the fastest with κ being equal to 3.99. The magnitudes are in general consistent with those reported in

the prior literature including Dubinsky and Johannes (2006) and Christoffersen, Fournier, and Jacobs
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(2015). The long-run mean level of diffusive variance θ has average estimate of 0.084, or 28.98% of

annual volatility. Overall, estimates for diffusive variance process are mostly consistent with previous

studies.

The estimates of individual jump-distribution parameters are summarized by its mean η and standard

deviation σ. Average estimate of η is 0.3% where it varies from -5.2% of Merck & Co. to 8.1% of Amazon.

In average, it can be seen as an evidence that positive and negative jumps are equally likely for individual

equity returns. Note that my model does not feature separate positive and negative sized jumps, hence

the estimated average jump-size is close to 0. Along the same intuition, the expected standard deviation

of individual jumps must be large. This is indeed the case, the average estimated δ is 8.2%, enormously

larger than the mean.

The parameters of focus in this paper are γ1 that measures the relationship between the news process

It and jump-intensity λt. Estimated parameter γ1 is positive in all 20 firms which is consistent with

the previous non-parametric findings that more information comes with higher probability of jumps. In

terms of magnitude, the average γ1 is 0.072. Given that average It in the entire sample is 47.45, this

roughly translates to 3.4 jumps per year explained by the news process It. The average total number

of jumps per year is then given by γ0, which is 1.11 in average, plus news induced jumps. Thus, news

process carries the first-order importance in explaining jumps in which roughly 75% of the time-varying

jump-intensity is captured by the news.

Overall, physical parameter estimates emphasize the benefit of having news process, which is filtered

from observable public news arrival data, in capturing time-varying jump-intensity just using physical

observables. Having established the estimates and states, I next discuss the pricing kernel estimates,

which is the central findings of this paper.

1.4.2 Pricing Kernel Parameter Estimates

Table 1.7 reports estimates of three pricing kernel parameters defined in equation (1.9), (1.10), and

(1.11) for 20 firms in the sample. Three parameters λV , λI , and ηQ − η each represents the diffusive

variance risk premium, news risk premium, and jump-size risk premium.

The variance risk premium (VRP) is arguably one of the most actively researched topic in recent

finance literature. The significantly negative variance risk premium, often measured by the difference

between physical realized volatility and risk-neutral volatility such as VIX, is found in index options

market. However, relatively little is known about the VRP at individual firm levels. Existing studies

such as Carr and Wu (2009) and Drissen, Maenhout, and Vilkov (2009) have found much smaller amount
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of VRP in individual firm levels that are sometimes indistinguishable from being zero. In this paper,

rather than trying to pin down the exact mechanisms behind why individual variance risk premiums are

smaller, I focus on extracting risk premium components involving news process and studies its further

implications.

The estimated diffusive variance risk premium parameter λV is in mostly negative with an average

value of -0.119. This value is much smaller than what was estimated for index options market in the

prior literature.15 It is also consistent with the prior non-parametric findings documenting much smaller

magnitude of variance risk premium in individual equity options. For instance, Carr and Wu (2009) finds

only small portion of their sample firms exhibit statistically significant variance risk premium estimate.

Drissen, Maenhout, and Vilkov (2009) also finds that large portion of their sample cannot reject the null

of zero variance risk premium. Overall, the estimated diffusive variance risk premium is consistent with

the prior findings.

Recall that there are two distinct risk premiums associated with the jump component, namely jump-

timing risk premium λI and jump-size premium ηQ−η. The unique feature of my model is that estimated

pricing kernel jointly identifies these two parameters. The estimated jump-timing risk premium λI is

mostly positive with a single exception of Wal Mart, averaging to the value of 1.951 across 20 firms. What

this means is that instead of having a negative risk premium on the jump-timing, there is a large positive

risk premium associated with the jump-timing. In other words, risk-neutral world has higher probability

weight on the state of the world with smaller number of jumps. This is highly counter-intuitive, because

risk-averse investors do not like jumps. Instead, estimated result implies that risk-averse investors favor

having more jumps.

This puzzling finding was acknowledged in the prior literature that studied index options. For

instance, in her seminal paper, Pan (2002) (Section 5.2) found that jump-intensity estimates become

smaller when it was allowed to vary. Aı̈t-Sahalia, Karaman, and Mancini (2015) (Section 5.3), using

OTC variance swap data, has also found this positive jump-timing premium and concluded it as an

evidence of limited ability of estimating flexible change of measure. My result, although estimated using

individual equity options, is consistent with their findings. In particular, I used observed news process

as an exogenous identifier of jump-intensity in order to circumvent the problem of limited ability in

estimating general pricing kernel.

In order to explain the positive jump-timing premium, I rely on two arguments. First, my pricing

kernel jointly identifies the jump-timing and jump-size premium. Looking at the estimated jump-size

15For example, Christoffersen, Fournier, and Jacobs (2015) reports estimated λV to be -1.48 without jumps in the index
returns process.
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risk premium parameter ηQ − η, it is found to be largely negative with a single exception of Cisco. The

average jump-size premium is very large being -5.4% where the average jump-size under the physical

measure was found to be only 0.3% in Table 1.6. Thus, aggregated jump-risk premium still remains

negative once both timing and size premiums are considered. Therefore, I interpret the result as a

decomposition of individual equity jump risk premium, rather than an evidence of positive jump risk

premium. Second, recall that the source of jump-timing, or jump-intensity, in my model solely comes

from the news process It. Thus, resulting estimates of the jump premiums have a direct interpretation

in terms of how investors view news uncertainty. The fact that jump-timing being positive implies that

investors prefers the state of the world with more news arrivals. On the other hand, the negative jump-

size premium implies that investors are really afraid of having large negative jumps in returns due to

the news arrival. Putting these together, I conclude that news is viewed as preferable to investors once

the negative impact is accounted for.

To engage economic interpretation of the findings, I consider two channels for public news to cause

jumps in equity returns. The first channel argues that sudden arrival of massive amount of public in-

formation triggers the rapid increase in the noise or liquidity trading activity via distorting their belief.

Other possible channel is that the arrival of public information comes together with the resolution of

information asymmetry, thus resulting in sudden movements in the equity price. Both channels have

same implications that public news arrival is related with return jumps, but have opposite interpretation

in terms of risk premium. If the public information merely serves as a channel to increase noise trading

activity, it should be negatively priced as it only increases potential jump risk faced by investors. On the

other hand, if it indeed resolves the information asymmetry between privately informed and uninformed

investors, it should be positively priced. Indeed, Easley and O’hara (2004)’s noisy rational expectations

equilibrium model implies that firms facing higher information asymmetry requires higher return. Em-

pirically, Zhao (Forthcoming) shows this is true by measuring firm’s information intensity by its form

8-K filing frequency.

My findings are consistent with both theories. The somewhat puzzling positive jump-timing risk

premium associated with the positive estimates of λI can be explained by the resolution of information

asymmetry story. Investors seek to have more public information, although it can cause prices to jump,

because it resolves the potential information asymmetry. On the other hand, they do not like public

information to increase the noise trading activity and cause returns to jump, especially negatively signed

jumps, thus placing more subjective probability weight on the state of the world with large negative

jumps in returns. Therefore, the estimated jump-size risk premium parameter ηQ−η is largely negative.

In recent article, Han, Tang, and Yang (2016) theoretically studies conflicting role of public information
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and shows that public information improves market liquidity but at the same time can harm price

efficiency. Thus, their result is perhaps most closely related to my results that document both positive

and negative implications of public information arrival.

Overall, the findings of this section highlights the importance of separating the precise source of

jump risk premium. In future research, it would be interesting to study the quantitative implications of

the estimated parameters in the context of noisy rational expectations equilibrium model featuring both

positive and negative effect of public news arrival.

1.5 Conclusion

I first study the role of firm-specific public news arrival on jumps in equity returns. Using comprehensive

news data from Factiva database, I find news to be strongly related with jumps in both physical and

risk-neutral measures. I then estimate a continuous-time model with stochastic volatility and news

driven jump-intensity. In particular, the variation in probability of jump is driven by the observable

news process instead of latent state variables. The model is estimated in sequential fashion to ensure the

identification of risk premium parameters associated with news. Resulting estimates reveal an important

finding: jump-timing risk is positively priced while jump-size risk is significantly negatively priced. I

interpret this result as investor’s preference for having more public news arrivals while disliking the

potential large negative returns news can induce. Thus, public news is not redundant and it carries

significant risk premium. The question of exact source of news arrival risk premium is left unresolved

and is left as a venue for future research.
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Table 1.1: Summary Statistics of News Counts. 2000-2012

Summary Statistics

Company Name Total Mean Median Std. Dev.

Microsoft 325,150 71.0 92 53.4

GE 265,302 57.9 72 82.9

IBM 165,213 36.3 45 31.2

Chevron 106,356 23.7 29 21.8

UTC 53,809 12.6 14 13.1

Pfizer 111,363 24.7 29 26.5

Johnson & Johnson 103,271 23.3 26 26.5

Merck & Co. 51,170 12.3 12 26.2

Disney 160,245 34.9 41 15.5

JP Morgan 232,971 51.2 63 48.2

WalMart 165,220 36.0 43 100.4

American Express 54,216 12.3 13 83.6

Intel 171,146 37.8 41 17.5

Bank of America 202,898 44.9 45 86.0

Verizon 159,291 35.8 42 113.6

AT&T 139,631 31.0 37 99.3

Cisco 113,818 25.4 29 78.4

Yahoo 85,902 19.6 20 30.9

Amazon 60,519 13.6 14 17.5

Ebay 73,672 16.5 19 18.3

Total 3,303,317 44.3 32 67.9

This table reports summary statistics of daily news counts downloaded from the Factiva database. The

first column reports the total number of news articles for each firm during the sample period. The last

three columns report the daily mean, median, and standard deviation of news counts for each firm. The

sample period is from January 2000 to July 2012.
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Table 1.2: Summary Statistics of Daily News Tones. 2000-2012

Summary Statistics

Company Name Mean Std. Dev. 25 Prctile Median 75 Prctile

Microsoft -5.33 13.67 -11.79 -3.06 3.35

GE -2.32 11.32 -7.78 -1.72 3.39

IBM 4.32 12.98 -2.18 5.01 11.68

Chevron -7.21 17.58 -15.68 -6.96 0.23

UTC -2.93 18.91 -11.08 -0.78 6.28

Pfizer -6.96 16.99 -15.27 -5.90 1.74

Johnson & Johnson -3.32 16.26 -10.03 -1.61 4.36

Merck & Co. -4.53 23.91 -12.75 -0.44 5.47

Disney -1.46 13.02 -7.84 -0.49 5.65

JP Morgan -9.39 12.79 -16.11 -7.40 -1.39

WalMart -10.30 13.61 -17.31 -8.99 -1.84

Americal Express -2.19 21.48 -12.42 -0.37 8.20

Intel -0.16 15.08 -7.48 1.10 8.58

Bank of America -10.67 15.07 -17.78 -9.51 -1.71

Verizon -6.16 15.57 -13.15 -4.70 2.33

AT&T -5.64 14.88 -12.73 -4.39 2.59

Cisco 3.71 16.29 -5.01 4.34 12.78

Yahoo -2.52 18.21 -11.48 -1.28 7.77

Amazon -0.76 19.65 -9.93 0.00 9.68

Ebay -4.85 20.06 -13.53 -3.27 4.88

Total -3.92 17.13 -12.05 -2.67 4.93

This table reports the summary statistics of daily news tones (in percentage). The daily news tone

variable is constructed by analyzing the first paragraph of each news article. I search for the percentage

of positive and negative words using the list from Loughran and McDonald (2011). Then, tones from

each individual articles are aggregated to the daily level using the total number of words in each article

as a weight. The sample period is from January 2000 to July 2012.
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Table 1.3: Effect of News Counts on the Probability of a Daily Jump. 2000-2012

(1) (2) (3) (4)

J99 J95 J099 J095

Intercept −4.9743∗∗∗ −4.5062∗∗∗ −3.3069∗∗∗ −2.4112∗∗∗

(0.0847) (0.0596) (0.0282) (0.0131)

NewsCount 0.1944∗∗∗ 0.1885∗∗∗ 0.1747∗∗∗ 0.1579∗∗∗

(0.0452) (0.0443) (0.0405) (0.0328)

NewsTone -0.0710 -0.0693 -0.0062 -0.0061

(0.0495) (0.0427) (0.0233) (0.0164)

Rett−1 -1.8709 -2.6763 −2.7729∗∗ −3.6652∗∗∗

(2.6206) (1.8715) (1.1521) (0.8004)

This table reports the coefficients from the pooled logit regression of daily news count, news tone, and

lagged return on the daily jump indicator defined using Lee and Mykland (2008). The explanatory

variables are the total number of news reported on Factiva database each day and its news tone, stan-

dardized to have same mean and standard deviation across firms, and lagged daily returns. News tone

measure is constructed first at each individual article level by counting the number of positive and nega-

tive words from Loughran and McDonald (2011), they are then aggregated by a value-weighting scheme

using the total number of words in the article. The daily return jump indicator is identified using 4

different statistics. J99 and J95 indicators use Lee and Mykland (2008)’s Lemma 1 statistic at 99% and

95% significance, respectively. I use the correction term from Gilder, Shackleton, and Taylor (2014).

The J099 and J095 indicators use looser bound from the normal distribution as in Theorem 1 of Lee

and Mykland (2008). Each of four statistics {J99, J95, J099, J095} thus identifies the jump day if the

absolute value of daily return is above {5.1024, 4.4881, 3.2283, 2.4565} times of the daily spot volatility.

The sample period is from January 2000 to July 2012. Statistical significance levels of 1%, 5%, and 10%

are indicated with ***, **, and *, respectively. Standard errors clustered at individual firm levels are

reported in parentheses.
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Table 1.4: Effect of News Counts and Tones on Daily Jump Size. 2000-2012

(1) (2) (3) (4)
J99 J95 J099 J095

Intercept 0.0148∗∗∗ 0.0117∗∗∗ 0.0100∗∗∗ 0.0063∗∗∗

(0.0047) (0.0034) (0.0014) (0.0009)
NewsCount -0.0006 -0.0007 -0.0008 -0.0008

(0.0021) (0.0017) (0.0010) (0.1074)
NewsTone 1.8468∗∗∗ 1.4412∗∗∗ 0.8202∗∗∗ 0.5045∗∗∗

(0.2355) (0.1721) (0.0786) (0.0432)

N 452 713 2267 5243
R2 12.65% 9.33% 4.72% 2.61%

(1) (2) (3) (4)
Positive Jumps Only J99 J95 J099 J095

Intercept 0.0609∗∗∗ 0.0583∗∗∗ 0.0485∗∗∗ 0.0414∗∗∗

(0.0044) (0.0032) (0.0013) (0.0007)
NewsCount 0.0168∗∗∗ 0.0127∗∗∗ 0.0086∗∗∗ 0.0053∗∗∗

(0.0025) (0.0019) (0.0011) (0.0006)
NewsTone -0.2758 -0.1853 -0.0793 −0.0899∗∗

(0.2418) (0.1823) (0.0794) (0.0429)

N 241 374 1256 2816
R2 16.96% 10.42% 4.75% 2.57%

(1) (2) (3) (4)
Negative Jumps Only J99 J95 J099 J095

Intercept −0.0553∗∗∗ −0.0514∗∗∗ −0.0429∗∗∗ −0.0371∗∗∗

(0.0037) (0.0026) (0.0012) (0.0007)
NewsCount −0.0066∗∗∗ −0.0073∗∗∗ −0.0064∗∗∗ −0.0046∗∗∗

(0.0013) (0.0011) (0.0007) (0.0004)
NewsTone 0.8593∗∗∗ 0.7561∗∗∗ 0.5142∗∗∗ 0.3807∗∗∗

(0.1736) (0.1264) (0.0607) (0.0342)

N 211 339 1011 2427
R2 25.85% 24.20% 15.55% 9.75%

This table reports the coefficients from the linear regression of daily news counts and news tones on the daily jump size. I

assume the entire daily return is due to the jump component on the jump days detected using Lee and Mykland (2008).

NewsCount measures the absolute number of news articles appeared in the Factiva database per each day. The NewsTone

measure is constructed first at each individual article level by counting the number of positive and negative words from

Loughran and McDonald (2011), then they are aggregated by a value-weighting scheme using total number of words in

the article. The daily return jump indicator is identified using 4 different statistics. J99 and J95 indicator uses Lee and

Mykland (2008)’s Lemma 1 statistic at 99% and 95% significance, respectively. We use the correction term from Gilder,

Shackleton, and Taylor (2014). J099 and J095 indicator uses looser bound from the normal distribution as in Theorem 1

of Lee and Mykland (2008). Each of the four statistics {J99, J95, J099, J095} thus identifies the jump day if the absolute

value of daily return is above {5.1024, 4.4881, 3.2283, 2.4565} times the daily spot volatility. The sample period is from

January 2000 to July 2012. Statistical significance levels of 1%, 5%, and 10% are indicated with ***, **, and *, respectively.

Standard errors are reported in parentheses.
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Table 1.5: Effect of News Counts and Tones on IV-SKEW. 2000-2012

(1) (2) (3) (4)

Intercept −0.0065∗∗∗ 0.0070∗∗∗ −0.0067∗∗∗ −0.0073∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011)

NewsCount 0.0018∗∗ 0.0017∗∗

(0.0008) (0.0008)

NewsTone −0.3563∗∗∗ −0.3547∗∗∗

(0.0548) (0.0548)

ATM IV 0.2035∗∗∗ 0.1996∗∗∗ 0.2047∗∗∗ 0.2008∗∗∗

(0.0044) (0.0044) (0.0044) (0.0045)

N 3020 3020 3020 3020

R2 41.29% 42.10% 41.38% 42.18%

This table reports the coefficients from the linear regression of monthly average news counts and news

tones on the monthly average IV-SKEW. IV-SKEW is defined as the difference between the implied

volatility of the call option having Black-Scholes delta closest to 0.5 and put option having delta closest to

-0.25. Both options are chosen to have maturity as close as possible to 30 days. NewsCount measures the

absolute number of news articles that appeared in Factiva database during each month. The NewsTone

measure is constructed first at each individual article level by counting the number of positive and

negative words from Loughran and McDonald (2011), then they are aggregated by value-weighting

scheme using total number of words in the article. Statistical significance levels of 1%, 5%, and 10% are

indicated with ***, **, and *, respectively. Standard errors are reported in parentheses.
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Table 1.6: Model Parameter Estimates under the Physical Measure

Estimated Parameters

Company Name κ θ σ η δ γ0 γ1 ρ

Microsoft 2.46 0.045 0.53 0.015 0.105 0.42 0.035 -0.43

GE 1.36 0.074 0.45 0.004 0.075 0.89 0.036 -0.49

IBM 2.56 0.057 0.56 0.012 0.066 1.00 0.037 -0.50

Chevron 2.51 0.074 0.31 0.005 0.074 1.00 0.012 -0.50

UTC 2.60 0.091 0.31 0.007 0.050 0.95 0.091 -0.49

Pfizer 3.99 0.049 0.44 -0.011 0.065 1.07 0.064 -0.45

Johnson & Johnson 3.20 0.032 0.45 0.004 0.046 1.14 0.130 -0.42

Merck & Co. 0.45 0.049 0.53 -0.052 0.087 1.02 0.173 -0.45

Disney 0.60 0.058 0.48 0.014 0.053 1.15 0.056 -0.60

JP Morgan 1.25 0.274 0.90 -0.002 0.086 0.70 0.047 -0.38

Wal Mart 2.53 0.050 0.45 0.015 0.043 1.18 0.043 -0.38

Americal Express 1.40 0.114 0.60 0.003 0.085 0.96 0.178 -0.30

Intel 1.61 0.138 0.48 -0.039 0.084 0.96 0.058 -0.35

Bank of America 0.64 0.048 0.55 -0.010 0.147 0.51 0.024 -0.50

Verizon 1.87 0.047 0.49 0.002 0.051 1.25 0.049 -0.50

AT&T 1.69 0.075 0.43 0.006 0.067 1.01 0.054 -0.48

Cisco 0.10 0.161 0.56 0.002 0.082 1.03 0.056 -0.49

Yahoo 1.93 0.064 0.64 -0.003 0.184 3.56 0.007 -0.26

Amazon 1.97 0.130 0.65 0.081 0.165 1.00 0.214 -0.50

Ebay 3.19 0.050 0.52 -0.001 0.032 1.49 0.073 -0.47

Average 1.90 0.084 0.52 0.003 0.082 1.11 0.072 -0.45

This table reports the estimated model parameters under the physical measure using daily returns and

news counts from Jan, 2000 to Jul, 2012 for 20 individual equities. A Particle Filtering (PF) algorithm

was used to estimate the parameters by maximizing the likelihood of observing daily returns and tone-

adjusted news counts. The tone-adjusted news counts is defined as below:

Ĩt = NewsCount× exp(−NewsTone)
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Table 1.7: Pricing Kernel Parameter Estimates

Estimated Parameters

Company Name λV λI ηQ − η

Microsoft -0.888 1.629 -0.088

GE -0.623 1.626 -0.074

IBM -0.509 0.167 -0.051

Chevron -0.353 1.799 -0.139

UTC -1.842 1.008 -0.028

Pfizer 0.060 0.033 -0.059

Johnson & Johnson 0.007 0.007 -0.035

Merck & Co. 0.000 0.000 -0.009

Disney 0.002 1.398 -0.032

JP Morgan 0.497 1.027 -0.021

Wal Mart -0.042 -0.006 -0.026

Americal Express -0.384 2.647 -0.099

Intel 0.448 6.528 -0.079

Bank of America 0.202 0.787 -0.057

Verizon -0.191 0.358 -0.041

AT&T -0.073 0.096 -0.033

Cisco 0.087 0.064 0.007

Yahoo 1.282 18.222 -0.025

Amazon -0.015 1.609 -0.147

Ebay -0.039 0.017 -0.041

Average -0.119 1.951 -0.054

This table reports the pricing kernel parameters estimated by minimizing Vega-weighted root mean

squared error (VWRMSE). Estimation was performed first by fixing the physical dynamics parameters

and spot variances filtered from Table 1.6, then only allowing the pricing kernel parameters to vary.

Three pricing kernel parameters λV , λI , and ηQ− η each represents the diffusive variance risk premium,

news risk premium, and jump size risk premium, respectively.
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Figure 1.1: Time-series Plot of Daily News Counts for Selected Firms. 2000-2012
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This figure plots the time-series of daily news counts of four selected firms. The sample begins in Jan,

2000 and ends Jul, 2012. Y-axis represents absolute counts of news articles that appear in Factiva

database each day.
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Figure 1.2: Implied Volatility Around Scheduled vs. Unscheduled Dates
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This figure plots the behavior of the average implied volatility around scheduled vs. unscheduled news

dates. The top panel plots the average implied volatility in the [-5,5]-day window around the scheduled

quarterly earnings announcement dates. The bottom panel plots the average implied volatility in the

[-5,5]-day window around the dates in top 2% range of news counts that are not within 5 days from

the earnings announcement date. Both panels plot the average implied volatility of all 20 firms in the

sample from Jan, 2000 to Jul, 2012.
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Appendix

Appendix 1A: Benchmark Model

In this section, I provide a result comparing the performance of my model to the benchmark model.
Benchmark model considered is the plain stochastic-volatility jump-diffusion (SVJ) model with constant
jump-intensity, thus serves as a special case of my model. Specifically, it corresponds to the case γ1 = 0.

Table 1A.1 reports the estimated parameter for the benchmark model. The estimated parameters are
mostly similar to the full news model estimates reported in Table 1.6. To compare the performance of
two models, Table 1A.2 provides the negative log-likelihood of observing daily returns as well as model-
implied number of expected jumps per year. Improvement in return likelihood is observed in virtually
all 20 firms in-sample, with varying degree of the differences between two. News model implies mostly
more expected number of jumps, average being 3.72 jumps per year compared to 3.17 of the benchmark
model case.

Appendix 1B: Variance Risk Premium

So far, I have focused on the implications of point estimates of each parameters, and thus have not
quantified model-implied risk premiums for individual firms. Given the parameter estimates and the
affine structure of the model, it is straightforward to extract the relevant measures.

First, the model-implied variance risk premium is computed as the difference between the uncondi-
tional variance of log-returns under the risk-neutral and physical probability measures. As the model
features two sources of risks, diffusive and jump, the resulting functional form for variance risk premium
has also two component stemming from each of two. The following proposition provides an expression
for the variance risk premium.

Proposition 2 The unconditional variance risk premium is given by

VRP = (θ∗ − θ)︸ ︷︷ ︸
Diffusive

+ [(γ0 + γ1θ
∗
I )((ηQ)2 + δ2)− (γ0 + γ1θI)(η

2 + δ2)]︸ ︷︷ ︸
Jump

(1.32)

Table 1A.3 reports the model-implied variance risk premiums. The first three columns report dif-
fusive, jump, and total variance risk premiums, respectively. Consistent with the previous literature,
the resulting variance risk premium is very small. Also, diffusive and jump components have similar
magnitude of contribution on average to total variance risk premium. To convert the numbers into more
conventional definition of variance risk premium that uses the difference between annualized volatility,
the last column reports the following expression.

VRP in Vol. =
√
θ∗ + (γ0 + γ1θ∗I )((ηQ)2 + δ2)−

√
θ + (γ0 + γ1θI)(η2 + δ2) (1.33)

Again, the average variance risk premium is very small, being only -0.36% in annualized volatility
terms.
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Table 1A.1: Benchmark Model Parameter Estimates under the Physical Measure

Estimated Parameters

Company Name κ θ σ η δ λ ρ

Microsoft 2.51 0.057 0.45 0.013 0.084 2.74 -0.48

GE 2.36 0.052 0.39 0.007 0.061 2.73 -0.18

IBM 2.56 0.057 0.56 0.012 0.066 2.70 -0.24

Chevron 2.54 0.075 0.30 0.005 0.073 1.42 -0.52

UTC 2.57 0.089 0.31 0.007 0.050 2.62 -0.51

Pfizer 2.59 0.077 0.32 -0.013 0.058 2.48 -0.49

Johnson & Johnson 2.62 0.045 0.31 0.005 0.041 3.82 -0.49

Merck & Co. 0.44 0.050 0.51 -0.051 0.085 4.78 -0.09

Disney 2.61 0.113 0.33 0.012 0.076 2.50 -0.49

JP Morgan 0.49 0.100 0.59 0.010 0.163 4.55 -0.50

Wal Mart 2.58 0.067 0.32 0.011 0.042 2.95 -0.49

Americal Express 1.64 0.074 0.50 0.003 0.081 2.78 -0.17

Intel 2.58 0.071 0.45 -0.029 0.082 2.19 -0.41

Bank of America 0.64 0.047 0.53 -0.010 0.149 2.70 -0.50

Verizon 1.29 0.076 0.39 0.002 0.065 2.49 -0.47

AT&T 2.09 0.056 0.39 0.006 0.089 2.00 -0.40

Cisco 0.10 0.156 0.55 0.002 0.079 4.83 -0.43

Yahoo 1.93 0.064 0.64 -0.003 0.176 3.56 -0.26

Amazon 1.97 0.129 0.62 0.081 0.165 6.55 -0.37

Ebay 1.50 0.060 0.50 -0.001 0.036 3.00 -0.41

Average 1.88 0.076 0.45 0.003 0.086 3.17 -0.40

This table reports the estimated benchmark model parameters under the physical measure using daily
returns from Jan, 2000 to Jul, 2012 for 20 individual firms. Particle Filtering (PF) algorithm was used
to estimate the parameters by maximizing the likelihood of observing daily returns.
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Table 1A.2: Comparison between Benchmark Model and News Model

Benchmark News Model Benchmark News Model

Company Name Likelihood Likelihood λ E[λ]

Microsoft -8402.44 -8418.78 2.74 4.30

GE -8481.90 -8488.88 2.73 3.95

IBM -8920.27 -8921.26 2.70 2.88

Chevron -8822.36 -8824.40 1.42 1.44

UTC -8595.54 -8602.05 2.62 2.54

Pfizer -8705.53 -8730.83 2.48 3.50

Johnson & Johnson -9887.53 -9931.67 3.82 5.56

Merck & Co. -8583.35 -8593.89 4.78 4.01

Disney -8179.39 -8231.86 2.50 4.05

JP Morgan -7830.30 -7845.75 4.55 4.61

Wal Mart -9080.98 -9114.28 2.95 3.71

Americal Express -8044.31 -8048.48 2.78 4.13

Intel -7595.94 -7629.32 2.19 4.18

Bank of America -8010.00 -8024.50 2.70 2.32

Verizon -8949.93 -8952.91 2.49 3.95

AT&T -8822.86 -8826.19 2.00 3.55

Cisco -7459.82 -7459.40 4.83 3.33

Yahoo -6744.76 -6745.92 3.56 3.76

Amazon -6574.41 -6604.12 6.55 5.22

Ebay -8749.92 -8750.22 3.00 3.31

Average -8322.08 -8337.23 3.17 3.72

This table compares the return likelihood and estimated unconditional number of jumps per year be-
tween the benchmark model and the news model. In the benchmark model, parameter λ represents
unconditional number of jumps per year. In the news model, the annual jump-intensity is equal to
γ0 +γ1It, thus E[λ] = γ0 +γ1E[It], where E[It] is computed as the in-sample average of filtered sates It.
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Table 1A.3: Variance Risk Premium implied by Model Parameters

Company Name Diffusive VRP Jump VRP Total VRP VRP in Vol.

Microsoft 0.0107 -0.0125 -0.0019 -0.31%

GE 0.0191 0.0006 0.0198 3.04%

IBM 0.0071 0.0030 0.0102 1.86%

Chevron 0.0034 0.0206 0.0240 3.92%

UTC 0.0255 -0.0004 0.0251 3.79%

Pfizer -0.0003 0.0167 0.0164 3.05%

Johnson & Johnson 0.0000 0.0049 0.0049 1.13%

Merck & Co. 0.0000 0.0040 0.0040 0.67%

Disney -0.0001 -0.0034 -0.0035 -0.66%

JP Morgan -0.0720 -0.0174 -0.0894 -8.72%

Wal Mart 0.0004 -0.0004 0.0000 -0.01%

Americal Express 0.0224 0.0049 0.0273 3.44%

Intel -0.0163 -0.0062 -0.0225 -2.79%

Bank of America -0.0070 -0.0032 -0.0102 -1.69%

Verizon 0.0025 0.0032 0.0057 1.16%

AT&T 0.0014 0.0006 0.0020 0.32%

Cisco -0.0514 -0.0013 -0.0528 -6.64%

Yahoo -0.0191 -0.0036 -0.0226 -2.67%

Amazon 0.0006 -0.0775 -0.0768 -7.46%

Ebay 0.0003 0.0059 0.0062 1.32%

Average -0.0036 -0.0031 -0.0067 -0.36%

This table reports the variance risk premium implied by the estimated model parameters. The first
three columns report diffusive, jump, and total variance risk premium, respectively, computed using the
expression given in the equation (1.32). The last column (VRP in Vol.) reports the total variance risk
premium computed as the difference between annualized volatility under the risk-neutral and physical
measure. The exact expression is given in the equation (1.33), also shown below.

VRP in Vol. =
√
θ∗ + (γ0 + γ1θ∗I )((ηQ)2 + δ2)−

√
θ + (γ0 + γ1θI)(η2 + δ2)



Chapter 2

Time-Varying Crash Risk: The Role
of Stock Market Liquidity

2.1 Introduction

What is the impact of market liquidity on the volatility and crash probability of the aggregate stock

market? To answer this question, we estimate a continuous-time model with stochastic volatility and

dynamic crash probability. The innovation of our method is the introduction of market illiquidity as

an economic factor driving the dynamics of volatility and jump intensity. We measure daily market

illiquidity (i.e., lack of market liquidity) as the average effective bid-ask spreads of securities constituting

the S&P 500 index estimated from high-frequency trades.1 It can be thought of as the average cost of

a round-trip trade for stocks in the index. We estimate the model during 2004–2012 using daily S&P

500 index options, realized spot variance, and market illiquidity, and find that 64% of the time-varying

crash probability is explained by the stock market’s exposure to market illiquidity.

Market liquidity, defined as the ease with which securities can be bought or sold without significant

price impact, has become an increasing concern in financial markets. This is evidenced, for example,

by the “flash crash” of May 2010, when major US stock indices fell by almost 10% before recovering

quickly. Similarly, market-wide trading halts on August 24, 2015 generated spikes in asset price volatility

across financial markets. These two incidents were quickly identified as symptoms of market illiquidity

because they occurred in the absence of major news about fundamentals. As documented in Chung and

Chuwonganant (2014), regulatory changes in the US markets have increased the role of non-bank traders

in liquidity provision, which has intensified the relationship between volatility and market liquidity. Thus,

the influence of market liquidity on the economy appears to be increasing in importance.

1This measure is motivated by Aı̈t-Sahalia and Yu (2009) and Goyenko, Holden, and Trzcinka (2009) who find strong
empirical support for using effective bid-ask as a measure for market illiquidity.

33
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Market crashes refer to large, unexpected drops in asset prices. Crashes can occur in the presence

of news about fundamentals, as well in their absence. In the latter case, market illiquidity is often the

culprit. Huang and Wang (2009) show in an equilibrium framework that when trading is costly, potential

traders are deterred from participating in the market continuously. They will enter the market only when

large trading needs arise, i.e., when hit by sufficiently large idiosyncratic shocks, and importantly more on

the selling side.2 This is because idiosyncratic shocks push investors away from their optimal positions,

making them more risk averse and less willing to hold the asset. The increase in risk aversion exacerbates

the selling-need for potential sellers, and dampens the demand for potential buyers. This, in turn, leads

to order imbalances in the form of excess supply, and therefore price decreases in response. As also shown

in Lo, Mamaysky, and Wang (2004), the asymmetry in desire to trade between traders with offsetting

shocks arises when trading becomes more costly.

While there exists some empirical evidence suggesting that crashes in the stock market are often

driven by market illiquidity, they are typically anecdotal (e.g., “flash crash”) or limited to individual

stocks.3 Relatedly, there is an extensive literature on index return models which unanimously agrees that

index prices “jump.”4 In these models, crashes are large negative jumps in index returns that cannot

be explained by the current level of the index’s volatility. More recently, several studies have advocated

that the probability of observing crashes is time-varying. The common approach is to let the jump

arrival rate increase with the level of the stock return variance.5 Although this modeling framework is

parsimonious, it is inconsistent with the notion that crashes are sudden price drops unexplainable by

the current volatility level.6 Therefore, the relationship between stock market crash risk and market

return volatility remains an open discussion. Importantly, while recent studies agree that crash risk is

time-varying, they are silent on the economic variables driving its dynamic. Our study contributes by

providing economic underpinnings to models with time-varying crash risk, and showing that much of

the variation in jump intensity is driven by market trading frictions.

To motivate our subsequent modeling framework, we apply a predictive regression analysis linking

our market illiquidity measure to a non-parametrically estimated realized jump measure for daily S&P

500 index returns (e.g., Andersen, Bollerslev, and Diebold, 2007; Huang and Tauchen, 2005). Realized

2Gennotte and Leland (1990) develop a rational expectation model explaining why a large price drop can occur when
there is a relatively small amount of selling in the market.

3For instance, Jiang and Yao (2013) find that illiquid stocks have higher daily jump returns in the cross-section. Bro-
gaard, Li, and Xia (2016) show that enhanced stock liquidity decreases the firm’s default risk. For an alternative view on
individual stock liquidity and crash risk, see Chang, Chen, and Zolotoy (2016).

4This literature is too large to cite in full; see Pan (2002), Maheu and McCurdy (2004), Eraker, Johannes, and Polson
(2003), Eraker (2004), Broadie, Chernov, and Johannes (2007), and Bakshi, Carr, and Wu (2008).

5For examples, see Pan (2002), Andersen, Benzoni, and Lund (2002), and Bates (2006, 2012).
6Santa-Clara and Yan (2010) is a notable exception, as they model jump intensity as a quadratic function of state

variables. In an affine framework, Andersen, Benzoni, and Lund (2002) and Andersen, Fusari, and Todorov (2016) find a
statistically weak relationship between crash intensity and spot variance.
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jump variation measures the portion of daily return variance that is due to stock price jumps, and we

find that it significantly increases with the level of market illiquidity on the previous day. Importantly,

the effect of market illiquidity crowds out the predictive ability of realized variance on realized jump

variation, suggesting that market illiquidity is the more robust predictor of crash probability for the stock

market index. We confirm this finding by running daily time-series regressions on changes in risk-neutral

skewness estimated from index option prices, as well as on changes in realized skewness estimated from

high-frequency index returns. In either case, we obtain similar conclusions confirming the robust linkage

between market illiquidity and crash risk.

Armed with the evidence above, we estimate a continuous-time model similar to the stochastic

volatility with jump model (SVJ) studied by Pan (2002) and Bates (2006), among others. In this model,

the jump arrival rate is affine in return variance. We extend this framework by letting the time-varying

jump intensity dynamic be a function of return variance, market illiquidity, and a latent state variable.

We estimate the model by extracting information embedded in index options and high-frequency intraday

trades. We use the unscented Kalman filter (UKF) to extract daily state variables. This filtering method

allows for sequential learning in the dynamics of latent jump intensity, variance, and illiquidity processes.

We refer to the most general model that we study as the stochastic jump with variance and illiquidity

(SJVI). In this model, the jump intensity dynamic is stochastic and affine in the spot variance, the

market illiquidity level, and the latent jump-intensity-specific variable designed to capture the omitted

risk factor. For comparisons, we estimate two other benchmark models with jump intensity dynamics

that are unrelated to the market illiquidity level. In all specifications, we model the spot variance as a

two-factor square-root process, with market illiquidity being one of the factors. Our estimation results

show a strong contemporaneous relationship between market illiquidity and spot variance. On average,

a one-standard-deviation increase in the level of market illiquidity increases the spot variance by about

12%. This finding lends support to previous studies that have documented a positive relationship between

return volatility and trading activity (e.g., Schwert, 1989; Lamoureux and Lastrapes, 1990; Chae, 2005).

We find that the average jump probability is between 2 and 3 per year. When a jump occurs, its

average size is between −3.7% and −5.9% in daily return units, with a standard deviation between 3.1%

and 4.7%. Therefore, the jump dynamic that we estimate represents a large drop of daily index price, a

“crash,” and not a market surge. We find strong evidence that during our sample period, crash risk in

the S&P 500 index mostly reflects investors’ fear of market illiquidity. We arrive at this conclusion by

examining the contribution of market illiquidity to the jump intensity dynamic in the new model and find

a contemporaneous positive relationship with a strong statistical significance. On the other hand, the

contribution of market spot variance is modest and statistically weak, which supports our preliminary
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evidence found using regression analysis. Collectively, these findings suggest the reason previous studies

find that jump intensity increases with the level of spot variance is due to the strong positive relationship

between variance and market illiquidity.

In terms of economic magnitudes, we find that market illiquidity explains more than half of the S&P

500 index’s crash probability level during our sample (64% on average). On the contrary, the contribution

of market spot variance to the jump intensity dynamic is only about 12%, with the remaining 24% coming

from the latent jump-intensity-specific factor. However, during the six-month period after the Lehman

Brothers’ collapse in 2008, we find that market spot variance dominates other factors in explaining the

time-varying crash probability, with the contribution as high as 70%. This finding suggests that investors’

fear of crash risk during the subprime crisis reflects uncertainty about the market’s fundamentals, while

outside the crisis period, crash risk mostly reflects investors’ fear of market illiquidity.

We emphasize that the relationship between market illiquidity and time-varying volatility and crash

risks is not due to market microstructure noise. The market illiquidity proxy that we use is derived

from effective spreads of 500 firms constituting the S&P 500 index and not from trades on index funds

nor index futures. We believe this measure is indicative of the transaction cost of replicating the index,

which directly affects the ability of authorized participants to create and redeem shares of S&P 500 ETFs

in order to keep their level at a fair value. We confirm that our main conclusions hold using various

robustness checks. For instance, we show that our estimation results are qualitatively similar before

and after implementation of the “circuit breaker” in 2010. We re-estimate our models using alternative

market illiquidity measures including Amihud (2002), and reach the same conclusions.

In summary, our findings illustrate the importance of market illiquidity in explaining time-varying

volatility and crash risks, which is largely missing from prior empirical studies examining index return

dynamics. That said, our results do not speak to what gives rise to the initial need for liquidity.7 Our

objective is to establish the empirical relationship between market illiquidity and stock market crash

risk, and quantify its economic magnitude.

The remaining parts of this paper proceed as follows. Section 2.2 describes the data and sample

selection, and reports preliminary evidence found using regression analyses. Section 2.3 describes the

model and estimation procedure. Section 2.4 discusses estimation results and interpretation of our

findings. Section 2.5 demonstrates the robustness of our findings. Finally, Section 2.6 concludes.

7The lack of liquidity can arise due to various reasons, which can lead to “crashes.” For instance, heterogeneous future
liquidity needs (Allen and Gale, 1994) and adverse selection costs (Grossman and Miller, 1988) facing liquidity providers
can limit the supply of liquidity. As argued in Easley, López de Prado, and O’Hara (2010), many high-frequency trading
firms are in the business of liquidity provision and their ability to vanquish quickly from the market when faced with toxic
order flows portends episodes of sudden illiquidity, and crashes. In a more recent study, Cespa and Foucault (2014) show
that when liquidity providers learn information about an asset from prices of other assets, illiquidity contagion can occur
and is a source of market fragility.
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2.2 Data and Preliminary Evidence

The sample period goes from January 1, 2004 through December 31, 2012. We focus on the recent

period because the global financial market has gone through a drastic transformation, e.g., new banking

regulations, proliferation of algorithmic trading and exchanged-traded funds.

2.2.1 Market Illiquidity

We construct a time-series measure of market liquidity at the daily level. We focus on the trading friction

associated with the cost of participating in the stock market. We measure this using effective bid-ask

spreads following Goyenko, Holden, and Trzcinka (2009), who find strong empirical supports for using

intraday bid-ask spreads as the measure of market illiquidity.

We obtain all transactions recorded on securities constituting the S&P 500 index from the TAQ

database. Then, for each stock i on day t, we calculate the effective spread of its kth trade as

ILQit,k =
2|Si,Pt,k − S

i,M
t,k |

Si,Mt,k
, (2.1)

where Si,Pt,k is the price of the kth trade of stock i on day t, and Si,Mt,k is the midpoint of the best prevailing

bid and ask at the time of the kth trade. The daily effective spread of stock i on day t is then computed

as the dollar-volume weighted average effective spreads over all trades during the day8

ILQit =

∑K
k=1DolV ol

i
t,kILQ

i
t,k∑K

k=1DolV ol
i
t,k

. (2.2)

Lastly, we aggregate the effective spreads of firms constituting the S&P 500 index on each day by equally

weighting their daily illiquidity measures:

ILQt =
1

N

N∑
i=1

ILQit. (2.3)

Daily S&P 500 cash index returns are plotted in the top-left first panel of Figure 2.1, while the top-

right panel plots the daily time series of market illiquidity, ILQ. We plot the annualized market illiquidity

measure by multiplying their daily levels by 252. The mean annualized ILQ measure is 16.85%, which

translates to a 0.067% trading cost at the daily level. The standard deviation of the annualized market

8Figure 2A.1 in the Appendix shows percentiles of daily dollar effective spread distribution for the S&P 500 constituents.
For the majority of firms, their trading cost measured by the dollar effective spread is well above one cent, which is the
minimum tick size set by the exchanges. This finding suggests that the effective spread measure that we use is minimally
affected by the minimum tick-size rule.
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illiquidity is 5.77% with an interquartile range of 13.90% and 18.26%. We see that the market illiquidity

measure rises significantly during the financial crisis period but stays relatively stable in other periods,

with occasional few spikes. Figure 2.1 shows a sharp spike on May 6, 2010, which is associated with the

“flash crash” incident.

2.2.2 Realized Variance and Jump Variation

We construct daily realized variance and jump variation measures using intraday S&P 500 cash index

returns obtained from TickData. Using the latest observation at each minute, we construct a grid of

one-minute intraday returns starting from 9:30 a.m. and ending at 4:00 p.m.

Calculations of realized variance and realized jump variation have been studied extensively in the

recent literature.9 We calculate the daily realized variance measure, RV, as the sum of squared one-

minute log returns: RV Nt =
∑N
i=1 r

2
i,t. This method measures the total quadratic variation in returns.

We measure the variation in daily index returns that is due to the diffusive component using the jump-

robust realized variance MinRV of Andersen, Dobrev, and Schaumburg (2012). It is calculated as

follows:

MinRV Nt =
π

π − 2
(

N

N − 1
)

N−1∑
i=1

min(|ri,t|, |ri+1,t|)2. (2.4)

Following Barndorff-Nielsen and Shephard (2004), we define daily realized jump variation, RJV, as

the component in total realized variance RV that is not explained by MinRV. On each day, it is calculated

as:

RJVt = max(RVt −MinRVt, 0). (2.5)

We can think of RJV as the proxy for jump risk in daily index returns. The bottom-left and bottom-

right panels in Figure 2.1 plot the annualized daily time series of MinRV and RJV, respectively. The

mean and standard deviation of the MinRV measure over this period are 2.36% and 6.55%, respectively.

For the RJV measure, the mean and standard deviation are 0.33% and 0.94%. The daily index return

variance is thus mostly composed of the continuous component of stock price change.10

9See Huang and Tauchen (2005) for a concise summary.
10This finding is consistent with Huang and Tauchen (2005) who find that jumps account for 7% of stock market price

variance.
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2.2.3 Predicting Realized Jumps

This section provides preliminary evidence on the economic relationship between market illiquidity and

jump risk. We estimate a predictive regression model on the realized jump variation measure RJV. The

objective is to identify the economic variables that robustly predict the occurrence and magnitudes of

jumps the next day.

We examine three variables of interest and their various combinations, namely, the market illiquidity

measure ILQ, the diffusive quadratic variation measure MinRV , and the option-implied volatility index

VIX. The most general predictive regression specification is

RJVt+1 = β0 + β1MinRVt + β2ILQt + β3V IXt + β3Rett + β3RJVt + εt+1. (2.6)

We obtain daily VIX levels from the Chicago Board of Options Exchange (CBOE) that represent the

market’s fear index calculated as the 30-day implied volatility level of S&P 500 index options. We include

lagged log return of the S&P 500 (Ret) and the autoregressive term for RJV as control variables. Year

and day-of-the-week fixed effects are present in all regression specifications, but their estimates are not

reported here to save space.

Table 2.1 summarizes the regression results for six specifications based on the general model described

in equation (2.6). We report the heteroskedasticity-consistent t-statistic (White, 1980) in parentheses

below each parameter estimate. Columns (1)–(3) show that when each of the three variables enters in

the regression model, it appears statistically significant in predicting the realized jump variation the

next day. We find that MinRVt, ILQt, and V IXt are positive and highly significant at the 95% level or

higher. These positive coefficients confirm the intuition that jumps are more likely to occur following a

day of more volatile and illiquid market conditions. Looking at the size of the coefficients, we find that

market illiquidity, ILQ, is the dominant variable. A one-standard-deviation increase in market illiquidity

today would increase realized jump variation by 9.1% the next day.

Columns (4)–(5) report results for combining market illiquidity and the two volatility measures. The

results clearly show that ILQt is the dominant variable in predicting daily realized jump variation.

When the market illiquidity measure ILQt is added to the regression, the coefficients on MinRVt and

V IXt variables lose statistical significance. Column (6) reports results for the most general specification

where all independent variables are included. We find that the coefficient on ILQt decreases by half due

to influences of the two market variance measures. Nevertheless, Column 6 shows that ILQt is the only

variable that remains statistically significant, confirming that it is the leading predictor of realized jump

variation in the stock market index.
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We emphasize that the market illiquidity measure that we use is calculated from effective spreads of

500 firms constituting the S&P 500 index while the dependent variable, RJV, is constructed from one-

minute log returns on the S&P 500 cash index. Market illiquidity and realized return jump variations

are thus not related. Further, our finding that market illiquidity dominates return variance in explaining

the time-varying market jump risk is confirmed using both MinRVt and V IXt.

Overall, the results in Table 2.1 provide preliminary evidence for the importance of market illiquidity

in explaining time-varying jumps in index returns. Further, it shows that omission of the market illiquid-

ity variable can lead to a different conclusion regarding the role of market return variance in explaining

jumps on the stock market index.

2.2.4 Market Illiquidity and Crash Risk

The realized jump variation RJV measure we used in the previous section captures the magnitude of

positive and negative jumps in index returns and therefore does not identify a stock market crash from

a stock market surge. We provide further evidence linking the role of market illiquidity to crash risk by

estimating the impact of ILQ on daily skewness of the S&P 500 index. Because crashes are large sudden

drops in asset prices, a more negative skewness measure would signal a higher probability of crash risk

(Chen, Hong, and Stein, 2001). Therefore, if market illiquidity is strongly linked to the stock market

crash, we expect that ILQt would be negatively related to the stock market skewness measure.

We follow the nonparametric method developed by Bakshi and Madan (2000) and calculate daily

skewness from S&P 500 index options. We refer to this measure as risk-neutral skewness, RNSkew.

We obtained end-of-day S&P 500 index option prices from OptionMetrics. RNSkew is calculated from

option contracts with approximately one month to maturity. Therefore, the measure RNSkewt on day t

that we use represents investors’ forward-looking risk-neutral expectation of the stock market crash risk

from the end of day t to day t+ 30. We discuss details on the skewness measure in the Appendix 2.6.

We examine the impact of market illiquidity on the stock market’s risk-neutral skewness using the

following regression model:

∆RNSkewt = β1∆MinRVt + β2∆ILQt +

p∑
i=1

αi∆RNSkewt−i +

q∑
j=1

δjεt−j + εt, (2.7)

where ∆ indicates that we are examining the change in daily variables, and εt is a normally distributed

error term. We estimate the model on change in daily skewness and not on its level because RNSkewt

is highly persistent with an autocorrelation of 0.98. As a result, the explanatory variables we use are

changes in daily MinRV and ILQ. The regression shown in equation (2.7) is an autoregressive-moving-
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average model (ARMA) with p-order lag in the autoregressive term and q-order lag in the error term.

Although not shown in equation (2.7), we include Ret, and day-of-the-week fixed effects as control

variables in the regression model. We estimate the model using maximum likelihood.

Table 2.2 reports estimation results for four regression specifications based on the general model in

equation (2.7). We choose the ARMA model with lags of p = 2 in the autoregressive term and q = 1 in

the error term. The number of lags is determined based the Ljung-Box test corresponding to the most

parsimonious model that sufficiently removes autocorrelations in the residuals. Column (1) provides the

baseline regression results. It shows that the change in risk-neutral skewness is negatively related to the

index return and is strongly explained by its autoregressive terms. Columns (2) and (3) show that when

∆MinRV and ∆ILQ are separately included in the regression, they load negatively on the change in

risk-neutral skewness. However, ∆ILQ is the only statistically significant variable. The negative and

highly significant coefficient on ∆ILQ suggests that when the average trading cost in the stock market

increases, investors’ expectation of the market crash risk also increases.

Column 4 reports results for the full regression model. We observe two striking findings. First,

the coefficient on ∆MinRV switches sign from negative to positive and is significant at the 10% level.

Second, the coefficient on ∆ILQ remains negative and significant but approximately doubles in terms

of magnitude. These results suggest that both MinRV and ILQ are important determinants of daily

stock market skewness, i.e., crash risk. The positive coefficient on ∆MinRV , however, shows that an

increasing market variance is related to a less negatively skewed risk-neutral distribution of daily index

returns. This finding is intuitive because as the variance level increases, the index return distribution

would become more fat-tailed on both positive and negative sides, indicating an increasing likelihood

of market surges as well as market crashes. Consequently, the index return distribution appears more

symmetric, i.e., less negatively skewed, conditional on an increasing variance level. As a robustness

check, we verify this result by replacing MinRV with the total quadratic variation (RV ) in Table 2.2

and obtain the same conclusion.

For comprehensiveness, we verify our results using realized skewness constructed from high-frequency

trades on the S&P 500 constituents. Our method follows that in Amaya, Christoffersen, Jacobs, and

Vasquez (2015). We obtain the same conclusion when using daily realized skewness. To save space,

the results are reported in Appendix 2.6, which shows that aggregate market illiquidity is a leading

determinant of stock market crash risk and that its influence dominates the impact of market return

variance. Motivated by this non-parametric evidence, we develop a continuous-time model that allows

market illiquidity to act as an economic covariate in explaining the time-varying volatility and crash

risks.
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2.3 Model and Estimation

2.3.1 The SJVI Model

We begin by specifying the processes governing the log index price, spot variance, spot illiquidity, and

latent component of jump intensity dynamic under the risk-neutral measure (Q). We use the notation

St and Vt to denote index price and spot variance at time t. We let Lt represent the spot market

illiquidity, which measures the average cost of trading in the stock market at time t, with a higher value

indicating a more illiquid market. We include a stochastic process Ψt that is designed to capture the

latent time-varying jump intensity in index returns. Thus, the model consists of four factors that fully

describe the return dynamics under Q:

d log(St) = (r − 1

2
Vt − ξλt)dt+

√
Vt(
√

1− ρ2dW 1
t + ρdW 2

t ) + qtdNt (2.8)

dVt = κV (θV − Vt)dt+ γdLt + ξV
√
VtdW

2
t (2.9)

dLt = κL(θL − Lt)dt+ ξL
√
LtdW

3
t (2.10)

dΨt = κΨ(θΨ −Ψt)dt+ ξΨ
√

ΨtdW
4
t , (2.11)

where r denotes the risk-free rate and all Brownian motions dW i
t , for i = 1 to 4, are independent of each

other.

We assume the market illiquidity process Lt, and the latent jump intensity process Ψt, in equations

(2.10) and (2.11) follow the standard square-root model with long-run mean levels of θL and θΨ, re-

spectively. The variance dynamic in equation (2.9) follows Heston’s (1993) square-root process with

an additional term γdLt. We discuss our specification choice for the variance dynamic later in this

subsection.11

The log index price dynamic described in equation (2.8) follows a standard jump-diffusion process

where qtdNt denotes the jump component. Following the extant literature on index return models,

we assume that jumps follow a compound Poisson process with intensity λt and each individual jump

is independent and identically distributed (i.i.d.) normal with the jump mean size θ and the jump

size standard deviation δ. To ensure the discounted stock price is a martingale, we include the jump

compensation term ξ = e(θ+ δ2

2 ) − 1 in equation (2.8). Lastly, to complete the model, we specify the

11Our main conclusions are unaffected when estimating a simpler model without illiquidity feedback in the spot variance,
i.e., γ = 0 in equation (2.9).
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dynamic of the time-varying jump intensity λt as follows:

SJVI model: λt = Ψt + γV Vt + γLLt. (2.12)

This jump intensity specification is motivated by numerical tractability and ease of economic inter-

pretation. Equation (2.12) shows that the time-varying jump arrival rate is determined jointly by the

levels of spot variance Vt, spot market illiquidity Lt, and state variable Ψt. The latent state variable Ψt

is designed to capture the portion of jump intensity dynamic not explained by the covariates Vt and Lt.

For the remaining parts of this paper, we refer to this general specification as the SJVI model.

Equation (2.9) shows that the evolution of spot variance depends on its own mean-reverting drift,

the diffusive component, and the market illiquidity process Lt. This specification allows for changes

in the market spot variance Vt and market illiquidity Lt to be contemporaneously related, which is

supported by Lamoureux and Lastrapes (1990) who find that daily trading volume significantly explains

daily return variance.

We choose a parsimonious modeling framework that lets dLt enter the dynamic of dVt, and not vice

versa. Besides parsimony, this choice is motivated by their joint time-series estimates, which show that

the change in market illiquidity leads the change in market spot variance. We show this by estimating

the Vector Autoregressive Moving-Average (VARMA) model below:

∆MinRVt

∆ILQt

 = δ + Φ

∆MinRVt−1

∆ILQt−1

−Θut−1 + ut, (2.13)

where δ is a 2× 1 vector of coefficients, and ut is a 2× 1 vector of normally distributed residuals. Φ and

Θ are 2× 2 matrices of VARMA model coefficients. The variables MinRV and ILQ are defined in the

previous section. We estimate the model above and find that

Φ̂ =



−0.149∗∗∗ 0.479∗∗∗

(−3.59) (4.50)

−0.023 0.237∗∗∗

(−1.47) (5.45)


and Θ̂ =



0.717∗∗∗ −0.031

(19.97) (−0.39)

−0.014 0.730∗∗∗

(−1.18) (22.09)


, (2.14)

where the t-statistic is reported in parentheses below each parameter estimate.

The diagonal elements in Φ measure the impact of autoregressive terms for ∆MinRVt and ∆ILQt,

which, as we expected, are statistically significant. The off-diagonal elements in Φ provide insight on the
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cross-impacts between ∆MinRVt and ∆ILQt. We find the coefficient estimate measuring the impact

of ∆ILQt−1 on ∆MinRVt is 0.479 with a t-statistic of 4.50. This shows that a change in ILQt−1 on

the previous day has a positive and statistically significant impact on a change in MinRVt today. On

the other hand, we do not find statistically significant evidence that a change in ILQt today is driven

by a change in MinRVt−1 on the previous day; the coefficient estimate is −0.023 with the t-statistic of

−1.47. As a robustness check, we re-estimate the VAR model by replacing MinRV with RV in equation

(2.13) and obtain the same conclusion. Further, looking at the coefficient estimates in Θ, we find that

only the diagonal elements are statistically significant. This shows that the residual terms in the market

spot variance Lt and the market illiquidity level ILQt do not affect each other. This result supports

our modeling assumption in equations (2.9) and (2.10), where the Brownian shocks dW 2
t and dW 3

t are

independent.

Finally, we note that the variance dynamic that we consider in equation (2.9) falls under the class of

two-factor stochastic volatility models, which have been shown to effectively explain the term structure

of index option prices.12 Our model differs from the existing two-factor volatility literature in that we

allow the expected future variance to depend on the level of spot variance, Vt, and spot market illiquidity,

Lt, as shown below:

Et[VT ] = θV + (Vt − θV )e−κV (T−t) + [(Lt − θL)
γκL

κV − κL
](e−κV (T−t) − e−κL(T−t)). (2.15)

This equation shows that the long-run mean of the spot variance is θV , and the mean-reversion speed

to the long-run variance is denoted by κV . It also shows that the current level of market illiquidity

positively affects the shape of the expected term structure of variance. Its impact, however, dissipates

as the time horizon increases. This is seen from the third term on the right-hand side, which converges

to 0 as time T goes to infinity.

2.3.2 Benchmark Models

We consider two nested specifications of the SJVI model. In the first specification, we shut off the

illiquidity channel in the time-varying jump intensity dynamic by setting γL = 0 in equation (2.12). As

the result, the probability of observing jumps depends on the level of spot variance and the latent state

component as follows:

SJV model: λt = Ψt + γV Vt. (2.16)

12See for examples, Egloff, Leippold, and Wu (2010), and Andersen, Fusari, and Todorov (2015b).



Chapter 2. Time-Varying Crash Risk: The Role of Stock Market Liquidity 45

We refer to this as the stochastic jump intensity with variance (SJV) model. When Ψt is constant,

it nests the affine jump intensity dynamic, λt = γ0 + γV Vt, commonly adopted in time-varying jump

studies (e.g., Pan, 2002; Bates, 2006).

The second nested specification that we study shuts off the impact of both market illiquidity and the

spot variance on the jump probability. That is, we set γV and γL equal to zero in equation (2.12). This

yields

SJ model: λt = Ψt, (2.17)

We refer to this as the stochastic jump intensity model (SJ).

We keep all other aspects of the three models that we study identical. This allows us to focus solely

on the role of market illiquidity and spot variance in assessing time-varying jump risk.

2.3.3 Filtering

Each of the three models we study contains three latent state variables: Vt, Lt, and Ψt. We extract

the latent state variables using the square-root unscented Kalman filter (UKF) of Van der Merwe and

Wan (2001). We apply the UKF method because the option prices data that we fit the models to are

non-linear in the state variables.13

The state variables in the filtering equations evolve under the physical probability (P) measure. We

therefore need to define the state variables’ dynamic under the physical measure. We do not impose

risk premiums on the Lt and Ψt processes for simplicity and also because the literature has not yet

provided clear guidance on how to model their risk premiums. As a result, there is no change to these

two processes from Q to P. We apply the commonly used functional form of the variance price of risk to

the spot variance process, which is given by νV
√
Vt as in Heston (1993). This price of risk specification

shifts the Brownian shock in equation (2.9) by dW 2,P
t = dW 2

t −νV
√
Vtdt, where the superscript P denotes

that it is evaluated under the physical probability measure. Applying this transformation, the resulting

variance process under P can be written as

dVt = κPV (θPV − Vt)dt+ γdLt + ξV
√
VtdW

2,P
t , (2.18)

where we have the following parameter mappings κPV = κV − νV ξV and θPV = θV κV /κ
P
V .

13For recent papers using UKF as the filtering method, see Bakshi, Carr, and Wu (2008) and Filipović, Gourier, and
Mancini (2016). We refer to Christoffersen, Dorion, Jacobs, and Karoui (2014) for technical details and comparison between
different filtering methods.
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We discretize the P-measure state dynamics using the conventional Euler scheme at the daily interval.

The discretized state-space system can be written as follows:

Vt+1 = Vt + κPV (θPV − Vt)∆t+ γκL(θL − Lt)∆t+ ξV
√

∆tVtε
1
t+1 + γξL

√
∆tLtε

2
t+1 (2.19)

Lt+1 = Lt + κL(θL − Lt)∆t+ ξL
√

∆tLtε
2
t+1 (2.20)

Ψt+1 = Ψt + κΨ(θΨ −Ψt)∆t+ ξΨ
√

∆tΨtε
3
t+1, (2.21)

where the error terms εit+1, for i = 1 to 3, are i.i.d. standard normal. In the above state-space system, we

set the time step ∆t = 1/252 to reflect the daily discretization interval. To keep notation to a minimum,

we apply the superscript P only to parameters under the physical measure that differ in values from

their corresponding risk-neutral parameters.

We next describe the functional relationships linking the latent state variables to the observed data

used in the estimation. The first observable is the illiquidity measure denoted by ILQt, which we

introduced earlier in Section 2.2. The other observables that we use are daily at-the-money (ATM)

and out-of-the-money (OTM) S&P 500 index options. These three sets of observables are used in the

measurement equations in the UKF procedure. We write the system of measurement equations as follows:

log(ILQt+1) = log(Et[

∫ t+1

t

Lsds]) + u1
t+1 (2.22)

ATMO
t+1 = ATMM

t+1(Vt+1, Lt+1,Ψt+1) + u2
t+1 (2.23)

OTMO
t+1 = OTMM

t+1(Vt+1, Lt+1,Ψt+1) + u3
t+1, (2.24)

where measurement errors uit+1, for i = 1 to 3, are independent normal random variables with constant

variances. The above filtering equations are applied to all trading days from January 2, 2004 to December

31, 2012, resulting in 2,262 observation days.

The latent spot illiquidity process in the state-space dynamic describes the instantaneous level of

illiquidity at each moment and not at the aggregated daily level. To filter Lt from the daily observed

market illiquidity measure, we integrate the spot illiquidity process over the day as shown in equation

(2.22). Because the spot illiquidity measure is assumed to follow a square-root process, its daily inte-

grated value is available in closed form. We use the log effective spread in the measurement equation

because the empirical distribution of effective spreads is close to log-normal.

Following Pan (2002), we collect two time series of closing mid-price of options quotes that we label

ATM and OTM. We let ATM denote at-the-money call option that has moneyness, defined as the ratio

of forward-to-strike price, closest to 1. Similarly, OTM refers to out-of-the-money put option that has
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moneyness closest to 0.95. For both ATM and OTM options, we retain contracts that have time-to-

maturity closest to 30 calendar days. Figure 2.2 plots daily Black-Scholes option-implied volatilities

calculated from the ATM and OTM contracts that we use in our study. As argued by Pan (2002),

we use OTM options in the measurement equation as it provides the richest information on investors’

expectation of crash probability in the stock market.

We follow Trolle and Schwartz (2009) and use Black-Scholes vega-weighted price as the functional

form in the measurement equations for options fitting in equations (2.23)–(2.24). This method scales

the value of options across time making their prices more comparable, which in turn facilitates the as-

sumption of the normally distributed errors in the measure equations. Therefore, ATMO
t+1 and OTMO

t+1

in equations (2.23)–(2.24) represent the scaled ATM and OTM option prices observed at the end of day

t. Similarly, the variables ATMM
t+1 and OTMM

t+1 denote the model-implied option prices scaled by their

market Black-Scholes vega.

The models that we study fall within the affine jump-diffusion framework. Therefore, the conditional

characteristic function of log stock price is available in exponential affine form. Following Duffie, Pan,

and Singleton (2000), we derive the log affine functional form of the characteristic function in Appendix

2.6. The coefficients in the characteristic function are not all available in terms of elementary functions,

thus, we solve for them numerically in the Ricatti system of equations. We use the fast Fourier transform

(FFT) method first developed by Carr and Madan (1999) to numerically evaluate option prices.

Lastly, we note that at this stage, we do not need to specify the risk premiums associated with the

first Brownian motion, dW 1
t , and the compound Poisson jumps, qdNt, because they only alter the drift

term of returns dynamics that is not part of the estimation. We discuss the specification of equity and

jump risk premiums in a later section, where they are estimated using a time series of daily index returns.

2.3.4 Estimation

We estimate the models by maximizing the log-likelihood function resulting from the UKF step. We

assume the measurement errors are conditionally normal, therefore, the time t conditional log-likelihood

takes the following form:

lt(Θ) = −3

2
log(2π)− 1

2
log(det |Ωt|)−

1

2
(Yt − Ȳt)T (Ωt)

−1(Yt − Ȳt), (2.25)

where Ȳt and Ωt denote the ex ante forecasts of the mean and covariance matrix conditional on time

t− 1 information on observables Yt. We let Θ denote the set of all parameters to be estimated.

In addition to the log-likelihood resulting from the measurement error equations, we follow Andersen,
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Fusari, and Todorov (2015a) and add a penalizing term that compares the filtered spot variance compo-

nent, Vt, to the model-free estimate of spot variance calculated from high-frequency data. Incorporating

this penalizing term, the conditional log-likelihood function that we estimate at time t is

Lt(Θ) = lt(Θ) + ω log( (
√
V nt −

√
Vt)

2 ), (2.26)

where lt(Θ) is given in equation (2.25), V nt is the realized spot variance computed using one-minute

grid returns from the S&P 500 index and Vt is the filtered spot variance from the UKF procedure. We

describe the construction of the realized spot variance measure in more detail in Appendix 2.6. Daily

time-series dynamic of the realized spot volatility,
√
V nt , is shown in the bottom panel of Figure 2.2.

The tuning parameter ω in equation (2.26) is set equal to 0.05 following Andersen, Fusari, and

Todorov (2015a).14 The model parameters are then estimated by maximizing the sum of conditional

log-likelihoods over the sample period from January 2, 2004 to December 31, 2012.

2.4 Results

2.4.1 Maximum likelihood estimates

Table 2.3 reports parameter estimates for the three models. The first, second, and third columns report

results for the SJ, SJV and SJVI models, respectively. We report log-likelihood values of the three

models in the bottom row.

We find that parameters governing the square-root dynamic of spot variance are well estimated.

Their parameter estimates are fairly consistent across the models. The correlation estimates of the two

Brownian shocks in return and spot variance, ρ, are about −35%, confirming the asymmetric return-

variance relationship found in the extant literature. We find that the spot market illiquidity level, Lt,

significantly impacts the level of spot variance, Vt. This is seen from the estimates of γ. We find that

across the three models, the estimates γ are about 0.12. This suggests that a one-standard-deviation

increase in the spot market illiquidity, Lt, would increase the spot variance level by about 12% after

controlling for the persistence dynamic of the variance process.

The strong relationship we find between market illiquidity and return variance lends support to

previous studies examining the relationship between return volatility and market trading activity. In

particular, motivated by the mixture of distribution hypothesis (MDH), which assumes that volatility

and volume simultaneously depend on a latent information process, past research efforts have been

14We verify that our main conclusions are unaffected to a reasonably large range of values for ω.
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devoted to studying the relationship between stock return volatility and trading volume (e.g., Clark,

1973; Epps and Epps, 1976; Tauchen and Pitts, 1983). Nevertheless, the findings in this literature have

been mixed and understanding the relationship between information flows and trading activity has been

an active research area. For instance, Lamoureux and Lastrapes (1990) estimate a GARCH volatility

model and find that trading volume is the main driver of stock return volatility and that past stock

return innovations became insignificant once trading volume is included in the model.15 While we find

that market illiquidity significantly drives the dynamic of spot variance, its effect does not eliminate the

strong persistence in the variance dynamic. Further, the recent literature agrees that trading volume

is an inadequate measure of market liquidity.16 Given the recent availability of intraday trading data,

we can more precisely measure market illiquidity by calculating the cost of participating in the stock

market (i.e., transaction cost). Our results estimated using a continuous-time model documenting a

strong relationship between market illiquidity and return variance therefore contribute to this stream of

literature.

Estimates of the jump-size mean, θ, and the jump-size standard deviation, δ, in Table 2.3 indicate

that the jump dynamic that we estimate corresponds to crash risk in the stock market. The estimates

of θ are negative and highly significant. The average jump mean size in daily index return is between

−3.7% (SJV model) and −5.9% (SJ model). Therefore, the jump dynamic that we identify corresponds

to large drops in daily S&P 500 index returns.

Table 2.3 shows that the SJ model has the largest magnitudes of θ and δ. This implies that crashes

in the SJ model are larger and more dispersed in magnitude relative to the other two models. We next

examine parameter estimates governing the time-varying jump intensity. First, we look at the dynamic

of the latent jump-intensity-specific factor, Ψt. The magnitude of parameters driving the Ψt dynamic in

the SJ model differs significantly from those in the other two models. For instance, the long-run mean θΨ,

the mean-reversion speed κΨ, and the volatility ξΨ of the jump-intensity-specific factor are significantly

larger for the SJ model. These findings are expected because in the SJ model, jump intensity dynamic

solely depends on the latent state variable Ψt. Further, these results confirm that the dynamic of jump

intensity is time-varying and follows a mean-reverting process.

Table 2.3 shows that when we add covariates to the jump intensity dynamic in the SJV and SJVI

models, the log-likelihood value increases substantially. The improvement is large with an increase of

about 5% relative to the SJ model. We therefore find strong support for modeling jump intensity as a

function of economic covariates. Looking at the SJV model, we find the impact of spot variance on jump

15In contrast, several studies find evidence conflicting with the MDH specification. These studies include Hiemstra and
Jones (1994), Lamoureux and Lastrapes (1994), Richardson and Smith (1994) and Andersen (1996).

16See for examples, Lee, Mucklow, and Ready (1993), Jones (2002) and Fleming (2003).
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intensity, γV , is positive and statistically significant at the 5% level (t-statistic is 2.17). This finding is

consistent with Pan (2002), Bates (2006), and Andersen, Fusari, and Todorov (2015b).

For the SJVI model, we find that when we add the market illiquidity measure to the jump intensity

specification, the estimate of γV substantially decreases in magnitude and its statistical significance

diminishes (t-statistic is 1.61). On the other hand, the impact of spot market illiquidity loads very

strongly (t-statistic is 13.87). This finding shows that the inclusion of market illiquidity as an economic

covariate significantly weakens the relationship between jump intensity and spot variance. This finding

is consistent with our conclusions from Table 2.1, which we obtained using regression analyses.

2.4.2 Time-Varying Volatility and Crash Risks

This section examines the time-series dynamics of market spot volatility and jump intensity. Table 2.4

reports descriptive statistics of daily jump intensity λt, spot variance Vt, and spot illiquidity Lt levels that

we obtained using the UKF from 2004–2012. We find that the sample moments of daily spot illiquidity

are almost identical across the three models. This suggests that its dynamic is well identified when

we extract their information from the daily market illiquidity measure ILQt calculated using effective

bid-ask spreads.

Figure 2.3 plots the daily annualized jump intensity for the three models. The jump intensity dynamic

of the SJ model is very volatile relative to the other two models. For instance, looking at the time-series

statistics of λt in Table 2.4, we find the average expected number of jumps implied by this model is 1.19

per year, but with a median of 0.44 and a standard deviation of 5.95. This shows that the distribution of

jump intensities filtered from the SJ model is highly skewed and dispersed. The average jump intensity

implied by the SJ model is about half of the other models. However, the rarer nature of jumps observed

in this model is compensated by its larger jump mean size of θ = −5.9% per each jump as shown in

Table 2.3. Figure 2.3 shows the expected number of jumps in the SJ model increases dramatically during

the 2008–2009 crisis period, while it is small outside the crisis period.

We find the jump intensity dynamic estimated from the SJV and SJVI models have comparable

distributions with means of 2.2 and 2.9 jumps per year, respectively. In these two models, the levels

of jump intensity are relatively stable before mid-2007, but rise after and peak in the fall of 2008. We

believe the relatively more stable jump intensity dynamics observed in the SJV and SJVI models are

due to improved identification resulting from the use of covariates in the jump intensity specification.

This argument is supported by looking at the models’ log-likelihood performance, which is substantially

worse under the SJ model.
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We next examine the economic contribution of the spot variance and market illiquidity to the jump

intensity dynamic. Figure 2.4 plots the decomposition of daily jump intensity levels. Here, we decompose

daily jump intensities filtered from the SJV model (top panel) and from the SJVI model (bottom panel)

into their respective components.

For the SJV model, the top panel of Figure 2.4 shows that the market’s spot variance is the main

component driving jump intensity dynamic. We find that on average, 61% of the jump intensity level is

explained by its covariation with the market’s spot variance. The time-series average of its contribution

is about 61%. We find the jump-intensity-specific factor Ψt explains about 39%. This finding shows

that a non-trivially large portion of jump intensity cannot be explained by the dynamic of market’s spot

variance.

The bottom panel of Figure 2.4 shows the decomposition of daily jump intensities estimated from the

SJVI model. Here, we find that the jump intensity dynamic is heavily dominated by its co-movement

with equity market illiquidity. We plot daily percentage contributions of each jump intensity component

in Figure 2.5. The results shown are largely consistent with the findings in the bottom panel of Figure

2.4. We find that, on average, the market illiquidity factor explains about 64% of the jump probability

in the SJVI model. In contrast to our findings for the SVJ model, we find the market’s spot variance

explains, on average, only 12%, with the remaining 24% contribution coming from the jump intensity

factor, Ψt. Once we control for market illiquidity as an economic variable driving time-varying crash

risk, the relative contribution of spot variance significantly diminishes.

The above findings offer important insight into the existing literature on index return models that

has increasingly documented the importance of time-varying crash risk (e.g., Bates, 2006, 2012; Maheu,

McCurdy, and Zhao, 2013). The common practice is to let jump intensity be an affine function of spot

variance. This modeling approach is appealing because it is parsimonious. It identifies time-varying

jump intensity as a constant multiple of the spot variance, thereby eliminating the need to introduce an

additional state variable to the model. We find that our estimation results for the SVJ model provide

some support for this modeling approach. However, we emphasize that the key economic variable

that matters most from our results for modeling time-varying crash probability is not the market spot

variance, but the market illiquidity factor. Lastly, our findings suggest the reason previous studies find

a positive relationship between the stock market’s time-varying crash risk and spot variance is because

of their common exposure to market illiquidity.
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2.4.3 Impulse Response Function

We examine the impact of market illiquidity on the current and future crash probability using impulse

response functions (IRFs). The IRF tells how much current and future values of crash intensity λt+τ

respond to a one-standard-deviation increase in either the spot variance Vt, the spot market illiquidity

Lt, or the level of latent state variable Ψt. The SJVI model that we propose yields an analytically

tractable IRF for the jump intensity. We report the IRF formula in Appendix 2.6.

In Figure 2.6, we consider two dates where the levels of spot volatility are relatively high or low. The

left-hand-side panels plot the IRF on March 11, 2009, with high spot volatility. The right-hand-side

panels plot the IRF on January 8, 2004, which corresponds to the day with low spot volatility.

Looking at the IRF plots on the day with high volatility (left panels), we find that the impact of

spot volatility dominates. A one-standard-deviation increase in the spot volatility Vt translates to an

increase of 0.11 in jump intensity on the same day. Importantly, the impact of a shock to spot volatility

is very persistent with a half life of about two months. A one-standard-deviation increase in the market

spot illiquidity Lt increases the jump intensity by about 0.07. Looking at the impact of a shock to the

latent factor Ψt, we find that it is trivially small at both the short- and long-run horizons.

We next look at the IRF plots on the day with low spot volatility. The state variables on this day

are significantly less volatile and therefore the levels of IRF are much lower. On this low-volatility day,

Figure 2.6 shows that a shock to market illiquidity dominates in term of magnitude as well as its lasting

impact on the jump intensity. Similar to the day with high spot volatility, we find that the impact of a

one-standard-deviation shock to the latent factor Ψt is small. Overall, Figure 2.6 shows that shocks to

the spot volatility Vt and the market illiquidity Lt are highly persistent and drive most of the current and

future increase in the probability of crash risk. However, the relative importance of Vt and Lt depends

on the level of uncertainty in the market.

2.4.4 Forecast Error Variance Decomposition

We perform a forecast error variance decomposition (FEVD) on the jump intensity λτ dynamic for

the SJVI model. This method helps determine the amount of information each variable contributes in

explaining changes to the current and future crash probability.

The error from forecasting the jump intensity λt+τ with τ -period horizon conditional on day t is

defined as

ε̂λ,t+τ = λt+τ − Et[λt+τ ]. (2.27)
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The idea behind FEVD is to find how much of the variation in ε̂λ,t+τ , i.e., Vart [ε̂λ,t+τ ], can be explained

by shocks to each state variable driving the jump intensity dynamic. In other words, the FEVD asks

how much of the unexpected change in the jump intensity is explained by shocks to Vt, Lt, and Ψt.

Derivation of the FEVD is tedious. For brevity, we report the expression in Appendix 2.6.

In Figure 2.7, we plot the proportion of forecast error variance explained by innovations to the spot

variance, Vt, and the spot market illiquidity, Lt, factors. The model parameters are obtained from their

MLE estimates in Table 2.3, and their state variables are set equal to their long-run values. We do not

plot the proportion of forecast error variance explained by Ψt because it is trivially small. The top two

panels of Figure 2.7 plot the proportion of forecast error variance explained by Vt and Lt one day ahead,

i.e., τ = 1. These results provide insight on the source of information that most importantly impacts

unexpected changes in the crash probability at the very short horizon. We also plot the proportion of

forecast error variance at a longer horizon, i.e., τ = 250, which approximately corresponds to one year

ahead. These results are shown in the bottom two panels.

We find that errors in the short-term forecast of the crash probability are mainly explained by shocks

to the market illiquidity factor, with the exception of the crisis period when shocks to the spot variance

dominate. This finding is consistent with the results shown in Figure 2.5. In contrast, when we look at the

sources of risk that explain errors in the long-term forecasted crash probability, we find that the market

spot variance dominates. The bottom panels of Figure 2.7 show that the diffusive variance component in

index returns contributes about 62% to unexpected changes in the long-run crash probability, while the

market illiquidity component contributes around 38%. This finding suggests that changes in investors’

perception about the long-run stock market crash risk is associated with the market uncertainty level.

On the other hand, unexpected changes in crash probability at the near horizon are mostly explained

by shocks to market illiquidity.

2.4.5 Option Fit

We also compare the three models based on their in-sample option fit. We define in-sample option pricing

error as the vega-weighted root mean squared error (VWRMSE) in fitting observed Black-Scholes vega-

weighted option prices obtained from the UKF procedure

VWRMSE(ATM) =

√√√√ 1

T

T∑
t=1

(ATMO
t+1 − ¯ATM

M
t+1)2, (2.28)
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where ¯ATM
M
t+1 denotes the ex ante forecast of vega-weighted ATM option price at time t + 1. Option

pricing error for OTM options are computed in a similar way.

Table 2.5 reports in-sample option pricing errors for the three models. We separate the sample into

three sub-periods of three years each. Overall pricing errors are very similar in magnitude between SJ

and SJV models, where the SJV model performs better during the crisis period while the SJ model has

lower pricing errors during normal times. More importantly, the SJVI model has a superior in-sample

option fit in most of the periods for both ATM and OTM options. Thus, the improvement in fitting

OTM options using the SJVI model suggests that its jump intensity specification is better-suited for

capturing the jump intensity dynamic embedded in the index options.

2.4.6 Risk Premiums

Using the risk-neutral parameter estimates in Table 2.3 and daily filtered states variables {V̂t, L̂t, Ψ̂t}

estimated previously, we infer the risk premium parameters. This is done by estimating the model on

daily S&P 500 index returns from 2004–2012, and keeping the parameters that are not affected by the

change of probability measures fixed. This approach to identify risk premiums was also employed in

Andersen, Fusari, and Todorov (2015b).

We assume the conventional form of the pricing kernel that preserves the affine structure of the model

under the physical measure. The prices of risk associated with the four Brownian motions are given by

dW 1,P
t = dW 1

t − ν1

√
Vtdt (2.29)

dW 2,P
t = dW 2

t − νV
√
Vtdt (2.30)

dW 3,P
t = dW 3

t (2.31)

dW 4,P
t = dW 4

t (2.32)

The parameter ν1 in equation (2.29) corresponds to the price of risk parameter for the first Brownian

innovation in the return process. Recall that νV is the price of risk parameter for the volatility innovation

that we estimated from options and realized spot variance as part of the UKF. Its estimate is reported

in Table 2.3. Recall also that we do not impose any risk premium assumptions on the third and fourth

Brownian motions corresponding to the liquidity and latent jump intensity innovations, respectively.

We follow Pan (2002) and assume the difference between jump distributions under the physical and

risk-neutral measures derives from the jump-size risk premium, νθ, defined as the difference between

jump-size means, θP − θ. The dynamic of log-stock price under the physical probability measure can be
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written as

d log(St) = (r − 1

2
Vt − ξPλt + (

√
1− ρ2ν1 + ρνv)Vt)dt+√

Vt(
√

1− ρ2dW 1,P
t + ρdW 2,P

t ) + qtdN
P
t (2.33)

where ξP = exp(θP + 1
2δ

2) is the jump compensator under the physical measure. Comparing the P-

measure return dynamic in equation (2.33) to the Q-measure return dynamic in equation (2.8) shows

that the equity risk premium, πt, can be written as

πt = (ξP − ξ)λt + (
√

1− ρ2ν1 + ρνV )Vt (2.34)

= (ξP − ξ)λt + νSVt, (2.35)

where we define νS =
√

1− ρ2ν1 + ρνv in equation (2.35).

Using the filtered state variables, {V̂t, L̂t, Ψ̂t}, we apply daily discretization to the return process

and estimate the risk premium parameters νθ and νS using MLE while fixing all other parameters. The

estimate for ν1 is then inferred from νS . Appendix 2.6 shows the discretization of the continuous-time

model, and presents the log-likelihood function for fitting the return process.

Table 2.6 reports estimation results of the risk premium parameters. We find that the jump risk

premium parameter νθ is well identified in all models. The estimates for νθ are statistically significant at

a confidence level of 1% or greater. On the other hand, estimates of the diffusive risk premium parameter

νS are only marginally significant. These findings are consistent with Pan (2002) who finds that the jump

risk premium is more easily identified from index option prices, while risk premiums associated with the

diffusive and variance risks are more difficult to estimate. Table 2.6 also reports estimates for the price

of risk coefficient ν1 associated with the first Brownian motion. Their values are inferred from the

corresponding estimates of νS in Table 2.6, and νV in Table 2.3. Because ν1 is indirectly inferred, we

do not report its t-statistic. This parameter can be usefully thought of as the price risk for exposure to

the diffusive component in index return.

Using the estimates reported in Tables 2.6 and 2.3, we quantify the economic magnitude of each

risk premium component in terms of annualized excess returns. Equation (2.35) shows that the eq-

uity risk premium can be decomposed into two main components. The first component represents the

compensation for bearing stock market crash risk, (ξP − ξ)λt. The second component represents the

compensation for bearing stock market’s diffusive return and variance risks, νSVt. For brevity, we refer

to νSVt as diffusive risk in the equity risk premium.
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We first look at the compensation for bearing stock market crash risk. For each model, we calculate

the long-run jump risk premium level (ξP − ξ)λ̄t, where λ̄t is the annualized time-series mean of the

jump intensity dynamic reported in Table 2.4. We find that the compensation for bearing the market’s

crash risk for the SJ, SJV, and SJVI models are 3.0%, 4.8%, and 4.8% in annualized excess returns,

respectively. The jump risk premium estimate implied by the SJ model is lower than the other two

models. This finding reflects the relatively lower jump intensity levels that we find for the SJ model.

The jump risk premium estimates implied by the SJV and SJVI models are mostly consistent with prior

studies that estimate a time-varying jump risk model on the S&P 500 index over a similar sample period.

For instance, Ornthanalai (2014) estimates the jump risk premium implied by the compound Poisson

jump process over the 1996–2012 period and finds that its magnitude is 4.5% per year. Using index

options and returns data from an earlier time period, i.e., 1989–1996, Pan (2002) finds that the implied

jump risk premium is 3.5% per annum.

We next look at the compensation for bearing stock market diffusive risk. This is calculated as

νS V̄t, where V̄t is the time-series mean of the annualized variance reported in Table 2.4. We find the

compensation for bearing diffusive risk for the SJ, SJV, and SJVI models is 7.48%, 4.15%, and 2.39% in

annualized excess returns, respectively. The relatively larger magnitude of diffusive risk premium found

in the SJ model is expected. This is because the SJ model has the lowest jump risk premium level and

hence it must rely on the diffusive risk premium component to match the level of equity risk premium

found in the data.

The realized equity premium calculated using daily index returns data over the 2004–2012 period is

8.7% per year. The total equity premiums that we find for the SJ, SJV, and SJVI models are 10.48%,

8.92%, and 7.14%, in annualized terms, respectively. Our estimates of the total equity premium are

therefore consistent with the value calculated using daily returns data. This finding suggests that the

magnitudes of equity risk premium implied by our models are economically plausible.

2.5 Robustness

2.5.1 Circuit Breakers

Following the flash crash incident on May 6, 2010, the Securities and Exchange Commission (SEC)

installed “circuit breakers” on 404 NYSE-listed S&P 500 stocks on June 16, 2010 to halt trading for five

minutes if any stock experiences more than 10% movement, either up or down, in a five-minute period.

This new trading rule potentially affects our aggregate illiquidity measure constructed from individual
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firms’ effective spreads, thereby altering the impact of market illiquidity on jump probability. We test

whether this change in market-trading rules alters our findings on the influence of market illiquidity on

time-varying crash risk.

We take June 16, 2010 as the date of exogenous shift in the market-trading structure. Specifically, we

divide our sample into two periods, one starting on January 4, 2004 and ending on June 15, 2010, and

the other starting on June 16, 2010 and ending on December 31, 2012. We use the same jump intensity

specification as in the SJVI model for both subsamples, as below. The model parameters are estimated

separately, yielding two sets of parameter estimates. We summarize the results below. For brevity, we

report only coefficient loadings on the covariates in the jump intensity dynamic. The t-statistic for each

parameter is reported in parentheses underneath its estimate.17

Before the circuit breaker: λt = Ψt+ 19.69 Vt+ 9.24 Lt (2.36)

(1.71)∗ (9.04)∗∗∗

After the circuit breaker: λt = Ψt+ 18.47 Vt+ 7.98 Lt. (2.37)

(1.47) (1.98)∗∗

We find that the loading coefficient on the market illiquidity factor is smaller in latter period, being

7.98, relative to the estimate of 9.24 in the earlier period. This suggests that the introduction of circuit

breakers has slightly reduced the impact of market illiquidity on jump intensity, perhaps, by eliminating

sudden contiguous large movements in equity prices that were often identified as symptoms of liquidity

shortage. Nevertheless, equations (2.36)–(2.37) show that the implementation of circuit breakers does

not materially impact the importance of the market illiquidity channel. Both coefficients are statistically

significant at 1% and 5% levels, respectively, with a lower t-statistic for the latter period because of its

much smaller sample size. The loading coefficients on market spot variance Vt for the pre- and post-

circuit breaker periods are 19.69 and 18.47, respectively. These magnitudes are similar to the estimate

of 18.38 found using the full sample period. In both periods, the impact of the coefficient estimates on

Vt are statistically weak. These results confirm the robustness of our estimates in Table 2.3.

2.5.2 Alternative Iliquidity Measure

We have so far defined market illiquidity using the aggregate relative effective spread of S&P 500 con-

stituents. This measure captures the aggregate transaction cost of participating in the stock market

and has been shown in Aı̈t-Sahalia and Yu (2009), and Goyenko, Holden, and Trzcinka (2009) to be a

17***, **, and * denote statistical significance at the 1, 5, and 10 confidence levels, respectively.
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good proxy for market illiquidity. This section tests whether our results are robust to other illiquidity

measures.

First, we use dollar effective spread as an alternative measure for the market-trading cost. It is

calculated as the absolute dollar difference between the transaction price and the prevailing mid-price of

each transaction instead of the relative percentage to the mid-price as before. More precisely, the dollar

effective spread measure associated with each transaction k on day t for firm i is defined as

$ILQit,k = 2|Si,Pt,k − S
i,M
t,k |. (2.38)

We aggregate $ILQit,k across S&P 500 index constituents to construct the daily measure of market

illiquidity.

Our second alternative market illiquidity measure is from Amihud (2002). On each day t, we compute

the Amihud illiquidity measure for each firm i in the S&P 500 index as a fraction of absolute return,

|ri|, over dollar trading volume, DV oli,t, that day:

ALIQit =

N∑
i=1

|ri,t|
DV oli,t

. (2.39)

The daily Amihud market illiquidity measure for the stock market is then calculated as an equally-

weighted average of individual firms’ Amihud illiquidity measure.

The middle and bottom panels of Figure 2A.2 plot the time-series dynamic of the two alternative

market illiquidity measures. For a quick comparison, we plot the relative effective spread in the top panel.

All illiquidity measures are normalized to have the same sample mean. This normalization method does

not impact our results because the absolute level does not matter for our specification. Figure 2A.2 shows

that the dollar effective spread measure is similar to the relative effective spread measure, although with

some small differences during the crisis period. The Amihud illiquidity measure is much noisier than the

other two measures calculated from intraday bid-ask spreads.

We re-estimate the SJVI model using the market dollar effective spread and the Amihud illiquidity

measure. We report the results in Table 2.7. Overall parameter estimates are fairly consistent compared

with those estimated using relative effective spreads shown in Table 2.3. We find the coefficient estimate

γV is similar in magnitude and is not statistically significant in either alternative illiquidity measures

that we use. Meanwhile, the coefficient estimate for γL is similar for the Amihud illiquidity measure,

and even larger for the dollar effective spread measure. In all cases, γL remains statistically significant.

We find that in-sample option pricing errors are higher using the Amihud illiquidity measure, which is
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expected due to the noisiness of the measure. On the other hand, the in-sample options fit shows a small

marginal improvement using the dollar effective spread. To save space, the option pricing results are

not reported here. Overall, our main conclusions remain qualitatively unchanged. We conclude that our

main results are robust to different definitions of market illiquidity.

2.6 Conclusion

We study the role of market liquidity in explaining the time-varying market crash risk in the S&P

500 index. We estimate a continuous-time model with stochastic volatility and crash probability. We

introduce market illiquidity as an observable variable to the model by allowing it to affect the dynamics

of spot variance and jump risk intensity. We follow the recent empirical literature and measure the daily

stock market illiquidity level using volume-weighted intraday bid-ask spreads of all securities constituting

the S&P500 index. We estimate the model over 2004–2012 using daily S&P 500 index options, realized

spot variance and market illiquidity measure, and find that 64% of time-varying crash risk is due to

the stock market’s exposure to market illiquidity. The influence of market illiquidity dominates other

factors that we examined, including the market’s spot variance. This is with an exception of the 2008

crisis, when the influence of spot variance dominates and the contribution of market illiquidity falls to

about 30%.
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Table 2.1: Regression Model on Realized Jump Variation (RJV)

Realized Jump Variation Next Day: RJVt+1

(1) (2) (3) (4) (5) (6)

MinRVt 0.071*** 0.038 0.037
(2.63) (1.36) (1.31)

ILQt 0.091*** 0.061*** 0.070** 0.045**
(3.97) (4.25) (2.13) (2.01)

V IXt 0.046*** 0.014 0.011
(4.50) (1.19) (0.94)

Rett -0.058 -0.057 -0.038 -0.054 -0.050 -0.049
(-0.97) (-0.94) (-0.63) (-0.92) (-0.79) (-0.79)

RJVt -0.196 -0.075 -0.006 -0.185 -0.068 -0.177
(-1.19) (-0.94) (-0.09) (-1.22) (-0.85) (-1.15)

Adjusted R2 29.3% 30.5% 29.0% 32.1% 30.7% 32.2%

Notes: We report estimated coefficients and t-statistics from the predictive OLS regression on the non-
parametrically estimated variance component in daily S&P 500 index returns that is due to jumps. The
sample period is from January 2, 2004 to December 31, 2012. The dependent variable is the realized
jump variation (RJV ) calculated using high-frequency intraday trades on S&P 500 cash index. The
independent variables include lagged realized variance estimator, MinRV, from Andersen, Dobrev, and
Schaumburg (2012), which measures variations in daily S&P 500 index returns that are associated with
non-jump risk; market illiquidity proxy, ILQ, measured by daily averaged effective spreads across firms in
the S&P 500 constituents; option-implied volatility index, VIX, obtained from the CBOE; and log return
of S&P 500 index. All variables are lagged by one day. RJV, MinRV, ES, and VIX are expressed in
annualized terms by multiplying their daily measure by 252. We also include the autoregressive term for
RJV in the regression. Year and day-of-the week fixed effects are included. Coefficient estimates on the
fixed-effect terms are not reported here to save space. We report heteroskedasticity-consistent t-statistic
in parenthesis “( )” below each parameter estimate. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% confidence levels, respectively, based on the heterosedasticity-consistent t-statistic.
Adjusted R-squared for each regression model is reported in the bottom row.
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Table 2.2: Regression Model on Change in Risk-Neutral Skewness

Change in Risk-Neutral Skewness: ∆RNSkewt

(1) (2) (3) (4)

∆MinRVt -0.005 0.450*

(-0.03) (1.69)

∆ILQt -0.622* -1.144**

(-1.79) (-2.48)

Returnt -0.549*** -0.551*** -0.826*** -0.857***

(-3.28) (-3.00) (-3.40) (-3.70)

∆RNSkewt−1 0.455*** 0.455*** 0.449*** 0.451***

(18.93) (18.86) (18.59) (18.74)

AICC -2.181 -2.180 -2.182 -2.182

R2 23.4% 23.4% 23.5% 23.7%

Notes: We report regression results on daily changes in risk-neutral skewness of S&P 500 index returns,
∆RSkewt. The sample period is from January 2, 2004 to December 31, 2012. Risk-neutral skewness,
RSkewt, on day t is calculated from end-of-the-day S&P 500 index option prices with maturity closest to
30 days. We use the nonparametric method of Bakshi and Madan (2000) to calculate the 30-day forward-
looking risk-neutral skewness measure. The independent variables include change in realized variance
estimator, ∆MinRV , from Andersen, Dobrev, and Schaumburg (2012); change in market illiquidity
proxy; ∆ILQ, measured by daily averaged effective spreads across firms in the S&P 500 constituents;
Return, log S&P 500 return. Each specification is estimated using maximum likelihood. We use an
ARMA(2,1) structure in the regression model, which is determined by the LjungBox test to sufficiently
remove cross-correlations in the residuals. We control for seasonality due to the day-of-the-week effect.
We report coefficient estimates on the two autoregressive terms. For brevity, we do not report coefficient
estimates on the moving-average error term and day-of-the-week fixed effects. Robust t-statistic is
reported in parenthesis below each parameter estimate. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% confidence levels, respectively. The last row reports regression diagnostics based
on the Akaike information criterion (AICC) and R2 metric.
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Table 2.3: Maximum Likelihood Estimates: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γV Vt λt = Ψt + γV Vt + γLLt

Parameter Estimate Estimate Estimate

Panel A. Filtered state dynamics
κV 3.422 3.565 3.549

(7.75) (8.39) (4.73)
θV 0.031 0.031 0.031

(8.86) (11.00) (5.66)
ξV 0.336 0.343 0.346

(99.50) (22.97) (42.49)
νV 1.604 1.559 1.554

(1.06) (0.42) (0.71)
κL 2.416 2.344 2.353

(3.93) (1.27) (4.61)
θL 0.178 0.182 0.171

(7.64) (5.16) (6.69)
ξL 0.149 0.151 0.158

(37.50) (6.10) (36.80)
κΨ 0.972 0.661 0.662

(5.55) (0.83) (2.25)
θΨ 1.619 0.102 0.101

(5.00) (3.34) (1.66)
ξΨ 0.402 0.204 0.204

(2.47) (7.22) (1.79)
ρ -0.343 -0.351 -0.353

(19.03) (2.90) (5.92)

Panel B. Jump-size parameters
θ -0.059 -0.037 -0.037

(34.98) (10.41) (26.28)
δ 0.047 0.033 0.031

(55.16) (13.48) (29.84)

Panel C. Loadings on covariates
γ 0.120 0.117 0.118

(5.22) (3.52) (7.95)
γV 52.723 18.380

(2.17) (1.61)
γL 9.259

(13.87)

Log-Likelihood: 7,307.32 7,641.24 7,707.29

Notes: We report MLEs of the three time-varying jump models: SJ, SJV, and SJVI. The sample
period is from January 2, 2004 to December 31, 2012. Each model is estimated using daily OTM and
ATM S&P 500 index options, averaged effective spreads of S&P 500 constituents, and spot variance
estimated from one-minute high-frequency S&P 500 futures data. We maximize the log likelihood
function in equation (2.26). The state variables are estimated using the UKF. We report t-statistic
calculated using the outer product of the gradient in parenthesis below each parameter estimate.
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Table 2.4: Descriptive Statistics of Filtered Jump Intensities and Spot Variances

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt + γV Vt + γLLt

Panel A. Jump intensity λt

Mean 1.1922 2.2231 2.8772

Median 0.4367 1.3128 2.1420

Std. Dev. 5.9503 3.1282 2.6284

25 percentile 0.1818 0.7964 1.7096

75 percentile 0.8955 2.4995 3.1357

Panel B. Spot variance Vt

Mean 0.0258 0.0266 0.0213

Median 0.0159 0.0145 0.0147

Std. Dev. 0.0334 0.0390 0.0234

25 percentile 0.0099 0.0090 0.0090

75 percentile 0.0280 0.0251 0.0236

Panel C. Spot illiquidity Lt

Mean 0.1681 0.1681 0.1682

Median 0.1539 0.1538 0.1538

Std. Dev. 0.0558 0.0558 0.0560

25 percentile 0.1374 0.1375 0.1375

75 percentile 0.1741 0.1742 0.1742

Notes: We report the descriptive statistics of filtered jump intensities λt, spot variances Vt, and spot
illiquidity Lt for three models: SJ, SJV, and SJVI. The variables are reported in annualized terms by
multiplying their daily values by 252. We obtain the filtered state variables from the UKF step in the
MLE estimation. Parameter estimates of the three models are reported in Table 2.3.
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Table 2.5: Vega-weighted Root Mean Squared Error of Different Models

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt + γV Vt + γLLt

Panel A. VWRMSE by sub-period for OTM options

2004–2006 3.21% 3.38% 3.21%

2007–2009 10.41% 9.99% 8.72%

2010–2012 6.57% 6.57% 6.00%

2004–2012 7.34% 7.17% 6.39%

Panel B. VWRMSE by sub-period for ATM options

2004–2006 1.12% 1.68% 1.21%

2007–2009 7.69% 7.58% 5.82%

2010–2012 4.50% 4.70% 4.00%

2004–2012 5.18% 5.24% 4.14%

Notes: We report in-sample fit for the three models: SJ, SJV, and SJVI. The models are estimated using MLE.
Equation (2.26) shows the log likelihood function. Panel A reports in-sample option pricing errors for OTM and
panel B reports the pricing errors for ATM options. Option pricing errors are obtained from the measurement
equations in the UKF step. The numbers reported are vega-weighted root mean squared error (VWRMSE). For
ATM options, the VWRMSE is calculated as

VWRMSE(ATM) =

√√√√ 1

T

T∑
t=1

(
ATMO

t+1 − ¯ATM
M
t+1

)2
where ¯ATM

M
t+1 denotes the ex ante forecast of vega-weighted ATM option price at time t + 1, and ATMO

t+1

denotes the vega-weighted ATM option price observed in the data. We use option vega reported in the Ivey
Optionmetrics database to scale option prices, which makes their levels more comparable across moneyness and
time (Trolle and Schwartz, 2009). The VWRMSE for OTM options is calculated similarly.
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Table 2.6: Risk Premium Parameters Estimated from Daily Returns: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt + γV Vt + γLLt

Parameter Estimate Estimate Estimate

νs =
√

1− ρ2ν1 + ρνv 2.900 1.562 1.121

(1.89) (1.39) (1.54)

νθ 0.048 0.025 0.019

(11.76) (4.23) (2.24)

ν1 3.674 2.253 1.784

Log-Likelihood: 7,125.88 7,190.94 7,204.12

Notes: We report MLE estimates of the risk premium parameters for the three time-varying jump
models: SJ, SJV, and SJVI. Each model is fitted to daily S&P 500 return daily returns data from
January 2, 2004 to December 31, 2012. We obtain daily state values Vt, Lt, and Ψt, as well as Q-
measure parameters from the first-stage estimation results reported in Table 2.3. The parameter νθ is
the difference between jump-size means under the physical and risk-neutral measures, i.e., θP − θ. The
parameter ν1 corresponds to the price of risk coefficient associated with the Brownian innovation in
the return process; see equation (2.29). We report t-statistic calculated using the outer product of the
gradient in parenthesis below parameter estimates for νs and νθ . To facilitate econometric identification,
we estimate νs =

√
1− ρ2ν1 + ρνV from daily returns MLE and later infer ν1 from its estimate together

with the value of νV reported in Table 2.3.
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Table 2.7: Maximum Likelihood Estimates: Alternative Illiquidity Measures

(1) SJVI: Amihud-ILQ (2) SJVI: $ES-ILQ

Parameter Estimate Estimate

Panel A. Filtered state dynamics
κV 3.553 3.553

(1.31) (4.44)
θV 0.032 0.031

(28.83) (227.78)
ξV 0.345 0.346

(7.55) (13.01)
νv 1.552 1.554

(0.55) (0.21)
κL 2.357 2.355

(1.18) (0.77)
θL 0.170 0.171

(1.75) (20.61)
ξL 0.158 0.144

(0.85) (5.62)
κΨ 0.661 0.661

(0.35) (0.32)
θΨ 0.101 0.101

(1.35) (5.23)
ξΨ 0.203 0.206

(1.43) (25.36)
ρ -0.344 -0.352

(1.38) (2.01)

Panel B. Jump-size parameters
θ -0.034 -0.037

(7.41) (30.05)
δ 0.032 0.027

(8.25) (16.34)

Panel C. Loadings on covariates
γ 0.119 0.118

(1.17) (1.04)
γV 18.180 19.372

(0.38) (0.47)
γL 9.686 13.584

(11.81) (3.21)

Notes: We report MLE parameter estimates for the SJVI model estimated using two alternative illiquidity
measures. The sample period is from January 2, 2004 to December 31, 2012. Each model is estimated using daily
OTM and ATM options, daily spot variance calculated from high-frequency index returns, and daily illiquidity
measure. In the first column, the daily illiquidity measure is calculated using Amihud (2002). The second column
reports results using dollar effective spread as a measure of illiquidity. The daily illiquidity measure is calculated
at the stock level, and then aggregated across firms constituting the S&P 500 index to yield the daily market
illiquidity measure. See Section 2.5.2 for more details. All models are estimated by maximizing log likelihood
from UKF. T-statistic calculated using the outer product of the gradients is reported in parentheses.
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Figure 2.1: Daily Time Series of the Stock Market Variables
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Notes: This figure plots four daily time series of selected variables for the S&P 500 index. The sample
period is from January 2, 2004 to December 31, 2012. The top-left panel plots the daily returns on
the S&P 500 index. In the top-right panel, we plot the annualized illiquidity measure calculated as
the equally weighted average effective spread of intraday trades across firms constituting the S&P 500
index. The bottom-left panel plots the annualized jump-robust variance, MinRV, estimated using the
one-minute grid returns of S&P 500 cash index. It is calculated following the approach of Andersen,
Dobrev, and Schaumburg (2012). In the bottom-right panel, we plot the annualized realized jump
variation, RJV, of daily index returns.
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Figure 2.2: Implied Volatilities of OTM and ATM Options and Spot Volatility

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

0.2

0.4

0.6

0.8
Implied Volatilities of OTM Options

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

0.2

0.4

0.6

0.8
Implied Volatilities of ATM Options

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

0.2

0.4

0.6

0.8
Annualized Spot Volatilities

Notes: In the top panel, we plot the daily implied volatilities of OTM put options written on the S&P 500
index from January 2, 2004 to December 31, 2012. In the second panel, we plot the implied volatilities of
ATM call options. Both options are chosen to have the time to maturity to be closest to 30 calendar days.
OTM options are chosen to have forward price-to-strike ratio to be closest to 0.95 while ATM options
have the same ratio being closest to 1. The last panel plots the time series of spot volatility measure
constructed using one-minute grid of intraday returns at 4:30 p.m. each day, following Andersen, Fusari,
and Todorov (2015b).
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Figure 2.3: Filtered Jump Intensity: λt
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Notes: We plot daily annualized jump intensities λt filtered for the three models that we study from
January 2, 2004 to December 31, 2012. The jump intensity specifications in the three models can be
summarized as follows:

SJ : λt = Ψt

SJV : λt = Ψt + γV Vt

SJVI : λt = Ψt + γV Vt + γLLt.

The top panel corresponds to the SJ model that has jump intensities solely driven by a latent jump
intensity term; the middle panel corresponds to the SJV model that has jump intensity being driven by
latent stochastic jump intensity and variance; and the bottom panel corresponds to the SJVI model that
has jump intensity being driven by latent stochastic jump intensity, variance, and illiquidity.
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Figure 2.4: Decomposition of Jump Intensity: SJV vs. SJVI
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Notes: We plot the decomposition of daily annualized jump intensities λt filtered from the SJV model
(top panel) and the SJVI model (bottom panel) from January 2, 2004 to December 31, 2012. The top
panel decomposes daily jump intensity dynamics of the SJV model into the portion coming from the
latent stochastic jump intensity term, Ψt, and the portion that is due to the daily spot variance, γV Vt.
In the bottom panel, we decompose daily jump intensity dynamics of the SJVI model into the portion
coming from the latent stochastic jump-intensity-specific term Ψt, the portion that is due to the daily
spot variance, γV Vt, and the portion that is due to daily spot market illiquidity, γLLt.



Chapter 2. Time-Varying Crash Risk: The Role of Stock Market Liquidity 71

Figure 2.5: Relative Contribution to Jump Intensity: SJVI Model
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Notes: We plot the breakdown of daily annualized jump intensity, λt = Ψt + γV Vt + γLLt, filtered
from the SJVI model from January 2, 2004 to December 31, 2012. The top panel plots the percentage
contribution coming from the latent stochastic jump intensity term, Ψt/λt. The middle panel plots the
contribution coming from the variance term, γV Vt/λt. The bottom panel plots the contribution from
the illiquidity term, γlLt.
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Figure 2.6: Impulse Response Function of λτ : High vs. Low Volatility Days
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Notes: This figure plots the IRF describing the impact of one-standard-deviation shock to Vt, Lt, and
Ψt on the jump intensity λt+τ in the τ days ahead. The x-axis displays the horizon τ in number of
days and the y-axis corresponds to the response of λt+τ . We plot the IRF from two days where the
spot volatility levels are relatively high (left-column panels) and low (right-column panels). In each
column, the top, middle, and bottom panels plot the IRF examining the impact of shocks to the spot
volatility, spot illiquidity, and the latent state variable, respectively. All model parameters and filtered
state variables are taken from the SJVI model estimates in Table 2.3. The date with high spot volatility
(26.9%) corresponds to March 11, 2009. The date with log spot volatility (9.2%) corresponds to January
8, 2004.
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Figure 2.7: Proportion of Forecast Error Variance (ε̂λ,t+τ ) Explained by Vt and Lt
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Notes: This figure plots the time series of FEVD for the jump intensity λt+τ at the short- and long-run
horizons. The top-row panels plot FEVD for the short-run horizon, i.e., τ = 1 day, while the bottom-row
panels plot FEVD at the long-run horizon, i.e., τ = 250 days. The y-axis displays the proportion of the
forecast error variance explained by the factors. The forecast error for the jump intensity τ days ahead
conditional on time t is defined as ε̂λ,t+τ = λτ −Et[λτ ]. We decompose the variance of the forecast error
Vart [ε̂λ,t+τ ] into components associated with shocks to the illiquidity factor Lt (right-column panels),
and the spot variance Vt (left-column panels). The contribution of the latent state variable Ψt in the
variance ε̂λ,t+τ is very small and for brevity, is not reported here. All model parameters and filtered
state variables are taken from the SJVI model estimates in Table 2.3.
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Appendix

Appendix 2A: Risk-Neutral Skewness Measure

We use the model-free methodology implemented by Bakshi and Madan (2000) and Kozhan, Neuberger,
and Schneider (2014), among others, to compute the risk-neutral moments. A key insight of this approach
is that one can replicate any desired payoff by designing a portfolio of OTM European call and put options
over a continuum of strike prices.

For an overview of this approach, let S denote the underlying asset value and let G[S] denote the
payoff at maturity τ for a generic contingent claim written on S. By discounting the contingent claim
with the risk-free rate r, its price can be evaluated under the risk-neutral expectation as EQ

t {e−rτG[S]}.
Bakshi and Madan (2000) show that for any twice-continuously differentiable payoff function G[S] with
bounded expectation, the price of this contingent claim contract can be spanned according to the formula

EQ
t {e−rτG[S]} = e−rτ (G[S]− SGS [S]) + GS [S]St +

∫ ∞
S

GSS [K]C(t, τ ;K)dK

+

∫ S

0

GSS [K]P (t, τ ;K)dK, (2.40)

where Gs[S] and Gss[K] represent the first and second derivatives of the payoff function G evaluated at
some asset value S and at the strike price K, respectively. The above equation shows that the contingent
claim price can be replicated using a portfolio consisting of a risk-free bond, an underlying asset, and
OTM calls and puts. The integrals in equation (2.40) can be evaluated numerically. We use a cubic
spline method to calculate the integrals across moneyness.

To construct higher risk-neutral moments, we focus on the payoff function G with power contracts.
That is,

G[S] =

{
r2
t,τ the volatility contract

r3
t,τ the cubic contract,

(2.41)

where rt,τ denotes the log-return of asset price S from time t to t + τ . The risk-neutral volatility and
skewness are then computed as

V olQt,τ = {EQ
t [(rt,τ − EQ

t [rt,τ ])2]}1/2, (2.42)

SkewQ
t,τ =

EQ
t [(rt,τ − EQ

t [rt,τ ])3]

{EQ
t [(rt,τ − EQ

t [rt,τ ])2]}3/2
. (2.43)

We obtain data on S&P 500 index options between 2004 and 2012 from OptionMetrics. We use the
average of the bid and ask quotes for each option contract and filter out options with bids of $0 as well
as those whose average quotes are less than $3/8. We also filter out quotes that do not satisfy standard
no-arbitrage conditions. Finally, we eliminate in-the-money options because they are less liquid than
OTM and ATM options. We only estimate the moments for days that have at least two OTM call prices
and two OTM put prices available. Finally, for any given maturity of interest, i.e., 30-day, we implement
a linear interpolation to calculate the corresponding risk-neutral moments.

Appendix 2B: Realized Skewness Measure

We construct the daily realized skewness measure, RSkew, following the method in Amaya, Christof-
fersen, Jacobs, and Vasques (2015), which has been shown to significantly predict stock returns. This
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realized skewness is calculated using one-minute log returns of the S&P500 cash index as follows:

RSkewNt =

√
N
∑N
i=1 r

3
i,t

(RV Nt )3/2
, (2.44)

where N is the number of time intervals in a trading day. As N goes to infinity, the above two measures
converge to the cubic variations of jump component in the daily return, i.e., the diffusive component is
excluded in their measurement.

Appendix 2C: Realized Skewness Regression

We also examine the impact of market illiquidity on daily realized skewness measure, RSkew. Unlike risk-
neutral skewness that represents a forward-looking measure of the stock market crash risk, RSkew is
calculated using historically observed high-frequency intraday index returns. Therefore, a more negative
daily realized skewness level would indicate an increasing probability that a crash in the stock market
has occurred during that trading day.

We estimate a time-series regression for the change in realized skewness, ∆RSkewt+1, similar to
the general model shown in equation (2.7). However, we use a predictive regression model for the
change in realized skewness by lagging all independent variables by one day. This is because RSkew
is calculated from intraday trades observed during the day, which is the same data period used for
calculating MinRV and ILQ.18 This concern, however, does not apply to the risk-neutral skewness
regression because RNSkew is calculated using end-of-day option prices and is derived from a different
data source.

Table 2A.1 reports four sets of regression results on changes in daily realized skewness. We use
the ARMA model with p = 1 in the autoregressive term and q = 2 in the error term. These lags
are determined by the LjungBox test. The results shown in Table 2A.1 strongly support the findings in
Table 2.2, which are obtained using daily changes in risk-neutral skewness. That is, an increase in market
illiquidity is negatively related to the realized skewness. Column (2) shows the negative coefficient on
∆MinRV is negligible in magnitude as well as in statistical significance. However, when both ∆MinRV
and ∆ILQ are added to the regression model, the coefficient estimate on ∆MinRV becomes positive
and statistically significant. These findings are highly consistent with the results obtained in Table 2.2.
Therefore, we find the effect of market illiquidity on crash probability is robust to whether we measure
the stock market crask risk using the forwarding-looking risk-neutral skewness or the historical realized
skewness.

Appendix 2D: High Frequency Spot Variance Measure

Following Andersen, Fusari, and Todorov (2015b) and Mancini (2009), we construct the consistent
estimator of spot variance at the end of each trading day using the one-minute grid of S&P 500 futures
returns as follows:

V̂
(n,mn)
t =

n

mn

n∑
i=n−mn+1

(ri,t)
2I(|ri,t| ≤ αn−ω). (2.45)

We use one-minute-grid returns over 6.5 hours in a trading day, thus resulting in n = 390 observations.
The value of mn is set to be 75% of n for each day. Other tuning parameters are set as follows:
α = 4

√
BPVt and ω = 0.49 where BPV denotes the bi-power variation of day t computed using full

one-minute grid of returns.

18Our conclusion is unaffected when we use a contemporaneous regression instead of a predictive regression.
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Appendix 2E: Coefficients in the Affine Characteristic Function

The model that we study is casted in affine framework, the conditional characteristic function is ex-
ponential affine in the state variables following Duffie, Pan, and Singleton (2000). Its function form is
given by

Et[exp(iφ log(ST ))] = exp (α(τ) + β0(τ) log(St) + β1(τ)Vt + β2(τ)Lt + β3(τ)Ψt) (2.46)

We use the notation τ = T − t for simplicity. The coefficients satisfy the following system of Ricatti
ordinary differential equation (ODE) with the boundary conditions β0(0) = iφ and α(0) = β1(0) =
β2(0) = β3(0) = 0

dβ0

dτ
= 0

dα

dτ
= irφ+ (κV θV + γκLθL)β1 + κLθLβ2 + κΨθΨβ3

dβ1

dτ
=

1

2
ξ2
V β

2
1 + (ξV ρiφ− κV )β1 + (

1

2
(iφ)2 − (

1

2
+ γvξ)iφ+ γvθu)

dβ2

dτ
=

1

2
ξ2
Lβ

2
2 + (γξ2

Lβ1 − κL)β2 + (
1

2
γ2ξ2

Lβ
2
1 − γκLβ1 − γlξiφ+ γlθu)

dβ3

dτ
=

1

2
ξ2
Ψβ

2
3 − κΨβ3 + θu − ξiφ

where θu = (eθiφ+ 1
2 δ

2(iφ)2 − 1). Equations for β0, β1, and β3 can be solved analytically in terms of
elementary functions while α and β2 need to be solved numerically. We employ fourth-order Runge-
Kutta method with the step size of ∆t = 1/252.

Appendix 2F: Discretization of Daily Returns and Estimation

We apply daily discretization to the physical return process in (2.33). This yields

rt+1 ' (r + (νS −
1

2
)V̂t − ξP λ̂t)∆t+

√
V̂t
√

∆tεt +

Nt∑
i=1

yi,t, (2.47)

where νS =
√

1− ρ2ν1 + ρνv, and εt is the standard normal innovation. The jump component is

represented a compound Poisson process
∑Nt
i=1 yi,t, where Nt is the number of jump arrival with intensity

λt on day t, and yi,t is i.i.d. normal with mean θP and variance δ2. Conditional on the number of jumps
Nt = j, we can write the likelihood as conditionally normal, thus, the daily return likelihood can be
analytically computed.

Appendix 2G: Impulse Response Function

In this section we construct the impulse response function of the discretized SJVI model under the
physical measure. We follow the same Euler-discretization scheme applied to the UKF procedure; see
the main text. The discretized system under the P measure is written as

Vt+1 = Vt + κV (θV − Vt)∆t+ γκL(θL − Lt)∆t+ ξV
√

∆tVtε
1
t+1 + γξL

√
∆tLtε

2
t+1

Lt+1 = Lt + κL(θL − Lt)∆t+ ξL
√

∆tLtε
2
t+1

Ψt+1 = Ψt + κΨ(θΨ −Ψt)∆t+ ξΨ
√

∆tΨtε
3
t+1,
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where error terms εit+1, for i = 1 to 3, are i.i.d. standard normal with the step size ∆t = 1/252.
We next expand the above system and rewrite them in terms of past innovation terms only. The

expansion for Lt+1 and Ψt+1 is straightforward and is given by

Lt+1 = θL +

∞∑
j=0

ρjLη
L
t+1−j (2.48)

Ψt+1 = θΨ +

∞∑
j=0

ρjΨη
Ψ
t+1−j , (2.49)

where the new coefficients are ρL = 1 − κL∆t, ρΨ = 1 − κΨ∆t, ηLt+1 = ξL
√

∆t
√
Ltε

2
t+1, and ηΨ

t+1 =

ξΨ
√

∆t
√

Ψtε
3
t+1. The expansion for Vt+1 is a bit more involved because there are two independent

shocks. After some algebraic work, we obtain

Vt+1 = θV + γηLt+1 +

∞∑
j=0

ρjV η
V
t+1−j + γ

∞∑
j=1

ρj+1
L − ρj+1

V −
(
ρjL − ρ

j
V

)
ρL − ρV

 ηLt+1−j , (2.50)

where ρV = 1− κV ∆t and ηVt+1 = ξV
√

∆t
√
Vtε

1
t+1.

Plugging the expansions shown in equations (2.48)–(2.50) into the jump intensity dynamic, λt+1 =
Ψt+1 + γV Vt+1 + γLLt+1, we can express λt+1 only in terms of shocks to the system as

λt+1 = θΨ + γLθL + γV θV +

∞∑
j=0

ρjΨη
Ψ
t+1−j + γV

∞∑
j=0

ρjV η
V
t+1−j + (γL + γV γ) ηLt+1

+

∞∑
j=1

γLρjL + γV γ

ρj+1
L − ρj+1

V −
(
ρjL − ρ

j
V

)
ρL − ρV

 ηLt+1−j , (2.52)

where ηVt+1, ηLt+1, and ηΨ
t+1 represent shocks specific to the variance, illiquidity, and latent factors,

respectively. Thus, the impulse response of a specific shock for τ periods ahead can be calculated by
simply setting j = τ in the coefficient associated with that specific shock in equation (2.52).

Appendix 2H: Forecast Error Variance Decomposition

This section presents the variance decomposition of forecast error in the conditional jump intensity. The
error from forecasting the jump intensity λt+τ with τ -period horizon conditional on day t is defined as

ε̂λ,t+τ = λt+τ − Et[λt+τ ]. (2.53)

In the SJVI model, changes in jump intensity are driven by shocks to the spot illiquidity Lt, the
latent factor Ψt, and the spot variance Vt. Under a mild assumption of zero autocorrelation among the
three shocks, we can approximate the variance in the forecast error, ε̂λ,t+τ , associated with each shock
as:

Vart [ε̂λ,t+τ ] ≈


(γV + γLγ)

2
Vart

[
ηLt+τ

]
+
∑τ−1
j=1

(
γLρ

j
L + γV γ1[τ>1]

[
ρj+1
L −ρj+1

V −(ρjL−ρ
j
V )

ρL−ρV

])2

Vart
[
ηLt+τ−j

]
 (2.54)

+

{∑τ−1
j=0

(
ρjΨ

)2

Vart
[
ηΨ
t+τ−j

]}
+

{∑τ−1
j=0

(
γV ρ

j
V

)2

Vart
[
ηVt+τ−j

]}
.

Expressions in the first, second, and third brackets in equation (2.54) represent the approximate forecast
error variance that is associated with shocks to the illiquidity Lt, the latent factor Ψt, and the variance
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Vt, respectively. The notations that we use in equation (2.54) are shown in Appendix 2.6.
We obtain the closed-form expression for each contribution factor in equation (2.54) by computing

the conditional variance of each shock explicitly. For example, the proportion of the error variance
explained by the variation in illiquidity is given by


(γV + γLγ)

2 [
ξ2
L∆t

(
θL + ρτ−1

L (Lt − θL)
)]

+
∑τ−1
j=1

(
γLρ

j
L + γV γ1[τ>1]

[
ρj+1
L −ρj+1

V −(ρjL−ρ
j
V )

ρL−ρV

])2 [
ξ2
L∆t

(
θL + ρτ−j−1

L (Lt − θL)
)]

+ξ2
V ∆t

∑τ−1
j=0

(
γV ρ

j
V

)2 (
γ (ρL − 1)

ρτ−j−1
L −ρτ−j−1

V

ρL−ρV (Lt − θL)
)


Vart [ε̂λ,t+τ ]

. (2.56)

The proportion explained by the variation in diffusive variance, Vt, can be written as

{
ξ2
V ∆t

∑τ−1
j=0

(
γV ρ

j
V

)2 (
θV + ρτ−j−1

V (Vt − θV )
)}

Vart [ε̂λ,t+τ ]
. (2.58)

Lastly, the proportion explained by the variation in latent factor, Ψt, is given by{∑τ−1
j=0

(
ρjΨ

)2 [
ξ2
Ψ∆t

(
θΨ + ρτ−j−1

Ψ (Ψt − θΨ)
)]}

Vart [ε̂λ,t+τ ]
. (2.60)
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Table 2A.1: Regression Model on Changes in Realized Skewness

Change in Realized Skewness: ∆RSkewt+1

(1) (2) (3) (4)

∆MinRVt -0.066 0.625*

(-0.33) (1.94)

∆ILQt -0.580*** -1.261***

(-2.63) (-2.75)

Returnt 0.010 0.006 -0.102 -0.189**

(0.12) (0.08) (-1.37) (-2.03)

∆RSkewt 0.766*** 0.767*** 0.775*** 0.773***

(13.62) (13.91) (14.16) (14.10)

AICC 1.630 1.642 1.638 1.636

R2 54.2% 54.2% 54.3% 54.4%

Notes: We report regression results on daily changes in realized skewness of S&P 500 index returns,
∆RSkewt+1. The sample period is from January 2, 2004 to December 31, 2012. The daily realized
skewness measure, RSkew, on each trading day is constructed from high-frequency data following the
method in Amaya, Christoffersen, Jacobs, and Vasquez (2015). The independent variables include lagged
change in realized variance estimator, ∆MinRV , from Andersen, Dobrev, and Schaumburg (2012);
change in market illiquidity proxy; ∆ILQ, measured by daily averaged effective spreads across firms in
the S&P 500 constituents; Return, log S&P 500 return. We lag all independent variables by one day
because the daily realized skewness measure is calculated from intraday trades observed over each day,
which overlap with the data period used for constructing independent variables. Each specification is
estimated using maximum likelihood. We use an ARMA(1,2) structure in the regression model, which
is determined by the LjungBox test to sufficiently remove cross-correlations in the residuals. We control
for seasonality due to the day-of-the-week effect. We report coefficient estimates on the autoregressive
term. We do not report coefficient estimates on the moving-average error term and day-of-the-week fixed
effects for brevity. Robust t-statistic is reported in parenthesis below each parameter estimate. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% confidence levels, respectively. The last
row reports regression diagnostics based on the Akaike information criterion (AICC) and R2 metric.
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Figure 2A.1: Percentiles of Dollar Effective Spread: S&P 500 Constituents
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Notes: We plot the 5th, 25th, 50th, 75th, and 95th percentiles of the daily effective spreads (in dollars)
from the constituents of the S&P 500 index. For the majority of firms in the S&P 500 index, trades are
executed with an effective spread above one cent, which is the minimum tick size in the NYSE. This
finding holds throughout our sample period going from January 2, 2004 to December 31, 2012.
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Figure 2A.2: Alternative Illiquidity Measures
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Notes: We plot three daily market illiquidity measures from January 2, 2004 to December 31, 2012 that
we use to verify the robustness of our results. The top panel plots the annualized relative effective spread
measure defined in equation (2.1), which is the main illiquidity measure that we use in the paper. The
bottom two panels plot the annualized illiquidity measure that we use to verify the robustness of our
results. In the middle panel, we plot the daily market illiquidity measure calculated from dollar effective
spreads shown in equation (2.38). In the bottom panel, we plot the Amihud (2002) illiquidity measure. It
is calculated as the equally weighted average Amihud illiquidity measure of all securities constituting the
S&P 500 index on each day; see equation (2.39). We normalize the dollar effective spread and Amihud
illiquidity measures to have the same in-sample mean as the illquidity measure that we calculated using
relative effective spreads.



Chapter 3

Option Valuation with Observable
Volatility and Jump Dynamics

3.1 Introduction

State-of-the-art derivative valuation models assume that price changes in the underlying asset are driven

by a diffusive component as well as a jump component.1 The volatility of the diffusive component is

typically assumed to be stochastic and the jump intensity is sometimes assumed to be constant. The

econometric literature has developed powerful model-free methods for detecting statistically significant

jumps and for separating the daily total diffusive volatility from the total quadratic variation via the

use of high-frequency observations.2 Our contribution is to combine these insights and develop a new

derivative valuation model that directly uses the observable realized diffusive volatility and realized jump

variation to model dynamics in the diffusive volatility and in the jump intensity. We cast our model

within the broad class of affine discrete time models which implies that volatility and jump intensity

filtering is straightforward and that derivative valuation can be done without relying on simulation-based

methods. We develop a stochastic discount factor for the model that enables us to compute European

option values using Fourier inversion of the conditional characteristic function.

The development of rigorous statistical foundations for the use of intraday returns to construct daily

realized volatility measures is arguably one of the most successful branches of financial econometrics. For

early references, see Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2002), Andersen,

Bollerslev, Diebold, and Labys (2003), and Zhang, Mykland, and Aı̈t-Sahalia (2005). For an early

application of realized volatility in finance, see for example Bakshi, Cao, and Chen (1997).

The finance literature has recently developed models that use daily total quadratic variation from in-

1See for example Bates (2000), Bates (2012), Eraker (2004), Huang and Wu (2004), and Santa-Clara and Yan (2010).
2See Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006), Huang and Tauchen (2005), and

the recent survey in Aı̈t-Sahalia and Jacod (2012).
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traday data to specify and estimate daily models of option valuation which outperform models estimated

only on daily returns. See for example Stentoft (2015), Corsi, Fusari, and Vecchia (2013), Christoffersen,

Feunou, Jacobs, and Meddahi (2014), and Amaya, Bégin, and Gauthier (2016). However, we are the first

to develop an option valuation model with separate dynamics for observable realized diffusive volatility

and realized jump variation.

The econometric literature has shown that decomposing total quadratic variation into its diffusive

and jump variation parts leads to improved forecasts of future volatility. See for example Andersen,

Bollerslev, and Diebold (2007), and Busch, Christensen, and Nielsen (2011).3 Our goal is to assess if the

improvements found in the volatility forecasting literature carry over to option valuation. We find that

they do.

Our paper is part of a larger research agenda applying realized volatility measures in financial decision

making. The development of tools for computing highly informative daily realized volatility from noisy

intraday data is arguable one of the great success stories of financial econometrics. The application of

realized volatility in option valuation is particularly intriguing. For many assets, including equities, the

underlying contract is traded very actively at a high frequency whereas the option is typically traded

much less often (see, for example, Christoffersen, Goyenko, Jacobs, and Karoui (2015)). This setting is

ideal for the application of realized volatility which presumes that the frequency of interest (say daily)

is lower than the frequency of observation (say each minute). Realized volatility and jumps, which are

generally unobserved at the one-minute frequency, can be reliably estimated at the daily frequency. This

insight enables the implementation of a new class of option valuation models which we develop in this

paper.

When estimating the new model on returns, realized diffusive volatility, and realized jump variation

we find that it outperforms standard benchmark models in the literature including the Heston and Nandi

(2000) affine GARCH model which is a special case of our model. The general model also outperforms a

special case that models only the total quadratic variation dynamic, as well a special case that assumes

the entire quadratic variation is attributable to the jump component.

When estimating the new model on S&P500 index options as well as returns and realized variation

measures and evaluating the option fit then the model again performs well. The option implied volatility

root mean squared error of the new model is 17% below that of the affine GARCH model. The improve-

ment in option fit arises in virtually all the moneyness, maturity and market volatility categories that

we consider.

3Dynamic models for daily returns and volatility using high-frequency information have been developed in Forsberg and
Bollerslev (2002), Engle and Gallo (2006), Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009), Shephard and Sheppard
(2010), and Hansen, Huang, and Shek (2012).
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One key advantage of our approach is that we avoid the filtering issues that arise in related discrete

time jump models, for example, Maheu and McCurdy (2004), Christoffersen, Jacobs, and Ornthanalai

(2012), and Ornthanalai (2014) who either rely on particle filtering or ignore the impact of estimated

state variables when constructing the likelihood. More generally, we argue that using high-frequency

information to discern between daily jumps and diffusive volatility is likely to lead to a much more

accurate identification of the two components than relying only on daily returns, or only on daily returns

and options.

The remainder of the paper proceeds as follows: In Section 2 we briefly review the theory for sep-

arating diffusive volatility from jumps and we show the two time series for the S&P500 index which is

the underlying asset in our empirical study. In Section 3 we develop the physical return process. Section

4 estimates the physical process on returns, realized bipower and jump variation measures. In Section

5, we derive an option valuation formula for the model. In Section 6 we estimate the model on options

and analyzes its fit. Finally, Section 6 concludes. The proofs of our propositions are relegated to the

appendices.

3.2 Daily Returns and Realized Variation Measures

In this section we first briefly review the key theoretical results that allows us to separate daily diffusive

volatility and jump variation using intraday data. We then construct empirical measures of realized

diffusive volatility and realized jumps and plot the daily realized variation series along with daily returns.

3.2.1 Separating Volatility and Jumps: Theory

Barndorff-Nielsen and Shephard (2004) assume the stock price follows a jump-diffusion process of the

form

d log(St) =
√
V tdWt + Jtdqt (3.1)

where qt is a Poisson process with intensity λJ t, and Jt is the normally distributed log jump size

with mean µJ and standard deviation σJ . Under this very general assumption about the instantaneous

return process, Barndorff-Nielsen and Shephard (2004) show the following limit result as the sampling

frequency goes to infinity
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RVt →
∫ t

t−1

Vsds+

∫ t

t−1

J2
s dqs (3.2)

RBVt →
∫ t

t−1

Vsds,

where RVt denotes realized variance measuring total quadratic variation, and RBVt denotes bipower

variation measuring diffusive volatility. These quantities will be defined in detail below. We can now

define realized jump variation (RJVt) using

RJVt ≡ RVt −RBVt →
∫ t

t−1

J2
s dqs,

which provides the decomposition of total quadratic variation that we need.

The next step in our analysis is to construct empirical measures of RVt, RBVt, and RJVt.

3.2.2 Separating Volatility and Jumps: Empirics

Our empirical investigation begins by obtaining intraday S&P500 cash index data from TickData.com.

Using the last observation each minute we construct a grid of one-minute equity index values each day

from which we compute five series of overlapping five minute log-returns. Each day we can compute five

realized variance measures from the sum of squared five-minute returns. The five overlapping realized

variance series are then averaged to obtain a single market microstructure robust measure of total

quadratic variation as follows

RV
′

t+1 =
1

5

4∑
i=0

RV 5,i
t+1 =

1

5

4∑
i=0

m/5∑
j=1

R2
t+(i+5j)/m

where Rt+(i+5j)/m denotes the jth period 5-min intraday return, and m denotes the number of 1-

minute returns available on day t+ 1. Following Hansen and Lunde (2005) the RVt+1 computed above

is finally rescaled so that the average value of RVt+1 is equal to the sample variance of daily log-returns.

RVt+1 =

∑T
t=1R

2
t∑T

t=1RV
′
t

RV
′

t+1

where Rt = log (St)− log (St−1) is the daily log return computed from closing prices.

Diffusive volatility is computed using realized bipower variation defined from
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RBV
′

t+1 =
1

5

4∑
i=0

RBV 5,i
t+1 =

1

5

4∑
i=0

π

2

m/5−1∑
j=1

|Rt+(i+5j)/m||Rt+(i+5(j+1))/m|

Then, in order to ensure the empirical version of the theoretical relationship in equation (3.2) holds,

namely,

RVt+1 = RBVt+1 +RJVt+1

and also in order to ensure that RJVt+1 ≥ 0, we use the following definitions,

RBVt+1 = min(RVt+1, RBV
′

t+1)

RJVt+1 = RVt+1 −RBVt+1

Figure 1 plots the four Rt (top left), RVt (top right), RBVt (bottom left), and RJVt (bottom right)

series from January 2, 1990 through December 31, 2013. Note from Figure 1 that the RVt, RBVt, and

RJVt series share broadly similar patterns including the fact that their largest values occur during the

2008 financial crises. This commonality suggests that when RVt is high then both RBVt and RJVt are

high and vice versa. Note also that RBVt is an order of magnitude larger than RJVt.

Figure 2 plots the sample autocorrelation functions for the four series. Note that, as expected,

the autocorrelation of returns (top-left) are close to zero across lag orders. Also as expected, the

autocorrelations of realized variance (top-right) and bipower variation (bottom-left) are both very high

and statistically significant throughout the 60 trading-day period considered. More interestingly, the

realized jump variation measure in the bottom-right panel shows strong evidence of persistence as well.

To be sure, the autocorelations for realized jump variation are lower at short lags than for realized

variance and bipower variation, but they are very persistent. It is thus clear that the realized jump

measure requires a dynamic specification of its own and likely one that is different from the dynamic

specification of bipower variation. Building a dynamic return model with such features is our next task.

3.3 A New Dynamic Model for Asset Returns

The goal of this section is to build a model for end-of-day t option valuation that incorporates the

information in the Rt, RBVt, and RJVt series computed at the end of the day. We want to build a

model in which state variables are explicitly filtered using our observables and in which option valuation
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can be done without Monte Carlo simulation.

3.3.1 The Asset Return Process

Consider first the following generic specification of daily log returns

Rt+1 = r +
(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1 (3.3)

where r denotes the risk-free rate, and the first innovation, zt+1, denotes a heteroskedastic Gaussian

innovation

zt+1 =
√
hz,tε1,t+1, with ε1,t+1

iid∼ N (0, 1) . (3.4)

The second innovation, yt+1, denotes a compound jump process

yt+1 =

nt+1∑
j=0

xjt+1, with xjt+1
iid∼ N(θ, δ2), (3.5)

where the number of Gaussian jumps per day is Poisson distributed

nt+1 ∼ Ps (hy,t) . (3.6)

Note that this general framework allows for dynamic volatility via hz,t and dynamic jump intensity

via hy,t. These dynamics still need to be specified and crucially for us they need to be linked with the

daily realized bipower and jump variation measures.

Finally, note that in our timing convention, hz,t denotes the expected “diffusive” variance for day

t+ 1 constructed at the end of day t. Similarly, hy,t denotes the expected number of jumps on day t+ 1

constructed at the end of day t.

The parameters we estimate on daily data in our discrete time model are reported in daily units below.

When estimating continuous time models of the type in (3.1), the literature often reports annualized

parameters. In that case we have the following mapping,

θ ≈ 1

252
µJ , δ ≈ 1√

252
σJ , hy,t ≈

1

252

∫ t

t−1

λJ,sds.
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3.3.2 Incorporating Realized Bipower and Jump Variation

Each day the realized bipower variation provides new information about diffusive volatility, hz,t. How-

ever, RBVt+1 is measured with error and we therefore specify the following measurement equation

RBVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2

−
(
1 + γ2hz,t

)]
, (3.7)

where we have introduced a measurement error variable

ε2,t+1
iid∼ N(0, 1),

which has a correlation ρ with the diffusive return shock, ε1,t+1, defined in equation (3.4). The

innovation term inside the brackets in equation (3.7) is constructed to have zero mean ensuring that

Et [RBVt+1] = hz,t.

Note also that equation (3.7) allows for a nonlinear impact of ε2,t+1 on RBVt+1 via γ.

Our daily realized jump variation measure constructed from intraday data is naturally linked with

the sum of squared daily jump variation in the model as follows:

RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2

.

This relationship implies that

Et [RJVt+1] =
(
θ2 + δ2

)
hy,t,

where we have used the second moment of the Poisson distribution. Notice that while we do allow

for measurement error in RBV we assume for simplicity that RJV is free of error. We plan to relax this

assumption in future work.

3.3.3 Volatility and Jump Dynamics

We are now ready to specify the dynamics of the expected volatility and jump intensity. In the empirical

sections below, we will focus on a special case of our modeling framework in which we simply pose that
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hz,t+1 = ωz + bzhz,t + azRBVt+1, and (3.8)

hy,t+1 = ωy + byhy,t + ayRJVt+1. (3.9)

Note that in this specification, hz,t+1 and hy,t+1 are both univariate AR(1) processes, which we can

write as

hz,t+1 = ωz − azσ +
(
bz + az − azσγ2

)
hz,t + azσ

(
ε2,t+1 − γ

√
hz,t

)2

hy,t+1 = ωy + byhy,t + ay

nt+1∑
j=0

(
xjt+1

)2

.

The dynamics in (3.8-3.9) imply that RBVt+1 and RJVt+1 are both univariate ARMA(1, 1) processes.

We will refer to this as the BPJVM model.

3.3.4 The General Case

Our dynamic modelling framework is more general than the BPJVM model. Define the bivariate pro-

cesses

ht ≡ (hz,t, hy,t)
′
, and

RVMt+1 ≡ (RBVt+1, RJVt+1)
′
.

The general dynamic vector process is then of the form,

ht+1 = ω + bht + aRVMt+1,

where the parameter vector and matrices are

ω = (ωz, ωy)
′
, b =

 bz bz,y

by,z by

 , a =

 az az,y

ay,z ay

 .

Note that by construction ht+1 is a vector autoregressive process of order one, V AR (1), and RVMt+1

is a vector autoregressive moving average model, V ARMA(1, 1). In particular, note that the expected
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value of the vector ht+1 is

Et [ht+1] = ω + bht + a

 hz,t(
θ2 + δ2

)
hy,t



≡ ω +

 bz + az bz,y +
(
θ2 + δ2

)
az,y

by,z + ay,z by +
(
θ2 + δ2

)
ay

ht.
Below we will focus on the BPJVM version of the model in which az,y = ay,z = bz,y = by,z = 0.

3.3.5 Expected Returns and Risk Premiums

It is clear from equation (3.3) that the one-day-ahead conditionally expected log returns in the model is

simply

Et [Rt+1] = r +
(
λz − 1

2

)
hz,t + (λy − ξ + θ)hy,t.

The jump compensator parameter, ξ, in our model is itself a particular function of other parameters

ξ = eθ+
1
2 δ

2

− 1. (3.10)

This functional form ensures that conditionally expected total return is

Et [exp (Rt+1)] = exp (r + λzhz,t + λyhy,t) , (3.11)

which in turn ensures that λz and λy can be viewed as compensation for diffusive volatility and jump

exposure, respectively. Substituting equation (3.3) into (3.11), taking expectations, and solving for ξ

yields equation (3.10). The ξ parameter will therefore not be estimated below but instead simply set to

is value implied by equation (3.10).

3.3.6 Conditional Second Moments

From the model above, it is relatively straightforward to derive the following one-day-ahead conditional

second moments
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V art [Rt+1] = hz,t +
(
θ2 + δ2

)
hy,t (3.12)

V art [RBVt+1] = 2σ2
(
1 + 2γ2hz,t

)
V art [RJVt+1] =

(
θ4 + 3δ4 + 6θ2δ2

)
hy,t

Covt (Rt+1, RBVt+1) = −2ργσhz,t

Covt (Rt+1, RJVt+1) = θ
(
θ2 + 3δ2

)
hy,t

Covt (RBVt+1, RJVt+1) = 0

Note that the model allows for two types of “leverage” effects: One via the return covariance with

bipower variation and another via the return covariance with jumps.

3.4 Physical Parameter Estimates

Above we have laid out the general framework for incorporating bipower variation and realized jump

variation when modeling return dynamics. In this section we develop a likelihood-based estimation

method that enables us to estimate the physical parameters using daily observations on returns, as well

as the realized variation measures from Figure 1. We also develop two special cases of the general model

and we briefly describe the Heston and Nandi (2000) benchmark GARCH model as well.

3.4.1 Deriving the Likelihood Function

When deriving the conditional quasi-likelihood function note first that the contribution to the total

conditional likelihood by day t+ 1 can be obtained by summing over the number of jumps occurring on

that day. We can write

ft (Rt+1, RBVt+1, RJVt+1) =

∞∑
j=0

ft (Rt+1, RBVt+1, RJVt+1, nt+1 = j)

=

∞∑
j=0

ft (Rt+1, RBVt+1, RJVt+1|nt+1 = j)Pt [nt+1 = j]

with the number of jumps drawn from the Poisson distribution,

Pt [nt+1 = j] =
e−hy,thjy,t

!j
.
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Separating out the days with exactly zero jumps, we get

ft (Rt+1, RBVt+1, RJVt+1|nt+1 = j) =

 ft (Rt+1, RBVt+1) , if j = 0

ft (j) , if j > 0

In order to save on notation, define the variable vectors

Xt+1 ≡ (Rt+1, RBVt+1, RJVt+1)
′
X

(1,2)
t+1 ≡ (Rt+1, RBVt+1)

′

and the corresponding conditional first and second moments

µt (nt+1) ≡ Et [Xt+1|nt+1] µ
(1,2)
t ≡ Et

[
X

(1,2)
t+1

∣∣∣nt+1

]
Ωt (nt+1) ≡ V art [Xt+1|nt+1] Ω

(1,2)
t (nt+1) ≡ V art

[
X

(1,2)
t+1

∣∣∣nt+1

] (3.13)

Then we can write the marginal likelihood for returns and bipower variation when nt+1 = 0 as

ft (Rt+1, RBVt+1) = (2π)
−1
∣∣∣Ω(1,2)
t (0)

∣∣∣−1/2

· exp

(
−1

2

(
X

(1,2)
t+1 − µ

(1,2)
t (0)

)′
Ω

(1,2)
t (0)

−1
(
X

(1,2)
t+1 − µ

(1,2)
t (0)

))

and when nt+1 > 0 we have

ft (j) = (2π)
−3/2 |Ωt (j)|−1/2

exp

(
−1

2
(Xt+1 − µt (j))

′
Ωt (j)

−1
(Xt+1 − µt (j))

)
.

The log-likelihood is now defined by

lnLP =

T−1∑
t=1

ln(ft(Rt+1, RBVt+1, RJVt+1)). (3.14)

We maximize the likelihood function in (3.14) using the fminunc routine in Matlab with the following

settings:

optimset(‘display’,‘iter’,‘MaxIter’,1500,‘TolFun’,1e− 5,‘MaxFunEvals’,1e+ 06,‘TolX’,1e− 20).
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3.4.2 Conditional Moments

The likelihood function above requires that we derive the first two moments conditional on time and on

the number of jumps, nt+1. For the conditional first moments we have

Et [Rt+1|nt+1] = r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + θnt+1

Et [RBVt+1|nt+1] = hz,t

Et [RJVt+1|nt+1] =
(
θ2 + δ2

)
nt+1

For the conditional second moments we have

V art [Rt+1|nt+1] = hz,t + δ2nt+1

V art [RBVt+1|nt+1] = 2σ2
(
1 + 2γ2hz,t

)
V art [RJVt+1|nt+1] = 2δ2

(
δ2 + 2θ2

)
nt+1

Covt [Rt+1, RBVt+1|nt+1] = −2ργσhz,t

Covt [Rt+1, RJVt+1|nt+1] = 2θδ2nt+1

Covt [RBVt+1, RJVt+1|nt+1] = 0

From these moments we can easily construct the µt vectors and Ωt matrices in equation (3.13) needed

for the likelihood function in equation (3.14).

Before turning to estimation of the new model we define three special cases of interest which we also

estimate below.

3.4.3 The Heston-Nandi GARCH Model as a Special Case

First, by setting hy,t = 0, and ρ = 1, we obtain one of the standard GARCH(1,1) models in the literature.

Specifically, note that ρ = 1 implies that ε1,t+1 = ε2,t+1 and the realized variance therefore becomes

irrelevant. We then get

hz,t+1 = ωz − azσ +
(
bz + az − azσγ2

)
hz,t + azσ

(
ε2,t+1 − γ

√
hz,t

)2

≡ ω + βhz,t + α
(
ε1,t+1 − γ

√
hz,t

)2

,

which is exactly the Heston and Nandi (2000) affine GARCH(1,1) model.
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3.4.4 The RVM Model as a Special Case

Second, we can shut down the separate jump variation by setting hy,t = 0 in the new model. We then

get

Rt+1 ≡ log

(
St+1

St

)
= r +

(
λz −

1

2

)
hz,t + zt+1, with zt+1 =

√
hz,tε1,t+1

RVt+1 = RBVt+1 +RJVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2

−
(
1 + γ2hz,t

)]
.

This is exactly the autoregressive RV model in Christoffersen, Feunou, Jacobs, and Meddahi (2014).

We will refer to this as the RVM model below.

3.4.5 The RJM Model as a Special Case

Third, we can shut down the bipower variation channel by setting hz,t = 0. We then get

Rt+1 = r − θ − δ2

2 + (λy − ξ)hy,t + yt+1

yt+1 =

nt+1∑
j=1

xjt+1, where xjt+1

iid
˜ N(θ, δ2)

P [nt+1 = j|It] =
e−hy,thj−1

y,t

!(j − 1)

and furthermore we set

RVt+1 =

nt+1∑
j=1

(
xjt+1

)2

− θ2

hy,t+1 = ωy + byhy,t + ayRVt+1.

Note that in this case the entire quadratic variation is assumed to be driven by jumps so that each day

has at least one jump. We will refer to this as the RJM model below.

3.4.6 Parameter Estimates and Model Properties

Table 1 contains the maximum likelihood estimation results for the physical return processes developed

above. One year prior to our estimation sample we set the conditional variance equal to the unconditional

variance and then burn-in the model on the pre-sample year to get an appropriate conditional variance

on the first day of the sample. Note that the ω parameters do not have standard errors as they are

computed by variance targeting thus exactly matching the observed sample variance of returns. The
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parameter estimates are generally significant except for λs which are always difficult to pin down in

relatively short return-based samples.

Note that volatility persistence is very high in the RVM and BPJVM models and considerably lower

in the GARCH and RJM model. Unconditional volatility and volatility persistence is defined in the

GARCH model as

E[ht] =
ω + α

1− (β + αγ2)
≡ ω + α

1− Persist
,

in the RVM model as

E[hz,t] =
ωz

1− (bz + az)
≡ ωz

1− Persist
,

in the JVM model as

E[hy,t] =
ωy

1− (by + (θ2 + δ2)ay)
≡ ωy

1− Persist
,

and in the BPJVM model as

E[ht] =
ωz

1− (bz + az)
+

(θ2 + δ2)ωy
1− (by + (θ2 + δ2)ay)

.

Persistence for the two variance components in the BPJVM model are thus equal to the RVM and JVM

cases.

When comparing model fit, we are faced with the challenge that the GARCH model is only fit to

returns, the RVM and RJM models are fit to returns and RV, and the general BPJVM model is fit to

returns, RBV and RJV. Table 1 shows that the likelihood value for the general model is 129, 226 but

this is not readily comparable to the other models which are fit to different quantities. We therefore

re-estimate the BPJVM model maximizing only the joint likelihood of returns and RV.4 The second row

of log likelihoods contains the results. From this perspective, the BPJVM model by far performs the

best with a likelihood of 69, 656 compared with 68, 783 for the JVM model and 68, 212 for the RVM

model.

When maximizing only the return likelihood the BPJVM model again performs the best with a

likelihood of 19, 522. The improvement over the RVM and JVM model is not dramatic here but returns

are unlikely to be informative about all the parameters of the model and so this set of results is only

provided to enable comparison with GARCH. Note that the RVM, JVM and BPJVM models all perform

very well compared with the benchmark affine GARCH model.

In Figure 3 we plot the daily conditional volatility computed as the square root of ht+1 for each

model. Note that the volatility spikes are much more dramatically in the RVM, JVM and BPJVM

4See Appendix 3A for the details.
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models than in the GARCH model. It is interesting and perhaps surprising that the JVM model is able

to produce a spot volatility time path which is quite similar to that from the RVM and BPJVM models.

This is partly because the RJM model is fit to returns and RV and not returns and RJV.

In Figure 4 we plot the daily conditional volatility of variance computed as the square root of

V art(ht+1) = 2a2
zσ

2(1 + 2γ2hz,t) + a2
y(θ2 + δ2)2((2δ2(θ2 + 2δ2) + (θ2 + δ2)2)hy,t (3.15)

for the BPJVM model. The variance of variance expressions for the other models are similar. Note

from Figure 4 that the conditional volatility of variance is relatively low and almost constant in the

GARCH model whereas in the other models it tends to be large when volatility is high thus matching

the empirical evidence. Note that the volatility of volatility is slightly lower in the RJM than in the

RVM and BPJVM models.

In Figure 5 we plot the conditional correlation of returns and variance, which are computed for the

BPJVM model using

Corrt(Rt+1, ht+1) =
−2ρσγazhz,t + ayθ(θ

2 + δ2)(θ2 + 3δ2)hy,t√
V art [Rt+1]V art(ht+1)

(3.16)

where the terms in the denominator can be obtained from equations (3.12) and (3.15). The conditional

correlation expressions for the other models are similar. Figure 5 shows that the differences across models

are quite large from this perspective. The GARCH model implies a correlation of almost negative one.

The other models imply correlations around −0.2. The RJM and the BPJVM models imply some time

series variation in the correlation whereas the RJM model does not.

The negative correlation between return and volatility is a strong empirical regularity. It is often

coined the “leverage” effect but there is actually not much evidence that it is driven by financial leverage

(see, for example, Hasanhodzic and Lo (2011).) and its economic source is as of yet largely unknown.

In our models the negative daily correlation generates negative skewness across horizons which in turn

creates higher prices for out-of-the-money puts (and in-the-money calls) which the Black-Scholes model

is well-known to under-price. In the Heston-Nandi GARCH model, a large estimate of γ generates the

very large negative correlation evident in Figure 5, but it is also needed to generate variance of variance

dynamics in that model. We suspect that the large value of γ in the Heston-Nandi GARCH model is

partly driven by the need for a sufficiently high variance of variance (and thus kurtosis) and that it in

turn causes the perhaps unrealistically large negative “leverage” correlation seen in Figure 5.

Figure 6 presents evidence on the different models’ ability to forecast one-day ahead realized variance.
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The ex-post realized variance is on the vertical axis and the model-predicted variance is on the horizontal

axis. The corresponding regression fit is 49% for the GARCH model, 85% for the JVM model and 87%

for the RVM and BPJVM models.5 The slope coefficient on the volatility forecast, which ideally should

be 1, is 2.5 in the GARCH model, 1.3 in the JVM model and 1.1 in the RVM and BPJVM models. The

RVM and BPJVM models are thus able to predict realized variance quite well.

The properties we have investigated above are likely to have important implications for the models’

ability to fit large panels of options. This is the task to which we now turn.

3.5 Option Valuation

In this section we show how the physical model developed above can be used for option valuation. We

first derive the moment generating function of the physical process and show that it is affine. We then

define a pricing kernel which implies that the risk-neutral moment generating function is of the same

form as its physical counterpart. This in turn implies that we can compute option prices using Fourier

inversion. Empirical results from estimating the model jointly on returns, realized measures and options

follow.

3.5.1 The Physical Moment Generating Function

Using the vector notation ht ≡ (hz,t, hy,t)
′

defined above, and further defining the coefficients v ≡

(vz, vy)
′
, Appendix 3B shows that we can write the physical moment generating function (MGF) as

Et [exp (uRt+1 + v′ht+1)] = exp


u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

+v1

(
hz,t − σ

(
1 + γ2hz,t

))
− 1

2 ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(
1− ρ2

)
u2 + (uρ−2σv1γ)2

2(1−2σv1)

)
hz,t + (ev3 − 1)hy,t


≡ exp

(
A (u, v)

′
ht +B (u, v)

)
(3.17)

where we have further defined

v′a = (vz, vy)

 az az,y

ay,z ay

 = (vzaz + vyay,z, vzaz,y + vyay) ≡ (v1, v2) ,

5The detailed regression results are not reported in the tables but are available from the authors upon request.
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and

v3 = −1

2
ln
(
1− 2v2δ

2
)

+ uθ + v2θ
2 +

(u+ 2θv2)
2
δ2

2 (1− 2v2δ2)
.

Note that the physical MGF is of an exponentially affine form which will greatly facilitate option valu-

ation below.

3.5.2 Risk Neutralization

We follow Christoffersen, Elkamhi, Feunou, and Jacobs (2010) and assume an exponential pricing kernel

of the form

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp
(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

)
Et

[
exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

)] (3.18)

= exp

 ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

− 1
2ν

2
1,t − 1

2ν
2
2,t − ρν1,tν2,t −

(
eθν3,t+

1
2 δ

2ν2
3,t − 1

)
hy,t


In order to ensure that the model is affine under Q, it is necessary and sufficient to impose the

following conditions

ν2,t = (γ − γ∗)
√
hz,t − ρν1,t

ν3,t = ν3.

Appendix 3C shows that the risk-neutral probability measure for the BPJVM model is then

Rt+1 ≡ log

(
St+1

St

)
= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1
iid∼
Q

N(θ∗, δ2); nt+1|It ∼Q Poisson
(
h∗y,t

)
RBVt+1 = hz,t + σ

(
(γ∗)

2 − γ2
)
hz,t + σ

[(
ε∗2,t+1 − γ∗

√
hz,t

)2

−
(

1 + (γ∗)
2
hz,t

)]
RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2

where ε∗1,t+1 and ε∗2,t+1 are bivariate Gaussian under Q, and where

h∗y,t = eθν3+ 1
2 δ

2ν2
3hy,t

θ∗ = θ + δ2ν3, ξ∗ = eθ
∗+ 1

2 δ
2

− 1
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Hence we have the risk premiums

EQt [RBVt+1]− Et [RBVt+1] = σ
(

(γ∗)
2 − γ2

)
hz,t

EQt [RJVt+1]− Et [RJVt+1] =
(

(θ∗)
2

+ δ2
)
h∗y,t −

(
θ2 + δ2

)
hy,t.

where γ∗ and ν3 are additional parameters to be estimated. Below we will use the notation χ = γ − γ∗

and report estimates of χ instead of γ∗.

By the nature of the model, risk-neutralization of the JVM model is slightly different from the other

models. Appendix 3D provides the details.

3.5.3 Computing Option Values

Above we have shown that the risk-neutral distribution is of the same form as physical distribution. The

risk-neutral MGF will therefore be of the form shown in Appendix 3B but with risk-neutral parameters

used instead of their physical counterparts. We can therefore write the one-period risk-neutral conditional

MGF as

ΨQ
t,t+1 ≡ EQt [exp (uRt+1 + v′ht+1)] (3.19)

= exp


u
(
r − 1

2hz,t − ξ
∗h∗y,t

)
+ v′ (ω + bht)

+v1

(
hz,t + σ

(
(γ∗)

2 − γ2
)
hz,t − σ

(
1 + (γ∗)

2
hz,t

))
− 1

2 ln (1− 2σv1)

+
(
v1σ (γ∗)

2
+ 1

2

(
1− ρ2

)
u2 +

(uρ−2σv∗1γ
∗)2

2(1−2σv1)

)
hz,t + (ev3 − 1) eθν3+ 1

2 δ
2ν2

3hy,t


≡ exp

(
A∗ (u, v)

′
ht +B∗ (u, v)

)
Call option values can now be computed via standard Fourier inversion techniques

Call = StP1(t,M)− exp(−rM)XP2(t,M), where (3.20)

P1(t,M) =
1

2
+

∫ +∞

0

Re

(
ΨQ
t,t+M (1 + iu) exp(−rM − iu ln(XSt ))

πiu

)
du

P2(t,M) =
1

2
+

∫ +∞

0

Re

(
ΨQ
t,t+M (iu) exp(−iu ln(XSt ))

πiu

)
du

where ΨQ
t,t+M denotes the risk-neutral M -period MGF (see Appendix 3B) corresponding to the one-day

MGF in equation (3.19). Put option values can be computed from put-call parity. Matlab code for

computing option values is provided in Appendix 3E.

Armed with the quasi-closed form option-pricing formula in equation (3.20) we are now ready to
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embark on a large-scale empirical investigation of the four models.

3.5.4 Fitting Options and Returns

From OptionMetrics we obtain Wednesday closing mid-quotes on SPX options data starting on January

2, 1996 and ending on August 28, 2013 which was the last date available at the time of writing.

We apply some commonly-used option data filters to the raw data. We restrict attention to out-of-

the-money options with maturity between 15 and 180 calendar days. We omit contracts that do not

satisfy well-known no-arbitrage conditions. We use only the six strikes with highest trading volume for

each maturity quoted on Wednesdays. Finally, we convert puts to calls using put-call parity so as to

ease the computation and interpretation below.

Table 2 provides descriptive statistics of the resulting data set consisting of 21,283 options. The top

panel shows the contracts sorted by moneyness defined using the Black-Scholes delta. The persistent

“smile” pattern in implied volatility is readily apparent from the top panel. The middle panel sorts the

contracts by maturity and shows that there is not a persistent maturity pattern in implied volatilities:

The term-structure of implied volatility is roughly flat on average. The bottom panel sorts by the VIX

level. Table 2 shows that roughly half the contracts have a Delta above 0.6, a time-to-maturity between

30 and 90 days and are recorded on days when the VIX is between 15 and 25.

Joint estimation is performed by following Trolle and Schwartz (2009) who assume that the vega-

weighted option errors, ej , are i.i.d. Gaussian. We can then define the option likelihood, lnLO, and the

joint likelihood, lnL, as follows

VWRMSE =

√√√√ 1

N

N∑
j=1

e2
j =

√√√√ 1

N

N∑
j=1

((CMkt
j − CMod

j )/BSVMkt
j )2 (3.21)

lnLO = −1

2

N∑
j=1

[ln(VWRMSE2) + e2
j/VWRMSE2]

lnL = lnLP + lnLO,

where lnLP denotes the log of likelihood function of the physical process defined in equation (3.14). We

now estimate all physical parameters and risk premia by maximizing the joint likelihood function, lnL.

Table 3 contains the parameter estimates and log likelihoods for our four models. We again calibrate

the ω parameters by targeting the unconditional model variance to the sample variance of returns. As

in Table 1, the physical parameters tend to be estimated precisely whereas some of the risk premium

parameters continue to be difficult to pin down. A sequential estimation procedure in which only risk
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premia are estimated from options may lead to more precise estimates. We leave this for future work.

The log-likelihoods reported in Table 3 are from joint estimation on returns and options for the

GARCH model; from returns, RV and options for the RVM and JVM models; and from returns, RBV,

RJV and options for the BPJVM model. They are therefore not directly comparable.

The option errors at the bottom of the table, however, are comparable. They show that in terms

of implied volatility root mean squared error (IV RMSE) the RVM and JVM models offer a 12%

and 18% improvement over the standard GARCH model, respectively. The BPJVM model offers a 21%

improvement which is quite impressive. The VWRMSE metric is broadly consistent with the IV RMSE

metric again showing a 21% improvement of BPJVM over GARCH.

3.5.5 Exploring the Results

In Table 4 we decompose the overall IV RMSE fit in Table 3 by moneyness, maturity and VIX level

following the layout of Table 2. The top panel of Table 4 shows that the BPJVM model performs the best

in all but one moneyness category, namely deep out-of-the-money calls where RVM is best. The BPJVM

model performs particularly well for deep in-the-money calls (corresponding to deep out-of-the-money

puts) which have proven notoriously difficult to fit in the literature. The middle panel of Table 4 shows

that the BPJVM model performs the best in all maturity categories including one virtual tie with the

JVM model, namely for maturities between 30 and 60 days. The bottom panel shows that the BPJVM

model is best in five of six VIX categories and virtually tied in the sixth when VIX is between 15 and

20%.

All together, Table 4 shows that the overall improvement in option fit by the BPJVM model evident

in Table 3 is not due to any particular subset of the data set. The superior fit is obtained virtually

everywhere.

Figure 7 reports the weekly time series of IV RMSE for at-the-money options only. The figure

is thus designed to reveal the models’ ability to match the pattern of market volatility through time.

Figure 7 shows that the RVM, JVM and BPJVM models are all much better than the GARCH model

at capturing the dramatic dynamics in volatility unfolding during the 2008 financial crisis. It is indeed

quite remarkable that the recent financial crisis does not appear as an outlier for the RVM, JVM and

BPJVM models in Figure 7.

Figure 8 plots the model-implied risk neutral higher moments over time for the six-month horizon.

Note that the BPJVM model is able to generate higher skewness (middle panel) and excess kurtosis

(lower panel) values than are the three other models. This feature of the model is likely a key driver in
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its success in fitting observed option prices as evident from Tables 3 and 4.

The top panel of Figure 8 shows that the RVM, JVM and BPJVM models generate much higher

six-month risk-neutral volatility values than GARCH during the financial crisis in 2008. This is likely

driving the at-the-money IV RMSE performance of these models evident from Figure 7.

3.5.6 Option Error Specification

The option-based objective function in (3.21) implicitly assumes that option errors are independent

and identically distributed (iid) across contracts. In reality, option errors have complicated dependence

structures that are likely a function of time, moneynes, time-to-maturity, and potentially also the level

of the market and its volatility. Figure 7 above which plots the weekly IV RMSE indeed suggests

that option errors are persistent across time. To study this issue further we plot in Figure 9 the

autocorrelations of the weekly VWRMSE series which is ultimately part of the input into equation

(3.21). As in Figure 7 we consider only ATM options in Figure 9. The autocorrelation plot using all

options looks similar. Figure 9 confirms that the option error magnitudes are indeed persistent over

time.

The persistence in option errors implies that our maximum likelihood estimation procedure is not

fully efficient. However, as long as the option errors are ergodic stationary (Hayashi (2000), p. 465), we

will still obtain consistent parameter estimates. Our estimates should thus be viewed as quasi maximum

likelihood as opposed to fully maximum likelihood.

While we have not pursued them there, it is important to acknowledge that the literature has offered

various approaches to account for the non iid property of option errors. For example, Bates (2000)

allows for heteroskedastic and autocorrelated errors in a Kalman filter approach. More recently, Kaeck

and Alexander (2012) assume a multiplicative autoregressive error structure when estimating stochastic

volatility models and Kanniainen, Lin, and Yang (2014) assume additive autoregressive errors when

estimating GARCH models.

Our focus is primarily on comparing different models and we conjecture that our comparisons are

little affected by the quasi maximum likelihood estimation strategy that we apply uniformly across

models. Nevertheless, specifying a more accurate error structure for the model we have suggested will

likely lead to more efficient parameter estimates and therefore remains an important topic for future

research.
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3.6 Summary and Conclusions

Under very general conditions, the total quadratic variation of a stochastic volatility process can be de-

composed into diffusive variation and squared jump variation. We have used this result to develop a new

class of option valuation models in which the underlying asset price exhibits volatility and jump intensity

dynamics. The first key feature of our model is that the volatility and jump intensity dynamics in the

model are directly driven by model-free empirical measures of diffusive volatility and jump variation.

Second, because the empirical measures are observed in discrete intervals, our option valuation model is

cast in discrete time, allowing for straightforward estimation of the model. Third, our model belongs to

the affine class enabling us to derive the conditional characteristic function so that option values can be

computed rapidly without relying on simulation methods. When estimated on S&P500 index options,

realized measures, and returns the new model performs well compared with standard benchmarks.

Our analysis points to some interesting avenues for future research. First, a sequential estimation of

physical parameters and then risk premia would be interesting. Second, implementing a more efficient

estimation methodology would be of value as discussed in Section 3.5.6. Third, several alternatives exist

to the nonparametric measures of jumps explored in this paper. For example, Li (2013) employs hedging

errors implied by delta-hedged positions in European-style options to identify jumps. Applying these

alternative jump measures in our modeling framework could be useful. Fourth, we have allowed for

measurement errors on some but not all variables. Extending our model in this direction would likely

lead to even better empirical performance. Fifth, so far we have only used model-free physical measures

of jumps and diffusive volatility. However, Du and Kapadia (2012) have recently proposed model-free

risk-neutral counterparts to the realized bipower variation and realized jump variation measures we

employ. Using the risk-neutral measures in our modeling framework may well lead to an even better fit

of our model to observed option prices. We leave these avenues for future exploration.
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Appendix

Appendix 3A: A Special Case of the Likelihood Function

In this section, we compute a special case of the likelihood function used to fit BPJVM model to the
observed returns and RV only. Denote

ft (Rt+1, RVt+1) = ft (Rt+1, RBVt+1 +RJVt+1)

Using the methodology from the general case, we have

ft (Rt+1, RBVt+1 +RJVt+1) =

∞∑
j=0

ft (Rt+1, RBVt+1 +RJVt+1, nt+1 = j)

=

∞∑
j=0

ft (Rt+1, RBVt+1 +RJVt+1|nt+1 = j)Pt [nt+1 = j]

with

Pt [nt+1 = j] =
e−hy,thjy,t

!j

ft (Rt+1, RBVt+1 +RJVt+1|nt+1 = j) =

{
ft (Rt+1, RBVt+1) if j = 0

f̄t (j) if j > 0

where

f̄t (j) = (2π)
−1
∣∣∣Ω(r,rv)
t (0)

∣∣∣−1/2

exp

(
−1

2

(
X

(r,rv)
t+1 − µ(r,rv)

t (j)
)′

Ω
(r,rv)
t (j)

−1
(
X

(r,rv)
t+1 − µ(r,rv)

t (j)
))

µ
(r,rv)
t (j) =

(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + θj

hz,t +
(
θ2 + δ2

)
j

)

Ω
(r,rv)
t (j) =

[
hz,t + δ2j −2ργσhz,t + 2θδ2j

−2ργσhz,t + 2θδ2j 2σ2
(
1 + 2γ2hz,t

)
+ 2δ2

(
δ2 + 2θ2

)
j

]

Appendix 3B: Physical MGF for the BPJVM Model

In this section, we derive the closed-form MGF for the BPJVM model under the physical measure. Using
the vector notation ht ≡ (hz,t, hy,t)

′
and further defining the coefficients v ≡ (vz, vy)

′
, we can write the

physical moment generating function as

Et [exp (uRt+1 + v′ht+1)] = Et

[
exp

(
u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

)
+v′ (ω + bht + aRVMt+1)

)]
=

exp

(
u

(
r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

)
Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)]

We further define

v′a = (vz, vy)

(
az az,y
ay,z ay

)
= (vzaz + vyay,z, vzaz,y + vyay) ≡ (v1, v2)



Chapter 3. Option Valuation with Observable Volatility and Jump Dynamics 105

Then, we can write

Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)]

= Et [exp (u (zt+1 + yt+1) + v1RBVt+1 + v2RJVt+1)]

= exp
(
v1

(
hz,t − σ

(
1 + γ2hz,t

)))
Et

[
exp

(
u
√
hz,tε1,t+1 + v1σ

(
ε2,t+1 − γ

√
hz,t

)2
)]
×

Et

exp

nt+1∑
j=0

uxjt+1 + v2

(
xjt+1

)2


Where the expectations can be computed explicitly as

Et

[
exp

(
u
√
hz,tε1,t+1 + v1σ

(
ε2,t+1 − γ

√
hz,t

)2
)]

= exp

(
−1

2
ln (1− 2σv1) +

(
v1σγ

2 +
1

2

(
1− ρ2

)
u2 +

(uρ− 2σv1γ)
2

2 (1− 2σv1)

)
hz,t

)

and

Et

exp

nt+1∑
j=0

uxjt+1 + v2

(
xjt+1

)2

 = Et

Et
exp

nt+1∑
j=0

uxjt+1 + v2

(
xjt+1

)2

∣∣∣∣∣∣nt+1


Et

exp

nt+1∑
j=0

uxjt+1 + v2

(
xjt+1

)2

∣∣∣∣∣∣nt+1

 = exp (v3nt+1)

where

v3 = −1

2
ln
(
1− 2v2δ

2
)

+ uθ + v2θ
2 +

(u+ 2θv2)
2
δ2

2 (1− 2v2δ2)

hence

Et

exp

nt+1∑
j=0

uxjt+1 + v2

(
xjt+1

)2

 = Et [exp (v3nt+1)] = exp (hy,t (ev3 − 1))

Therefore, we have the following expression

Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)] = exp

 v1

(
hz,t − σ

(
1 + γ2hz,t

))
− 1

2 ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(
1− ρ2

)
u2 + (uρ−2σv1γ)2

2(1−2σv1)

)
hz,t

+ (ev3 − 1)hy,t


Substituting the above back to the original MGF, we get

Et [exp (uRt+1 + v′ht+1)] = exp

 u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

+v1

(
hz,t − σ

(
1 + γ2hz,t

))
− 1

2 ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(
1− ρ2

)
u2 + (uρ−2σv1γ)2

2(1−2σv1)

)
hz,t + (ev3 − 1)hy,t


≡ exp

(
A (u, v)

′
ht +B (u, v)

)
which shows that the physical one-step-ahead moment generating function is exponentially affine.
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We conjecture that the multi-step moment generating function is also of the affine form. First, define

Ψt,t+M (u) = Et[exp(u

M∑
j=1

Rt+j)]

= exp(C(u,M)′ht +D(u,M))

From this we can compute

Ψt,t+M+1(u) = Et[exp(u

M∑
j=1

Rt+j)] = Et[Et+1[exp(u

M∑
j=1

Rt+j)]]

= Et[exp(uRt+1)Et+1[exp(u

M∑
j=2

Rt+j)]]

= Et[exp(uRt+1 + C(u,M)′ht+1 +D(u,M))]

= exp(A(u,C(u,M))′ht +B(u,C(u,M)) +D(u,M))

which yields the following recursive relationship

C(u,M + 1) = A(u,C(u,M))

D(u,M + 1) = B(u,C(u,M)) +D(u,M)

using the following initial conditions

C(u, 1) = A(u,0)

D(u, 1) = B(u,0)

where A and C are 2-by-1 vector-valued functions.

Appendix 3C: Risk Neutralization of the BPJVM Model

In this appendix, we derive the risk-neutralization of the BPJVM model. We assume an exponential
pricing kernel of the following form

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp
(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

)
Et

[
exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

)]
= exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1

j=0 xjt+1

− 1
2ν

2
1,t − 1

2ν
2
2,t − ρν1,tν2,t −

(
eθν3,t+

1
2 δ

2ν2
3,t − 1

)
hy,t

)

We need to impose the no-arbitrage condition

EQt [exp (Rt+1)] ≡ Et [ζt+1 exp (Rt+1)] = exp (r)
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where

Et [ζt+1 exp (Rt+1)] = Et

[
ζt+1 exp

(
r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

)]

= exp


r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

− 1
2ν

2
1,t − 1

2ν
2
2,t − ρν1,tν2,t −

(
eθν3,t+

1
2 δ

2ν2
3,t − 1

)
hy,t

+ 1
2

(
ν1,t +

√
hz,t
)2

+ 1
2ν

2
2,t + ρ

(
ν1,t +

√
hz,t
)
ν2,t

+
(
eθ(ν3,t+1)+ 1

2 δ
2(ν3,t+1)2 − 1

)
hy,t



= exp

 r + λzhz,t + (λy − ξ)hy,t
eθν3,t+

1
2 δ

2ν2
3,t

(
eθ+

1
2 δ

2+δ2ν3,t − 1
)
hy,t

+ν1,t

√
hz,t + ρ

√
hz,tν2,t

 .

Setting this expression equal to the risk-free rate, and taking logs, yields the condition

λzhz,t + (λy − ξ)hy,t + ν1,t

√
hz,t + ρ

√
hz,tν2,t + eθν3,t+

1
2 δ

2ν2
3,t

(
eθ+

1
2 δ

2+δ2ν3,t − 1
)
hy,t = 0

In order to determine the form of the risk-neutral distribution of the shocks we consider the moment
generating function

EQt [exp (u1ε1,t+1 + u2ε2,t+1 + u3yt+1)] = exp

(
u1 (ν1,t + ρν2,t) + u2 (ν2,t + ρν1,t) +

u2
1

2 +
u2
2

2 + ρu1u2

+
(
e(θ+δ

2ν3,t)u3+ 1
2 δ

2u2
3 − 1

)
eθν3,t+

1
2 δ

2ν2
3,thy,t

)

In order to obtain an affine model under the Q measure, we set ν3,t to a constant, i.e. ν3,t = ν3.Under
the Q measure we have

ε∗1,t+1 = ε1,t+1 − (ν1,t + ρν2,t) ; ε∗1,t+1
iid∼
Q

N (0, 1)

ε∗2,t+1 = ε2,t+1 − (ν2,t + ρν1,t) ; ε∗2,t+1
iid∼
Q

N (0, 1)

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1
iid∼
Q

N(θ + δ2ν3, δ
2); nt+1|It ∼Q Poisson

(
eθν3+ 1

2 δ
2ν2

3hy,t

)
We thus see that under the Q measure, ε∗1,t+1 and ε∗2,t+1 follow a bivariate standard normal distribution
with correlation ρ.

The realized bipower variation equation can be written as follows

RBVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2

−
(
1 + γ2hz,t

)]
= hz,t + σ

[(
ε∗2,t+1 + ν2,t + ρν1,t − γ

√
hz,t

)2

−
(
1 + γ2hz,t

)]
In order to ensure that the model is affine under Q, it is necessary and sufficient to fix

ν2,t + ρν1,t − γ
√
hz,t = −γ∗

√
hz,t,

which yields the condition
ν2,t = (γ − γ∗)

√
hz,t − ρν1,t.

Using the no-arbitrage condition above implies that

ν1,t

√
hz,t+ρ

√
hz,t

(
(γ − γ∗)

√
hz,t − ρν1,t

)
= −λzhz,t−(λy − ξ)hy,t−eθν3+ 1

2 δ
2ν2

3

(
eθ+

1
2 δ

2+δ2ν3 − 1
)
hy,t
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thus we have

ν1,t =
(ρ (γ∗ − γ)− λz)hz,t −

(
λy − ξ + eθν3+ 1

2 δ
2ν2

3

(
eθ+

1
2 δ

2+δ2ν3 − 1
))

hy,t

(1− ρ2)
√
hz,t

(ν1,t + ρν2,t)
√
hz,t = −λzhz,t −

(
(λy − ξ) + eθν3+ 1

2 δ
2ν2

3

(
eθ+

1
2 δ

2+δ2ν3 − 1
))

hy,t

Now we can re-write the returns equation under the risk-neutral measure as follows

Rt+1 ≡ log

(
St+1

St

)
= r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

= r − 1

2
hz,t − eθν3+ 1

2 δ
2ν2

3

(
eθ+

1
2 δ

2+δ2ν3 − 1
)
hy,t +

√
hz,tε

∗
1,t+1

= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1

Hence under the risk-neutral measure, we have

Rt+1 ≡ log

(
St+1

St

)
= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1 ∼Q iidN(θ∗, δ2); nt+1|It ∼Q Poisson
(
h∗y,t

)
RBVt+1 = hz,t + σ

(
(γ∗)

2 − γ2
)
hz,t + σ

[(
ε∗2,t+1 − γ∗

√
hz,t

)2

−
(

1 + (γ∗)
2
hz,t

)]
RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2

with the following parameter mappings

h∗y,t = eθν3+ 1
2 δ

2ν2
3hy,t

θ∗ = θ + δ2ν3, ξ∗ = eθ
∗+ 1

2 δ
2

− 1

Appendix 3D: Risk Neutralization of the RJM Model

In this appendix, we derive the risk-neutralization of the RJM model. We use the following particular
form of the pricing kernel to ensure the affine structure is preserved under the risk-neutral measure.

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp

(
ν1

∑nt+1

j=1 xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+ ν3nt+1

)

Et

[
exp

(
ν1

∑nt+1

j=1 xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+ ν3nt+1

)]
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which can be written as

Et

exp

ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+ ν3nt+1


= Et

Et
exp

ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+ ν3nt+1

∣∣∣∣∣∣nt+1


= Et

exp (ν3nt+1)Et

exp

nt+1∑
j=1

(
ν1x

j
t+1 + ν2

(
xjt+1

)2
)∣∣∣∣∣∣nt+1


= Et

exp (ν3nt+1)

nt+1∏
j=1

Et

[
exp

(
ν1x

j
t+1 + ν2

(
xjt+1

)2
)∣∣∣∣nt+1

]
= Et

[
exp (ν3nt+1)

(
Et

[
exp

(
ν1x

j
t+1 + ν2

(
xjt+1

)2
)])nt+1

]
= Et [exp (ν4nt+1)]

with the notation

ν4 = −1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2
δ2

2 (1− 2ν2δ2)
+ ν3

hence we have

ζt+1 = exp

ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

− ν4 − (eν4 − 1)hy,t


We need to impose the no-arbitrage condition

EQt [exp (Rt+1)] ≡ Et [ζt+1 exp (Rt+1)] = exp (r)

which gives us the following parameter restriction

Et [ζt+1 exp (Rt+1)] = Et

ζt+1 exp

r̄ + (λy − ξ)hy,t +

nt+1∑
j=1

xjt+1


= Et

exp

 r̄ + (λy − ξ)hy,t + (1 + ν1)
∑nt+1

j=1 xjt+1+

ν2

nt+1∑
j=1

(
xjt+1

)2

− ν4 − (eν4 − 1)hy,t


= exp (r̄ + ν5 − ν4 + (λy − ξ + eν5 − eν4)hy,t)

with

ν5 = −1

2
ln
(
1− 2ν2δ

2
)

+ (1 + ν1) θ + ν2θ
2 +

(1 + ν1 + 2θν2)
2
δ2

2 (1− 2ν2δ2)
+ ν3

Hence, the following relationships need to hold

ν5 − ν4 = θ +
δ2

2
eν5 − eν4 = ξ − λy
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thus

eν5 − eν4 = eν4 (eν5−ν4 − 1)

= eν4
(
eθ+

δ2

2 − 1
)

= eν4ξ

eν4 =
ξ − λy
ξ

and

ν4 = ln

(
1− λy

ξ

)

ν5 − ν4 = θ +

[
(1 + ν1 + 2θν2)

2 − (ν1 + 2θν2)
2
]
δ2

2 (1− 2ν2δ2)

= θ +
(1 + 2ν1 + 4θν2) δ2

2 (1− 2ν2δ2)

ν5 − ν4 = θ +
δ2

2

which implies that

θ +
δ2

2
= θ +

(1 + 2ν1 + 4θν2) δ2

2 (1− 2ν2δ2)

hence
1 + 2ν1 + 4θν2 = 1− 2ν2δ

2

which can be written as
ν1 = −

(
δ2 + 2θ

)
ν2

and

ν3 = ν4 −

(
−1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2
δ2

2 (1− 2ν2δ2)

)

= ln

(
1− λy

ξ

)
+

1

2
ln
(
1− 2ν2δ

2
)

+ θ
(
δ2 + θ

)
ν2 −

δ6ν2
2

2 (1− 2ν2δ2)

To determine the risk-neutral distribution of the shocks, we consider

EQt [exp (unt+1)] = Et

exp

unt+1 + ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+ ν3nt+1 − ν4 − (eν4 − 1)hy,t


= exp (−ν4 − (eν4 − 1)hy,t)Et [exp (vnt+1)]

= exp (−ν4 − (eν4 − 1)hy,t + v + (ev − 1)hy,t)

= exp (v − ν4 + (ev − eν4)hy,t) = exp
(
v − ν4 + eν4

(
ev−ν4 − 1

)
hy,t

)
with

v = −1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2
δ2

2 (1− 2ν2δ2)
+ u+ ν3

v − ν4 = u

hence

EQt [exp (unt+1)] = exp

(
u+ (eu − 1)

(
1− λy

ξ

)
hy,t

)
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nt+1 = n∗t+1 + 1

where
n∗t+1|It˜QPoisson(h∗y,t)

h∗y,t =

(
1− λy

ξ

)
hy,t

Next, we compute the conditional moment generating function of individual jumps under the risk-neutral
measure

EQt

[
exp

(
uxj0t+1

)]
= Et

exp

 uxj0t+1 + ν1

∑nt+1

j=1 xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2

+

ν3 (nt+1 − 1) + ν3 − ν4 − (eν4 − 1)hy,t


= exp (ν3 − ν4 − (eν4 − 1)hy,t)Et [exp (v4 (nt+1 − 1))]×

exp

(
−1

2
ln
(
1− 2ν2δ

2
)

+ (u+ ν1) θ + ν2θ
2 +

(u+ ν1 + 2θν2)
2
δ2

2 (1− 2ν2δ2)

)

EQt

[
exp

(
uxj0t+1

)]
= exp

(
− 1

2 ln
(
1− 2ν2δ

2
)

+ (u+ ν1) θ + ν2θ
2 + (u+ν1+2θν2)2δ2

2(1−2ν2δ2)

+ 1
2 ln

(
1− 2ν2δ

2
)
− ν1θ − ν2θ

2 − (ν1+2θν2)2δ2

2(1−2ν2δ2)

)

≡ exp

(
uθ∗ +

(δ∗)
2

2
u2

)

with the following parameter mappings

θ∗ = θ +
(ν1 + 2θν2) δ2

(1− 2ν2δ2)
= θ − ν2δ

4

(1− 2ν2δ2)

(δ∗)
2

=
δ2

1− 2ν2δ2

Thus we can re-write the returns equation under the risk-neutral measure as

Rt+1 = r̄ + (λy − ξ)hy,t + yt+1

r̄ = r − θ − δ2

2

ξ = eθ+
1
2 δ

2

− 1

yt+1 =

nt+1∑
j=1

xjt+1, xjt+1˜QiidN(θ∗, (δ∗)
2
)

Q[nt+1 = k|It] =
e−h

∗
y,t
(
h∗y,t

)k−1

!(k − 1)

h∗y,t =

(
1− λy

ξ

)
hy,t

RVt+1 =

nt+1∑
j=1

(
xjt+1

)2

− θ2

hy,t+1 = ωy + byhy,t + ayRVt+1

θ∗ = θ +
(ν1 + 2θν2) δ2

(1− 2ν2δ2)
, (δ∗)

2
=

δ2

1− 2ν2δ2
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where ν2 is a parameter to be estimated.

Appendix 3E: Matlab Code for Option Pricing

% Computes the call option price using quadl numerical integration
% Code for BPJVM Model
% S t = d vector of spot stock prices
% K = d vector of Strike Prices
% tau = d vector of time to maturity
% h t = d by 2 matrix of variance processes
function [c] = cPrice QL BPJVM PQ(S t,K,h t,rF,tau,param)
sigma = param(1); gamma = param(2); theta = param(3); delta = param(4);
rho = param(5);
b z = param(6); b y = param(7); a z = param(8); a y = param(9);
h z0 = param(10); h y0 = param(11); chi = param(12); nu 3 = param(13);
h zt = h t(:,1);
h yt = h t(:,2);
c = (0.5*(S t’-K’.*exp(-rF’.*tau’))+(1/pi)*exp(-rF’.*tau’).*...
quadl v(@integ,0.00001,250,1e-06,[],sigma,gamma,theta,delta,rho,b z,b y,a z,a y,...
h z0,h y0,chi,nu 3,h zt,h yt,tau,S t,K))’;
function [f] = integ(u,sigma,gamma,theta,delta,rho,b z,b y,a z,a y,h z0,h y0,chi,nu 3,...
h zt,h yt,tau,S t,K)
N = numel(u);
d = numel(K);
param = [sigma,gamma,theta,delta,rho,b z,b y,a z,a y,h z0,h y0,chi,nu 3];
x = log(K./S t)’;
h t = [h zt h yt];
[Psi1 Psi2] = Psi GARJV(u,h t,tau,param);
f1 = real((Psi1.*exp(-1i*u*x))./(1i*repmat(u,1,d)));
f2 = real((Psi2.*exp(-1i*u*x))./(1i*repmat(u,1,d)));
f = repmat(S t’,N,1).*f1 - repmat(K’,N,1).*f2;
% u is a N-column vector
% tau is a d-column vector of maturities
% Output is N by d matrix
function [Psi1 Psi2] = Psi GARJV(u,h t,tau,param)
u1 = 1+1i*u;
u2 = 1i*u;
h zt = h t(:,1);
h yt = h t(:,2);
N = numel(u);
T = max(tau);
C1Mat1 = zeros(N,T);
C2Mat1 = zeros(N,T);
DMat1 = zeros(N,T);
C1Mat2 = zeros(N,T);
C2Mat2 = zeros(N,T);
DMat2 = zeros(N,T);
% C and D for maturity 1
[C1Mat1(:,1) C2Mat1(:,1) DMat1(:,1)] = A12B(u1,zeros(N,1),zeros(N,1),param);
[C1Mat2(:,1) C2Mat2(:,1) DMat2(:,1)] = A12B(u2,zeros(N,1),zeros(N,1),param);
% Recursion up to M
for t = 2:T
[C1Mat1(:,t) C2Mat1(:,t) DMat1(:,t)] = A12B(u1,C1Mat1(:,t-1),C2Mat1(:,t-1),param);
[C1Mat2(:,t) C2Mat2(:,t) DMat2(:,t)] = A12B(u2,C1Mat2(:,t-1),C2Mat2(:,t-1),param);
DMat1(:,t) = DMat1(:,t) + DMat1(:,t-1);
DMat2(:,t) = DMat2(:,t) + DMat2(:,t-1);
end
Psi1 = exp(C1Mat1(:,tau).*repmat(h zt’,N,1) + C2Mat1(:,tau).*repmat(h yt’,N,1) + DMat1(:,tau));
Psi2 = exp(C1Mat2(:,tau).*repmat(h zt’,N,1) + C2Mat2(:,tau).*repmat(h yt’,N,1) + DMat2(:,tau));
% u,w R,w RV are N-column vectors
function [A1 A2 B] = A12B(u,v z,v y,param)
% Set rF = 0.05/365 for the ease of computation
rF = 0.05/365;
sigma = param(1); gamma = param(2); theta = param(3); delta = param(4);
rho = param(5);
b z = param(6); b y = param(7); a z = param(8); a y = param(9);
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h z0 = param(10); h y0 = param(11); chi = param(12); nu 3 = param(13);
gamma s = gamma - chi;
theta s = theta + deltaˆ2*nu 3;
xi s = exp(theta s+deltaˆ2/2) - 1;
omega z = h z0*(1-(b z+a z));
omega y = h y0*(1-(b y+a y*(thetaˆ2+deltaˆ2)));
v1 = v z*a z;
v2 = v y*a y;
v3 = -0.5*log(1-2*v2*deltaˆ2) + u*theta s + v2*theta sˆ2 +...
((u*delta+2*theta s*v2*delta).ˆ2)./(2*(1-2*v2*deltaˆ2));

A1 = -0.5*u + v z*b z + v1 + sigma*(gamma sˆ2-gammaˆ2)*v1 + 0.5*(1-rhoˆ2)*u.ˆ2 + ((u*rho-2*sigma*v1*gamma s).ˆ2)./(2*(1-
2*sigma*v1));
A2 = -xi s*exp(theta*nu 3+0.5*deltaˆ2*nu 3ˆ2)*u + v y*b y +...
(exp(v3)-1)*exp(theta*nu 3+0.5*deltaˆ2*nu 3ˆ2);

B = u*rF + v z*omega z + v y*omega y - v1*sigma - 0.5*log(1-2*sigma*v1);
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Table 3.1: Maximum Likelihood Estimation on Daily S&P500 Returns and Realized Measures. 1990-2013

GARCH RVM JVM BPJVM

Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 4.30E-01 (6.87E-01) 4.40E-01 (1.12E+00) 4.19E-01 (1.86E+00)

λy 2.06E-06 (2.31E-05) 9.13E-05 (4.67E-05)

α 4.87E-06 (1.57E-07)

β 8.50E-01 (1.13E-02)

γ 1.53E+02 (7.66E+00) 7.40E+03 (1.81E+01) 1.45E+04 (6.23E+01)

ωz 4.73E-14 2.35E-08 7.06E-08

ωy 3.38E-02 8.27E-02

σ 5.28E-07 (2.12E-07) 2.51E-07 (1.71E-08)

θ -7.98E-04 (3.08E-05) 1.42E-05 (1.98E-05)

δ 4.40E-03 (4.13E-06) 1.62E-03 (3.20E-06)

ρ 2.14E-01 (7.38E-02) 2.67E-01 (9.52E-02)

bz 5.05E-01 (3.64E-02) 4.87E-01 (4.21E-02)

by 5.46E-01 (3.60E-02) 9.16E-01 (2.14E-02)

az 4.95E-01 (3.54E-02) 5.12E-01 (4.36E-02)

ay 1.94E+04 (1.21E+02) 2.41E+04 (6.31E+02)

E[hz,t] 1.16E-04 1.35E-04 1.24E-04

E[hy,t] 5.70E+00 4.04E+00

Model Properties

Average Volatility 18.34 18.34 18.34 18.34

Volatility Persistence

From Returns 0.9635

From RV 0.9998 0.9340

From RBV 0.9998

From RJV 0.9795

Log Likelihoods

Returns, RBV, and RJV 129,226

Maximized on Returns and RV 68,212 68,783 69,656

Maximized on Returns 19,312 19,515 19,515 19,522

Notes: Using daily returns and daily realized variation measures we estimate our four models using maximum likelihood criteria. For
comparison the last row reports likelihood values when all models are estimated on returns only. The second-to-last row reports likelihood
values when the RVM, JVM, and BPJVM models are estimated on returns and realized variance. The third-to-last row reports the likelihood
value when the BPJVM model is estimated on returns, bipower variation and jump variation. The parameter values reported correspond
to the second-last row for RVM and JVM and to the third-last row for the BPJVM model. The sample is from January 2, 1990 through
December 31, 2013. Standard errors are reported in parentheses. Variance targeting is used to fix the ω parameters.
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Table 3.2: S&P500 Index Option Data by Moneyness, Maturity and VIX Level. 1996-2013

By Moneyness Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7 All

Number of Contracts 3,788 1,391 1,781 2,846 2,746 8,731 21,283

Average Price 7.85 20.94 32.28 45.30 65.93 132.41 74.35

Average Implied Volatility 16.72 18.40 19.31 20.40 21.71 25.09 21.62

Average Bid-Ask Spread 1.046 1.674 1.955 2.018 1.834 1.228 1.470

By Maturity DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150 All

Number of Contracts 2,725 6,480 5,053 2,869 1,974 2,182 21,283

Average Price 41.26 61.01 76.44 92.30 97.88 105.59 74.35

Average Implied Volatility 20.21 21.28 21.73 22.94 22.08 21.95 21.62

Average Bid-Ask Spread 0.820 1.231 1.579 1.872 1.800 1.910 1.470

By VIX Level VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35 All

Number of Contracts 3,962 6,133 5,996 2,456 1,240 1,496 21,283

Average Price 57.95 66.90 80.75 85.77 85.33 94.86 74.35

Average Implied Volatility 13.61 18.04 22.45 26.24 30.22 39.42 21.62

Average Bid-Ask Spread 1.055 1.301 1.446 1.704 1.811 2.683 1.470

Notes: We use 21,283 S&P500 index option contracts from OptionMetrics. The contracts have been subjected to standard filters as
described in the text. The top panel reports the contracts sorted by moneyness defined using the Black-Scholes delta. The second
panel reports the contracts sorted by days to maturity (DTM). The third panel reports the contract sorted by the VIX level on the
day corresponding to the option quote.
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Table 3.3: Maximum Likelihood Estimation on Daily S&P500 Returns, Realized Measures, and Options. 1996-2013

GARCH RVM JVM BPJVM

Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 1.40E+01 (1.03E+01) 3.01E+00 (9.21E-01) 1.81E+01 (1.67E+00)

λy 1.45E-10 (4.20E-05) 4.98E-05 (4.03E-05)

α 9.01E-07 (1.86E-08)

β 9.88E-01 (6.09E-04)

γ 6.22E+01 (5.51E+00) 1.95E+02 (5.05E+00) 8.75E+02 (3.29E+00)

ωz 1.64E-08 7.07E-07 1.68E-07

ωy 1.64E-06 1.20E-03

σ 1.90E-05 (4.66E-07) 4.55E-06 (2.50E-09)

θ -2.00E-03 (3.39E-05) -2.03E-03 (1.58E-05)

δ 5.61E-03 (7.49E-06) 1.60E-03 (3.27E-06)

ρ 5.14E-01 (3.80E-03) 4.45E-01 (5.21E-03)

bz 7.49E-01 (1.06E-03) 5.69E-01 (1.82E-03)

by 9.61E-01 (3.02E-04) 9.01E-01 (2.06E-03)

az 2.00E-01 (1.13E-03) 3.96E-01 (2.39E-03)

ay 7.07E+02 (8.59E+00) 3.13E+04 (7.12E+02)

E[hz,t] 1.03E-04 (9.44E-07) 4.76E-05 (8.07E-07) 7.67E-05 (4.07E-06)

E[hy,t] 1.63E+00 (4.91E-02) 1.20E+00 (9.84E-01)

χ -3.45E-02 (1.30E-05) -1.77E-02 (5.90E-02)

ν2 1.33E-05 (2.54E+02)

ν3 2.20E-04 (5.37E+00)

Model Properties

Average Physical Volatility 18.34 18.34 18.34 18.34

Average Model IV 20.77 21.06 21.09 21.16

Volatility Persistence

From Returns 0.9911

From RV 0.9878 0.9864

From RBV 0.9890

From RJV 0.9958

Log Likelihoods

Returns, RBV, RJV, and Options 163,571

Returns 19,019 19,498 18,955 19,406

Returns and Options 52,770 57,236 55,550 57,782

Option Errors

IVRMSE 5.74 4.72 5.05 4.50

Ratio to GARCH 1.000 0.822 0.879 0.784

VWRMSE 4.96 4.14 4.37 3.94

Ratio to GARCH 1.000 0.835 0.881 0.796

Notes: Using daily returns, daily realized variation measures and options we estimate our four models using a joint maximum likelihood
criterion. The table reports the joint likelihood value as well as its decomposition into the various components. Option errors are reported
using implied volatility root mean squared errors (IVRMSE) and vega-weighted root mean squared errors (VWRMSE) as defined in the text.
The sample is from January 2, 1996 through August 28, 2013. Standard errors are reported in parentheses. Physical variance targeting is used
to fix the ω parameters.
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Table 3.4: Implied Volatility Root Mean Squared Error (IVRMSE) by Moneyness, Maturity, and
VIX Level. 1996-2013

Panel A: IVRMSE by Moneyness

Model Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7

GARCH 5.338 4.001 3.823 3.896 4.228 8.112

RVM 5.014 2.971 2.717 2.869 3.137 5.118

JVM 5.059 3.568 3.214 3.070 3.389 7.123

BPJVM 5.365 2.859 2.712 2.859 3.027 4.970

Panel B: IVRMSE by Maturity

Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150

GARCH 5.259 5.700 5.640 5.852 6.497 5.834

RVM 3.963 4.247 4.182 4.402 5.027 4.428

JVM 4.437 4.731 4.956 5.078 6.115 5.755

BPJVM 3.904 4.074 3.887 4.069 4.762 4.271

Panel C: IVRMSE by VIX Level

Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35

GARCH 4.310 3.419 5.499 6.785 6.961 11.639

RVM 3.137 2.997 4.437 5.379 5.938 6.812

JVM 3.956 3.220 5.466 6.356 6.357 7.463

BPJVM 2.960 2.664 4.165 5.073 5.765 6.878

Notes: We use the parameter values in Table 3 to fit our four models to the 21,283 S&P500 index option
contracts from OptionMetrics. The top panel reports IVRMSE for contracts sorted by moneyness defined
using the Black-Scholes delta. The second panel reports IVRMSE for contracts sorted by days to maturity
(DTM). The third panel reports the IVRMSE for contract sorted by the VIX level on the day corresponding
to the option quote.
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Figure 3.1: Daily Returns and Realized Variation Measures
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Notes: The top-left panel shows the daily log returns on the S&P500 index. The top-right panel shows
the daily realized variance computed from averages of sum of squared overlapping 5-minute returns. The
bottom left panel shows the realized bipower variation computed using the method in Barndorff-Nielsen
and Shephard (2004). The bottom right panel shows the realized jump variation constructed as the
residual between realized variance and realized bipower variation. The sample goes from January 2,
1990 through December 31, 2013.
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Figure 3.2: Autocorrelations of Daily Returns and Realized Variation Measures
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Notes: We report the sample autocorrelation functions for lag 1 through 60 trading days for returns
(top-left panel), realized volatility (top-right panel), realized bipower variation (bottom-left panel), and
realized jump variation (bottom-right panel). The sample goes from January 2, 1990 through December
31, 2013.
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Figure 3.3: Daily Conditional Volatility
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Notes: We plot the daily model-based conditional volatility for the four models we consider: The
benchmark Heston-Nandi GARCH model (top-left), the RVM model based on realized volatility (top-
right), the JVM model based on realized jump variation only (bottom-left), and the full BPJVM model
that separately uses bipower variation and realized jump-variation (bottom-right). We use the parameter
estimates from Table 1. The sample goes from January 2, 1990 through December 31, 2013.
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Figure 3.4: Conditional Volatility of Variance
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Notes: We plot the daily model-based conditional volatility of variance for the four models we consider:
The benchmark Heston-Nandi GARCH model (top-left), the RVM model based on realized volatility
(top-right), the JVM model based on realized jump variation only (bottom-left), and the full BPJVM
model that separately uses realized bipower variation and realized jump-variation (bottom-right). We
use the parameter estimates from Table 1. The sample goes from January 2, 1990 through December
31, 2013.
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Figure 3.5: Daily Correlation of Return and Variance
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Notes: We plot the daily model-based conditional correlation of return and variance for the four models
we consider: The benchmark Heston-Nandi GARCH model (top-left), the RVM model based on realized
volatility (top-right), the JVM model based on realized jump variation only (bottom-left), and the full
BPJVM model that separately uses realized bipower variation and realized jump-variation (bottom-
right). We use the parameter estimates from Table 1. The sample goes from January 2, 1990 through
December 31, 2013.
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Figure 3.6: Realized Volatility and Predicted Volatility from Models
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Notes: We scatter plot the ex-post realized variance (vertical axis) against the model-predicted total
variance (horizontal axis) for each of our models: The benchmark Heston-Nandi GARCH model (top-
left), the RVM model based on realized volatility (top-right), the JVM model based on realized jump
variation only (bottom-left), and the full BPJVM model that separately uses realized bipower variation
and realized jump-variation (bottom-right). We use the parameter estimates from Table 1. The sample
goes from January 2, 1990 through December 31, 2013.
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Figure 3.7: Weekly Implied Root Mean Squared Error from At-the-Money Options
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Notes: We plot the weekly implied volatility root mean squared error for at the money options for
each of our models: The benchmark Heston-Nandi GARCH model (top-left), the RVM model based
on realized volatility (top-right), the JVM model based on realized jump variation only (bottom-left),
and the full BPJVM model that separately uses realized bipower variation and realized jump-variation
(bottom-right). We use the parameter estimates from Table 2. The option sample goes from January 2,
1996 through August 28, 2013.
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Figure 3.8: Model-Based, Risk-Neutral Higher Moments. Six-Month Horizon
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Notes: We plot the six-month risk-neutral volatility, skewness and kurtosis implied by each of our models:
The benchmark Heston-Nandi GARCH model (top-left), the RVM model based on realized volatility
(top-right), the JVM model based on realized jump variation only (bottom-left), and the full BPJVM
model that separately uses realized bipower variation and realized jump-variation. We use the parameter
estimates from Table 2. The option sample goes from January 2, 1996 through August 28, 2013.
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Figure 3.9: Autocorrelations of Weekly Vega-Weighted Root Mean Squared Errors of ATM Options
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Notes: We plot autocorrelations of the weekly vega-weighted root mean squared error for at the money
options from each of our models: The benchmark Heston-Nandi GARCH model (top-left), the RVM
model based on realized volatility (top-right), the JVM model based on realized jump variation only
(bottom-left), and the full BPJVM model that separately uses realized bipower variation and realized
jump-variation (bottom-right). We use the parameter estimates from Table 2. The option sample goes
from January 2, 1996 through August 28, 2013.
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