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A prevalent local field potential (LFP) rhythm in the CA1 hippocampus associated

with memory processing and spatial navigation is the (3-12 Hz) theta oscillation. Theta

rhythms emerge intrinsically in an in vitro whole hippocampus preparation. This system

makes it possible to assess the contribution of different cell types, a problem that remains

unresolved, in the absence of state-dependent confounding factors typically encountered

in vivo.

To decipher the theta generation mechanism we leverage insights from minimal models

in application to biologically detailed ones. We extract a piece of a previously published

full CA1 model, the segment model, on which we test minimal model hypotheses. We

distinguish the pyramidal (PYR) cells as the theta rhythm initiators whose activity is

regularized by inhibitory cells supporting an ‘inhibition-based tuning’ mechanism. We

find a strong correlation between the PYR cell input currents and the resulting theta

frequency, establishing that the intrinsic PYR cell properties underpin frequency char-

acteristics. We analyze contributions of external drives and find that strongest theta

responses are generated by the hippocampus CA3 while weakest responses are induced

by inputs from the CA1. Subsequently we turn our attention to the full CA1 model and

explain the theta activities it produces according to our gathered insights. We demon-

strate that the termination of PYR cell theta bursts relies on sequential activation of

distinct inhibitory cell classes.

Two main types of inhibitory cells have been considered particularly important for

the generation of theta rhythms, the parvalbumin-positive (PV+) and the somatostatin-
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positive (SOM+) cells. Having demonstrated the importance of PV+ cells in theta

generation, we turn to the SOM+ oriens lacunosum-moleculare (OLM) cells, a heavily

studied cell class whose role is still unclear. We find that OLM cells regulate the ro-

bustness of the LFP laminar polarity profile without affecting average power, a robust

response that depends on co-activation of distal inhibition and basal excitation. Finally,

we estimate the spatial extent of the theta LFP, and predict that about 22,000 PYR

cells participate in intrinsic theta generation. The work presented in this thesis provides

a cellular-based foundation from which in vivo theta activities can be explored.
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"In scientific subjects, the natural remedy for dogmatism has been found in research. By
temperament and training, the research worker is the antithesis of the pundit. What he
is actively and constantly aware of is his ignorance, not his knowledge; the insufficiency
of his concepts, of the terms and phrases in which he tries to excogitate his problems:
not their final and exhaustive sufficiency. He is, therefore, usually only a good teacher

for the few who wish to use their mind as a workshop, rather than a warehouse."

Sir Ronald Fisher
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Rationale and Organization of the
Thesis

LFPs are readily available in many recording configurations. Depending on the specific
brain region, experimentalists have access to this rich signal whose information content
needs yet to be revealed [60]. A prevalent LFP activity in the hippocampus is the (3-
12 Hz) theta rhythm [26]. In an intact hippocampus in vitro, the hippocampal CA1
region was shown to possess the minimum circuitry to generate its own intrinsic theta
rhythm [67]. This finding implies that the hippocampus contains the necessary circuit to
produce theta rhythms. Unfortunately, the mechanism(s) responsible for the generation
of the hippocampal theta rhythms are unclear. In this thesis we decipher the origin
of the intrinsic hippocampus theta rhythm and unravel the cellular contributions to its
generation.

To investigate the theta generation mechanism, in Chapter 3, we follow a multi-
granular modelling approach in which we link two models of different biophysical detail
that both produce theta activities intrinsic to the hippocampus. The first is a biophys-
ically simplified model, referred to as the "minimal model", while the second model is
a state-of-the-art biologically detailed model characterized by cell type diversity, mor-
phologically extended cells, and experimentally derived connectivity. We examine the
mechanism proposed by the minimal model and we investigate the extent to which this
mechanism applies to the biologically detailed model with its extensive biological in-
tricacies. We implement systematic comparisons of the two models and we identify
commonalities and differences in their structure that could support similar or different
theta generation mechanisms. We investigate a piece of the detailed model, the "segment
model" according to the noted differences with the minimal, and examine how these fac-
tors control theta. Next, we test a hypothesis of the minimal model in application to the
segment model which allows us to unveil the theta mechanism in the latter.

In Chapter 4, we consider the segment model embedded in the entire CA1 driven
by the rest of the CA1 hippocampus and by newly discovered inputs from the SUB.
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We refer to this model as the "adapted CA1 model". We fit and validate this model
against experimental data and we investigate how the theta rhythms depend on each of
the external drives to the network.

In Chapter 5 we leverage the insights from our previous analysis and we explain
the theta generation mechanism in the full CA1 model of Bezaire and colleagues [14], a
previously published detailed model of the whole CA1 hippocampus. We investigate this
model and we obtain a comprehensive perspective of the inhibitory cell-type contributions
to theta.

Two main classes of inhibitory cells have been considered particularly important for
the generation of theta rhythms, the PV+ and the SOM+ cells. In Chapter 6, we decipher
the role of an ambivalent cell type, the SOM+ OLM cell, under conditions of an ongoing
intrinsic LFP theta rhythm. OLM cells can influence PYR cells through two distinct
pathways: by direct inhibition of PYR cell distal dendrites, and by indirect disinhibition
of PYR cell proximal dendrites. We build biophysical LFP models based on volume
conductor theory, using a network of spiking inhibitory PV+BCs, BiCs and OLM cells,
and a multicompartment PYR cell. We follow a reverse approach in which we predict
connection probabilities between newly discovered connections of OLM and BiCs from
the LFP. Subsequently we examine the effect of OLM cells to the ongoing intrinsic LFP
theta rhythms.
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Chapter 1

General Background

1.1 The Hippocampal formation

1.1.1 General anatomical features

The hippocampal formation is a compound structure in the medial temporal lobe of the
brain. Arantius [61], first described the appearance of human hippocampal formation
and gave it the name hippocampus (derived from the Greek word " ιππoκαµπoς" for sea
horse). It has a prominent C-shaped structure bulging in the floor of the temporal horn
of the lateral ventricle (Fig. 1.1). The hippocampal formation encompasses the hip-
pocampus proper (hippocampus) the SUB, the entorhinal cortex (EC) and the dentate
gyrus (DG) [3, 160]. Anatomically the hippocampus is divided into three subdivisions:
CA1, CA2 and CA3 derived from their anatomical resemblance to a ram’s horn (Cornu
Ammonis). Based on its extrinsic connectivity, the hippocampal formation receives a
vast amount of highly processed multimodal sensory information that is funneled into
the hippocampal formation mainly by the EC. The EC is connected to associational
neocortical areas in a reciprocal manner. Extensive hippocampal integration of sensory
information is established by a largely unidirectional chain of intrinsic hippocampal pro-
jections. Our current knowledge on hippocampal connectivity and function is largely
based on studies of rodents and monkeys [15]. The hippocampus is described as having
an anterior and posterior part (in primates) or a septal and temporal part in rodents and
other animals (Fig. 1.2). In the rat, the two hippocampi resemble a pair of bananas,
joined at the stems by the commissure of fornix (also called the hippocampal commissure)
[160].

1
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Figure 1.1: The hippocampus anatomy. Top. Schematic representation of the
hierarchical organization of the main serial and parallel pathways through the different
regions of the hippocampal formation. Scale bar = 1 mm. Bottom. MRI of rat, monkey,
and human brains illustrating the relative positions of the DG + hippocampus + SUB
(in red) and the EC (in green). Figure taken with permission from [1].
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1.1.2 Functional role in behavior

Role in memory

The hippocampus is critical for the formation of declarative memories [27]. Its role in
memory became apparent in 1957 when Scoville and Milner described the famous case
of the epileptic patient H.M. (revealed to be Henry Gustav Molaison upon his death)
who underwent a bilateral resection of the medial temporal lobe to treat his intractable
seizures [141]. The unexpected outcome of the surgery was severe anterograde and partial
retrograde amnesia; Molaison was unable to form new episodic memories after his surgery
and could not remember any events that occurred just before his surgery, but he did retain
memories of events that occurred many years earlier extending back into his childhood.
Since then, lesion studies in animals (and particularly in rodents), have confirmed the
role of the hippocampus in episodic and spatial memory [46, 119]. Furthermore, the
hippocampus, and hippocampal cell activity, have been implicated in playing a large role
in a number of neurological diseases associated with impaired cognition, such as epilepsy
[36, 77] and Alzheimer’s disease (AD) [3, 143].

Role in spatial navigation

In 1971, O’Keefe and his student Dostrovsky discovered neurons in the rat hippocampus
that appeared to show activity related to the rat’s location within its environment [125].
Shortly after, O’Keefe and Nadel investigated this phenomenon that eventually led to
their very influential 1978 book "The Hippocampus as a Cognitive Map" [126]. There
is now almost universal agreement that hippocampal function plays an important role
in spatial coding, but the details are widely debated. More recently, studies on freely
moving rats and mice have shown many hippocampal neurons to act as place cells that
cluster in place fields, firing bursts of action potentials when the animal passes through a
particular location [120]. Place cell responses are shown by PYR cells in the hippocampus
and by granule cells in the DG [120]. The 2014 Nobel Prize in Physiology or Medicine was
awarded to John O’Keefe for the discovery of place cells, and to Edvard and May-Britt
Moser for the discovery of grid cells (https://www.nobelprize.org/prizes/medicine/
2014/advanced-information/).

Later research has focused on trying to bridge the two main views of hippocampal
function of memory and spatial cognition. In an attempt to reconcile the two views, it is
suggested that a broader view of the hippocampal function is taken and seen to have a role
that encompasses both the organisation of experience (mental mapping, as per Tolman’s
original concept in 1948 [164]) and the directional behaviour seen as being involved in

https://www.nobelprize.org/prizes/medicine/2014/advanced-information/
https://www.nobelprize.org/prizes/medicine/2014/advanced-information/
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Figure 1.2: The hippocampus shape in rodents. Left. The septotemporal ar-
rangement of the hippocampus. The CA1 is in the middle of the banana-shaped struc-
ture surrounded by the SUB on the left and and the CA3 on the right. Three recording
electrodes are shown in the CA3 area septally, temporally, and in intermediate region of
the intact hippocampus. Right. Histological verification of the recording sites. Figure
adapted from [68].

all areas of cognition. That way the function of the hippocampus can be viewed as a
broader system that incorporates both the memory and the spatial perspectives in its
role that involves the use of a wide scope of cognitive maps [4].

1.2 The CA1 region of the rodent hippocampus

1.2.1 Anatomy

The CA1 has a structured architecture, where principal cell bodies lie in a single layer,
and dendritic trees and axonal projections compose a well-defined lamina. In the CA1
region, these lamina are defined as follows: stratum oriens (SO), where the principal
cell basal dendrites are aligned; stratum pyramidale (SP), the principal cell body layer;
stratum radiatum (SR), the principal apical dendritic layer; and stratum lacunosum-
moleculare (SLM), where the distal dendrites of the principal cells are found (Fig. 1.4).
Early literature emphasized the largely unidirectional flow of information through the
hippocampus, and defined the "trisynaptic circuit" as the pathways from the EC to DG,
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DG to CA3, and CA3 to CA1 [175]. The trisynaptic circuit is a large over-simplification
of hippocampal projections, defined in a time when the main output of the hippocampal
formation was thought to be from the hippocampus proper. However, we now know that
the main source of projections from the hippocampus to the neocortex is through the
EC, while the SUB provides the primary subcortical projections [1]. In addition, the
hippocampus may not function as unidirectionally as was once thought [84]. It’s been
know from older studies [94] that SUB cells target the CA1 but the inputs hadn’t been
quantified. In a recent study [157], the authors found common inputs to excitatory and
inhibitory CA1 neurons from CA3, CA2, EC, the medial septum (MS), and unexpectedly
also from the SUB, establishing the existence of a SUB-CA1 back projection pathway in
contrast to the general belief of unidirectional information flow from CA1 to the SUB.
In Chapter 5, we take advantage of these recently discovered connections and examine
how they affect the generation of theta rhythms in the CA1.

1.2.2 Cell diversity

A large variety of interneurons exist in the CA1 and their properties have been widely
investigated. The CA1 hippocampal subfield contains more than 21 types of interneu-
rons that possess differences in morphology, electrophysiology and molecular markers
[91]. Although excitatory cells outnumber inhibitory interneurons in the hippocampus,
these interneurons exhibit a much wider diversity in their characteristics relative to ex-
citatory cells [113]. Interneurons are thought to be critical for hippocampal functioning
[171, 28, 19], although the precise functionality of this diversity is an ongoing challenge
[178]. Hippocampal interneurons exhibit a wide diversity of morphologies, molecular ex-
pression profiles, synaptic targets, and firing properties, and are classified based on these
properties [113, 114]. In a recent study [15], Bezaire and colleagues took advantage of
decades of observation on the morphology, intrinsic properties, chemical markers, and
connections of CA1 cell types [59] to develop a quantitative, evidence-based assessment
of the number and connectivity of the vast diversity of interneurons in the CA1. They
considered properties such as the arborization patterns of the dendrites and axon, the
markers expressed, and the layer in which the soma is usually found [59, 127, 152], to
later development a CA1 model [14] which is used as our basis in Chapters 3,4 and 5 of
this thesis.
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Figure 1.3: Brain slice circuitry for the CA1 area. The trisynaptic pathway
(perforant path (PP) to DG, mossy fiber (MF) to CA3 and schaffer collateral (SC)
to CA1) and synaptic circuit loop (PP to CA1 directly, and indirectly via DG and
CA3). Projection neurons and main synaptic pathways are shown in black, inhibitory
interneuron colors represent cells that function in concert (red) vs cells that belong to
different inhibitory classes. By activating the appropriate interneuron class, an input
can selectively control large groups of projection cells. Thus interneurons can gate or
index groups of projection neurons, like CA1 PYR cells, so that sub-populations of CA1
cells can be synchronously active during theta and/or gamma frequency oscillations.
Figure taken with permission from: https://web.stanford.edu/group/maciverlab/
hippocampal.html.

https://web.stanford.edu/group/maciverlab/hippocampal.html
https://web.stanford.edu/group/maciverlab/hippocampal.html
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Figure 1.4: Cell diversity of the CA1. At least 12 types of GABAergic interneurons
divided into four cell groups innervate dendrites of CA1 PYR cells. The main termination
of five glutamatergic inputs are indicated on the left. The somata and dendrites of
interneurons innervating PYR cell (orange) dendrites are coloured according to four cell
groups. Axons and the main synaptic terminations are yellow. Note the association of
the output synapses of different interneuron types with either the SC/commissural or the
entorhinal pathway termination zones. Figure taken with permission from [91].
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1.3 Theta and gamma rhythms in the CA1

Hippocampal CA1 network oscillations recordings of extracellular activity can provide
essential information about underlying network dynamics and the activity of a population
of neurons. The highly structured arrangement of the hippocampal formation makes it
ideal for LFP recordings and analysis: the cell bodies are densely packed and the principal
cell dendrites are generally arranged in parallel, producing LFP signals with a significant
magnitude [3]. Extracellular recordings analyzed in conjunction with simultaneously
recorded intracellular signals of individual cell types can lead to an understanding of the
underlying mechanisms involved in network rhythms, and their relation to behaviour.

1.3.1 Theta rhythms

The theta oscillation (3-12 Hz) is a prominent LFP rhythm observed in mammals in
a variety of brain structures (e.g. the hippocampus, the prefrontal cortex, the SUB
complex, the EC, the amygdala), but is most robustly recorded from the CA1 region of
the hippocampus [26]. Theta rhythms were first discovered in rabbits [95] in 1972 and
have since been recorded in many species including cats, rats, mice, bats, monkeys and
humans [38]. Further, they can be separated into higher or lower frequencies that are
atropine-resistant or atropine-sensitive respectively [26, 38, 39].

The LFP theta rhythm is correlated with spatial navigation, episodic memory and
rapid eye movement (REM) sleep [38, 39, 75]. Recent work has shown that low theta
rhythms were elicited in rats with fearful stimuli and high theta with social stimuli [162].
The hippocampal theta rhythm is also associated with mechanisms of synaptic plasticity
[26], and with hippocampal place cell firing [125]. What is more, disruptions of hip-
pocampal theta rhythms are associated with memory impairments [137], and schizophre-
nia [101, 167].

Theta generators intrinsic to the hippocampus

A classic theta model predicts that pacemaker neurons in the MS drive the hippocampal
rhythm, as septal neurons fire in synchrony with hippocampal theta, and lesions to the
MS appear to remarkably reduce theta [128]. Subsequent models have included the phasic
excitatory synaptic input from the EC, which plays the role of a second pacemaker [26].
However, experimental studies [67, 84], suggest that these classic models may propose a
mechanism which is too simple, and that the hippocampal formation actually possesses
the necessary and sufficient circuitry to generate its own theta rhythm. These studies
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showed that theta rhythms emerge spontaneously at the distal CA1 in the border between
the CA1 and the SUB in an intact in vitro hippocampus preparation (we also refer to this
preparation as a "whole hippocampus" [176, 89]). Further, surgically removing the CA3
subfield confirmed that these rhythms can emerge independent of CA3 as the frequency
and amplitude of the CA1 rhythms remained unchanged [67]. This preparation revealed
that theta rhythms can be produced by local interactions between interneurons and PYR
cells across the septo-temporal axis. While it is clear that they do not fully encompass
in vivo theta rhythms, they undoubtedly exist without any special manipulations, and
so are arguably part of the underlying biological machinery generating theta rhythms in
the hippocampus.

The intrinsic rhythms recorded in CA1 are produced by networks of independent theta
generators between the septal and temporal poles of the intact hippocampus. In [67],
these generators were distinguished by blocking synaptic transmission between the two
poles with the application of procaine, and recording simultaneously from each end of the
axis. After procaine application, the authors found that the coherence of the recorded
theta rhythms was significantly reduced, without altering the power of the oscillations
[67]. Thus, they showed that multiple theta generators exist along the septotemporal
axis indicating that theta-related information processing may vary across this axis.

The whole hippocampus preparation presents a number of benefits. Recordings of
hippocampal theta rhythms in vivo are very dynamic as they depend on the behavioural
state of the animal. Thus, confounding information makes it difficult to decipher respon-
sible mechanisms. On the other hand, hippocampal slices may not contain the necessary
circuitry required to produce theta rhythms, which may explain why these activities
have not been recorded in hippocampal slices in vitro. All aspects considered, the whole
hippocampus offers a unique opportunity to study the basis of theta mechanisms in the
minimum circuitry required to produce these activities.

Mechanisms of theta rhythm generation

Insights to the mechanism of theta rhythms stem from various experimental and compu-
tational studies [78, 39]. The challenge with these studies has been that each have consid-
ered different experimental contexts and conditions. Theta rhythms are state-dependent
and thus in the absence of a generalized framework, isolated observations from different
groups can, at first glance, appear contradictory. Here we summarize current knowledge
on theta rhythm generation and cell-type contributions to these activities.

In 2002, Gillies and colleagues [63] produced atropine resistant theta oscillations in the
CA1 region of in vitro hippocampal slice preparations by applying a metabotropic gluta-
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mate receptor (mGluR) agonist and an α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor blocker [63]. During this pharmacologically induced CA1 theta
oscillation they implicated OLM interneurons, and specifically the hyperpolarization-
activated cation current (h-current)s in these cells, as a critical component of the gener-
ation of theta. Modelling studies supported this early view [138] but emphasized certain
caveats. Using single-compartment OLM cell models with h-channel dynamics, Rotstein
and colleagues [138] tested whether a network of two cells could produce network theta
oscillations. They found that although their OLM cell models individually fired intrin-
sically at 12 Hz, the two cells could not produce a robust coherent rhythm. In later
experimental studies [90], Kispersky and colleagues demonstrated, in hippocampal slice
preparations, that OLM cells do not fire preferentially at theta frequencies when injected
with broadband artificial synaptic inputs, but do phase-lock well to theta-modulated
inputs. However, they showed that OLM cell phase-locking was not due to h-currents.

In the whole hippocampus preparation conclusive evidence came later by Amilhon
and colleagues in 2015 [2]. To examine the role of specific hippocampal interneurons
Amilhon and colleagues optogenetically activated and silenced interneurons expressing
PV+ or SOM+. Interneurons expressing these markers are believed to be important
contributors to theta generation [108, 42], with the majority of the SOM+ cells being
OLM cells. Despite evidence suggesting that SOM+ interneurons are crucial for theta,
optogenetic manipulation of these interneurons modestly influenced theta rhythms. In
contrast, activation of PV+ enhanced theta while silencing them disrupted theta. These
results demonstrated an important role for PV+ but not SOM+ interneurons for the
emergence of intrinsic hippocampal theta.

Computational studies have also shed light on the theta generation mechanism in the
whole hippocampus preparation. In our recent modeling study [53], Ferguson and col-
leagues proposed that theta emerges as a result of inhibition-mediated population burst-
ing in a CA1 network of minimally interconnected excitatory PYR cells and fast-firing
PV+ inhibitory cells. In a second study [14], Bezaire and colleagues developed a data-
driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area that could
spontaneously generate theta rhythms without rhythmic inputs. Their model summa-
rized a large amount of experimental data with extensive biophysical cellular detail and
empirical connectivity. It encompasses eight different γ-aminobutyric acid (GABA)ergic
interneurons of the CA1. These are the PV+BCs, the BiCs, the axo-axonic cell (AAC)s,
the OLM cells, the cholecystokinin-positive basket cell (CCK+BC)s, the neurogliaform
(NGF) cells and the schaffer collateral-associated (SCA) cells which together constitute
70% of GABAergic interneurons in hippocampus [15]. Although this model produces in-
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nate theta rhythms which arise naturally, almost unforced, due to the inclusion of enough
biological detail, how they come about remains unclear. As it is mostly the case with
biologically realistic models, the inherent computational complexity makes this model
computationally expensive. In fact, depending on the supercomputer resources available
to a given research group, carrying out even a handful of simulations of this model can be
infeasible. Indicatively, for a four second simulation, the full-scale CA1 model requires
3–4 terabytes of RAM and four hours of execution time on a supercomputer using 3000
processors (or up to 12 hr for simulations calculating a high-accuracy LFP analog) [13].
The CA1 microcircuit [14] is in fact the greatest in size and biological complexity model
of the CA1 hippocampus currently that produces theta rhythms. In this thesis, we pro-
pose a systematic approach for the investigation of this computationally expensive model
to unravel of the theta mechanism it produces.

1.3.2 Gamma rhythms

Fast oscillations in the range of low gamma (25-50Hz) and high gamma (150-250 Hz)
are associated with sensory processing and memory formation [39]. Activity in the lower
end of the frequency range (≈25-55 Hz) has been termed “low gamma” or “slow gamma”
and is driven by CA3 [40]. A second type of gamma rhythm exhibits a higher range
of frequencies (≈60-100 Hz) and is entrained by inputs from medial entorhinal cortex
(MEC) [40]; this type of activity has been termed “fast gamma” in some studies [40]
and “midfrequency gamma” in others [140]. It has been suggested that cross-frequency
coupling of theta/gamma rhythms might play a functional role in neuronal computation,
communication and learning [30].

Two main theoretical models of gamma rhythms are proposed to account for the
mechanisms of gamma synchrony in the hippocampus and other brain regions [28, 58].
Gamma oscillations can theoretically be generated purely through networks of mutually
connected inhibitory interneurons (interneuron network gamma (ING) model) or through
networks of reciprocally connected excitatory PYR and inhibitory interneurons (PYR-
interneuron network gamma oscillations, pyramidal interneuron network gamma (PING)
model) [58, 172, 163, 7]. In the ING mechanism, gamma is generated by a network
of recurrently connected inhibitory interneurons. This model postulates inhibitory in-
teractions between interneurons can sustain gamma frequency synchronization via tonic
depolarization of connected interneurons. This gamma is independent of phasic PYR
cell firings, although the interneurons do require a depolarizing drive. The frequency and
coherence of the gamma generated is dependent on the amount of recurrent connectivity
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in the network, the excitatory drive to the interneurons, and the decay time constant of
the IPSCs. Conversely, the PING mechanism requires the interaction between principal
cells and inhibitory interneurons, but does not require recurrent connections among the
interneurons. In this model, excitatory PYR cells provide feedforward excitation of in-
terneurons, which then provide inhibitory feedback to the comparatively more numerous
PYR cell population. PING networks require specific firing ratios between the PYR and
the interneuron populations, and oscillations only occur when principal cells have high
firing rates. Physiologically, gamma may be generated by a combination of mechanisms,
including ING and PING.

Both ING and PING mechanisms have been proposed by mathematically abstract,
single compartment models, and as such to this day they remain theoretical. How these
mechanisms apply in biologically realistic scenarios is unclear. ING and PING mecha-
nisms assume that gamma activities merely reflect the firing of neurons however, gamma
rhythms are measured in LFP recordings which is a complex signal, and as such the gen-
eration of gamma LFPs might be multifactorial. In Chapter 5, we discuss the generation
of slow gamma LFPs.

1.4 Theta-gamma coupling

Low-frequency theta rhythms are dynamically involved across distributed brain regions
by sensory signals or cognitive tasks; at the same time, high-frequency gamma brain
activities reflect local brain processing [31]. It has been shown that phase coupling
reflects various cognitive processes in humans [30], monkeys [31], rats [72] and mice
[177]. Theta/gamma PAC or “nested” oscillations is in fact one of the most studied
phenomena of phase coherence [31], reflecting the interrelations between local micro-scale
and system-level macro-scale neuronal networks [40].

In non-epileptogenic hippocampi of neurosurgical patients and in a healthy brain of
rodents, the degree of theta–gamma PAC increases with learning [165]. In the hippocam-
pus, gamma and theta oscillations normally show a marked PAC cross-frequency-coupling
considered to be central to hippocampal functions [165]. Thus, during spatial learning,
the strength of hippocampal theta–gamma coupling usually directly correlated with the
increase in correct performance of a cognitive task.

For these reasons developing frameworks of PAC mechanisms is pivotal for the un-
derstanding of the cognitive functions they correlate with. So far, contributions to theta-
gamma PAC in the hippocampus have been investigated from a pathway perspective
[111, 105]. In this thesis we consider cell-type contributions to theta-gamma PAC.
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1.5 LFPs

1.5.1 Background

Oscillatory LFPs are extracellularly recorded potentials with frequencies of up to ≈500
Hz. The LFP is a widely available signal in many recording configurations, ranging
from single-electrode recordings to multi-electrode arrays. It is recorded in the extra-
cellular space in brain tissue, typically using micro-electrodes (metal, silicon or glass
micropipettes). LFPs differ from electroencephalogram (EEG)s, which are recorded
at the surface of the scalp, with macro-electrodes. It also differs from the electro-
corticogram (EcoG), which are recorded from the surface of the brain using large subdural
electrodes, while LFPs are recorded in depth, from within the cortical tissue (or other
deep brain structures). A comprehensive overview of our present understanding of the
mechanisms that underlie the generation of extracellular currents and fields is described
in [27].

LFPs are associated with a number of cognitive processes and physiological functions
in health and disease and complement the information obtained by analysis of spikes.
Noticeably, studies analyzing sensory cortical processing [11] often rely on a combination
of different types of electrophysiological signals, including LFPs. The role of LFPs has
also been emphasized in spatial position encoding [100, 98] and memory processes [51]
which includes the study of LFP theta rhythms [26]. Despite their indisputable impor-
tance, the generation mechanisms describing these activities remain largely unknown.
In in vivo recordings the LFPs occur typically due to subthreshold activity as well as
dendritic processing of synaptic inputs. LFPs are a less local measure of neural activity
than network spiking as the LFP measured at any particular point will typically have
sizable contributions from neurons located several hundred micrometers away and thus
their interpretation is more complex.

Computational neuroscience has largely focused on how neurons and neural networks
may process information, while less attention has been given to the relationship be-
tween the neural activity and measurable quantities. Fortunately, a precise biophysical
modeling scheme linking activity at the cellular level and the recorded signal has been es-
tablished. The biophysical origin of LFPs is well understood in the framework of volume
conductor theory [132] in which extracellular electrical potentials are generated by trans-
membrane currents passing through cellular membranes in the vicinity of the electrode
(-see Eq. 2.16 in Methods). The simulation of LFPs in combination with spiking models
allows us to obtain a more holistic representation of the electrical activity and gives us
the opportunity to effectively address a variety of questions associated with cognition
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and perception in health and disease.

1.5.2 The necessity for biophysically realistic LFP models

In terms of modelling of LFPs several proxies have been used over the years. These
include pooled spike trains [23], average membrane potentials in neuronal populations
[10] and sums of synaptic input currents onto pyramidal neurons [52, 177]. However, none
of these proxies can be expected to be generally valid for representing LFPs and thus
understanding their emergence. One reason is that the vertical extent of the contributions
from each cellular population to the LFP is similar to the vertical extent of the dendrites,
and hence the net LFP at each location is a sum of positive and negative contributions
from several overlapping neuronal populations that partially cancel each other out. This
cancellation effect and the effect of intrinsic dendritic filtering [100, 98] can only be
captured with spatially extended multi-compartment models.



Chapter 2

General Methods

2.1 Modelling of neurons and neural networks

2.1.1 Fundamentals

A neural network may be defined as a large, highly interconnected assembly of model
neurons which are computing elements with a specified input-output relation. Each
neuron in the network receives inputs from and provides output to a large number of
other neurons. The connectivity of the network is specified by a synaptic interaction
matrix. Neural network models are classified as abstract models, intermediate models
and biological models depending on the biological detail they encompass [44]. In abstract
models, all microscopic details about the working of the individual neurons are left out.
The state of a neuron in these models is described by a single variable v which may be
interpreted as the firing rate (the rate at which the action potential is generated). The
pattern of synaptic connections and the values of the elements of the synaptic matrix
(amount of success in find near-optimal solutions of used in models of this kind) bear little
resemblance to biology. As these models mostly capture the dynamic output of a given
network without much biological realism in their internal structure, they are also called
phenomenological. In the models belonging to the intermediate category, each neuron
is still treated as a simple input-output device with no internal structure. However, a
number of experimentally observed features are incorporated in these architecture and
synaptic connectivity pattern of the network. The main advantage of studying models of
this kind lies in the fact that due to the relative simplicity analytic treatments are possible
and numerical simulations can be carried out rather than easily. Last, in biological
models, all known biophysical details of the individual neurons and synaptic connections
among them are incorporated in the model. Due to their extreme complexity, models

15
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of this kind are not amenable to analytic treatments. Numerical simulations provide
the only way of studying their properties. Such simulations require extreme amounts of
computing resources.

2.1.2 Conductance based models

The majority of this section has been adapted from [148].

Conductance-based models are the simplest possible biophysical representation of a neu-
ron in which its protein molecule ion channels are represented by conductances and its
lipid bilayer by a capacitor. These are models that contain enough biological detail to
be classified as intermediate or biological according to the classification of the previous
section.

Conductance-based models are based on an equivalent circuit representation of a cell
membrane as first put forth by Hodgkin and Huxley [76]. These models represent a
minimal biophysical interpretation for an excitable cell in which current flow across the
membrane is due to charging of the membrane capacitance, IC , and movement of ions
across ion channels. In its simplest version, a conductance-based model represents a
neuron by a single isopotential electrical compartment, neglects ion movements between
subcellular compartments, and represents only ion movements between the inside and
outside of the cell. Ion channels are selective for particular ionic species, such as sodium
(Na) or potassium (K), giving rise to currents INa or IK , respectively. Thus, the total
membrane current, Im(t) , is the sum of the capacitive current and the ionic current,

Im(t) = IC + Iionic (2.1)

where

IC = Cm
dV (t)
dt

(2.2)

In the Hodgkin-Huxley model, the original conductance-based model,

Iionic = INa + IK + IL (2.3)
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The leak current, IL , approximates the passive properties of the cell. Each ionic
current is associated with a conductance (inverse of resistance) and a driving force which
is due to the different concentrations of ions in the intracellular and extracellular media
of the cell.

Iionic = gNa(V )[V (t)− VNa] + gK(V )[V (t)− VK ] + gL[V (t)− VL] (2.4)

The voltage dependence or non-constant nature of the conductance, g (1/resistance)
of ion channels is captured using "activation" and "inactivation" gating variables which are
described using first-order kinetics. A current due to ionic species S with an activation
gating variable, a , but no inactivation variable would be given by gS = gS x a, where
a is described by first-order kinetics and gS represents the maximal conductance for the
particular ion channel.

From the theoretical basis described above, the standard formulation for a conductance-
based model is given as:

Cm
dV

dt
=

∑
j

gj(Vj − V ) + Iext (2.5)

where:

gj = gja
j
xb

j
y (2.6)

da

dt
= a∞(V )− a

τa(V ) (2.7)

db

dt
= b∞(V )− b

τb(V ) (2.8)

for each j. Vj is the Nernst potential or reversal potential for current j, (V − Vj) is
called the driving force for j, and Iext is an external current. a,b are gating variables
raised to small integer powers x,y , respectively. a∞, b∞ are the steady-state gating
variable functions that are typically sigmoidal in shape. τ is the time constant, which
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can be voltage-dependent. Thus, conductance-based models consist of a set of ordinary
differential equations (ODEs), as derived from current flow in a circuit representation
following Kirchoff’s laws. The number of differential equations in the set of model equa-
tions depends on the number of different ion channel types being represented with their
particular activation and inactivation gating variables. The conductances can depend
not only on transmembrane potential V, but also on concentrations of different ions.

These are some general formulations which very in their parameters according to the
specific conductance that is represented in a given model. In Chapters 3, 4 and 5, we
use the biologically realistic model of Bezaire and colleagues [13] as foundation, and the
conductance equations of the ion channels included in the model can be found in this
Appendix of the study [13].

2.1.3 Single and multi-compartment models

Conductance based models are classified as single and multi-compartment models ac-
cording to their morphological detail. In the case of the single compartment conductance
based models the morphological complexity of the cell is reduced in one (somatic) com-
partment. In multi-compartment cell models the dendritic complexity of the cell is taken
into consideration and the dendrites are explicitly modelled.

The majority of this section has been adapted from [72].

2.1.4 Biophysical modelling of dendritic neurons

Around 1889, the “neuron doctrine” started to take form, driven by the leading anatomist
the Spaniard Santiago Ramón y Cajal, who assumed that dendrites serve as the input
region for other neurons and that the signal then flows from dendrites to the soma and
axon —“the theory of dynamic polarization” [65]. However, it was only in the late 1960s
that the biophysical nature of dendrites and their role in signal processing became the
focus of direct experimental research, following Wilfrid Rall’s groundbreaking theoreti-
cal framework for modeling electrical current flow in dendritic trees [132]. During the
1960s, cable models (a cylinder of finite length, and a ten-compartment model) were
used to predict experimental results of the olfactory bulb. His linear cable theory for
branching dendrites handled analytically the case of the passive dendrites [133, 132, 135]
and his compartmental modeling method could treat the case of nonlinear (excitable)
dendrites [132] numerically. This research established the significance of synaptic input
to distal dendritic locations; it also explored properties of dendritic spines, and predicted
dendro-dendritic synapses in the olfactory bulb. Since then Rall’s theory has been in-
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tensely employed and extended in order to explore the biophysical principles that link
together the structure, physiology and function of dendrites. This theoretical foundation
for modeling dendrites [132] has guided experimental studies for the last 50 years and
has dramatically advanced our understanding of signal processing in dendrites [72].

2.1.5 Rall’s biophysical framework

Until recently, most of the stable electrical recordings from neurons were made from
the relatively large soma. However, most of the membrane area of central neurons is in
their dendrites and it is there where synaptic input contacts the neuron. Can one learn
about what happens locally at synaptic sites in the dendrites from recordings made at
the soma? This question motivated Rall to formulate his cable theory for dendrites [133],
followed by his compartmental modeling approach [134]. These groundbreaking studies
have provided the theoretical framework for understanding how electrical current (both
passive and active) flows in complicated dendritic trees.

Briefly, the one-dimensional cable theory for dendrites decomposes the dendritic tree
into a set of interconnected cylindrical cables, each representing a small section of the
dendritic tree. At any point along this cable the axial current (which flows along the axial
resistance, ri) may continue to either flow longitudinally or to flow into the membrane
(either charging the membrane capacitance, cm or crossing the membrane resistance, rm).
As a first approximation, Rall assumed that the dendrites are passive. Namely, that all
the electrical parameters are constant (i.e., independent of time and voltage). The flow of
current in a passive cable can then be described mathematically by the one-dimensional
passive cable equation:

rm

ri

∂2V (x, t)
∂x2 − rmcm

∂V (x, t)
∂t

− V (x, t) = 0 (2.9)

where V is the transmembrane potential, and ri (in Ω/cm), rm (in Ω cm), and cm (in
F/cm) are all per unit length. The general solution for this equation can be expressed
as an infinite sum of decaying exponentials [135]:

V (x, t) =
∞∑

i=1
Ci exp{−t/τi} (2.10)
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where, for a given tree, the coefficients Ci are independent of time, t but they do
depend on the point of observation, x and on the input current (the initial conditions).
In contrast, for a given passive tree, the values for the (“equalizing”) time constants,
τi, are independent of input location or input current [135]. Rall showed that, for any
passive tree, there is an analytic solution for the cable equation (namely, Ci and τi

can be written explicitly). Thus, it became possible to combine the anatomical and
physiological knowledge about a given dendritic tree and (assuming the tree is passive)
to analytically describe how the input current flows from any input site to any other
dendritic location, and specifically the soma [134]. Important insights were obtained
when these analytic solutions were applied to both synthetic and to real dendritic trees.
However, when a strong synaptic input (a transient conductance change, rather than a
current input) or significant nonlinearities exist in the dendritic tree, such as voltage-
dependent membrane conductance numerical (compartmental) methods for solving the
corresponding (nonlinear) cable equation should be employed [134, 142].

In the compartmental approach, the continuous cable equation is discretized into
a finite set of compartments, each representing a small section of the dendritic tree.
The membrane properties of this dendritic section are grouped into a single RC element
(where the membrane resistance, rm, may depend on time and/or voltage, whereas cm,
the membrane capacitance, is typically assumed to be constant). The resistivity of the
dendritic cytoplasm is lumped into a single (typically passive) axial resistivity, ri. Thus,
in an unbranched neuron, the current flowing in compartment j is:

dj

4ri,j

Vj+1 − 2Vj + Vj+1

∆x2 − cm,j
dVj

dt
− iion,j = 0 (2.11)

where dj, ri,j, and cm,j are respectively the compartment’s diameter, axial resistivity,
and membrane capacitance; iion, j includes all currents flowing through ionic channel
conductances within the compartment, and ∆x is the length of the compartment.

These two complementary approaches, the cable and compartmental models, have
been utilized very successfully and have become even more popular due to their im-
plementations in user-friendly software packages, such as NEURON [33] and GENESIS
[20]. In this thesis we use the NEURON [33] simulator which implements the numerical
solution of the cable equation of the multi-compartment, dendritic models.
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2.2 Theoretical framework of LFPs

2.2.1 The general biophysical forward-modeling formula

The extracellular potentials are generated by transmembrane currents, and in the com-
monly used volume conductor theory the system can be envisioned as a three-dimensional
smooth extracellular continuum with the transmembrane currents represented as volume
current sources. In this theoretical framework the fundamental relationship describing
the extracellular potential (φ) at position r due to a transmembrane current I0(t) at
position r0 is given by:

φ(r, t) = 1
4πσ

Io(t)
|r − ro|

(2.12)

Here the extracellular potential is set to be zero in infinitely far away from the trans-
membrane current, and σ is the extracellular conductivity, assumed to be real, scalar
(the same in all directions) and homogeneous (the same at all positions). The validity of
Eq. 2.12 relies on several assumptions:

A. Quasistatic approximation of Maxwell’s equations: This amounts to neglecting the
terms with the time derivatives of the electric field E and the magnetic field B from the
original Maxwell’s equation, i.e.,

5xE = −∂B
∂t
≈ 0 (2.13)

so that the electric (Eq. 2.13) and magnetic (Eq. 2.14) field equations effectively
decouple. With 5xE = 0 it follows that the electric field E in the extracellular medium
is related to an extracellular potential via:

E = −5 φ (2.14)

For the frequencies inherent in neural activity, i.e., less than a few thousand hertz,
the quasistatic approximation seems to be well justified.
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B. Linear extracellular medium: Linear relationship between the current density j

and the electrical field E,

j = σE (2.15)

This constitutive relation is quite general, and σ in Eq. 2.15 may in principle be
(i) a tensor, accounting for different conductivities in different directions, (ii) complex,
accounting also for capacitive effects, and/or (iii) position-dependent, that is, vary with
spatial position. (Note that Eq. 2.15 is valid only in the frequency domain. In the time
domain j is generally given as a temporal convolution of σ and E.)

C. Ohmic (resistive) medium: Imaginary part of the conductivity σ is assumed to
be zero, that is, the capacitive effects of the neural tissue is assumed to be negligible
compared to resistive effects. This appears to be well fulfilled for the relevant frequencies
in extracellular recordings.

D. Isotropic (scalar) extracellular conductivity: Conductivity σ is assumed to be the
same in all directions, i.e., σx = σy = σz = σ. Recent cortical measurements indeed found
the conductivities to be comparable across different directions in cortical grey matter; in
white matter, however, the conductivity was found to be anisotropic.

E. Frequency-independent extracellular conductivity: Conductivity σ is assumed to be
the same for all relevant frequencies, i.e., σ(ω) is constant. The validity of this assumption
is still debated: while some studies have measured negligible frequency dependence, other
investigations have suggested otherwise.

F. Homogeneous extracellular conductivity: Extracellular medium is assumed to have
the same conductivity everywhere. This appears to be roughly fulfilled within cortical
gray matter and frog and toad cerebella, but maybe not in the hippocampus. Frequency
filtering properties and modeling of LFPs in inhomogeneous extracellular spaces have
been considered [29, 117] however, in this thesis we consider the hippocampus extracellu-
lar space to be fairly homogeneous and isotropic [50] and these properties are not taken
into consideration.

Eq. 2.12 applies to the situation with a single transmembrane current I0, but since
contributions from several transmembrane current sources add linearly, the equation
straightforwardly generalizes to a situation with many transmembrane current sources.
With N current point sources the formula in Eq. 2.12 generalizes to:
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φ(r, t) = 1
4πσ

N∑
n=1

In(t)
|r − rn|

(2.16)

It is clear that the measured extracellular potential will not only depend on the po-
sition of the electrode, but also the distribution of transmembrane currents. Fig. 2.1
further illustrates an important ’conservation’ law when calculating extracellular poten-
tials due to neural activity. This is Kirchhoff’s current law: ∑

In(t) = 0.

2.2.2 Numerical forward-modeling scheme

The numerical evaluation of extracellular potentials naturally splits into two stages:
1. Calculation of transmembrane currents for all neuronal membrane segments us-

ing multicompartment neuron models, typically using neural simulation tools such as
NEURON [33].

2. Calculation of the extracellular potential on the basis of the modeled transmem-
brane currents and their spatial position using a forward modeling formula similar to
Eq. 2.16. When a neuron is split into N compartments, the formula in Eq. 2.16 should
correspond to a characteristic ’mean’ position for compartment n, e.g., the center of a
spherical soma compartment or the midpoint of a cylindrical dendritic compartment.
This scheme corresponds to the so called point-source approximation since all transmem-
brane currents into the extracellular medium from a particular compartment are assumed
to go through a single point.

2.3 Computational resources and tools

The single cell and network modelling in this thesis were implemented in NEURON [33].
The LFPs in Chapter 6, were implemented using LFPy [99], a Python package that imple-
ment the forward LFP formula of Eq. 2.16. In Chapters 3, 4 and 5 LFPs were explicitly
coded in the CA1 microcircuit which we downloaded from: https://senselab.med.
yale.edu/ModelDB/showModel.cshtml?model=187604#tabs-1. Analysis of results was
done by custom MATLAB [112] and Python [169] scripts. Simulations were carried out
on local machines and on Scinet [102] on the Niagara cluster, a large cluster of 2,024
Lenovo SD530 servers each with 40 Intel "Skylake" at 2.4 GHz or 40 Intel "CascadeLake"
cores at 2.5 GHz.

https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604#tabs-1
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604#tabs-1
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Figure 2.1: The LFP is produced by transmembrane currents passing across
the cell membrane. Illustration of mathematical formula Eq. 2.16 providing the
extracellular potential from transmembrane currents in a single neuron. The size and
direction of the arrows illustrate the amplitudes and directions of the transmembrane
currents. The law implies that the net transmembrane current (including the capacitive
current) coming out of a neuron at all times must equal zero. Thus with the neuron
depicted this Figure divided into N compartments, one must at all times have ∑

In(t) = 0.
Therefore a one-compartment model cannot generate any extracellular potential since
the net transmembrane current necessarily will be zero. The simplest model producing
an extracellular potential is a two-compartment model where transmembrane current
entering the neuron at one compartment leaves at the other compartment. The simplest
possible multipole configuration is thus the current dipole.
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Linking Minimal and Detailed
Models of CA1 Microcircuits
Reveals How Theta Rhythms
Emerge and How Their Frequencies
Are Controlled

Conceptualization and project design of the work presented in this Chapter was done
by me and Dr. Skinner. Simulations and analysis of the results were done by me. The
analysis presented in Chapter 3.4.1 was carried out by Melisa Gumus, an undergraduate
student at the time, co-supervised by Dr. Skinner and me. To support Melisa’s Network
Clamp simulations of Chapter 3.4.1, I repaired the software Network Clamp of the Tool
SimTracker [13]. This was done with guidance from one of the software developers, Dr.
Ivan Raikov at Stanford University. The work presented in this Chapter is available as
a biorxiv at:

Chatzikalymniou, Alexandra P., Melisa Gumus, Anton R. Lunyov, Scott Rich, Jeremie
Lefebvre, and Frances K. Skinner. “Linking Minimal and Detailed Models of CA1 Micro-
circuits Reveals How Theta Rhythms Emerge and How Their Frequencies Are Controlled.”
BioRxiv, July 29, 2020, 2020.07.28.225557. https://doi.org/10.1101/2020.07.28.225557.
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3.1 Preamble

The level of biological realism characterizing neuronal models is a spectrum, with phe-
nomenological models (or abstract models as presented in the Background) on the one end
and biophysical models on the other. Phenomenological models are typically described
by a set of mathematical equations that reproduce the dynamic behavior of a neuron
without containing explicit representations of the underlying biological intricacies. On
the other hand, biophysical models contain realistic representations of biological cellular
aspects. Phenomenological and biophysical models serve different, but complementary
goals.

As biologically detailed models encompass many of the biophysical components that
could contribute to a phenomenon of interest, the dynamic output they produce can be
regarded as more realistic compared to that of abstract models. However, the advance-
ment of biologically realistic models poses a challenge on our ability to analyze them
using theoretical tools, a challenge that stems from the high-dimensional and multi-
parametric nature of these systems. We propose that this problem can be addressed in
part by leveraging insights from mathematically abstract models in application to those
that are biologically detailed. In principle, such insights need to be verified experimen-
tally. However, biophysically realistic computational models can act as an intermediate
between abstract mathematical models and experiment, serving as a test-bed for theory
examination. With this approach biologically detailed models can be better understood
and theoretical predictions may be strengthened or questioned further. By no means can
a theory be verified merely against biologically elaborate models, as theory verification
can only occur against experimental data. However, testing a theory against complex
models can primarily help us understand complex model mechanisms and facilitate the
deduction of further predictions.

In this Chapter, we consider two models, an abstract (minimal) and a biologically
detailed model, that both generate theta rhythms intrinsic to the hippocampus. We test
insights of the minimal model in application to the biological model to understand how
theta activities arise in the latter.

3.2 Introduction

Exactly how theta rhythms emerge is a complicated and multi-layered problem. It is
now well-documented that theta rhythms can be generated intra-hippocampally, and
emerge spontaneously from an isolated whole hippocampus preparation in vitro [67]. As
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mentioned in the Background, two computational modelling studies have captured these
intrinsic theta rhythms. The first study by Ferguson and colleagues [53], used minimal
network models of biophysically simplified neurons, while the second study by Bezaire
and colleagues [14], used biophysically detailed network models. These models can help
us understand how these rhythms are generated while taking into consideration each
model’s advantages and challenges.

The biophysically minimal model [53] represents a ‘piece’ of the CA1 region of the
hippocampus, and it was developed and constrained against data from the whole hip-
pocampus preparation [56, 54]. We used this model to examine what ‘building block’
features could underlie theta rhythms [52, 53]. It was found that spike frequency adapta-
tion (SFA) and post-inhibitory rebound (PIR) building block features of excitatory PYR
cells in large minimally connected recurrent networks with fast-firing PV+ inhibitory cells
could produce theta frequency population rhythms. Fitting the model to experimental
observations of EPSC and IPSC amplitude ratios yielded the prediction that the con-
nection probability from PV+ to PYR cells is larger than from PYR to PV+ cells. The
minimal model design, strategy and setup suggests that the theta oscillation generation
mechanism could be due to SFA and PIR building block features. However, the challenge
is to determine how these insights could apply in the biological, hippocampal system with
its larger complement of diverse inhibitory cell types and additional biological details.

The detailed model [14], is a full-scale biological model of the CA1 hippocampus with
338,740 cells that includes PYR cells, PV+BCs, AACs, BiCs, CCK+BCs and SCA cells.
The model provides a realistic representation of the hippocampus which is grounded upon
a previously compiled, extensive quantitative analysis [15]. It describes the activities of
the PYR cells and the eight inhibitory cell types during theta rhythms. In broad terms,
this model distinguishes the importance of certain cell types against others, and predicts
that cell type variability is necessary for theta rhythms to occur.

To understand the theta generation mechanism in the biophysical model, we follow
the strategy schematized in Fig. 3.1, according to three main steps. Results from Step
1 are only summarized in this thesis while Step 2 and Step 3 are presented in detail.
In [34] we first extended the minimal model, Step 1, to test the robustness of the theta
rhythms in the face of PYR cell heterogeneity. We developed heterogeneous PYR cell
networks and we examined the sensitivity of theta rhythms to the building block features
of SFA, Rheo (the neuron’s rheobase) and PIR. As a result, we established that theta
frequency population bursts are particularly sensitive to PIR and Rheo feature values, and
less sensitive to SFA values. Moreover phase response curve (PRC) examinations showed
that the PV+ cell population creates a strong inhibitory ’bolus’ that tunes and regularizes
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the PYR cells and their firing frequency. We proposed from this observation, that the
net input (recurrent excitation, excitatory drive and incoming inhibition) received by
the PYR cell situates it in a frequency range that allows theta frequency population
bursts to occur. However, just from these minimal model examinations, it was unclear
whether such a relationship between PYR cell inputs and network frequency would exist
in biologically realistic networks.

Moving on to step 2 we compared minimal and detailed models, to identify com-
monalities and differences in their structure that could underlie similar or different theta
generation mechanisms. Finally, in step 3, we extracted a ’piece’ of the detailed model,
the segment model, which is comparable in cell numbers to the minimal model, and we
investigated the effect of the noted differences from step 2 on the theta output. Follow-
ing a principled exploration of the segment model, we tested hypothesis proposed by the
minimal model in application to the segment model and we deciphered how the theta
rhythm is produced.

3.3 Methods

3.3.1 The segment and detailed model explorations

The segment model is simply a 10% piece of the detailed model of the rodent CA1
microcircuit [14] as illustrated in Fig. 3.1 and Fig. 3.3A. To create and use the segment
model, one must first be able to access and use the detailed model.

In segment and detailed models, there are eight different inhibitory cell types and ex-
citatory PYR cells. All of these cell types are connected in empirically specific ways based
on an extensive knowledge-based review of the literature [15]. The cells are evenly dis-
tributed within the various layers of the CA1 (SLM, SR, SP, SO) in a three-dimensional
prism. Afferent inputs from CA3 and EC are also included in the form of Poisson-
distributed spiking units from artificial CA3 and EC cells. We note that although there
are layer-dependent specifics regarding how the different cell types are arranged in the
full-scale detailed model (Fig. 3.1), there are not any differences along the longitudinal
axis of the full-scale model. As such, the connection profile at any location along the
longitudinal axis does not vary. In other words, the connection probabilities in any par-
ticular part of the longitudinal axis would be the same assuming that there are enough
cells for meaningful calculations.
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Figure 3.1: Schematic illustrating overall paper flow and strategy. The ex-
perimental context and four model types are referred to in the paper: Experiment - a
whole hippocampus preparation that exhibits spontaneous theta rhythms [67]; Minimal
- a previously published work of minimal network models representing a ’piece’ of the
whole hippocampus (blue square in experiment illustration) that generates theta rhythms
within experimental constraints [53]; Minimal+ - an expansion of the minimal model us-
ing heterogeneous PYR cells (as illustrated with differently coloured PYR cells) that is
used in the present paper; Detailed - a previously published work of a full-scale detailed
CA1 microcircuit model (eight different inhibitory cell types and PYR cells) that gener-
ates theta rhythms without any oscillatory input [14]; and Segment - a network model
representing a ’piece’ of the detailed model, that is used in the present paper. The three
main steps in the flow of the paper are shown (Steps 1-3), and the foci of the work in
the present paper are illustrated by the black arrows: The detailed model is examined in
light of the experimental data; a systematic comparison between minimal and detailed
models is done; the segment model is created from the detailed model; the minimal+
model is constructed based on the minimal model, and mechanistic insights resulting
from the minimal+ model are leveraged in the segment model. The black open arrows
illustrate that ’Robust Theta’ in the minimal+ model is examined leading to hypothesis
development, and leveraging this in the segment model helps with an understanding of
’Biophysical Theta’ where multiple cell types can be considered. The grey arrow illus-
trates previously done work where the minimal model was developed and examined in
light of the experimental data [53]. Illustrations include: Minimal model setup with PYR
and fast-firing PV+ cells, Detailed model setup with 9 cell types (NGF, SCA, CCK+BC,
BC, BiC, PYR, IVY, AAC, OLM) and layer-specific connectivity, Experiment of whole
hippocampus preparation with a LFP theta example, heterogeneous PYR cells as dif-
ferent colors in Minimal+ model, and a shaded portion of the Detailed model prism to
illustrate the Segment model. This figure is adapted from: Figs. 1,8 of [79], Fig. 2 of
[53], and Fig. 1 of [14]
.
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Accessing the CA1 microcircuit model

The code that we use for this work starts from the original CA1 microcircuit reposi-
tory which can be found at ModelDB at: https://senselab.med.yale.edu/ModelDB/
showModel.cshtml?model=187604. The model version we used can be downloaded from:
https://bitbucket.org/mbezaire/ca1/pull-requests/3/d1efeb957848/commits. Anal-
ysis of simulation outputs can be recreated using the publicly available SimTracker tool
[13] which can be downloaded from: http://mariannebezaire.com/simtracker/. It is
recommended that users install SimTracker first and then install and register the CA1
model under SimTracker, to take advantage of the visualization functionalities of the
SimTracker package. This tool is offered both as a stand-alone, compiled version for
those without access to MATLAB [112] (for Windows, Mac OS X, and Linux operating
systems), and as a collection of MATLAB scripts for those with MATLAB access. Once
the SimTracker and the ca1 repository are installed, users can run simulations either on
their local machines using a small scale of the CA1 network, or on supercomputers as
needed for full scale network simulations. To reproduce the findings presented here, one
needs to first familiarize oneself with the CA1 microcircuit background and code.

The segment model is created from the detailed model by setting the "Scale" parameter
= 10, which reduces the number of cells and the volume of the CA1 prism by a tenth,
and by dividing all connections in the network by a factor of 10. If this latter step is
not done, then each cell would have ten times as many connections relative to a cell in
the full-scale detailed network. That is, the parameter scaling is a ‘normalization’ in
which the ‘scaled’ network assumes that each cell is a representative of ‘10 cells’. We did
not want this, as the segment model is simply a piece of the detailed model and so we
‘removed’ the normalization by dividing the number of connections by ten.

Calculation of connection probabilities and synaptic weights in the detailed
model

To be able to compare connectivities between minimal and detailed models, we compute
connection probabilities in the detailed model. They are computed by dividing the to-
tal number of connections from a single presynaptic cell of a given type, to the cells of
the postsynaptic population, divided by the total number of (postsynaptic) cells, of that
particular population. They are thus computed as divergent connection probabilities, as
it was done in the minimal model where random divergent connection probablities were
employed. To compute connection probabilities when PV+ cells are assumed to consist
of more than one inhibitory cell type, a combination is required. For example, in consid-

https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187604
https://bitbucket.org/mbezaire/ca1/pull-requests/3/d1efeb957848/commits
http://mariannebezaire.com/simtracker/
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ering basket cell (BC)s and BiCs as fast-firing PV+ cells in one population, the number of
connections each cell (either BC or BiC) receives is the average of presynaptic connections
each receives, as given in the detailed model. For example, the number of connections
from PYR cells onto BC/BiC population equals the total number of presynaptic connec-
tions that BCs and BiCs receive from PYR cells. The connection probability from PYR
to PV+ cells (BC/BiC combination) is calculated by dividing this total number of con-
nections by the total number of BCs and BiCs. All numbers and connection probabilities
are shown in Table 3.2.

The synaptic weight in the detailed model is given by the synaptic conductance mul-
tiplied by the number of synapses per connection. So, for example, as a single BC cell
has 11 synapses/connection onto a PYR cell and a synaptic conductance of 0.2 nS, then
the synaptic weight is 2.2 nS. In the case of combined cell type populations, the average
synaptic weight for the given cell type with its number of synapses/connection and synap-
tic conductance as reported by [14]. All of the computed synaptic weights are shown in
Table 3.2.

Calculation of EPSC/IPSC amplitude ratios in the detailed model

For comparison with experimental data, we examine what EPSC/IPSC amplitude ratios
exist for cells in the detailed model. We choose 15 cells of each type from the full-scale
model [14]. These types are PYR cells and fast-firing PV+ cell types - BCs, BiCs and
AACs. In doing this examination it is important to note that experimental estimates of
these ratios as derived from voltage clamp recordings are not precise as there are asso-
ciated experimental limitations such as due to space clamp. However, the experimental
data shows that EPSCs received by PV+ cells are much larger in amplitude than EPSCs
received by PYR cells, and since IPSCs received by PV+ and PYR cells are similar
in amplitude, the experimental limitations are moot as it is clearly the case that the
EPSC/IPSC amplitude ratios for PYR cells are much less than for PV+ cells [79].

In considering the detailed model, several aspects need to be taken into considera-
tion. First, in the detailed model, we consider fast-firing PV+ cell types as BCs, BiCs
or AACs in different combinations. Next, with the detailed model, morphological rep-
resentations of cells are used and there are eight different inhibitory cell types. These
different inhibitory cell types synapse onto different parts of the PYR cell tree and as
such, IPSCs onto PYR cells would be attenuated by different amounts when examining
synaptic currents at their somata. We note that to directly compare synaptic currents
from the experiments with the detailed model, one could consider performing a voltage
clamp on model cells and separately examining EPSCs and IPSCs as done experimen-
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tally, but one would additionally need to separate IPSCs that are due to the different
inhibitory cell types to consider PV+ or PYR cells. Undertaking this in the detailed
model would be a highly non-trivial endeavour, and indeed, decades of research has un-
covered the richness and complexities of dendritic integration [155]. Thus, since we know
that the EPSC/IPSC amplitude ratios are very different on PYR and PV+ cells, we focus
on EPSCs and IPSCs on either PYR or PV+ cells at somatic locations without trying
to compensate for voltage clamp or attenuation issues due to different synaptic input
locations from the different cell types. From the consideration that the comparison is
with experiment, we consider that EPSCs onto the different cell types are due to inputs
from PYR cells and EC and CA3, whereas IPSCs are from the various inhibitory cell
types of the detailed network model [14]. As we are mainly considering comparisons with
the minimal model, we consider IPSCs that are due to PV+ fast-firing cell type could
encompass BCs, BiCs and AACs.

The network clamp tool in SimTracker enables extraction of a particular cell from
the full-scale model while keeping synaptic properties [13]. We network clamp each of
the 15 selected cells of each type for 1000 msec and detect the peak EPSCs and IPSCs
by implementing the minimum peak distance algorithm in MATLAB. For EPSC/IPSC
amplitude ratio calculations for a specific cell, all excitatory currents are summed and
divided by the summed inhibitory currents that the cell receives. For EPSC/IPSC am-
plitude ratios on to PYR cells, IPSCs due to only BCs, only BiCs, a combination of BCs
and BiCs, a combination of BCs/BiCs/AACs, and all inhibitory cells are shown in Table
3.1. We note that there is no EPSC/IPSC amplitude ratio consideration of AACs to
themselves as there are no AAC to AAC synapses in the detailed model. When there
is a combination, the ratio calculations are based on dividing the mean EPSCs by mean
IPSCs, after summing IPSCs from each PV+ cell type. The EPSCs are flipped before
peak detection for its mechanistic advantage using the MATLAB code. All 225 (15x15)
combinations of EPSC/IPSC amplitude ratios in each BC/BiC/PYR and BC/AAC/PYR
populations as well as 3375 (15x15x15) combinations in BC/BiC/AAC/PYR are exam-
ined, and they are in accordance with the experimental data. The mean EPSC/IPSC
amplitude ratios and their standard deviations for the various cell types are given in Ta-
ble 3.1. Voltage recordings and currents plots from the 15 chosen cells can be accessed at
https://osf.io/yrkfv/. The scripts for the EPSC/IPSC amplitude ratio calculations
can be found at https://github.com/FKSkinnerLab/CA1_SimpleDetailed.

https://osf.io/yrkfv/
https://github.com/FKSkinnerLab/CA1_SimpleDetailed
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Parametric explorations in the segment model

To generate the heatmaps of Fig. 3.4 we use the following process on the created segment
model. We perform exhaustive parametric explorations of the theta power dependence on
the excitatory drives in the segment model. We vary the EC/CA3 to PYR cell synaptic
conductance gec/ca3−pyr, the PYR-PYR synaptic conductance gpyr−pyr and the level of
external stimulation, which represents the firing rate of our external EC and CA3 cells.
For every pair of gpyr−pyr and gec/ca3−pyr, we search for the level of external stimulation
that maximizes the normalized theta power. The normalized theta power is defined as
the maximum theta power (net theta power) in the power spectrum, divided by the
mean power across all frequencies. We search a range of 0.15-0.65 Hz of stimulation
per network (below that range the network is inactive, above that range the network
is hyper-active). We plot the value of that maximum normalized theta power in Fig.
3.4Bi, and the corresponding stimulation required to reach that value in Fig. 3.4Biii.
Every pair of gpyr−pyr and gec/ca3−pyr corresponds to a specific conndata#.dat file. These
conndata#.dat files should be created and stored under the "datasets" directory of the
CA1 repository. The code for the generation of the heatmaps of Fig. 3.4B can be found
here: https://github.com/alexandrapierri/CA1-Segment-Microcircuit

Current extractions and linear regression in the segment model

As described above for ratio calculations in the detailed model, we use the network clamp
tool of SimTracker to extract PSCs delivered to the PYR cells in the model from all other
cells in the network and the external drives. We examine the EPSCs and IPSCs received
by 10 PYR cells for each of the 50 networks underpinning the heatmaps of Fig. 3.4B.
We calculate the mean current amplitude for each of the 10 cells over a 4sec simulation
period, and refer to this as the net current. We take the average and standard deviation
of the net current of the 10 cells and plot it against the frequency of that network (Fig.
3.5C).

As we examine 10 cells per network and we have 50 networks, this gives as a to-
tal of 500 network clamp simulations which corresponds to analysis of 500 cells’ input
currents. To perform a linear regression of net current vs network frequency, we use cus-
tom MATLAB code which can be found here: https://github.com/alexandrapierri/
CA1-Segment-Microcircuit. The correlation coefficient between theta frequency and
net current ( ρ ) and the p-value for testing the hypothesis of no correlation (null hy-
pothesis) against the alternative hypothesis of a nonzero correlation, are estimated using
MATLAB’s built-in functions.

 https://github.com/alexandrapierri/CA1-Segment-Microcircuit
 https://github.com/alexandrapierri/CA1-Segment-Microcircuit
 https://github.com/alexandrapierri/CA1-Segment-Microcircuit
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Power analysis and signal filtering

To analyze the signal power we used the Welch’s Periodogram, a method for estimat-
ing power spectra based on FFT analysis https://ccrma.stanford.edu/~jos/sasp/
Welch_s_Method.html. To filter the raw LFP signal for theta (see for example Fig.
3.3Bii,iii) we used a broadband filter with stopband frequencies ±1 Hz and passband
frequencies ± 1.75 Hz from the peak theta frequency as derived from the Welch’s Peri-
odogram.

High performance computing simulations

We implement our simulations on Scinet [102, 130] on the Niagara clusters, using 10-12
nodes per simulation with 40 cores per node. Each network simulation takes approxi-
mately 8 hours real time to be executed. The results we present in this study are the
distillation of approximately 300 network simulations requiring a total of 150 core years
processing power on the clusters.

3.4 Results

The flow of the results section is as follows. To investigate the theta mechanism in
the detailed model we first compare EPSC/IPSC amplitude ratios in the detailed model
with those in the whole hippocampus preparation to examine if the detailed model can
successfully reproduce available experimental observations. This was already done with
the minimal model [34]. Next, we carry out a systematic comparison between minimal
and detailed models by comparing connectivities, synaptic weights and external drives.
We perform this comparison to unveil commonalities and differences in the network
structure of the two models that could underlie similar or different theta mechanisms.
Finally, we isolate a ’piece’ of the detailed model - the segment model - comparable in cell
numbers to the minimal model. We examine the segment model in a principled manner
according to minimal and detailed model differences to further elucidate the implications
of these differences on the theta rhythms produces by each model. We test predictions of
the minimal model in application to the detailed. As the segment model is much smaller
than the detailed model, we can perform extensive explorations and establish how intra-
hippocampal theta rhythms are generated and how their frequencies are controlled.

https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html
https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html
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3.4.1 Linkage explorations between minimal and detailed mod-
els generating intrinsic theta rhythms intra-hippocampally

To consider whether the detailed model uses similar theta-generating mechanisms as
the minimal model, we examine commonalities and differences between the two models,
as illustrated by ’compare’ in Fig. 3.1. However, we first turn to an examination of
EPSC/IPSC amplitude ratios in the detailed model relative to those observed in the
whole hippocampus preparation.

EPSC/IPSC amplitude ratios in the detailed model are consistent with those
in the whole hippocampus preparation

The detailed model is experimentally constrained in a bottom up fashion, using cellular
data and connectivity information from a plethora of experimental data [15]. Whether
the detailed model yields meso-level measurements, such as EPSC/IPSC amplitude ratios
that agree with experimental observations from the whole hippocampus preparation,
has not been directly assessed. Thus, we here examine whether the detailed model
exhibits ratios that match those observed in experiments from the whole hippocampus
preparation, as was already considered in the minimal model. From the experimental
data it is abundantly clear that the EPSC/IPSC amplitude ratios for PYR cells are much
less than for PV+ cells. For the detailed model, we consider PV+ cells to represent BCs,
BiCs, or combinations of BCs, BiCs and AACs. We choose 15 cells of each type and
extract EPSCs and IPSCs at the somata of the different cell types and compute the
ratios. We find that regardless of the PV+ cell type or combination considered, it is
always the case that the EPSC/IPSC amplitude ratios are consistent with experiment
- larger on PV+ cells than on PYR cells - as shown in Table 3.1. Further details are
provided in the Methods.

Minimal model connectivity prediction validated using detailed model empir-
ical numbers

In the minimal model we predicted that to have EPSC/IPSC amplitude ratios that
are consistent with the experimental observations, it is necessary for the connection
probability from PV+ to PYR cells to be larger than from PYR to PV+ cells. The
connectivities in the detailed model are based on empirical determinations [15]. Thus,
if the minimal model is an appropriate representation of the CA1 microcircuitry, its
connection probabilities should be in line with those in the detailed model. To consider
this, we note two things. First, the minimal model only includes fast-firing PV+ and PYR
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Table 3.1: EPSC/IPSC amplitude ratios from detailed model network cells.

PV+ cell type EPSC/IPSC amplitude ratio
(on PYR cell)

= BC 4.05 ± 0.86
= BiC 7.21 ± 1.19
= BC/BiC 2.95 ± 0.62
= BC/AAC/BiC 1.78 ± 0.39
= All inhibitory cell types 1.32 ± 0.24

EPSC/IPSC amplitude ratio
(on PV+ cell)

= BC 11.71 ± 2.66
= BiC 34.97 ± 5.28

cells, and second, it uses a random connectivity scheme. Thus, to make comparisons,
we consider only PV+ cell types and PYR cells from the detailed model and determine
connection probabilities between them using their empirically-based connection schemes.
Three inhibitory interneuron cell types in the detailed model can be considered as fast-
firing PV+ cell types. These are the BCs, the BiCs and the AACs. Considering only
these three inhibitory cell types and the PYR cells, we extracted the number of their
post-synaptic connections. This is shown in schematic form in Fig. 3.2. To compare
connection probabilities between minimal and detailed models we considered that the
fast-firing PV+ cell type in the minimal model could correspond to: (i) only BCs; (ii)
only BCs and AACs; (iii) only BCs and BiCs; (iv) BCs, AACs and BiCs. BCs represent
the majority of fast-firing PV+ cell types and so they are included in all of the different
combinations.

The connection probabilities computed from the detailed model are given in Table
3.2 along with connection probabilities from the minimal model (details are given in the
Methods). To avoid repetition, minimal model connection probabilities are only shown
for the “PV+=BC” case in row #2 of Table 3.2. We found that regardless of the PV+
cell type consideration (i-iv), the connection probability from PV+ to PYR is greater
than from PYR to PV+ in the detailed model, indicating that one of the predictions
of the minimal model is in effect in the CA1 microcircuitry. Thus, this comparison
yields a ‘validation’ of the minimal model as one of its main predictions is in effect in
the detailed model which has empirically determined connection probabilities from many
experimental determinations [15]. We consider this a validation because the connectivity
profile of the detailed model is directly derived from experimentally identified connections
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Figure 3.2: Schematics summarizing connections in the detailed model for
PYR and PV+ cell types. The four schematics illustrate the connection schemes
that exist in the detailed model, where we only consider PYR and PV+ cells (BCs,
BiCs, AACs) [14]. For each large centered cell, the number of synapses per connection
and its approximate location on the cell is specified for whichever cells are presynaptic,
and the number of cells that the large centered cell connects to is also illustrated for
whichever cells are postsynaptic. These numbers are also reflected in Fig. 3.2. The
morphological structure along with its layer location from the detailed model is also
shown. The red line in PYR cell denotes its axon.

between cell types and it is hence biologically realistic. We note that comparison of PYR
to PYR and PV+ to PV+ connection probabilities between minimal and detailed models
are expected to be appropriate as these connection probabilities in the minimal model
were derived from the experimental literature [57, 55]. As noted in Table 3.2, the PYR to
PYR connection probability (see row #1) is an order of magnitude less than it is for the
PV+ to PV+ connection probability (see rows #2-#5) for both minimal and detailed
models.

In making these comparisons, we do not expect to have an exact matching of connec-
tion probability values. Besides the fact that the minimal model consists of a subset of
different inhibitory cell types in the detailed model, the cellular models differ in their com-
partmental and mathematical biophysical ‘structure’. Specifically, the detailed model has
multi-compartment models that include conductance-based ion current representations,
and the minimal model has single compartment models with an Izhikevich mathemat-
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Table 3.2: Detailed model connection probabilities and synaptic weights.

Row Cell Types and Number Number of Connection Number of Synaptic
Connections of cells connections Probability synapses per Weight*

connection g(nS)
#1 PYR 311,500

PYR to PYR 197 0.00063 1 70.0
[0.01 for minimal [0.094 for MM ]
model (MM)]

#2 PV+ = BC 5,330
PYR to BC 8 0.0015 3 2.1

[0.02 for MM ] [3.0 for MM ]
BC to PYR 958 0.0031 11 2.2

[0.3 for MM ] [8.7 for MM ]
BC to BC 39 0.0071 1 1.6

[0.12 for MM ] [3.0 for MM ]
#3 PV+ = BC/AAC 7,000

PYR to BC/AAC 9 0.0014 6 4.4
BC/AAC to PYR 1,115 0.0036 8.5 5.7
BC/AAC to BC/AAC 49 0.0070 1 0.8

#4 PV+ = BC/BiC 7,740
PYR to BC/BiC 11 0.0014 6 16.0
BC/BiC to PYR 1,184 0.0038 10.5 3.7
BC/BiC to BC/BiC 111 0.014 11 77.1

#5 PV+ = BC/AAC/BiC 9,210
PYR to BC/AAC/BiC 12 0.0013 9 23.8
BC/AAC/BiC to PYR 1,213 0.0039 9 5.6
BC/AAC/BiC

to BC/AAC/BiC 132 0.014 11 54.0
#6 Other Input

CA3 to PYR n/a 5,985 n/a 2 0.40
EC to PYR n/a 1,299 n/a 2 0.40
CA3 to BC n/a 6,047 n/a 2 0.44
CA3 to AAC n/a 4,170 n/a 2 0.24
EC to AAC n/a 485 n/a 2 0.24
CA3 to BiC n/a 5,782 n/a 2 0.30
EC to BiC n/a 432 n/a 2 0.30

* Synaptic Weight = Synaptic Conductance × number of synapses/connection

ical representation [83, 52]. It is however reassuring that the connection probabilities
compare favourably as described above, since both minimal and detailed models produce
intrinsic, intra-hippocampal theta rhythms.

E-I balance considerations in minimal and detailed models expose differences

So far we have shown that the connection probabilities in the minimal model are appro-
priate relative to the empirical ones in the detailed model and that the detailed model
has appropriate EPSC/IPSC amplitude ratios from the perspective of the whole hip-
pocampus preparation that generates intrinsic theta rhythms. Let us now exploit these
linkages.

We first note that since both the minimal and full-scale detailed models produce
theta rhythms, the underlying E-I balances that are present in both models must be
appropriate for the generation of theta rhythms. Now, besides connection probabilities
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between excitatory and inhibitory cells, synaptic weights and any other external drives
to the network models would also affect E-I balances.
Synaptic Weights: Similar to the comparison consideration of connection probabilities
above, we compare synaptic weights in minimal and detailed models. As before, we
focus on a cellular subset of the detailed model the fast-firing PV+ cells. The number of
connections and synaptic weights for PV+ and PYR cells are given in the last two columns
of Table 3.2. Note that the synaptic weight refers to a connection between cells so that
the number of synapses per connection is taken into consideration. From a comparison of
these weights, it is clear that there is about three orders of magnitude difference between
the synaptic weights of PYR to PYR cells whereas the synaptic weights from PV+ to
PYR, PYR to PV+ and PV+ to PV+ are comparable (i.e., same order of magnitude), if
PV+ cells are considered to be BCs or a combination of BCs and AACs (see Table 3.2).
Thus, on the face of it, the detailed model has much stronger connections between PYR
cells relative to the minimal model.
External Drives: The minimal model is driven by an external excitatory input, denoted
as ‘other input’ in the schematic of Fig. 3.1, that is applied only to the PYR cells of the
E-I networks. The amount of this other input is comparable or smaller than any of the
’internal’ EPSCs (see Table 5 in [53]), as it has a zero mean with fluctuations of ≈ 10-30
pA. For the detailed model, the excitatory and inhibitory cells are driven by activation
of excitatory afferents from the CA3 and the entorhinal cortex (EC) with connectivity
of empirical estimation (see row #6 in Table 3.2). Unlike the minimal model, these
CA3/EC excitatory inputs are larger relative to the ’internal’ EPSCs and so likely play
an important role in maintaining the appropriate E-I balance for theta generation in the
detailed model. Specifically, the CA3, EC and PYR cell excitatory currents onto PYR
cells are approximately 10, 6 and 10 nA. The detailed model is only loosely based on the
whole hippocampus preparation. Its theta rhythms are produced intra-hippocampally
but the network is driven by external EC and CA3 noisy afferents. These afferents
conceptually represent remaining inputs from cut afferents after extraction from the
whole brain. Given that the external drives in the minimal and detailed models are not
represented in a similar way, we cannot compare them directly. However, it is possible
that the large difference in PYR to PYR synaptic weights between minimal and detailed
models is partly because of their external drive differences.

In summary, our consideration of linkages between minimal and detailed models via
the whole hippocampus preparation (see Fig. 3.1) that generates intrinsic theta rhythms
leads to the following: the minimal model has appropriate connection probabilities rel-
ative to the biological system, as represented by a biologically detailed full-scale CA1
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microcircuit model; the full-scale detailed model has appropriate EPSC/IPSC amplitude
ratios relative to experiment; and although both minimal and detailed models produce
intra-hippocampal theta rhythms, there are notable differences between their PYR to
PYR synaptic weights and external drives.

3.4.2 Using a ’piece’ of the detailed model to understand the
initiation of theta rhythms and how their frequencies are
controlled

It is worth re-stating that despite its several limitations (e.g., only 70% of inhibitory
cell types were included), the detailed model produces robust theta rhythms. However,
because of its large size and computationally expensive nature, extensive parameter ex-
plorations were not performed. As a result, even though the detailed model produces
theta rhythms, and model perturbations indicated that some cell types and not others are
important for their emergence, we do not know how the rhythm generation is initiated
or controlled. To address this, we first isolate a part of the detailed model, the segment
model (see Fig. 3.3A), that has comparable cell numbers to the minimal model. We in-
vestigate the segment model according to the noted differences with the minimal model
and examine how this is manifest in the power and frequency of LFP theta rhythms that
we subsequently interpret in light of the minimal model mechanism. From this investi-
gation, we unveil an understanding of how the ’biophysical’ theta rhythms are generated
and how their frequencies are controlled in a biologically detailed model with multiple
inhibitory cell types.

Creating the segment model and examining its initial behaviour

We start by extracting a ‘piece’ of the detailed model which has a comparable number
of cells relative to the minimal model, and we refer to it as the segment model - see
Fig. 3.3Ai. Our segment model represents 10% of the original detailed model and it
has all of the same cell types with the same layer location positioning and synaptic
connection structure as the detailed model. That is, the segment model contains eight
inhibitory cell types and is driven by excitatory afferents representing inputs from the
EC and the CA3 region, as illustrated in Fig. 3.3Aii. The activation of the EC/CA3
synapses is modeled as an independent Poisson stochastic process and the strength of
this activation is represented by the Poisson stimulation parameter. These afferents
project to the majority of the cell types in the network with the exception of the OLM
cells which are only driven by the PYR cells. Therefore, in contrast to the minimal
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model, the segment model is driven by external inputs that in addition to the PYR
cells, also project to the inhibitory cells of the network (see Fig. 3.1). Even though the
segment model represents only 10% of the original detailed hippocampus model, its much
smaller size makes it now possible to investigate the network dynamics by undertaking
extensive parameter explorations using high-performance computing. We carried out this
investigation by exploiting the noted differences between minimal and detailed models,
and by considering the minimal model insights.

Let us start by examining the segment model without changing any of its parameters
relative to the detailed model. As expected, the segment model does not produce any
output. Instead, this ‘fraction’ of the detailed model produces hyperactive cell popula-
tions (not shown) indicating that the E-I input balances to the cells are shifted in favour
of excitation. This suggests that to get a theta rhythm in the segment model, one could
simply reduce the activation of the external afferents via the stimulation parameter. This
is a reasonable consideration given that our model essentially consists of a smaller piece
of tissue. We found that theta rhythms arise in the segment model when we decrease
the stimulation parameter, but they have very low power and are very noisy. The raw
LFP signal, as recorded in stratum pyramidale, is shown in Fig. 3.3Bi, and it can be
seen to be quite noisy. Guided by the Welch’s Periodogram, as shown in Fig. 3.3C, theta
rhythms at two peak frequencies (3.7 and 9.2 Hz) can be discerned. The filtered LFP
signal is shown above Fig. 3.3Bii and Fig. 3.3Biii. In essence, this finding predicts that a
10% piece of a whole hippocampus preparation is enough of a tissue volume to generate
theta rhythms. This supports the viewpoint, supported by experimental observations,
that the hippocampus is comprised of multiple theta oscillators along its septotemporal
axis [67].

Designing an extensive parameter exploration of the segment model

As shown above, the segment model, without any changed parameter values besides
the stimulation parameter, produces weak and noisy theta rhythms - see Fig. 3.3B.
Is it possible to obtain robust theta rhythms in the segment model? That is, can we
increase the power of the theta rhythms expressed by the segment model? To answer
this, we were motivated to determine whether bringing the segment model to a similar
E-I parametric regime as the minimal model could ‘enhance’ the theta rhythms. To test
this, we examined whether by adjusting for differences between the models, we could
increase the power of the theta rhythms expressed by the segment model.

From the comparison between the minimal and detailed models, we found that their
two main differences stemmed from the external drives to the network and the synaptic
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Figure 3.3: Theta rhythms in the segment model. A. (i): The model network is
arranged in a layered prism. Image is adapted from Fig. 1 of [13]. The segment model
shown in blue, represents 10% of the original volume. It contains 31,150 PYR cells, 553
BCs, 221 BiCs, 358 NGF cells, 40 SCA cells, 360 cholecystokinin-positive (CCK+) BCs,
881 Ivy cells, 164 OLM cells, 147 AACs. LFP output is based on a single micro-electrode
placed in SP. (ii): The number, position and cell types of each connection are biologically
constrained, as are the numbers and positions of the cells. Image is adapted from Fig. 1
of [13]. B. The segment network generates theta rhythms once the stimulation is reduced
to 0.26Hz (it is 0.65Hz in the original detailed model). (i): Unfiltered LFP, (ii): filtered
for low theta (peak at 3.7Hz) and (iii): filtered for high theta (peak at 9.2Hz). See
Methods. C. Welch’s Periodogram of the LFP shows a peak at two theta frequencies.

weights between the PYR cells, which we will refer to as gpyr−pyr. In the minimal model,
the external drive is only applied to the PYR cell population and is relatively weak
(fluctuations of ≈ 10-30 pA) compared to what it is in the detailed model - about 10 nA
(similar for the segment model). Also, the external drive in the detailed and segment
models is applied not only to the PYR cells but also to the majority of the inhibitory
cells. It is also important to keep in mind that the PYR cells in the segment model are
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bombarded by substantially more inhibition in comparison to the minimal model, as there
are eight different inhibitory cell types projecting to them, as compared to just the fast-
firing PV+ cells in the minimal model. This means that in the segment model, relative
to the minimal model, it is possible that the stronger external drive to the PYR cells and
the stronger gpyr−pyr are required to counterbalance the larger inhibitory presence due
to the multiple inhibitory cell inputs. Due to these aspects, we designed an expansive
exploration of how the segment model depends on gpyr−pyr and the external drive to
the PYR cells in creating theta rhythms. For the external drive, we explored both the
stimulation parameter as well as the excitatory conductance from EC/CA3 to the PYR
cells, which we will refer to as gec/ca3−pyr. This examination is schematized in Fig. 3.4A.

For each (gpyr−pyr, gec/ca3−pyr) conductance pair, we performed a set of simulations to
find the stimulation parameter that maximizes the theta power (3-12 Hz) for the given
conductance pair. Given that these networks exhibit two theta peaks, a low and a high
one, as shown by their Welch Periodogram, this analysis considers the stronger theta
peak which is usually the one corresponding to the lower theta. A separate analysis
for the higher theta peak power vs conductance pairs (ranges 6-12 Hz) can be found in
Fig. 8.4. The theta rhythm dependence of our parametric explorations is shown in Fig.
3.4Bi-iii. From left to right we show the normalized theta power, the theta frequency
and the required stimulation to maximize the theta power for each conductance pair
examined. These results show that the normalized theta rhythm power increases with
increasing gpyr−pyr or gec/ca3−pyr (similar is the trend for the net theta power Fig. 8.2)
while theta frequency approximately decreases with increasing gec/ca3−pyr or gpyr−pyr. We
note that these patterns are disrupted for the largest gec/ca3−pyr or gpyr−pyr conductance
values, where the power of the networks is shifted to lower ’delta’ frequencies below 3 Hz
(see Fig. 8.3). From the heatmaps of the net theta power in Fig. 8.2 we notice that the
power of the theta rhythms has significantly increased, approximately doubled, relative
to the initial behaviour of the segment model shown in Fig. 3.3B. It is thus clear that
there are particular parameter combinations that can significantly increase the power of
the theta rhythms in the segment model to make it more robust.

Theta rhythm robustness and degeneracy of theta rhythm generation

To get an understanding of what underlies the results from our extensive parameter
explorations, we took a detailed look at the inner mechanics of the network. We did this
by examining two sets of conductance pair examples, case a (Fig. 3.4C,E,G) and case
b (Fig. 3.4D,F,H), which correspond to small and large gec/ca3−pyr values, respectively.
These two examples exhibit elevated theta power relative to the initial behavior of the
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segment, which we notice by comparing the amplitudes of the raw LFP recordings in Fig.
3.4Ei,Fi to Fig. 3.3Bi, and the periodograms in Fig. 3.4G,H to Fig. 3.3C, where the theta
power can be seen to be larger by about two orders of magnitude. From our explorations,
we observed the following: When gec/ca3−pyr is small, the EC/CA3 afferents have to be
strongly activated to elicit a strong response to the PYR cells, hence requiring a large
stimulation value - see Fig. 3.4Biii. However, because these afferents connect to most of
the inhibitory cells, a large stimulation value means strong concurrent activation of most
of the inhibitory cells in the network. This is why the majority of the inhibitory cells in
the network are fairly active in these regimes as shown in Fig. 3.4C. When gec/ca3−pyr is
large, the activation of EC/CA3 afferents don’t have to be as strong (see corresponding
stimulation value in Fig. 3.4Biii) to elicit a similar response of the PYR cells given that
the gec/ca3−pyr itself is already large. In this regime, the activity of most inhibitory cells
is low exactly because the stimulation parameter is low and the inhibitory cells are not
strongly activated. This can be seen in Fig. 3.4D.

Overall, these results expose the degeneracy of the theta rhythm-generating system
which can occur in at least two ways depending on the exact pathway of activation of the
PYR cells. It can be by either by low activation of the external afferents given a large
gec/ca3−pyr conductance value, inducing a high concurrent activation of the inhibitory
cells (case a), or by high activation of the external afferents given a small gec/ca3−pyr

conductance value, inducing low concurrent activation of the inhibitory cells (case b).
From this exploration, it is clear that regardless of the exact pathway of activation, what
is critical for robust theta rhythms is the net amount of input to the PYR cells. Thus, the
proposition brought forth by the minimal model that the theta frequency is controlled
by the net amount of input that is received by the PYR cells seems likely. With the
segment model, we are now in the position to directly examine whether this is the case.

Frequency control of theta rhythms and how they are initiated

Based on the minimal model’s proposition, we examined the frequency of the LFP theta
rhythms from the perspective of the net current received by the PYR cells irrespective of
whether the pathway is of a case a or of a case b type. To do this, we took advantage of
the numerous network simulations underpinning the heatmaps of Fig. 3.4B. Specifically,
we examined whether the frequency of those networks correlate with the net current to
the PYR cells. We selected a sample of 10 PYR cells from each of the segment models,
as schematized in Fig. 3.5A, and computed the average and standard deviation of the
net current that each of these 10 PYR cells received. An example of IPSCs and EPSCs
received by a particular PYR cell is shown in Fig. 3.5Bi-ii. In Fig. 3.5C, we plot means
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and standard deviations of the net current for all of the segment model networks in Fig.
3.4B, and we see that there is indeed a strong correlation between the theta frequency
of each segment model and the net input received by the PYR cells (see Methods for
calculations). This plot clearly demonstrates that the frequency of the theta rhythm can
be predicted by the input to the PYR cells.

So far we’ve shown that the frequency of the theta rhythm relies on the net input
received by the PYR cells in the segment model representing the smallest volume of tissue
required to produce theta rhythms. Indeed if we chose to consider an even smaller tissue
volume some of the inhibitory cells wouldn’t even be part of the network purely because of
their empirically derived connectivity profiles. At this point, we note that the presence of
theta rhythms requires that PYR cells are connected with each other, since the rhythms
do not exist if gpyr−pyr conductances are zeroed (see Fig. 3.3 and Fig. 8.5). That is, some
recurrent excitation is required, as was already shown in [14]. Also, not surprisingly,
given the large contribution of the external drive in the detailed model, the theta rhythm
cannot be maintained if external drive to the PYR cells is removed by setting gec/ca3−pyr

to zero (see Fig. 3.3 and Fig. 8.5). Interestingly, what becomes evident in the segment
model is that the generation of the theta rhythms is not specifically due to phasic drives
from the inhibitory cells. Indeed, in these networks most of the inhibitory cell populations
haven’t yet organized into periodically firing populations. This is particularly noticeable
in Fig. 3.4D where theta rhythms are present and can be seen to be due to the PYR cell
population firing in bursts of theta frequency. Even more, we notice that the pattern of
the input current to the PYR cells isn’t theta-paced or periodic (see Fig. 3.5Bi). Despite
this, the PYR cell population can organize into a theta frequency bursting population,
and initiate the theta rhythm. This indicates that provided the appropriate level of net
input to the PYR cells, a theta rhythm can start, and the initiation does not depend
upon sequential, externally imposed inhibition form other rhythmically firing inhibitory
cells. Of course, with a larger network, other inhibitory cells organize into periodically
firing populations and contribute to the robustness and strength of the theta rhythm.
However, at its initiation stages, we can clearly say that the theta rhythm ’sparks off’
from the PYR cells.

Experimental constraints expand the understanding of theta-generating mech-
anisms in the hippocampus

Given the degeneracy in the segment model, an important aspect to consider is which of
the theta rhythm-generating pathways might be occurring in the biological system. As a
step in this direction, we turn to experimental observations from the intact hippocampus
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in which PV+ cells were optogenetically manipulated [2]. Specifically, it was found that
optogenetically silencing the PV+ cells significantly reduced the theta rhythm. Thus,
removing PV+ cells in the segment model should have a detrimental effect on theta
rhythms as well. As already noted, there are several sets of parameters that produce
theta rhythms, and these are shown in Fig. 3.4B.

Let us go back to our previous examples of case a and case b. As can be seen in Fig.
3.4G,H, these two networks produce theta rhythms of similar power. To consider the
experimental results of [2], we removed the PV+ cells (BCs, AACs, BiCs) from the two
network cases to mimic an ‘optogenetic’ silencing, and we measured the resulting change
in the theta rhythm. This was done by removing the PV+ cells from the network by
zero-ing all of the inhibitory synaptic conductances emanating from them (Fig. 3.6A, Fig.
3.6B-G). It is evident that the PV+ cell removal has a negative effect on the power of the
theta rhythms in case a but not in case b, simply based on their respective periodograms
(compare Fig. 3.6F,G with Fig. 3.4G,H). Interestingly, there was a large increase in beta
frequencies (13-22 Hz) with PV+ cell removal in case a. In case a, the net input to the
PYR cells is the sum of both strong inhibitory and excitatory currents; thus, the rhythm
cannot be maintained when the inhibitory inputs from PV+ cells are lost due to the
severe disruption of the E-I balance. However, in case b, the net input to the PYR cells
is mostly defined by the excitatory cells. In this case, removing the PV+ cells did not
affect the E-I balance enough to disrupt the theta rhythms - indeed, it enhanced them
(compare the peak values in the periodograms of Fig. 3.4H and Fig. 3.6G). This implies
that the different E-I balances in the segment model that allow LFP theta rhythms to
emerge are not all consistent with the experimental data, and by extension, the biological
system. Thus it appears that lower gec/ca3−pyr conductance values, as in case a, that rely
on both inhibitory and excitatory currents are more consistent with the experimental
data.

In Fig. 3.7 we show a summarized, aggregate comparison of the measurements for
case a and case b segment models before and after the removal of the PV+ cells from
the network. In case a (Fig. 3.7Ai-iv), removing the PV+ cells diminishes the theta
power, while the frequency of the LFP signal and the net input current to the PYR cells
which are correlated, remained intact. A noticeable decrease appears in the standard
deviation of the current. This decrease reveals that removing the PV+ cells in this
regime increases the ‘noisiness’ of the net current, or the fluctuation around its mean,
which could potentially underlie the decrease in theta power in this example. Indeed, after
examining the minimal model in the first part of this study, we proposed an ’inhibition-
based tuning’ mechanism for the theta rhythm, in which the PV+ cells ’tune’ the PYR
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cell firing and by consequence regularize and enhance the robustness of the theta rhythm.
Such a mechanism is supported by the segment model for case a.

As shown for case b (Fig. 3.7Bi-iv), removing the PV+ cells actually increases the
power of the theta rhythm while keeping the same theta frequency in the LFP signal
and the same net input current. However, in this case, the standard deviation of the
net current did not change, unlike for case a. Thus, from the perspective of the experi-
ments of [2] theta rhythm generation via a case a type pathway seems more biologically
realistic while it also supports the proposed inhibition-based tuning mechanism from the
minimal model. In Fig. 3.7C, we provide a schematic of the biophysical theta generation
mechanism and frequency control. This comparison with experiment brings forth the
importance of understanding the inner mechanisms underpinning the dynamic output
of a system, as high-dimensional models are likely to express degeneracy, which could
however come forth via separable “pathways” of different biological implications.

3.5 Discussion

We have brought together two previously published models of the CA1 microcircuit
that generate theta rhythms without oscillatory inputs. The two models mimic the
intrinsic theta rhythms of an intact, whole hippocampus preparation [67]. One of them
- the minimal model [53] - only has fast-firing PV+and PYR cells, whereas the other
- the detailed model [14] - has eight different inhibitory cell types and PYR cells. The
minimal model uses a simplified Izhikevich mathematical model structure for cellular
representations, with parameter values determined from fits to experimental data from
the whole hippocampus preparation, whereas the detailed model uses multi-compartment
conductance-based cellular representations, determined from an extensive knowledge-
based review of the literature [15].

The wide variety of cell types that make up brain circuits leads to high-dimensional
sets of nonlinear, differential equations described by large sets of parameters incorporated
into models. This makes application of theoretical analyses difficult and parametric
explorations computationally expensive. In our approach of bringing together the two
models in this study, we implemented a focused, hypothesis-driven parametric search of
a fragment of the detailed model, the segment model, guided by the minimal model.
This allowed us to establish a cellular basis for how intrinsic theta rhythms are generated
and how their frequencies are controlled in CA1 microcircuits of the hippocampus. The
importance of considering multi-level and multi-granular networks to understand brain
phenomena as done here, was recently discussed by [49].
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3.5.1 Summary overview

In [34], using heterogeneous PYR cell populations and quantification of SFA, Rheo and
PIR building block features, we explored the robustness of the theta generation mech-
anism in the minimal model and found that it is sensitive to specific Rheo and PIR
quantified values, but not to SFA. In the same study, we subsequently used PRCs to
determine how the frequency of theta rhythms could be controlled, and proposed an
’inhibition-based tuning’ mechanism in which inhibitory inputs to the PYR cell popula-
tion allow a stable theta rhythm to emerge, given an appropriate net input to the PYR
cells. This paved the way for investigations with the detailed model where this could be
directly examined.

In this Chapter we presented the analysis of the detailed and segment models which
went as follows. Since the detailed model was not explicitly built with the whole hip-
pocampus preparation in mind, we computed EPSC/IPSC amplitude ratios and con-
firmed that they were in line with those observed experimentally in the whole hippocam-
pus. Comparisons between minimal and detailed models validated the predicted connec-
tivity balance in the minimal model and exposed notable differences.

We extracted a ’piece’ of the detailed model of comparable cell numbers as the minimal
model - termed the segment model - and showed that it could generate theta rhythms,
albeit noisy and of low LFP power. This finding supports the experimental observa-
tions of [67] that the theta rhythm in the whole hippocampus is composed of a set of
coupled oscillators, and only a part of the entire hippocampus is required to generate
theta rhythmic output, an ’oscillator’. With this smaller segment model, we focused our
investigation on the differences between the minimal and the detailed model, namely the
PYR-PYR synaptic weights and the external drives.

We found a strong correlation between the theta oscillation frequency and the average
net input delivered to the PYR cells. This indicates that the frequency of the LFP theta
rhythm can be predicted by the inputs to the individual PYR cells of the network.
Further investigations of the segment model revealed that the theta rhythm is initiated
by the PYR cells but is regularized by the PV+cells since their removal caused a large
decrease in the LFP power in the theta band, and an increase in the variability of the net
current received by the PYR cells. Together, this supports an inhibition-based tuning
mechanism for theta generation (see Fig. 3.7C).
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3.5.2 Mechanism underpinnings and leveraging of theoretical
insights

From our previous work we already knew that minimally connected PYR cell networks
produced theta frequency population bursts on their own [55], but the majority of the
PYR cells would fire during population theta bursts which is unlike the experimental
observations of sparse PYR cell firing. With the inclusion of PV+ cells to create E-I
networks, the population of PYR cells fired sparsely, which makes sense since the addition
of inhibitory cells leads to less firing of PYR cells due to silencing from the inhibition.
Relatedly, it has been shown that feedforward inhibition plays a role in maintaining low
levels of correlated variability of spiking activity [115].

It is important to point out different PYR cell aspects in the minimal and detailed
models. As mentioned, for the minimal model we know that the PYR cell population
on its own can generate a population theta rhythm, and this is by virtue of its intrinsic
properties that includes an SFA building block feature [55]. In that previous work, we had
used a PYR cell model that is strongly adapting based on fits to the experimental data,
or weakly adapting based on another experimental dataset in the same paper [54], that
could produce theta frequency population bursts in both cases. As discussed in [54], it is
unlikely that there are distinct types of biological PYR cells that are strongly or weakly
adapting, but rather a continuum of adaptation amount dependent on the underlying
balances of biophysical ion channel currents. Our explorations of the robustness of the
theta generation mechanism in the minimal model revealed that theta rhythms are not
sensitive to the specific quantified value of the SFA building block feature, so long as
there is some adaptation. Thus, although the minimal model from [53] used a strongly
adapting PYR cell model and the minimal model database used here started from this
strongly adapting PYR cell model basis, it is unlikely that our results would be affected.

For the detailed model, the PYR cell model is based on experimental data in which
some adaptation can be seen in the experimental recording, but is not apparent in the
PYR cell model output of the detailed model (see Appendix of [14]). This then sug-
gests that the prediction of the segment model that the PYR cells are the initiator of
theta rhythms is not simply due to adaptation. It must thus involve other intrinsic char-
acteristics of the biophysical PYR cell models. That excitatory networks can produce
population bursts in of themselves is not new to the theoretical, modeling world, but
it has not been previously shown that this could be the case in a biophysically detailed
CA1 microcircuit model. An important candidate among PYR cell intrinsic properties
that affect PIR is the hyperpolarization-activated cation channel (h-channel) [5]. The
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h-channel has been shown to be a pacemaking current and contributes to sub-threshold
resonance [18]. It has been a focus in general network modeling studies (e.g., [6]), as
well as specific to inhibitory cells in the generation of coherent oscillations [138]. It is
interesting to note that the h-channel, with its non-uniform distribution, has been shown
to play an important role in shaping the output of LFP recordings, as determined from
multi-compartment LFP modeling studies [122, 123, 146]. How exactly h-channels in
PYR cells influence the dynamics and frequency of LFP theta rhythms in CA1 micro-
circuits will be interesting to investigate further. Aside from h-channels, t-type calcium
channels may also be implicated in theta oscillation frequencies [88], and their role could
be investigated further as well.

3.5.3 Physiological considerations and related studies

Based on the number of cells, the minimal and segment models are designed to represent
a ’piece’ of CA1 microcircuitry, and not the whole hippocampus preparation. However,
the ability of these models to generate population theta rhythms on their own, is in
line with the observations of [67] where transmission between portions of the whole
hippocampus preparation were blocked with procaine (see their supplementary Fig.11).
With each piece of tissue being able to generate theta oscillations on its own, the whole
hippocampus would represent a set of coupled oscillators. Indeed, traveling theta waves in
hippocampus and neocortex have been considered in this fashion [103, 179]. In previous
work, we used phase-coupled oscillator models, assumed inhibitory coupling between
oscillators and examined asymmetries in coupling strengths that could be responsible for
the experimentally observed propagation of slow rhythms [147]. In that vein, it may be
worth considering whether one could combine the mechanistic insights from microcircuit
and coupled oscillator model studies.

The extensive set of simulations performed with the segment model showed that
different cell-specific pathways dominate LFP theta rhythms of similar frequency and
power, exposing degeneracy. While model degeneracy in high-dimensional model systems
is expected, it underlines the importance of probing generation mechanisms whenever
possible, and not just comparing outputs. There are multiple pathways in the circuitry,
and at the in vivo level, one cannot unambiguously disentangle these pathways or have
cell-type considerations [12]. Using the segment model, we were able to consider two
distinct ‘pathways’ by which theta rhythms are generated - one where the EC/CA3 to
PYR cell inputs dominated (case b) and another where they did not (case a). Based
on perturbative responses to the model to mimic the experiments, only case a was in
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accordance with experimental data [2]. We note that the differences between the cases
could actually reflect differences in the contributions of particular inhibitory populations
since, for example, the recordings that we compare our simulations to are taken from the
superficial layers of the hippocampus. Indeed, in a very recent modeling study by [121]
that built on the detailed model of [14], it was shown that deep and superficial PYR
cells fire at different phases of the theta oscillation and are driven by different inhibitory
cell populations. In that study, the authors found that in CA1, PV+BCs preferentially
innervate PYR cells at the deep sublayers while CCK+ BCs are more likely to target
superficial PYR cells. It is possible thus, that our case b regime reflects a theta rhythm
relevant to the deep CA1 layers which is highly modulated by the CCK+ BCs, which,
in contrast to the PV+BCs, happen to be particularly active in case b. However, what
is clear from our work is that specific perturbations could determine the dominance of
different cellular pathways by comparing LFP output characteristics.

The determination of an inhibition-based tuning mechanism for theta generation
stemmed from this study is essential, as it forms a foundation from which to consider
E-I ‘balances’ during theta rhythms from detailed physiological and experimental per-
spectives. E-I balances have been shown to be quite precise in feedforward networks
from CA3 to CA1 [16], and fine-scale mapping studies show structured synaptic con-
nectivity between different cell types in these regions [93]. Thus, in the absence of a
detailed enough cellular-based network model one could not really situate emerging bi-
ological details’ contributions to theta rhythms. On the other hand, in the absence of
some mechanistic understanding, the importance of various biological details is challeng-
ing to contain. In this work, we have combined the strengths of minimal and detailed
models, and have perhaps reached an ‘inflection point’ [64] by having enough, but not
too much, biological realism to obtain a cellular-based mechanistic understanding. Had
we started from models that were either more abstract or more detailed, model linkages
and mechanism translations may have not been possible (i.e., too far from an ’inflection
point’).

3.5.4 Limitations and future work

Even though our modeling study sheds light on the foundation of the theta mechanism,
more can still be unveiled in terms of the specific roles of the variety of inhibitory cell
types in the segment model and their inter-relationships. Through optogenetic perturba-
tions, experimental studies have already explored how PV+as well as SOM+ (putative
OLM cells) cells affect intra-hippocampal theta rhythms [2]. Our previous modeling
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work examined the contribution of BiCs, BCs and OLM cells to ongoing theta rhythms
and LFP generation [35, 55] in light of these experimental studies. However, the segment
model, with its complement of eight inhibitory cell types and its computational tractabil-
ity, provides an exciting opportunity to extract and predict specific inhibitory pathways
and their activation machinery during theta rhythms. Achieving this will help guide and
target perturbation and stimulation paradigms in pathological states.

Besides [14], other detailed CA1 microcircuit models that include multiple inhibitory
cell types have been developed ([43, 144, 166]). However, these models were used to
examine higher level behaviours and theta rhythms were imposed, not generated within
the models. Recently, a very detailed quantification of synaptic anatomy and physiology
that includes short-term plasticity has been done, and is provided as a resource for the
community [48]. It may be possible to examine these other detailed models in light of our
mechanistic understanding, and further, to design a strategy that would appropriately
include additional inhibitory cell types in the CA1 microcircuit model via the determined
mechanism.

3.5.5 Concluding remarks and a proposal: A ‘pacemaker cir-
cuit’

Six years ago, Siegle and Wilson’s work [145] showed strong support for phase coding in
the hippocampus, using the encoding and retrieval paradigm developed by Hasselmo [71]
with theta rhythms. Recognizing the multi-layered aspects of theta rhythms - different
cholinergic sensitivities, distinct phase relationships with different inhibitory cell types,
low and high frequency theta types, different behavioural correlates and information
processing, dorsal and ventral differences, heavy dependence on medial septal circuitry
interactions [37, 38, 39, 75] - our work plants a seed.

Until now, it was not clear how one could consider theta rhythms from both cell-type
pathways with E-I balances and functional behavioural perspectives. Our work suggests
that there is no longer a need to separately impose theta rhythms on network models,
as the cells in these networks are themselves part of the theta rhythm-generating ma-
chinery and this ‘separation’ eliminates some of the interactions that may be critical
and thus hinder our understanding of the system. What is clear is that there is a theta
rhythm generator in the hippocampus, i.e., intrinsic theta rhythms can be generated
in a whole hippocampus preparation [67]. We know that interactions with the MS are
important for theta, but we note that lesioning the MS reduces, but does not terminate
theta rhythms [38, 174]. Modeling work has suggested that theta rhythms could arise
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due to hippocampo-septal interactions [70, 170]. It is likely that interactions with the MS
circuitry act to make the intrinsic hippocampus theta rhythms more robust, and impose
theta rhythms in MS. Interestingly, experimental data has shown that rhythmic stimu-
lation of the hippocampo-septal fibers can ’phase’ MS neurons at that exact frequency
due to rebound dependent h-channels, suggesting that the intrinsic hippocampus theta
generator could be transferred to MS neurons via E-I interactions [110]. At present, we
are not aware of any evidence supporting that the MS can generate theta rhythms on its
own.

Thus we propose that CA1 PYR cells act as theta rhythm initiators tuned by the
inhibitory cell populations to create a ‘pacemaker circuit’ - a core theta generator -
in the hippocampus, with PYR cells sensitively dependent on ‘pacemaking’ h-channels.
Amplification of these rhythms occurs due to inputs from the MS, while the net input
received by the PYR cells controls the resulting theta frequency. From this intrinsic theta
rhythm foundation, we can build, and in the process, disentangle the cellular-based and
multi-layered aspects of theta rhythm generation and function in the hippocampus [21,
92, 86], and possibly other brain structures, since interestingly, functional connectivity
studies have shown that the hippocampus is a brain hub [8, 118]. A schematic of our
proposal is shown in Fig. 3.8.
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Figure 3.4: Theta power and frequency vs PYR cells’ excitatory drives. A.
Illustration of the parametric exploration of the excitatory drives to the PYR cells. B.
Heatmaps of normalized theta power (i), frequency (ii) and afferent input stimulation
(iii) as a function of gpyr−pyr and gec/ca3−pyr. Circled a and b regions represent case a and
b networks respectively, with gpyr−pyrandgec/ca3−pyr values of: 30 nS and 0.16 nS for case
a, and 30 nS and 0.22 nS for case b. Dashed circled regions represent initial network of
the segment model as obtained from the 10% ’piece’, extracted from the detailed model
(Fig. 3.3), with gpyr−pyrandgec/ca3−pyr values of: 70 nS and 0.20 nS. C. Histograms of
cellular activities for case a. Bin size = 1 ms. D. Same as C., but for case b. E. (i)
Unfiltered LFP, (ii) Filtered LFP (peak at 6.7Hz), for case a. F (i) Unfiltered LFP, (ii)
Filtered LFP (peak at 3.7Hz), for case b. G. Welch’s Periodogram of LFP for case a. H.
Same as G., but for case b.
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Figure 3.5: PYR cell net current input strongly correlates with frequency.
A. Schematic to illustrate PYR cell sampling considered for net current analyses. B.
Illustration of EPSCs and IPSCs onto the PYR cells. (i): current inputs from other PYR
cells and the eight inhibitory cell types, and (ii): the excitatory drive from EC/CA3. C.
Theta frequency plotted versus net current. Ten cells are randomly selected from each
one of the 50 networks underpinning the heatmaps of Fig. 3.4B. Each dot represents
the average across ten cells of the mean input current amplitudes to a given PYR cell
of one of the 50 networks in Fig. 3.4B. Error bars represent the standard deviation
of these averages. The correlation coefficient between the theta frequency and the net
input current is ρ = -0.9, the p-value = 5.9x10−19 and the slope of the red line of the
linear regression fit is r=-0.7 Hz/nA, indicating that the LFP theta frequency increases
by about one Hz every time the net drive increases by one nA.
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Figure 3.6: Effect on the theta rhythms with removal of input from PV+
cells. A. Schematic illustrating examination of the effects of PV+ cell (BCs, AACs,
BiCs) input removal to the PYR cells. B. Histograms of cellular activities for case a
with PV+ to PYR cell inputs removed. Bin size = 1ms. C. Same as B., but for case
b. D. Filtered theta signal for case a with PV+ to PYR cell inputs removed (peak at
6.7Hz). E. Same as D., but for case b (peak at 3.7Hz). F. Welch’s Periodogram of LFP
for case a with PV+ to PYR cell inputs removed. G. Same as F., but for case b.
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Figure 3.7: Aggregate comparison of theta rhythms before and after the
removal of inputs to PYR cells from PV+ cells and schematic of ’biophysical
theta’. A. Results for case a. (i): Normalized theta power, (ii): theta frequency, (iii):
mean current, and (iv): standard deviation of current, with and without PV+ cells for
case a. B. Same as A., but for case b. C. The net PYR cell input controls the resulting
theta frequency. The PV+ cells contribute to the net input while they also regularize it
and amplify theta power.
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Figure 3.8: Proposing a theta pacemaker circuit in a hippocampus hub. The
hippocampus can produce intrinsic theta oscillations on its own, without the need for
any oscillatory input. In the work here, we have shown that theta rhythms can be gener-
ated by the PYR cell population, and are ’tuned’ and regularized by the inhibitory cell
population, as illustrated in the rectangle. We propose that this theta pacemaker circuit
is amplified by connections with the MS via hippocampo-septal cellular interactions, as
illustrated by the dark blue thick arrows. That is, the MS is not a theta rhythm gener-
ator, but rather acts to enhance and amplify the existing intrinsic theta rhythm in the
hippocampus, and would play a role in setting the particular theta rhythm frequency.
This would occur due to the MS cellular inputs affecting the net input current to the
PYR cells in the hippocampus. The theta rhythm would further interact with other
regions such as neocortex and amygdala, as illustrated by the light blue thick arrows [8].
The possibility of a hippocampus hub is supported by connectivity studies [118]. The
whole hippocampus schematic is adapted from Fig. 1 of [79].



Chapter 4

Effect of External Drives on the
Intrinsic Theta Rhythms in the
Adapted CA1 Model

Conceptualization and project design of the work presented in this Chapter were jointly
done by me and Dr. Skinner. Simulations and analysis of results were done by me.

4.1 Preamble

In the previous Chapters, we saw how an isolated piece of the CA1 microcircuit, the
segment model, driven by noisy external inputs produces theta rhythms. Here we consider
our segment model embedded in the whole CA1 circuitry, receiving inputs from the rest
of the CA1 as it would if it was an undivided part of the CA1 network. Newly discovered
connections reveal that the hippocampus CA1 also receives strong projections from the
SUB [157]. We include these projections to the segment model and we formulate the
adapted CA1 model driven by the SUB, the rest of the CA1 and the EC/CA3 as before.
The adapted CA1 model is a more complete representation of the whole hippocampus
preparation which includes the SUB [67]. We fit this model to available experimental
data from the hippocampus preparation [79], and we demonstrate how the theta activity
relies on the external drives.

59
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4.2 Introduction

4.2.1 The SUB projections to the CA1

Even though it was known from older studies that the SUB targets all layers of the CA1
[94], the strength and nature of these projections hadn’t been fully quantified. In a re-
cent study by Sun and colleagues [157], the authors used rabies tracing to show for the
first time the existence of non-canonical inputs from the SUB to the CA1, establishing a
SUB-CA1 back projection pathway in contrast to the general belief of unidirectional in-
formation flow from the CA1 to the SUB. Overall, these studies demonstrated that com-
parisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar
strengths of input from the SUB. The authors determined that there are both excitatory
and inhibitory SUB cells projecting to the CA1 as determined from their morphology
and confirmed using immunochemical staining [157]. This indicates no preferential SUB
innervation of CA1 excitatory or inhibitory neurons, instead they found that the pro-
portions of SUB excitatory versus inhibitory cells projecting to either CA1 excitatory or
inhibitory neurons are similar. These connections could now explain the directionality
of the theta travelling wave from the SUB to the middle CA1 and CA3 reported in [84],
and shed light on the mechanisms of theta. In this Chapter, we take advantage of these
recently discovered connections and we incorporate them into our segment CA1 model.

4.2.2 Experimental data of PV+ and SOM+ cell firing during
intrinsic theta rhythms

In the previous section we showed how the externally imposed feed-forward and recurrent
excitation of the PYR cells influences the network dynamics. We found that smaller
gec/ca3−pyr values favor the strong recruitment of most interneurons and yield networks in
which the presence of PV+ cells is pivotal for theta. More recent experimental evidence
provides specific information with respect to the firing patterns of the PV+ cells during
theta rhythms. Huh and colleagues [79], showed that individual PV+ cells fire with
an inter-burst frequency analogous to the frequency of the ongoing theta rhythm (Fig.
4.1Ciii), as well as a fast intra-burst gamma frequency (Fig. 4.1Civ). In this Chapter we
leverage these data to fit the adapted CA1 model.
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Figure 4.1: CA1 PV+ interneurons firing during theta rhythms. A. (i) An
example LFP signal (5s highlighted segment expanded below), (ii) auto-correlogram and
(iii) power spectrogram. B. Illustration of the stability of LFP rhythm. C. (i) A typical
PV+ exhibited rhythmic bursts of several spikes. This PV+ neuron fired 3.2 spikes per
burst (mean). The spikes marked with an asterisk are expanded on the right (ii). The
ISI histogram (iii) shows one peak for intra-burst frequency (inset, zoomed-in for clarity
in (iv)) and a second peak for inter-burst frequency. Figure adapted from [79].

4.3 Methods

4.3.1 Model development

Addition of SUB inputs to the CA1

Connectivity information between the SUB and the CA1 was derived from recent rabies
tracing studies by [157] and [156]. From [157], we derived the number of excitatory and
inhibitory connections projected onto every CA1 layer and we divided these connections
across the CA1 cell types according to their relative number ratio in each layer. From
[156], we derived the post-synaptic densities onto the CA1 cells.

4.3.2 Model fitting and application of experimental constraints

The network clamp

To explore the effect of the post-synaptic weights onto the PV+BC population, we used
a network clamp technique which is part of the software package, SimTracker [13]. This
technique allows one to take a snapshot of the incoming synaptic input received by any
particular cell in the network. We applied it as follows. First, we obtained the output
of an initial full-network simulation and ran network clamp simulations on a PV+BC.
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We altered the incoming afferent synapse weights (but not the incoming spike trains)
until the cell fired in accordance with the experimental data. This approach gives an
estimate of how the synaptic weights affect the PV+BC firing. Guided by this estimate
one can tune the post-synaptic weights accordingly in full network simulations to obtain
networks of appropriate cellular firings. We explored these synaptic weights as explained
below. The experimental data are leveraged from voltage recordings of PV+ cells during
ongoing theta rhythms [79].

The parametric exploration of the post-synaptic densities

To search the parameter space of post-synaptic weights and determine how these weights
affect the cellular firings of a PV+BC, we developed the following pipeline of analysis.

Step 1. We explore the post-synaptic weights onto a given PV+BC. Starting from
a given set of reference values (r.v.), we vary the post-synaptic weights from all eight
pre-synaptic cell types to the PV+BC. To do this we search a range of post-synaptic
weights for each pre-synaptic cell type. This range is [-50% (r.v.), +50% (r.v.), 25%]
(start value, end value, step), and as such it contains 5 values which are:

-50% (r.v.) | -25% (r.v.) | r.v. | +25% (r.v.) | +50% (r.v.)

We explore the co-variation of these values. Given that every post-synaptic weight
can take 5 values and given that we explore a set of eight post-synaptic weights, we have
a total of 58 = 390594 configurations.

Step 2. We perform network clamp simulations for all configurations and store the
voltage trace of the PV+BC for each configuration.

Step 3. We calculate the ISIs of every voltage trace using the open-source eFEL
library (https://github.com/BlueBrain/eFEL).

Step 4. We plot the mean ISI across all configurations shown in Fig. 4.2.

For completion purposes, we list below alternative methods of analysis and data visual-
ization methods considered but not used in this thesis:

• To establish if the voltage trace of our PV+BC network clamp simulations matches
the experimentally recorded PV+ cell traces, we created a surrogate distribution
of the ISIs of the PV+BC experimental recordings and compared this distribution
to a second distribution created from the PV+BC ISIs from our network clamp
simulations. The comparison of the two distributions was done by means of overlap.
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• Aside from the mean ISI, we have considered other, more sophisticated types of
analysis which we mention here briefly. In the process of designing this analysis,
we determined that plotting the ISI overlap as a function of the eight synaptic
weights would be a high dimensional problem hard to visualize. Therefore, we
anticipated that we would need a dimension reduction technique to visualize the
eight-dimensional space of synaptic conductances and determine how the ISIs de-
pend on those. We employed the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (https://lvdmaaten.github.io/tsne/) and used it to examine if the
combinations of weights that yield high ISI values form clusters. The level of so-
phistication of this technique was deemed unnecessary for our specific problem but
it might be useful for future analysis.

4.4 Results

4.4.1 The adapted CA1 model

Starting from the segment model of case a of the Chapter 3 we add the SUB and CA1
inputs and we fit the model according to experimental constraints. Addition of the
external SUB and the CA1 inputs yields the adapted CA1 model of Fig. 4.3. We will
refer to this as the reference network.

4.4.2 Model fitting

To fit the reference adapted CA1 model to the experimental data of Fig. 4.1 we employ
the network clamp technique as explained in the Methods. We investigate how the post-
synaptic weights of the PV+BC influence the firing rate by means of the mean ISI. In
Fig. 4.2 we show the result of a grid search representing the co-variation of eight post-
synaptic conductances. Following the simple visualization scheme shown in Fig. 4.2,
we can easily discern the effect that each presynaptic cell has on the firing rate of the
PV+BC. We distinguish a number of patterns. As expected, incrementally strengthening
the inhibitory PV+BCs post-synaptic weights decreases the PV+BC firing rate (larger
ISIs). However, for a critical value of the CCK+BC to PV+BC conductance, we notice
a sudden decrease in the PV+BCs firing frequency which can be up to 20Hz. This
transition always occurs if the CCK+BC to the PV+BC conductance reaches a critical
value. Once that critical value is reached, a small increase in the rest of the conductances,
especially the PV+BC-PV+BC, mediates an abrupt elevation of the PV+BC mean firing
rate (by means of ISI). This observation reveals that provided that the network operates

https://lvdmaaten.github.io/tsne/
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Figure 4.2: The PV+BC ISIs as a function of the configuration number of
the post-synaptic weight combinations. We iterate over the post-synaptic PV+BC
weights according to the method described Methods and in Fig. 8.1. The largest group of
five repetitive motifs represent incremental increases of the five AAC post-synaptic weight
values. Within each of these motifs another group of five repetitive motifs represents
incremental increases of the five BiC post-synaptic weight values. Equally within each one
of these five motifs another group of five similar motifs represents incremental increases
of the five CCK+BC post-synaptic weight values and so on. Inset shows incremental
increases of the other five post-synaptic cell weights which don’t influence PV+BC firing
significantly.
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Figure 4.3: The reference and the fitted adapted CA1 networks. A. Histograms
of cellular activities for the reference adapted CA1 network. Bin size = 1ms. B. Same
as A., but for the fitted adapted CA1 network. C. (i) Welch’s Periodogram of LFP, (ii)
Unfiltered LFP, (iii) Filtered LFP (Peak 6.7Hz), for the reference adapted CA1 network.
D. (i) Welch’s Periodogram of LFP, (ii) Unfiltered LFP, (iii) Filtered LFP (Peak 5.6Hz),
for the fitted adapted CA1 network.

close to this critical point, small changes in the CCK+BC activity can induce a sudden
change (increase or decrease) of the PV+BC firing rate. Such a critical point always
exists, regardless of the combination of the rest of the post-synaptic conductances as
shown by their co-variation in Fig. 4.2.

Guided by this exploration we tuned the inhibitory conductances to the PV+BCs’
of the control network by increasing their inhibitory post-synaptic conductances by a
factor of two. Aside from the PV+BCs, the results of [79] apply to all PV+ cells which
also include the BiCs and the AACs. We thus increased the inhibitory post-synaptic
conductances to the AACs also by a factor of two and obtained the network of Fig. 4.3B,
which behaves according to the experimental data Fig. 4.4, as all the PV+ cells fire
at theta. Tuning the PV+BC and AACs corrected the firing rate of the BiCs without
extra tuning. The network of Fig. 4.3B matches the experimental observations of [79].
This can be verified with inspection of Fig. 4.4, which shows the firing patterns and
firing frequencies of the PV+ cells in the reference and fitted adapted CA1 networks
comparatively.
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Figure 4.4: Mean firing rate of PV+BCs in the reference and fitted adapted
CA1 models. A. Example voltage traces of the three PV+ cell types, the PV+BC, the
AAC and the BiC for the reference adapted network and B. same, for the fitted adapted
network. C. Normalized frequency of the three PV+ cell types (PV+BC, BiCs and
AACs) for the two cases. Blue: reference adapted CA1 model, red: fitted adapted CA1
model, black: experimental data from 11 PV+ cells, that fired with a mean frequency
4.1 ± 0.4Hz, p=0.23 [79]. Firing frequency of PV+ cells in each case is normalized to
the frequency of the network theta rhythm. To do this normalization we divided the
frequency of a given PV+ cell to the frequency of the theta rhythm as given by the
power spectrum.

4.4.3 Model validation

To validate our fitted adapted CA1 model, we once again run a validation test, by selec-
tively removing all the output from the PV+ cells to the rest of the network, anticipating
a reduction in the theta rhythm as witnessed in [2]. In Fig. 4.5 we indeed notice that
removing the PV+ cell projections to any other cell type in the network, significantly
decreases the theta rhythms.

4.4.4 Effect of external drives on the theta rhythms

So far we have examined the adapted CA1 model output in the presence of the SUB,
CA1, EC and CA3 external inputs. We noticed that adding the SUB external input
changed the network LFP output but not significantly. What is more in [84] the authors
showed that theta rhythms emerge, even in the absence of external CA3 inputs. That
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Figure 4.5: Effect of PV+ cell removal on the normalized theta power of the
fitted adapted CA1 network. Bar graph of the normalized theta power of the fitted
CA1 adapted network once the PV+ cells are removed, mimicking the test by Amilhon
and colleagues [2]. The normalized theta power is defined again as the maximum theta
power (net theta power) in the power spectrum, divided by the mean power across all
frequencies. The control network is the fitted CA1 adapted network.

leads us to the hypothesis that the exact source of external excitation is less critical in
driving the theta oscillations and that as long as some external excitatory drive exists,
theta rhythms will emerge. Given that the nature of our external input is noisy and not
phasic, the theta rhythms are clearly generated by internal process of the CA1 network
and possibly, the SUB alone is enough to drive the network. To explore this hypothesis we
decompose the external drives driving the constrained CA1 network, and we examine how
each one of these inputs contribute to theta rhythms. In Fig. 4.6 we can see the results of
this decomposition. Stronger theta responses are generated by external inputs from the
CA3, while weakest responses by inputs from the rest of the CA1. EC and SUB inputs
also produce theta activities that are close to four times stronger than the other LFP
activities in the network, and are very similar to control (when all four external inputs
are present). As expected, these results show that the activation of external afferents,
even if they are only noisy and not phasic, strengthens theta rhythms compared to an
isolated segment that only receives inputs from the rest of the CA1. It is interesting on
the other hand, that a small baseline theta rhythm can be detected if the segment is
driven only the rest of the CA1.
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Figure 4.6: Effect of external drives on the normalized theta power of the
fitted adapted CA1 network. Bar graph of the normalized theta power of the fitted
CA1 adapted network as a function of separate external drives from EC, CA3, SUB and
the rest of the CA1. The control network is the fitted CA1 adapted network which is
driven by all previous external drives.

4.5 Summary and conclusions

In this Chapter we developed the adapted CA1 model by fitting and then validating
the model against experimental data. We revealed the effect of external drives on the
theta rhythms of the network. Our findings showed that the theta rhythms are not solely
dependent on external drives from the EC and the CA3 that we used in the previous
Chapter, but can also occur via inputs from the SUB. Weaker responses were induced
by inputs from the rest of the CA1.



Chapter 5

A Cell-Type Dependent Explanation
of the Generation Mechanism of the
Intrinsic Theta Rhythms

The work presented in this Chapter (conceptualization, project design, simulations and
analysis) was done by me.

5.1 Preamble

Can we apply the findings that stemmed from the investigations of the segment model
to explain how the theta rhythm is generated in the full CA1 model and by extension
the biological system? The full CA1 model was developed by a different group [14], but
we regard that in light of the segment model analysis there are further explanations one
could dissect with respect to the theta mechanism that the previous developers didn’t
directly provide. In this Chapter we explain the theta generation mechanism in the
full CA1 model of [14], and obtain a more comprehensive perspective of the cell-type
contributions.

69
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Table 5.1: Comparison of the segment and the full CA1 model.

Biophysical Principles of theta rhythm generation Computational
detail PYR cell mediated Inhibition mediated efficiency

initiation termination
of θ rhythm of PYR θ bursts

Segment YES YES NO YES
model

Full CA1 YES YES YES NO
model

5.2 Introduction

5.2.1 The theta generation mechanism and the termination of
the theta bursts in the full CA1 model

We’ve shown so far that the theta frequency in the segment model depends on the
net current input of the PYR cells. As this network is only a segment and many of
the inhibitory connections are significantly reduced, many of the inhibitory populations
haven’t yet organized into rhythmically firing populations. However, this exact attribute
of the segment network allowed us to distinguish the PYR cells as the rhythm generators,
which despite being driven by noisy inputs, organize into theta bursting populations. The
segment model indeed has the advantage of computational tractability, while the full scale
model represents a large network and generates more robust dynamics (Table 5.1). As
we will see, taking advantage of these properties of the full CA1 model we can explain
the termination of theta bursts.

5.3 Results

5.3.1 The theta mechanism based on a macroscopic examina-
tion of the cellular activity

The raster plots of Fig. 5.1A show a 4 sec interval of cell firing while Fig. 5.1B shows
an interval of the last 500 ms of cell firing. In Fig. 5.1A, we notice several trends across
the inhibitory cell firings. Some of the inhibitory cells produce thin, theta frequency
bursts, whereas others fire continuously, interrupted periodically by theta-paced windows
of quiescence. In the first category belong the BiCs and OLM cells and in the second
category belong the AACs, CCK+BCs, PV+BCs, NGF cells and IVY cells. These two
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categories arise from the separate excitatory sources that drive these populations. The
theta bursting BiCs and OLM cells are primarily driven by the PYR cells and as a
result they mirror their activity, whereas the noisy firing inhibitory cells are primarily
driven by the noisy EC/CA3 excitatory afferents. Consequently, the OLM cells and the
BiCs induce theta-paced windows of quiescence in the firing patterns of the rest of the
interneurons which are already discernible in Fig. 5.1A and will be explained below.

5.3.2 The theta mechanism based on closer examination of the
cellular activity

The full CA1 model is characterized by larger cellular populations and stronger connec-
tivities across cell types compared to the segment model, which is just an isolated piece of
it. As a result, the inhibitory populations (AACs, PV+BCs, CCK+BCs and SCA cells)
in the full CA1 model organize into rhythmically bursting gamma firing populations (ING
networks) as we can see in Fig. 5.1B.

What is less discernable in the segment relative to the full CA1 model networks, is
the sharp termination of any given theta burst shown in Fig. 5.1B. This termination
mechanism relies upon the strong connectivity between the inhibitory cells which was
significantly decreased in the process of "cutting" the network to create the segment
model. Let us take a closer look at the last 500 ms of the raster plot in Fig. 5.1A
expanded in Fig. 5.1B. Within it, let’s examine a given theta burst and particularly
the interval from 3800 to 3900 ms, an interval spanning from the termination of the
previous burst to the end of the next. We will first accept that as found earlier, the
duration of this interval, which defines a theta cycle, is controlled by the PYR cells and
the net input they receive. What is more, we discussed briefly in Chapter 3 that the
gpyr−pyr promote the progressive activation of more and more PYR cells forcing them to
organize into clusters of bursting cells. Here too, the PYR -PYR conductances reinforce
the progressive recruitment of the PYR cells which maximizes at the climax of the theta
peak (i.e. at 3900ms). The sharp termination of the theta burst that follows next,
involves the sequential recruitment of inhibitory populations according to four steps.

First, the strong recruitment of the PYR cells at the theta peak induces the strong
activation of the BiCs and OLM cells. Second, the BiCs form very strong connections
with the CCK+BCs, thus their activation strongly inhibits the CCK+BC population.
Third, the CCK+BCs form very strong connections with the PV+BCs and as a result
the strong inhibition of the CCK+BCs induces a strong disinhibition of the PV+BCs.
Once the PV+BCs are strongly disinhibited, meaning activated, as a fourth step, they
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Figure 5.1: Raster plots of the eight inhibitory cell types and the PYR cells in
the original full CA1 model. Numbers on the y-axis refer to the number of cells of the
given cell type. A. A four second plot and B. The last 500 ms of A. magnified. Steps 1-4
show the sequential activation of the inhibitory populations leading to the termination of
the PYR cell theta burst. Step 1: The PYR cells activate the OLM cells and BiCs. Step
2: The BiCs inhibit the CCK+BCs. Step 3: The CCK+BCs disinhibit the PV+BCs.
Step 4: The PV+BCs inhibit the PYR cells and terminate the theta burst. These steps
are also shown in the histograms of Fig. 5.2B.
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inhibit the PYR cells (whom they form very strong connections with) and cause the
sharp termination of the theta burst (Fig. 5.2). It is worth noting that as our grid
search of Fig. 4.2 showed, if the segment model network sits close to a critical point (a
point representing a post-synaptic conductance configuration in Fig. 4.2 close to a sharp
transition of the PV+BC ISI), a small decrease in the CCK+BC to PV+BC conductance
induces a vast increase in the firing rate of the PV+BCs, even by 20 Hz. This supports
the argument that a strong disinhibition of the PV+BCs, mediated by the CCK+BCs at
the peak of the theta burst, can induce a sudden increase in the PV+BC firing rate and
mediate the sharp termination of the PYR population burst at the theta peak. Indeed,
the individual PV+BCs in the full CA1 model fire at slow theta frequencies in accordance
to the ongoing LFP theta rhythm. If the dynamics follow those of our grid search (Fig.
4.2) of the segment model, then a strong inhibition of the CCK+BCs would effectively
release the PV+BCs from the CCK+BC inhibition causing a sudden increase in the firing
rate of the PV+BC. The four steps of the theta burst termination are also shown in the
histogram of Fig. 5.2.

5.3.3 The gamma rhythm and the theta/gamma PAC

Along with the theta rhythm, a gamma rhythm is also present in the LFP exhibiting
PAC with the theta rhythm. This slow gamma rhythm is produced by the gamma-
paced entrainment of the noisy-firing PYR cells as follows. The PV+BCs, the AACs
and the CCK+BCs are gamma-bursting cell types that organize into coherently firing
populations likely via an ING mechanism (see Background). The PV+BCs, the AACs
and the CCK+BCs also form strong connections with the PYR cells. As a result, during
a theta cycle, (for example the one spanning from 3800 to 3900 ms in Fig. 5.1B), these
gamma-firing cells periodically inhibit the noisy firing PYR cells forcing them to burst in
a gamma-paced manner. This results in a slow gamma rhythm, progressively maximizing
in amplitude as the recruitment of the PYR cells increases towards the peak of the theta
cycle. This PYR cell gamma rhythm is conceptually similar to a PING mechanism (see
Background). Because the amplitude of the slow gamma LFP maximizes at peak of the
PYR cell theta burst (which corresponds to the peak of the theta cycle), the amplitude
of the gamma rhythm is coupled with the phase of theta, giving rise to the phenomenon
of theta/gamma PAC.
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Figure 5.2: The termination of the theta burst is mediated by a sequential
activation of inhibitory cells. A. Histogram plots of the eight inhibitory cell types
and the PYR cells in the original full CA1 model. B. The termination of the theta burst
is mediated by a sequential activation of inhibitory cells according to 4 steps as described
in the main text. The last 500 ms of the histogram in A. are shown.
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5.4 Summary and conclusions

5.4.1 How this mechanism advances our understanding of theta
generation

In this Chapter, we presented a comprehensive explanation of the theta mechanism which
relies upon preceding analysis of the segment model. We showed that the theta rhythm
generation is mediated by the PYR cells, but the termination of the theta bursts is an
inhibition-mediated mechanism which contributes to the robustness and stability of the
rhythm.

In their original study [14], Bezaire and colleges mentioned that the PYR cells pref-
erentially discharge at the trough of the LFP analog, strongly recruiting especially the
PV+ basket and BiCs, which in turn cause a silencing of the PYR cells for about the first
third of the rising half (i.e., from 0 to about 60 degrees) of the LFP analog theta cycle,
but the exact sequence of events that lead to the termination of the theta burst were not
parsed out. Bezaire and colleagues also addressed how the PYR cell collaterals reinforce
the progressive recruitment of the PYR cells and amplify the PYR cells firing towards
the peak of the theta cycle, but the prominent role of the PYR cells as theta rhythms
initiators was first demonstrated and discussed in this thesis and in our submitted work
[34].

Although the theta mechanism wasn’t extensively formulated and only premature
steps were taken in that direction, in [14] Bezaire and colleges implemented perturbations
to examine which cell types are important for theta rhythms. In Fig. 5.3 colored are
the cell types that were deemed important in [14], as muting them would abolish the
rhythm. Among them were the BiCs, PYR cells, PV+BCs, CCK+BCs, which are part
of the mechanism described in this Chapter and thus it is expected that removing any of
these cell types would abolish theta. As the AACs form strong connections with the PYR
cells it is likely that they contribute to the termination of the theta burst along with the
PV+BCs. The NGF cells are noisy firing cells and it is not clear why eliminating them
from the network would abolish theta. However, it is possible that they contribute to
the net current driving the PYR cells and thus removing them would have an effect of
on the frequency of the LFP output. Indeed, a closer inspection of the network output
after the removal of NGF cells in [14] suggests that removing these cells increases the
frequency of the network rhythm driving them out of the theta range (these results are
posted on https://crcns.org/data-sets/sim/sim-1).

While the theta mechanism presented in this study is based on the specific connec-

https://crcns.org/data-sets/sim/sim-1
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Figure 5.3: Inhibitory cell types important for theta rhythms. Muting each
cell type’s output caused a range of effects in [14]. Highlightened in orange are the cell
population whose mutation from the network abolished theta in [14].
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tivity of the network, the relative strength of connections between inhibitory populations
evidently changes across the septotemporal axis of the CA1 and across layers [151, 121].
The mechanism we propose in this Chapter supports alternative steps of inhibitory cell
activation under the same general framework, as follows:

• Step 1. The PYR cells set the clock of the theta rhythm. The frequency of the
rhythm is defined by the net input the PYR cells receive.

• Step 2. Firing of the PYR cells maximizes at the theta peak activating the theta-
firing inhibitory cells (BiCs and OLM cells.)

• Step 3. Activation of the theta-firing cells inhibits a group of gamma bursting
cells (mainly PV+BCs, CCK+BCs but also AACs).

• Step 4. The PV+BCs, CCK+BCs form strong connections with each other, and
thus strong activation of one population inhibits the other. Here we showed that
CCK+BCs silencing due to BiCs activation dis-inhibits the PV+BCs. In principle,
if the connectivity allows an alternative path could take place. If OLM to PV+BC
connections were sufficiently strong, then strong recruitment of the OLM cells could
silence the PV+BCs and as a result dis-inhibit the CCK+BCs. Activation of
CCK+BCs would then lead to the termination of the PYR cell burst so long as
the connectivity between the two populations was appropriate. In fact, recent
studies [121] have shown that in CA1, PV+BCs preferentially innervate PYR cells
at the deep sublayers while CCK+BCs are more likely to target the superficial PYR
cells. Interestingly, the same study predicted different innervation of PYR cells by
BiCs and OLM cells in deep versus superficial PYR cells, which could support the
existence of the alternative mechanism of theta burst termination we just described.



Chapter 6

Deciphering the Contribution of
SOM+ Cells to Intrinsic Theta
Rhythms Using Biophysical LFP
Models

Both me and Dr. Skinner conceptualized and designed the project and wrote the paper.
The results presented in this Chapter (simulations and analysis) were done by me.

The work presented in this Chapter has been published in:

Chatzikalymniou, Alexandra P., and Frances K. Skinner. “Deciphering the Contribution
of Oriens-Lacunosum/Moleculare (OLM) Cells to Intrinsic θ Rhythms Using Biophysical
Local Field Potential (LFP) Models.” ENeuro 5, no. 4 (July 1, 2018). https: // doi.

org/ 10. 1523/ ENEURO. 0146-18. 2018.

6.1 Preamble

In the previous Chapter we showed how the termination of the PYR cell theta burst
is mediated by the sequential activation of the BiCs, the CCK+BCs and the PV+BCs.
Another class of inhibitory cells, the OLM cell has been prominently involved in theta
rhythms and its reported role in literature has remained unclear (see Background). With
respect to the whole hippocampus preparation, recent studies [2] provided clear evidence
that the OLM cells don’t contribute to the power of intrinsic theta rhythms. Similarly,
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in their modelling study [14], Bezaire and colleagues found that removing the OLM
cells from the full CA1 network doesn’t influence theta power. As such, it’s becoming
more and more established that the OLM cells don’t affect theta rhythms as originally
thought. However the effect that OLM cells may exert on theta activities is a complex
one. These cells target the distal dendrites of the PYR cells and can exert an indirect
effect by disinhibiting the middle dendrites. In this Chapter, we take advantage of
experimental recordings of SOM+ cells, the majority of which are OLM cells, from the
intact preparation to shed light on the contributions of this ambivalent cell type to
ongoing theta rhythms.

6.2 Introduction

Given the reduced nature of the whole hippocampus in vitro preparation [67], this system
presents an opportunity to understand cellular contributions to LFP theta rhythms by
removing several complicating pathways that exist in in vivo scenarios. Ambiguities are
greatly reduced and our ability to understand cellular contributions to LFP recordings is
greatly enhanced. OLM cells are a major class of GABAergic interneurons [106]. They
play an important role in gating information flow in the hippocampus by facilitating
intrahippocampal transmission from CA3 while reducing the influence of EC inputs [96].
Since OLM cells project to the distal dendrites of PYR cells they would be expected
to generate large LFP deflections due to large dipole moments [129]. However, these
expectations may need to be modified since in addition to inhibiting distal layers they
can have an effect on inner and middle layers, by inhibiting interneurons that target PYR
cells at those layers [96].

In this Chapter, we use computational modeling to determine the contribution of
OLM cells to ongoing intrinsic LFP theta rhythms, considering their interactions with
local targets, in the context of the in vitro whole hippocampus preparation. We take
advantage of a previous modeling framework of inhibitory networks [55], and generate
biophysical LFP models to investigate the factors that influence theta LFP characteris-
tics. By directly comparing our LFP models with experiment, we constrain the required
connectivity profile between OLM cells and other inhibitory cells types, and we show
that OLM cells control the robustness, but not the power, of intrinsic LFP theta rhythm
polarity profile. We also assess the spatial reach of the extracellular signal and estimate
the number of cells that contribute to it. The many complex interactions lead to emer-
gent LFP output that is non-intuitive, and would not be possible to decipher without
biophysical LFP modeling in an experimentally constrained microcircuit context. As
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such, our work shows a way forward to obtain an understanding of cellular contributions
to brain rhythms.

6.2.1 Intrinsic theta rhythms in the hippocampus and the role
of OLM cells

To examine the role of specific hippocampal interneurons in the intrinsic theta rhythms,
Amilhon and colleagues [2] optogenetically activated and silenced PV+ or SOM+ in-
terneurons. PV+ cell types exhibiting fast firing characteristics include BCs, AACs and
BiCs [9]. OLM cells are SOM+ but it is not the case that SOM+ interneurons are
necessarily OLM cells. However, reconstructions of SOM+ cells during intrinsic theta
rhythms, confirmed that they were likely OLM cells [79]. Amilhon and colleagues [2]
later found that optogenetic manipulation of SOM+ cells modestly influenced the in-
trinsic theta rhythms. In contrast, activation or silencing of PV+ cells strongly affected
theta. These results thus demonstrated an important role for PV+ cells but not SOM+
cells for the emergence and presence of intrinsic hippocampal theta, as given by the LFP
recordings.

LFP recordings in this preparation have a particular sink and source distribution
across the different layers [67]. It is given by a single dipole characterized by positive
deflections in SLM and SR and negative deflections in SP and SO. The dipole is illus-
trated in Fig. 6.1A. This LFP laminar polarity profile has been found to be consistent
across preparations [67]. We note that since theta rhythms persist even when the CA3
region is removed, excitatory collaterals from the CA3 do not seem to be a necessity for
the emergence of theta rhythms and the sink/source density profile. Thus, in our LFP
model in this work, we assume that excitatory input to CA1 PYR cells is restricted to
the basal dendrites due to CA1 PYR cell collaterals [67].

6.2.2 Using a previous network model framework as a basis

To understand how the complex interactions between different inhibitory cell types con-
tribute to theta LFP rhythms, we use a previously developed computational network
framework representing a CA1 microcircuitry [55]. Given the newly discovered connec-
tions between OLM cells and BiCs [96], this network model was developed to explore
how OLM-BiC interactions influence the characteristics of theta rhythms. The model
contained PV+ fast-firing [57] and OLM cell models [55], previously developed based on
recordings from the whole hippocampus preparation. Because of distal contacts of OLM
cells with PYR cells, a multi-compartment PYR cell model was used to incorporate in-
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Figure 6.1: Model setup and experimental essence. A. A schematic of the net-
work model used by [55] is shown in the middle. The network model contains single
compartment representations for OLM cells, BiCs, and BC/AACs. Inhibitory synapses
are represented by filled black circles. Each inhibitory cell receives EPSCs that is taken
from experimental intracellular recordings as shown on the far left (adapted from [55]).
Each inhibitory cell synapses onto the PYR cell model as schematized. There are 350
OLM cells, 120 BiCs and 380 BC/AACs. Basal excitatory input is included. An il-
lustration of the laminar polarity profile (source/sink distribution) estimated from LFP
experimental recordings is shown on the right, and the detailed PYR cell morphology
that is used along with the 15 equidistant electrode locations in the different layers is
shown as red numbers on the far right. B. IPSCs from the different cell types (colored
as indicated) are shown on the left to show their different kinetics. Parameter values are
given in Table 6.1, and the same coloring is used on the detailed PYR cell morphology to
indicate the synaptic location regions for the different cell types. An example simulation
of a computed LFP from the SR layer (using parameter values of gsb=6 and gbs=1.25 nS,
csb=0.21) is shown below, and the computed current source density (CSD) is shown on
the right (averaged over time). On the bottom is an example of an experimental LFP
recording from the SR layer (adapted from [55]).

puts across the dendritic tree. The network model framework is shown in Fig. 6.1A and
a summary of the network model is provided in the Methods. We note that this model
was designed to explore cellular interactions and contributions to the ongoing intrinsic
theta rhythms, and not to the generation of the theta rhythms explicitly.

As schematized in Fig. 6.1A, the inhibitory cell populations encompassed BC/AACs,
BiCs and OLM cells that were driven by experimentally-derived EPSCs. These EPSCs
were recorded during an ongoing rhythm and were of theta frequency (see Fig. 6.1A).
Spiking output from the inhibitory cell populations led to IPSCs on the PYR cell. They
were distributed on the PYR cell according to where the particular cell population tar-
geted. Thus, BC/AAC IPSCs targeted somatic regions, BiC IPSCs targeted middle
apical and basal regions and OLM cell IPSCs targeted distal apical regions. IPSCs gen-
erated by the different cell types are shown in Fig. 6.1B (see Methods for details). The
spatial integration of the inhibitory postsynaptic potentials at the soma of a passive PYR
cell model was used as a simplistic LFP representation [55]. This representation was in
fact indicative of the intracellular somatic potential rather than the extracellular one,
but it did allow the distal OLM cell inputs relative to more proximal PV+ cell inputs to
be taken into consideration. Using this computational model framework, multiple simu-
lations were performed and it was shown that there were parameter balances where OLM
cells did or did not affect theta power [55], depending on whether compensatory effects
with BiCs occurred as a result of the synaptic interactions between these cell types. Thus,
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the size and strength of synaptic interactions between OLM cells and BiCs seemed to be
an important aspect for the presence of intrinsic LFP theta rhythms. However, since an
ad-hoc LFP representation was used, it was not possible to do any direct comparisons
with experimentally recorded LFPs.

In the work presented in this Chapter, we build on this model framework and we
develop biophysical LFP models. An example of the intrinsic LFP rhythm is shown in
Fig. 6.1B. We use these models to decipher the complex contributions of OLM cells
to ongoing theta rhythms. We use the inhibitory spiking output generated in [55] as a
basis for generating biophysical LFPs, and the same PYR cell model. However, unlike
the previous work, we use the framework of volume conductor theory (see Methods) and
generate actual extracellular potential output as a result of the overall activity of the
inhibitory cell firings across the CA1 layers. In addition, we include excitatory inputs
onto the basal dendrites to represent recurrent CA1 inputs (see schematic in Fig. 6.1A
and Methods for details), and directly compare with characteristics of experimental LFP
recordings.

6.3 Methods

6.3.1 Network model details

This work builds on previously developed models described in [55]. Here we provide a
summary of specifics that are salient to the present study.

Inhibitory cell types and numbers, PYR cell model: The inhibitory network
model consists of 850 cells and represents a volume of 1 mm3 as shown to be appropriate
to obtain spontaneous theta rhythms in the in vitro whole hippocampus preparation
[55, 57, 67]. Four different types of inhibitory cells are included: BCs/AACs, BiCs and
OLM cells. BCs/ AACs comprise a 380-cell population and target somatic, perisomatic
and axo-axonic regions of PYR cells. The BiCs comprise a 120-cell population and target
middle, apical and basal regions of PYR cells. Finally the OLM cells comprise a 350-cell
population and target the distal, apical dendrites of PYR cells. As in [55], the structure of
the PYR cell model was based on the one used in [116] as implemented in the NEURON
Simulator [33] (see ModelDB Accession number 144541). The PYR cell model was used
as a passive integrator of inputs from cell firings at the various layers of the hippocampus,
and all active, voltage-gated channel conductances were set to zero. This overall network
model is schematized in Fig 6.1A. With the exception of basal excitatory input, it is the
same as used in [55].



Chapter 6. Contributions of SOM+ cells to theta. 84

Inhibitory cell models and drives: The inhibitory cell models are single compart-
ment, they have an Izhikevich mathematical structure [82] and are constructed by fitting
to experimental data from whole cell patch clamp recordings in the whole hippocampus
preparation [55]. All of the cell model parameter values are given in [55]. PV+ cell types
are the BCs/AACs, the BiCs and the SOM+ cells which are OLM cells. Each cell model
is driven by excitatory postsynaptic currents (EPSCs) taken directly from experiment
[79] during ongoing spontaneous theta rhythms for PV+ or SOM+ cells. The EPSCs
were designed to ensure that the inhibitory cells receive frequency-matched current in-
puts and at the same time have amplitudes and peak alignments that were consistent
with theta oscillations in experiment [55] - see EPSCP V and EPSCOLM examples in Fig
6.1A. Importantly, the experimental variability in amplitude and timing of EPSCs across
cells was captured by varying the gain (factor by which the EPSC was scaled to alter
the amplitude) and timing of the EPSCs across cells with a normal distribution in ac-
cordance with the experimental recordings. Thus, each inhibitory cell model received a
unique set of excitatory synaptic inputs reflecting the range of amplitudes and timing of
those recorded experimentally.

Inhibitory network connectivity and output: PV+ cells (BCs/AACs and BiCs)
were randomly connected with probabilities and synaptic conductance values based on
experimental estimates from the literature and previous modeling work [57]. Connec-
tions between BiCs and OLM cells are known to exist [96] and a range of values from
the literature was previously estimated, with the connection probability from BiCs to
OLM cells taken as 0.64 times the connection probability from OLM cells to BiCs [55].
Although OLM-BiC connections exist, their synaptic conductance values are unclear but
can be roughly estimated from the literature. In previous work, the balance of parameter
values important for theta rhythms was specifically examined by exploring a wide range
of values that encompassed determined estimates [55]. Inhibitory synapses were modeled
using a first order kinetic process with appropriate rise and decay time constants. The
spiking output of the inhibitory network models briefly described here, were computed
for the range of synaptic conductance strengths and connection probabilities given in
Table 6.1. For the work in this paper we use output from these inhibitory networks.
Specifically, our simulations last 5 seconds; the connection probability from OLM cells
to BiCs (csb) varied from 0.01 to 0.33 with a step size of 0.02 producing 16 sets of con-
nection probabilities; synaptic conductance values ranged from 0-6 nS for OLM cells to
BiCs (gsb) and for BiCs to OLM cells (gbs). By changing gsb and gbs with a step size
resolution of 0.25 nS, 625 raster plots were produced. So the total number of raster plots
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Table 6.1: Connectivity parameter values.

Cell Type X Connection Maximal Synaptic Synaptic
to Cell Type Y Probability Synaptic Rise Decay

Conduc.(nS) Time Time
(X – Y) or Synaptic (ms) (ms)

Weight (µS)
to PYR cell

BC/AAC – BC/AAC 0.12 3 0.27 1.7
BC/AAC – BiC 0.12 3 0.27 1.7
BC/AAC – OLM cell 0 N/A N/A N/A
BC/AAC – PYR cell 1 0.00038 0.3 3.5
BiC – BC/AAC 0.12 3 0.27 1.7
BiC – BiC 0.12 3 0.27 1.7
BiC – OLM cell 0-0.224 0-6 2 16.1
BiC – PYR cell 1 0.00044 2 16.1
OLM cell – BC/AAC 0 N/A N/A N/A
OLM cell – BiC 0-0.33 0-6 2 16.1
OLM cell – OLM cell 0 N/A N/A N/A
OLM cell – PYR cell 1 0.00067 3.5 11.8
Excitatory Input 1 0.00044 0.5 3
to PYR cell
(197 contacts to basal tree)

N/A = not applicable

in our study as computed in [55] is (625 × 16) 10,000, and they are all available on Open
Science Framework (osf.io/vw3jh).

Synaptic weights and distribution onto the PYR cell Inhibitory inputs to the
PYR cell model are distributed in the same way as done in [55]. That is, we distinguish
between synapses at the distal layer (SLM), medial and basal layers (SR and SO), and the
perisomatic/somatic layer (SP). Distal synapses are defined as those that are > 475µm
from the soma; apical and basal synapses are defined as those that are > 50 − 375µm
from the soma; perisomatic/somatic synapses are defined as those that are < 30µm from
the soma. We created three lists of components (where each component points to a
specific segment of a section in the PYR cell model), for the possible distal, proximal
apical/basal, and perisomatic/somatic synaptic targets. For each individual, presynaptic
inhibitory cell model, we randomly chose a synaptic location on the passive CA1 PYR
cell model from the respective list (distal dendrites for OLM cell models, apical/basal
dendrites for BiC models, and perisomatic/somatic locations for BCs/AACs). Then the
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spike times from the individual, inhibitory cell models filled a vector, and an artificial
spiking cell was defined to generate spike events at the times stored in that vector at
the specific location at which that cell created a synaptic target. We used the Exp2Syn
function in NEURON to define the synaptic kinetic scheme of the synapse. This function
defines a synapse as a synaptic event with exponential rise and decay, that is triggered
by presynaptic spikes, and has a specific weight that determines its synaptic strength,
and an inhibitory reversal potential of -85 mV, as measured in the whole hippocampus
preparation. Synaptic weight values onto the PYR cell from the different cell populations
are estimated using somatic IPSCs values for OLM cells onto PYR cells [107]. As these
synaptic weights were not clearly known, we used different synaptic weight profiles in
the explorations as was been done previously [55]. The main profile used was graded
such that the different cell types lead to similar somatic IPSCs amplitudes, considering
that 0.00067 µS can be estimated from the OLM cells IPSCs currents (see Table 6.1).
Several other synaptic weight profiles were examined. Finally, we note that an ad-hoc
representation for LFPs was previously used [55] as given by an inverted summation
of all integrated inputs as measured at the PYR cell soma. That is, the postsynaptic
potentials on the PYR cell are due to the various inhibitory cell firings that comprised
the presynaptic spike populations.

6.3.2 Additional network model details for this study

For the study, inhibitory inputs are distributed in the same way as in [55]. In [55]
the literature was used to estimate synaptic conductances between OLM cells and BiCs
as 3-4 nS, and [14] used 10 synapses/connection as estimates in their detailed data-
driven computational models. This implies that a single synapse would be 0.3-0.4 nS,
representing an approximate minimum connection weight.

As we make direct comparisons with theta LFPs experimental recordings, it is impor-
tant to include excitatory input to the PYR cell model. Thus we also include excitation
due to CA1 recurrent collaterals which synapse on basal dendrites [161]. In [55] excitatory
feedback was not included in a direct fashion as the focus was on ongoing theta rhythms
and OLM-BiC interactions, and not on theta generation mechanisms explicitly. Thus,
model excitatory cell populations were not specifically modelled. This means that we did
not have explicit spike rasters for excitatory populations as we did for the inhibitory cell
populations. Rather than generate an arbitrary set of spike times to simulate excitatory
inputs, we use spike times from a BiC raster (gsb=3.75, gbs=1.75 nS, csb=0.21) in which
the neuron order was randomized, and with comparable synaptic weights. Using these
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random spike trains we generate spike vectors exactly as in the case of interneurons and
randomly distribute them on basal dendrites using 197 synapses based on number esti-
mates from [15] and [14]. In this way, we do not have a spatiotemporal dominance of
inhibitory or excitatory input in basal dendrites. We use an excitatory reversal poten-
tial of -15 mV as measured in the whole hippocampus preparation, and synaptic time
constants in line with modeling work [53]. In essence, we simulate EPSCs using random
spike trains of theta frequency instead of explicitly modeling PYR cell spiking activity.
We note that with these choices, somatically recorded currents in our PYR cell models
are similar to what is observed in experiments [79]. All parameter values are summarized
in Table 6.1.

We note that the inhibitory cell spike rasters computed in [55] used random connec-
tivities between the different inhibitory cell populations. Consider that a given set of
parameters (csb, gsb, gbs) defines a connectivity map. Each cell within a given population
is randomly assigned a synaptic location within the boundaries of the dendritic tree on
which it projects. Based on a given connectivity map the spiking activity of the vari-
ous cell populations will differ. Therefore the characteristics of the produced biophysical
LFPs will depend on the spike distribution of a given population defined by the con-
nectivity map and also the number and location of synapses on the dendritic tree. To
ensure that our LFP output is not dependent on the specific synaptic location that every
cell is assigned to, we generalize our observations by performing many trials for a given
connectivity map, assigning randomly different location to the cells of each population
to ensure that the LFPs output is not dependent on that aspect.

6.3.3 Biophysical computation of LFPs

Extracellular potentials are generated by transmembrane currents [124]. In the commonly
used volume conductor theory, also used here, the extracellular medium is modeled as a
smooth three-dimensional continuum with transmembrane currents representing volume
current sources. The fundamental formula [129] relating neural activity in an infinite
volume conductor to the generation of the LFPs φ(r, t), at a position r is given by Eq.
2.16 of the Background, also repeated here for convenience:

φ(r, t) = 1
4πσ

n∑
k=1

Ik(t)
|r − rk|

(6.1)

Here Ik denotes the transmembrane current (including the capacitive current) in a neural
compartment k positioned at rk, and the extracellular conductivity, here assumed real
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(ohmic), isotropic (same in all directions) and homogeneous (same at all positions), is
denoted by σ. In the hippocampus the mean extracellular conductivity σ is equal to 0.3S
m−1 [104] which is the value that we used for our simulations. A key feature of Equation
6.1 is that it is linear, i.e., the contributions to the LFPs from the various compartments in
a neuron sum up. Likewise the contributions from all the neurons in a population would
add up linearly. The transmembrane currents Ik setting up the extracellular potentials
according to Equation 6.1 were calculated by means of standard multi-compartment
modeling techniques, here by use of the simulation tool NEURON [33]. The CSDs in
Fig. 6.1B were computed using the 1D kCSD inverse method proposed in [131]. The
CSDs were computed from the LFPs measured by electrodes that are arranged along a
straight line, in this case along the cellular axis of the PYR cell.

The same PYR cell multi-compartment model as described above was used to compute
the extracellular biophysical LFPs, and we used the set of 10,000 5-second raster plots (of
inhibitory spikes) as described above for our presynaptic populations with the addition
of basal excitation. That is, we generated extracellular potential traces (5 sec each)
due to the various inhibitory cell firings. We used a single multi-compartment PYR cell
to compute the biophysical LFPs. While an experimental LFPs is generated by many
cells, we still referred to our extracellular output as an ‘LFPs’ for consistency with the
computational literature, where the ‘LFPs’ term has been used for an extracellular field
from single or multiple cells.

6.3.4 Simulation details

The computational simulations and analyses were performed using the LFPy python
package [99], NEURON [33] and MATLAB [112]. The large scale network simulations
were conducted using high-performance computing at SciNet [102]. The code/software
described in the paper is freely available online at https://github.com/FKSkinnerLab/
LFP_microcircuit.

6.4 Results

6.4.1 Overall characteristics of biophysical LFP models

From the previous modeling study of [55], several sets of inhibitory spiking output with
particular connection probabilities and synaptic conductances between OLM cells and
BiCs were available. The connection probability from OLM cells to BiCs (csb) varied
from 0.01 to 0.33 with a step size of 0.02 producing 16 sets of connection probabilities;

https://github.com/FKSkinnerLab/LFP_microcircuit
https://github.com/FKSkinnerLab/LFP_microcircuit
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synaptic conductance values ranged from 0-6 nS for OLM cells to BiCs (gsb) and for BiCs
to OLM cells (gbs) with a step size of 0.25 nS. Thus, for a given connection probability,
there were 625 sets of spiking outputs from inhibitory cells, where each set represented a
850-cell inhibitory network with particular synaptic conductances. We considered a set
to be a connectivity map representing the inhibitory cell populations.

For each connectivity map, we generate a biophysical, extracellular LFP. A virtual
electrode probe is placed along the vertical axis of the PYR cell model to record its LFP
output in a layer dependent manner. This PYR cell model is the “processor” of the
LFP signal as it integrated postsynaptic inputs from different presynaptic populations.
We compute LFPs at 15 equidistant sites along a linear axis - see Fig. 6.1A. The PYR
cell output corresponds to readouts of the postsynaptic activity elicited by the afferent
inhibitory cell populations that targeted the PYR cell in appropriate regions, referred
to as the LFP “generators”. We note that although there was a single connectivity map
representing the randomly connected inhibitory cell population, we performed several
trials when randomly targeting the PYR cell to ensure the robustness of our results
(see Methods). To achieve effective electroneutrality, the extracellular sink needed to be
balanced by an extracellular source, that is, an opposing ionic flux from the intracellular
to the extracellular space, along the neuron; this flux is termed the ‘return current’.

We developed some initial intuition regarding the generation of our biophysical LFPs
by computing them without including basal excitation. That way, all of the inputs
received by the PYR cell model were inhibitory. Fig. 6.2A,B illustrates the process and
shows some examples. Let us first focus on Fig. 6.2A(i). Next to each cell population in
the network schematic are two examples of 1-second raster plots of spiking outputs (from
the previously computed 5-second inhibitory network simulations in [55]), produced for
particular parameter sets. These spikes gave rise to IPSCs on the PYR cell model and
the computed extracellular LFP at the somatic layer is shown in Fig. 6.2A(ii). As shown,
these particular parameter sets produced LFPs with positive or negative deflections. Let
us next focus on Fig. 6.2B(i). One example of a 1-second raster plot is shown, and for
this parameter set, the LFP only has a few positive deflections, as shown in Fig. 6.2B(ii).
Assuming that one population burst in the raster plot leads to a single peak in the LFP,
there would be about 29 peaks in the LFP for a 5-second simulation (i.e., about 5.8
Hz frequency) since our inhibitory cell raster plots have 28-29 population bursts. Note
that the raster plots in Fig. 6.2B(i) were not very different from the examples shown in
Fig. 6.2A(i). We computed LFPs at all layers as represented by the 15 virtual electrodes
shown in Fig. 6.1A, for the 625 sets of inhibitory spiking outputs across gsb and gbs values
at a particular connection probability csb. The colored plot in Fig. 6.2A(iii) shows the
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polarity of the LFPs at the somatic layer, and the color plot in Fig. 6.2B(iii) shows the
number of LFP peaks in the somatic layer. In Fig. 6.2C normalized spike numbers for
all interneuron populations are shown.

As a first approximation, given the network model framework and previous work we
can say the following about the LFPs: Those governed mainly by synaptic inputs and
not return currents are characterized by narrow waveform shapes as the synaptic inputs
from any particular interneuron population enter the PYR cell in a synchronized fashion.
This is due to the rhythmic EPSCs driving the inhibitory cells, giving rise to coherently
firing populations (see example raster plots). We note that the EPSCs that were used in
the simulations were not designed to be perfectly synchronized but instead the measured
experimental variability was included (see Methods). On the other hand, return currents
constituted a summation of less synchronized exiting currents that originally entered
the cell at different locations. Therefore, LFP deflections governed by return currents
were generally wider. Further, we would expect that the LFP recorded from different
layers would first and foremost be influenced by the interneurons that project to that
region. We also note that the width of the LFP deflection would not only be influenced
by the nature of the current (synaptic inputs or return currents) but also by the synaptic
time constants defining the shape of the IPSCs. IPSCs for the different cell populations
are shown in Fig. 6.1B where it can be seen that the IPSCs produced by OLM cells
and BiCs are wider relative to the IPSCs from BC/AACs. Thus, we expected that
positive LFP deflections would be recorded in locations where OLM cells, BiCs and BCs
project, with wider LFPs for OLM cell projection locations, and that LFPs dominated
by return currents would be recorded in locations where there are no direct inputs from
interneurons. However, due to interactions between BiCs and OLM cells, this is not
necessarily the case as return currents from distant interneuronal inputs can prevail in
regions where other interneurons directly projected. In fact, interactions between OLM
cells and BiCs can strongly modulate the relative balance between synaptic inputs and
return currents, which in turn can strongly modulate the distribution of sinks and sources
in the resulting LFP.

The two examples of LFP output at the somatic layer in Fig. 6.2A(ii) show one
with narrow positive deflections and the other with wider negative deflections. This thus
indicates that the BC/AAC inputs that synapse at the somatic layer dominate for the
positive deflection LFP example whereas BiC and OLM cell inputs that synapse more
distally dominate for the negative wider deflection LFP example. The example in Fig.
6.2B(ii) of LFP output at the somatic layer indicates that a loss of peaks can occur
due to the superposition of synaptic inputs and return currents. Another “loss of peaks”
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Figure 6.2: Biophysical LFP computation: features, examples and interneu-
ron activities. A. (i) Schematic shows 2 raster plot examples for the given inhibitory
cell population rasters. (ii) The resulting LFPs at the somatic layer, with positive
and negative deflections is shown for the examples, labelled with dark- or light-colored
squares. Parameter values are gsb=1.5, gbs=5.5 nS for positive and gsb=0.5, gbs=0.75 nS
for negative deflections. (iii) The color plot on the right shows the polarity at the somatic
layer, SP, electrode 4. Dotted lines delineate 4 regions labelled as a, b, c, d. Negative po-
larity: dark-colored squares, positive polarity: light-colored squares. (iv) LFP output
for all layers are shown for 3 examples where the polarity is negative, positive and nega-
tive at electrode 3 (left to right). Parameter values are (left to right): gsb=0.5, gbs=0.75;
gsb=1.5, gbs=5.5; gsb=5.75, gbs=0.75 nS. Inset shows a blow up of LFP output at electrode
13 (SLM) to show positive deflections. Also shown is the intracellular somatic potential
of the PYR cell. No basal excitation is present, csb=0.21. B. (i) Schematic includes 1
raster plot example. (ii) The resulting LFP output at SP has 5 peaks. A maximum
of 29 peaks is possible (see text). Parameter values are gsb=2, gbs=0.75 nS. (iii) The
color plot shows the number of peaks that appear in the 5-second LFP computation at
SP, electrode 4. Dotted lines delineate the same regions as in A. (iv) An example of
LFP output for all layers as well as the intracellular somatic output which also shows a
loss of peaks. Parameter values are gsb=2.25, gbs=5.0 nS. No basal excitation is present,
csb=0.21. C. Interneuron activity for each interneuron population, normalized such that
the number of spikes for a given pair of synaptic conductances is divided by the maxi-
mal number considering all pairs of synaptic conductances. Maximal number (5-second
trace): 16,327 (BC/AACs), 6,808 (OLM cells), 4,589 (BiCs).
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example is shown in Fig. 6.2B(iv), and LFP output from multiple layers in addition to the
intracellular somatic output. For this example, the peak loss was also partially reflected
in the intracellular somatic output. However, loss of peaks in the LFP output is not
necessarily reflected in the somatic intracellular recording. Note that since the PYR cell
only receives inhibitory input in these set of simulations, somatic intracellular potentials
always have negative deflections. How the extracellular potential features change as a
function of the synaptic conductances between BiCs and OLM cells is summarized in the
color plots of Fig. 6.2A(iii) for the polarity and Fig. 6.2B(iii) for the number of peaks
(somatic layer).

Let us consider Fig. 6.2A(iii). In this Figure, we can approximately distinguish four
regions as gsb increases. These regions are separated by dotted lines in Fig. 6.2A(iii),
labelled a to d. For small gsb values (0-1 nS, region a) the amount of inhibition that
the BiCs receive from the OLM cells is minimized allowing the BiCs to be at the peak
of their activity (see Fig. 6.2C). Consequently, the inhibition that the OLM cells and
BC/AACs receive from the BiCs is maximized causing their activities to be minimized
(see Fig. 6.2C). As a result, the extracellular potential in the somatic region is governed
by return currents leading to negative polarity LFPs in the somatic layer (i.e., mainly
dark-colored in region a of Fig. 6.2A(iii)), primarily due to the BiC synaptic inputs
on the ‘middle’ region (SR layer) and ‘basal’ region (SO layer) of the PYR cell. As
we increase gsb (1-3.5 nS, region b), we encounter mainly positive LFP polarity (i.e.,
light-colored in region b of Fig. 6.2A(iii)). In region b, the inhibition onto the BiCs
is increased and thus their activity is decreased, as can be seen in Fig. 6.2C, causing
a decrease in the amount of the inhibitory current onto the PYR cell from BiCs. As
a result, the magnitude of the return currents caused by the BiC synaptic inputs is
decreased at the somatic layer. Simultaneously their ability to inhibit the BC/AACs
is also decreased so that the BC/AACs became more active and their direct inhibition
onto the PYR cell also increases. Since both BiCs and OLM cells activity is low in
region b while BC/AAC activity is increased, the somatic LFP is governed by BC/AAC
inputs rendering the extracellular LFP positive. As we further increase gsb (3.5-5 nS,
region c) the silencing of the BiCs increases even further and their ability to silence the
BC/AACs is further reduced. Simultaneously OLM cell activity increases. Thus, the
somatic LFP is influenced by direct synaptic inputs from BC/AACs and also return
currents from OLM cells (sparse dark-coloring region c). Interestingly, the majority of
the “loss of peaks” in somatic LFP output occurs in regions b and c (see blue-green
pixels in the Fig. 6.2B(iii)) where superposition of synaptic inputs and return currents
is mostly present. That is, current cancellations in certain cases lead to the abolishment
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of the entire rhythm. Finally, for gsb from 5.0-6 nS (region d), the BiCs are maximally
inhibited and BC/AACs are at the peak of their activity. While we might have expected
domination from the BC/AAC synaptic inputs for these values, it turns out that return
currents (negative polarity) dominate. This can be explained by the increased activity of
OLM cells which are also at the peak of their activity producing strong return currents
in the somatic region. In summary, light-colored regions in Fig. 6.2A(iii) signify that
BC/AACs dominate the extracellular somatic potential and dark-colored regions signify
that other inhibitory cell types (BiCs or OLM cells, or both) contribute more strongly.

In Fig. 6.2A(iv), we show three examples of LFP recordings at multiple layers as well
as the somatic intracellular potential, for increasing values of gsb from left to right. To
allow an appreciation of the changing magnitude of the signal, we use the same resolution
on the ordinate axis for all LFP plots shown. On the left (gsb=0.5 nS) we see that the
signal is governed by return currents (negative polarity) in the entire SP (electrodes 3 and
5), in SO (electrode 1) and in SR (electrodes 7,9 and 11). Synaptic events govern SLM
(electrodes 13 and 15) where OLM cells directly project, leading to positive polarity. In
the middle (gsb=1.5 nS), the LFP in SP and SO are governed by synaptic inputs (positive
polarity), and in SR and SLM by return currents (negative polarity). As expected, we
find that the positive polarity LFP in SP is narrower relative to the positive polarity
LFP in SLM on the left, because the IPSCs produced by OLM cells are wider relative to
those of BC/AACs, as shown in Fig. 6.1B. On the right where gsb=5.75 nS, we observe
a similar trend as for the example on the left where gsb=0.5 nS where return currents
dominate.

We would like to use our computational LFPs to determine how the different in-
hibitory cell types contribute to theta LFPs as recorded experimentally in the in vitro
whole hippocampus preparation. As described above, our overall network model (Fig.
6.1A) is intended to capture an intrinsic theta rhythm in the CA1 region of the in vitro
preparation. CA3 input is not required but local excitatory input which occurs on basal
dendrites [161] does need to be included. To do this, we take advantage of previous
modeling studies [15, 55] as detailed in the Methods. We would expect that including
excitatory input would clearly affect resulting biophysical LFP outputs. Specifically,
we would anticipate that the LFP amplitude in SO might decrease even further in the
presence of basal excitation, as excitatory and inhibitory BiC inputs could cause mutual
cancellations in this region. As return currents mostly exit close to the somatic region
where the surface area is larger, the effect of basal excitation might be stronger in SO
and SP since most of the current might have exited before reaching SR and SLM. In
general, we expect there to be a range of possible LFP characteristics based on the above
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LFP computations in the absence of basal excitation. We expect that the addition of
excitatory input will influence the LFP in non-intuitive and nonlinear ways and the in-
tuition developed above will be helpful in deciphering and explaining the contribution of
the different cell populations.

6.4.2 Constraining synaptic conductances and connection prob-
abilities between BiCs and OLM cells

In this work we focus mainly on OLM cells. The previous model network framework
[55] was developed based on the consideration of the recently discovered connections
between BiCs and OLM cells [96]. Given this, there are two pathways to consider for
how OLM cells could influence ongoing intrinsic theta LFP rhythms. They can influence
LFP output indirectly through disinhibition of proximal/middle dendrites of the PYR
cell (OLM-BiC-PYR, indirect pathway), or directly through inhibition of distal, apical
dendrites of the PYR cell (OLM-PYR, direct pathway). As shown above, many different
LFP features can be exhibited in the absence of basal excitation (see Fig. 6.2A,B). It is
interesting to note that our biophysical LFP output does not necessarily exhibit theta
frequencies, despite being driven by theta frequency EPSC inputs (see Fig. 6.2B(ii)).
This is because cancellations in the extracellular space between synaptic inputs and
return currents can result in loss or even abolishment of the rhythm. This underscores
the importance of modeling biophysical LFPs as the interaction of synaptic and return
currents can strongly affect the resulting LFP frequency.

We proceeded to include basal excitation and we perform a full set of computations
for all connection probabilities (csb) and synaptic conductances (gsb, gbs). With these
computed biophysical LFPs in hand, we do direct comparisons with experimental LFPs
from the whole hippocampus preparation in vitro. We classify each set of network param-
eters as selected or rejected based on whether our computed LFPs are able to reproduce
two robust characteristics exhibited experimentally. These are: (i) the laminar polarity
profile exhibits a single dipole with sinks in the basal dendrites and sources in the apical
dendrites, and (ii) the frequency of the LFP traces across all layers is in the theta fre-
quency range. These characteristics are shown in Fig. 6.1A. We note that our model is
expected to produce theta frequency LFP output due to the experimentally-derived theta
frequency EPSCs inserted to the inhibitory cells. However, as we have shown above, the
resulting biophysical LFP frequency can be below the theta range due to synaptic and re-
turn current interactions and cancellations (see Fig. 6.2B(ii)). Specifically, the frequency
of the EPSCs used from experiment is about 5.8 Hz. Thus, in enforcing the theta fre-
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Figure 6.3: Example LFPs from selected and rejected parameter sets. Com-
puted LFPs are shown across multiple layers. Top: Selected parameter set: gsb=6,
gbs=1.25 nS. Bottom: Rejected parameter sets (left to right): gsb=0.5, gbs=0.75 nS;
gsb=0.5, gbs=3.5 nS; gsb=2.5, gbs=1 nS. csb=0.21 for all.

quency on our LFP computations, it is only necessary to impose a lower bound. We used
3 Hz as the lower bound for theta range to be similar to experiment [67]. We applied a
peak detection on the LFP trace and used a threshold to avoid detecting baseline peaks.
We required that the number of peaks be larger than 15 which, given the 5 sec LFP trace,
corresponds to 3 Hz. In Fig. 6.3 (top) we show an example of computed LFPs across the
different layers for a parameter set that was selected. The bottom of Fig. 6.3 shows LFP
outputs for three different parameter sets that were rejected - incorrect polarities and
frequencies are apparent. Note that ordinate resolutions are adjusted across the layers
so that the frequency and polarity of computed LFPs can be readily seen in each layer.

We summarize our results in Fig. 6.4 where selected parameter sets are shown in
purple and rejected ones in yellow. We observe the following: For low csb, the plots have
a checkered appearance since small changes in gsb and gbs causes the system to alternate
between selected or rejected regimes. As csb increased, there is a clearer separation in
(gsb, gbs) parameter space of selected or rejected regimes. This is observed from csb=0.19
to csb=0.25. In this range, we consider the system to be robust as it is not very sensitive
to synaptic conductance perturbations. However, for csb=0.19, 0.23 and 0.25, the selected
parameter sets are quite narrow. As csb is further increased, the checkered patterning
returns. Note that the selected sets are mainly affected in one direction as csb changes.
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Figure 6.4: All selected and rejected parameter sets. Parameter sets are con-
sidered as selected (purple) if computed LFPs match LFPs from experiment in polarity
and frequency (3 Hz lower bound). Otherwise, as rejected (yellow). A clear separation
in parameter space occurs for csb = 0.21.

That is, across gsb rather than gbs values. Further, we note that in doing this classification,
it is more the polarity criteria rather than the frequency criteria of the LFP signal that
delineated selected and rejected parameter sets. This is shown in Fig. 6.5 where we
do not apply any frequency bounds. While there is some variation in the selected and
rejected parameter sets, they are minimal.

Since there is natural variability in biological systems, we assume that sensitivity
to small perturbations in parameter values is anathema to having robust LFP theta
rhythms. Noting that the synaptic conductance resolution in our simulations is 0.25 nS,
we considered that (gsb, gbs) parameter sets that did not yield at least two complete,
consecutive rows or columns of purple (selected) were inappropriate for the biological
system. That is, variability that is less than the synaptic conductance resolution does
not make sense. Looking at this in Fig. 6.4, we first note that there are never at least
two complete purple rows for any csb, but there are cases of two or more complete purple
columns, namely, csb=0.03 and 0.21. However, a complete purple column for gsb=0 is
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Figure 6.5: Selected and rejected parameter sets using different lower fre-
quency bounds. The different frequency bounds used are shown at the top of each
column and only 3 different csb values are shown. Note that we use 3 Hz as the frequency
bound in Fig 6.4
.
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Figure 6.6: Predicted regime. For csb = 0.21, selected parameter sets (purple) include
gsb values of 3.5-6 nS, and all gbs values. Rejected sets are in purple. On the right are
LFP traces from 8 electrodes for a parameter set of gsb = 4.75, gbs = 4.50 nS.

invalid since it is known that OLM to BiC connections exist [96]. Thus, csb=0.03 can be
eliminated leaving csb=0.21 as appropriate. For this connection probability, the transition
from selected to rejected networks and vice versa strongly depends on gsb rather than
on gbs values, revealing a more important role of the former. In summary, by directly
comparing characteristics of our computed biophysical LFPs with those from experiment,
we are able to constrain an appropriate connectivity as csb=0.21, with gsb values of 3.5
to 6 nS, and the full set of gbs values (gsb 6= 0, gbs 6= 0). We will refer to this set of
parameter values as the predicted regime. In Fig. 6.6 we show example LFP responses
across several layers for a set of parameter values from this predicted regime.

6.4.3 OLM cells ensure a robust theta LFP signal, but mini-
mally affect LFP power, and only through disinhibition

Continuing our analysis, we now focus on the constrained parameter sets which we termed
the predicted regime (csb=0.21). We decomposed the signals to be able to examine the
contribution of the interneuron subtypes to the power of the LFP. We separate our
interneuron subtypes into two groups - the PV+ subtypes which are BC/AACs and
BiCs, and the SOM+ subtypes which consist of the OLM cells. These two groups were
represented by distinct mathematical models of fast-firing PV+ and SOM+ inhibitory
cells based on whole cell recordings from the whole hippocampus preparation [55]. We
perform spectral analyses of our computed LFPs and use the peak amplitude as a measure
of the power of the theta network activity. The peak power is computed for each of the



Chapter 6. Contributions of SOM+ cells to theta. 100

15 electrodes (i.e., all layers), and we plot the maximum value from all of the layers in the
color plots of Fig. 6.7. This is illustrated on the right of Fig. 6.7A. We first simulate the
spectral LFP power with all presynaptic inhibitory cell populations present. As shown
in Fig. 6.7A, a robust power feature emerges. When all presynaptic origin populations
are present, the predicted regime shown in purple in Fig. 6.6, produces LFP responses
whose power show minimal variability. This is an interesting observation on its own,
as the power of the LFP varies little across hippocampus preparations [67]. Thus, our
predicted regime satisfies another characteristic of experimental LFPs. We note that
outside of the predicted regime, the LFP output shows much more variability, and the
LFP frequency across layers is not necessarily theta, as it is not part of the selected
parameter sets. For completeness, we show peak power computations that are done for
all connectivities in Fig. 6.8.

To examine the role of the presynaptic origin populations on the LFP we decompose
the signal by selectively removing OLM to PYR cell connections or PV+ to PYR cell
connections and then computing and plotting the peak power as described above. Selec-
tive removal of synapses from PV+ cells to the PYR cell yields an LFP response whose
presynaptic origin population is the OLM cell population. The resulting LFP power is
low and depends weakly on gbs (Fig. 6.7B). These results show that OLM cells minimally
contribute to the signal power as a presynaptic origin population. Viewing this from a
broader perspective, these results indicate that disinhibition of non-distal apical dendrites
via an indirect (OLM-BiC-PYR) pathway plays a much larger role relative to a direct
(OLM-PYR) pathway in producing the LFP power. Along the same lines, disinhibition
of distal dendrites through a BiC-OLM-PYR pathway does not have much of an effect
on LFP power. Fig. 6.7C shows results of selectively removing the synapses from OLM
cells to the PYR cell yielding an LFP response whose presynaptic origin population is
the PV+ cell population. Comparison of the signal power in Fig. 6.7C relative to 6.7B
shows that the theta power is indeed mainly due to the component from the PV+ cells
rather than from the OLM cells. Interestingly, the previously seen robustness in the
presence of all presynaptic cell populations (Fig. 6.7A) is now lost. To quantify all of
this, we compute the mean and standard deviation (std) of the peak power in the pre-
dicted regime for Fig. 6.7A-C. Respectively, they are (mean, std) in units of mV 2/Hz:
(5.1 × 10−9, 1.7 × 10−23), (9.7 × 10−10, 5.6 × 10−10), (2.6 × 10−8, 3.8 × 10−8). When
all of the cell populations are present, there is minimal variability, and when the PV+
cell populations are removed, the average power decreases five-fold and there is some
variability. However, when only PV+ cell populations are present, there is an increase
in the average power and the variability is large. It seems clear that the OLM cells do
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Figure 6.7: Decomposition of the LFP signal. A. All presynaptic cell populations
are present. B. Only OLM cells are present. C. Only BiCs and BC/AACs are present.
Schematics on the left show the cell populations projecting to the PYR cell. Computa-
tions are done across gsb and gbs parameter values where csb =0.21. For each parameter
set, LFPs are computed across all layers and the power spectrum is computed for each
layer. The maximum power across all layers is taken as the peak power and given in the
color plot. Computation is illustrated to the right of A (see text for details).
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not contribute much to the average LFP power but removing their inputs prominently
affects the robustness of the LFP signal. Therefore, we propose that OLM cells have the
capacity to regulate robustness of LFP responses without affecting the average power.

As we’ve mentioned before, Amilhon and colleagues [2] showed that SOM+ cells
(putative OLM cells) do not appear to play a prominent role in the generation of intrinsic
LFP theta rhythms, since there was only a weak effect on LFP theta power when they
optogenetically silenced SOM+ cells. Our results are in agreement with this observation.
As shown in Fig. 6.7B, the contribution of OLM cell inputs to the LFP power was
small. To make a more accurate comparison with Amilhon and colleagues’ OLM cell
optogenetic silencing experiments we compared the power of the LFP in the predicted
regime in Fig. 6.7A (mean value of 5.1 × 10−9 mV 2/Hz) with the power of the LFP in
Fig. 6.7C for gsb=0 and gbs=0 when OLM cell to PYR cell connections were also removed
(8.5 × 10−9 mV 2/Hz). They are clearly comparable. It is interesting to note that it is
already apparent from Fig. 6.7A that OLM cells minimally affect LFP power. Consider
that for the parameter regime of gsb = 0 and across all gbs’s, the LFP power magnitude
is the same (5.1 × 10−9 mV 2/Hz) as the average power of the predicted regime in Fig.
6.7A. In this gsb = 0 parameter regime, OLM cell to BiC connections are not present
but the OLM cell to PYR cell connections are still present so that OLM cells can still
contribute to the LFP response via a direct OLM-PYR pathway. Given that the power
does not change indicates that any LFP power contribution due to OLM cells occurs
mainly via the indirect OLM-BiC-PYR pathway. Overall, our results show that OLM
cells do participate but in such a way that their presence would be unnoticed if one were
only measuring LFP power.

To gain insight into how OLM cells affect the robustness of the LFP signal, we further
examine our LFP decompositions. With PV+ or OLM cells removed, the impaired LFP
output can be grouped into certain categories based on their laminar LFP profiles. In Fig.
6.9 we show the peak power plots for the PV+ cell (Fig. 6.9A) and OLM cell (Fig. 6.9B)
decomposition components in which the non-predicted regime is overlaid with gray. For
each component, we show three examples of the characterized LFP profiles identified in
the groupings. Raster plots that correspond to each cell population are shown above the
examples in the figure. It is evident that the different LFP patterns cannot be intuited
from the raster plots alone. These examples illustrate the various cases of impaired LFP
responses that occur when OLM or PV+ cell connections to the PYR cell are removed.

For the middle LFP response examples (low gbs and high gsb) of Fig. 6.9, we note
that OLM cells and BC/AACs have maximal activities and BiCs have minimal activi-
ties (see Fig. 6.2C). Thus, synaptic current influences are obvious at the layers where
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Figure 6.8: Peak power for all conductances and connectivities. Note that the
color scale bars are not the same for all the plots. The plot for csb=0.21 corresponds to
Fig 6.7
.
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Figure 6.9: LFP pattern examples in predicted regime when only either PV
or OLM cell populations are present. Peak power color plots as in Fig 6.7 are shown
but with a different color resolution. A gray overlay is added to the plots to emphasize
the predicted regime. Three examples of LFP responses (5 sec) across the different layers
are shown to illustrate the different patterns observed. For each example, spike rasters
for the particular example are shown for PV cells (BiCs and BC/AACs) or OLM cells.
A. PV cell LFP component. B. OLM cell LFP component. Parameter values for left,
middle and right columns are respectively: (gsb, gbs) = (5, 2.75), (5.5, 0.5), (5.75, 1) nS.
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OLM or BC/AACs contact, while return current influences are obvious at other layers.
Inappropriate polarity across the layers is manifest. This pattern of impaired LFP re-
sponses occurs in about a quarter of the PV+ cell LFP component parameter sets, and
in less than half of the OLM cell LFP component parameter sets. For the PV+ cell LFP
component, most of the other parameter sets yield LFP responses in which there is no
rhythm, as shown in the right example of Fig. 6.9A. Interestingly, in the rest of the cases
(less than a third) there is a loss of rhythmicity in all layers except for the somatic layer
as illustrated in the left example. These patterns show that there is an ongoing ‘battle’
between basal excitation and PV+ cell inputs that can yield a wide range of LFP power
values from low (no rhythm - right example) to high (left and middle examples). For the
majority of the OLM cell LFP component parameter sets, there is a loss of rhythmicity
as shown in the left and right examples of Fig. 6.9B. From the temporal profile and po-
larity, it is clear that the high amplitude LFP peaks are due to basal excitatory inputs.
For larger gbs values, OLM cells are less active (see Fig. 6.2C) and LFP responses across
the layers became dominated by peaks due to basal excitation rather than synaptic and
return currents due to OLM cells. Overall, cancellations and rhythm loss occurs due to
interactions between OLM cells’ synaptic and return currents and excitatory inputs. As
summarized in the peak power plots of Fig. 6.7C or Fig. 6.9A, PV+ cell inputs alone
are not capable of sustaining the robustness throughout the predicted regime and the
impaired LFP signals show a large variability. With OLM cell inputs alone, there is low
LFP power either because of loss of rhythmicity or because of low amplitude rhythms
(Fig. 6.7B or Fig. 6.9B peak power plots).

With and without basal excitation

As one might expect, including basal excitation to incoming inhibitory inputs from differ-
ent cell populations added to the complexity of untangling nonlinear, interacting compo-
nents producing the LFP. We relied on our developed intuition when basal excitation was
not included (Fig. 6.2A,B) and our LFP decompositions to reveal the different roles that
OLM cells and PV+ cells might play in LFP theta rhythms. Specifically, we understand
that the loss of LFP rhythm at some layers likely occurs because of having a ‘balance’
of synaptic and return currents for various conductance values leading to LFP rhythm
cancellation or an inappropriate negative polarity domination (see Fig. 6.2A(iii) and
B(iii)). Thus, in finding that the LFP power is a robust feature in the predicted regime
of synaptic conductance and connection probabilities, we are able to understand that it
is critically the OLM cell population that brings about this robust feature. However,
this robust feature is apparent only when basal excitation is included. This is clearly



Chapter 6. Contributions of SOM+ cells to theta. 106

visualized in Fig. 6.10 where we plot the peak power color plots with and without basal
excitation when all cells were present or with only OLM cell or PV+ cell LFP compo-
nents. Removal of basal excitatory inputs in the case when all cells are present (Fig. 6.10,
top) leads to a loss of robustness. The mean and std in the predicted regime without
basal excitation is 6.2× 10−9 mV 2/Hz and 8.0× 10−9 mV 2/Hz respectively. While the
mean is comparable to when basal excitation is present, the standard deviation is much
larger (see values with basal excitation above). Co-activation of inhibition and excitation
is clearly important for this robust feature to emerge.

From the LFP decompositions and different LFP patterns expressed (see Fig. 6.7B),
and OLM cell activities (see Fig. 6.2C), we understand that the contribution of OLM
cells is more dependent on gbs than gsb with the basal excitation affecting the peak power
robustness more for larger gbs values. This is apparent in the color variation of the plots
of the OLM cell LFP component in Fig. 6.10 (middle). It is larger with basal excitation
(left) than without basal excitation (right) for larger gbs values. This is reflected in the
mean and std without basal excitation (5.2×10−10 mV 2/Hz, 2.2×10−10 mV 2/Hz) which
was smaller than with basal excitation (see values with basal excitation above). With
only the PV+ cell LFP component, the LFP theta rhythm is disrupted as the interactions
between basal excitation and PV+ inhibitory inputs are missing the OLM cell inputs.
Specifically, the mean and std without basal excitation is (8.0×10−9 mV 2/Hz, 1.1×10−8

mV 2/Hz) which is smaller than with basal excitation (see values with basal excitation
above). In essence, the inclusion of basal excitation can be considered as ‘adding’ to the
magnitude and variance of the LFP power when OLM cells or PV+ cells were examined
separately. In combination, a synergistic effect between inhibition and excitation occurs
to generate a robust regime - a mean power with minimal variance. From Fig. 6.2C,
it can be seen that the PV+ cells (BC/AACs and BiCs) have activities that are more
dependent on gsb than on gbs, and that BC/AACs are relatively more active than BiCs in
the predicted regime. Thus, at larger gbs values when OLM cells are less active, BC/AACs
would contribute more to keep a synergistic balance with the basal excitation.

LFP power across layers

As illustrated in Fig. 6.7A, the color peak power plots are the power in the layer (partic-
ular electrode) where the power is maximal. To fully express this, we plot the maximum
LFP power across the dendritic tree for all parameter sets in the predicted regime. This
is shown in Fig. 6.11A with insets showing the same for the OLM cell (top) and PV+
cell (bottom) LFP components. From this, we see that the maximum LFP power is
recorded at electrode 4, and that with only the OLM cell component, the power is dis-
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Figure 6.10: Peak power plots with and without basal excitation. The color
plots represent peak power as described in Fig 6.7 and with a gray overlay as in Fig 6.9.
Note that different color resolutions are used here to facilitate comparison for particular
cell populations (i.e., any row). With and without basal excitation is shown on the left
and right columns respectively. Top: All cell populations. Middle: OLM cell LFP
component. Bottom: PV cell LFP component.
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Figure 6.11: Laminar power and peak power changes with changing synaptic
weights. A. Computed power at the different electrode locations to show laminar power
distribution, for all sets of parameter values in the predicted regime. Top inset: Laminar
power for OLM cell LFP component. Bottom inset: Laminar power for PV cell LFP
component. Schematics shows the PYR cell model with the 15 extracellular electrodes
and the different network configurations. B. Changing the synaptic weight from the OLM
cells to the PYR cell does not lead to much change in the peak power, as illustrated by
the peak power at electrode 4. Parameter values: gsb = 5.25, gbs = 5.00 nS. Synaptic
weights of 0.00067, 0.001, 0.002, 0.003, 0.004 µS are shown.

tributed more widely and with only the PV+ cell component, more narrowly focused
around the soma. This thus shows that the two populations differentially influence the
location of LFP maxima. That the LFP power shows no discernible variability when all
the cell populations are present, and that there is clear variability when not all of the
cell populations are present is obvious in this Fig. 6.11A. We did several additional sets
of simulations to explore whether changes in the synaptic weights on the PYR cell would
affect whether the robust power feature in the predicted regime would still be present.
In all the simulations presented so far, we used synaptic weights that did not bias the
effect of one cell population type over the other based on their synaptic input location.
So, for example, OLM cell inputs that are the furthest away from the soma, have the
largest synaptic weight. In doing this, we are following what was done previously in [55]
who used ‘unbiased’ synaptic weights as well as using the same synaptic weight for all of
the cell types. In using the same synaptic weight for all the cell types, we found that the
robust power feature in the predicted regime remained (not shown).

As described and shown above, it is already clear that OLM cells via a direct OLM-
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PYR pathway minimally contribute to the LFP theta power. To show this directly, we
did several, additional simulations where we changed the synaptic weight from OLM cells
to the PYR cell. As an example, in Fig. 6.11B we show that increasing the synaptic
weight by almost an order of magnitude decreases the peak power by only about 20%.

6.4.4 Estimating the number of PYR cells that contribute to
the LFP signal

It is challenging to know how many cells contribute to an extracellular recording. The
hippocampus has a regular cytoarchitecture with a nearly laminar, stratified structure of
PYR cells [3]. This arrangement together with PYR cells being of similar morphologies
and synaptic input profiles allows us to assume that any given PYR cell will generate a
similar electric field leading to an additive effect in the extracellular space with multiple
cells in resulting LFP dipole recordings. Further, for the in vitro intrinsic theta LFP
generation considered in this work, the focus can be justified to the couple of synaptic
pathways that we explored, and incoming inputs are synchronized amplifying the additive
effect.

To estimate how many PYR cells contribute to an extracellular LFP recording in the
in vitro whole hippocampus preparation, we define the ‘spatial reach’ of the LFP as the
radius around the electrode where the LFP amplitude is decreased by 99%. Using our
biophysical computational LFP models with parameter values taken from the predicted
regime, we found that the spatial reach is 300 µm as measured extracellularly close to
the soma since the LFP decreased from 10,000 nV to 100 nV within this radius. This
is shown in Fig. 6.12 where the dotted arrow represents this radius. Therefore, from a
“neuron-centric” approach the LFP declined to 1% of its original power within 300 µm.
From an “electrode-centric” point of view this means that if we were to place an electrode
extracellularly to the soma of a given neuron then that electrode would pick up signal
from neurons within 300 µm as any neuron 300 µm further away would contribute to the
recorded signal by less than 1% of its maximum power. To estimate the number of cells
present within this spatial extent we turned to literature. Taking advantage of detailed
quantitative assessment and modeling done by Bezaire and colleagues [15, 14], there are
about 311,500 PYR cells in a volume of 0.2 mm3 of ‘stratum pyramidale’ tissue (see model
specifics in Fig. 1 of [14]). Given our spatial reach radius estimate, a cylindrical volume
of stratum pyramidale would be 0.014 mm3 or about 7% of the total number of PYR cells
which is about 22,000. In this way we estimated that there would be about 22,000 PYR
cells that contribute to the LFP signal. We note that this would be an upper bound, as
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we assumed correlated activity across PYR cells and homogeneous extracellular electrical
properties.

6.5 Summary and conclusions

To a large extent, understanding brain function and coding requires that we understand
how oscillatory LFP signals are generated [50, 60, 80]. Further, given that particular
inhibitory cell populations and abnormalities in theta rhythms are associated with disease
states [39], we need to consider how different cell types and pathways contribute to LFP
recordings. Ultimately, the challenge is to bring together data from both experimental
and modeling LFP studies. In this work, we make steps toward this challenge by gaining
insight into the contribution of OLM cells to intrinsic theta rhythms as exhibited by an
in vitro whole hippocampus preparation.

6.5.1 Summary of results

While it is clear that different interneuron subtypes are involved in theta rhythms [38, 39],
it is difficult to untangle the cellular contributions to resulting theta rhythms exhibited
in extracellular LFP recordings. That the required circuitry for theta rhythms has been
shown to be present in local circuits of the hippocampus [41] is both useful and helpful
as it becomes more likely that biophysical LFP models can be linked to a cellular-based
circuit understanding of theta rhythms. We took advantage of the in vitro whole hip-
pocampus preparation that spontaneously expressed intrinsic theta rhythms [67], and
previous inhibitory network models developed for this experimental context [55], to build
biophysical LFP models.

The LFP is generated on the basis of transmembrane currents. This means that
the LFP is a weighted sum of inward and outward currents. How the LFP changes as a
function of location is not trivial. In our work here, when the LFP is governed by synaptic
inputs the LFP peaks are narrower since the synaptic inputs are synchronized because
of the coherent inhibitory spike rasters. On the other hand, LFP signals governed by
return currents would produce LFP peaks that are less narrow as the signal slows down
as it travels down the dendrites producing a time lag. This all thus translates to synaptic
input location dependencies. Thus, while we can visualize and appreciate the synergistic
balances between excitation and inhibition from different cell populations, we note that
these combinations are not easily seen as summated balances. Signal decompositions and
intuitions from many simulations are required. We leveraged our LFP models to make
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Figure 6.12: Spatial attenuation. We estimated the spatial extent of the generated
LFP using our models. PYR cell model morphology is shown with calculated signal
decrease from a electrode positioned near the cell soma. The dotted arrow shows the
extent of the spatial reach of the signal that is taken as a 99% decrease in the signal, and
is approximately 300 µm. Parameter values used are from the predicted regime. gsb=5,
gbs=5.75 nS, csb=0.21.
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direct comparison with experimental LFP characteristics. This allowed us to constrain
coupling parameters which in turn led us to understand the cellular contribution of
interneuron subtypes, specifically OLM cells, to intrinsic theta LFP rhythms.

We showed how the extracellular theta field recorded along the cellular axis of a PYR
cell was affected by the magnitude of the inhibitory synaptic currents inserted along its
dendritic arbor. Fluctuations in the magnitude of the total inhibitory input occurred
due to alterations in synaptic strength balances of the inhibitory networks. Our models
exhibited network states in which interactions between OLM cells and BCs could invert
the polarity of the recorded signal and produce extracellular potentials of high or low
magnitude. We also distinguished regimes where these cellular interactions preserved the
frequency of the signal versus those that led to lags or abolishments of the extracellular
LFP rhythm. When we applied experimental characteristics of theta frequencies and
polarities to our biophysical LFP models, a clear selection emerged and thus we were
able to constrain parameter values regarding connectivities. Specifically, we found that
the connection probability from OLM cells to BiCs needed to be 0.21 and that synaptic
conductances from OLM cells to BiCs had to be larger than 3.5 nS, and we called this
the predicted regime.

Unexpectedly, we found that this predicted regime also exhibited a robust power
output. That is, so long as parameter values were within the predicted regime, the power
did not change (Fig 6.7A), and in this regime we saw that BiCs were mostly silenced,
BC/AACs were significantly active while OLM cell activity decreased from high to low
values as gbs increased (Fig 6.2C). By decomposing the signal we revealed that OLM cell
inputs minimally contributed to the LFP power unlike the other cell populations (BiCs
and BC/AACs or PV cells). The power of the OLM cell LFP component on its own,
although low, showed some variation in the predicted regime (coefficient of variation or
CV < 1). On the other hand, the power of the PV cell LFP component was a couple
of orders of magnitude higher and showed more variation (CV > 1) in the predicted
regime. This indicates that OLM cells contributed to LFP power robustness without
contributing to average power whereas PV cells contributed to average power but their
effect was more sensitive to perturbations in OLM-BiC interactions. Therefore their
contribution was variable. It is however interesting to note that the PV LFP component
average power was larger than the average power of the predicted regime with all cells
being present. Thus our results indicated that adding OLM cells in the network can
overall cause a small decrease in LFP average power as compared to when only PV cells
were present and of course induce robustness. It was also interesting to observe that in
almost half of the cases the OLM cell LFP component was arrhythmic or non-oscillatory
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despite the fact that OLM cells were driven by theta-paced EPSCs. That is, OLM cell
inputs alone in most cases were not able to generate a theta LFP signal as recorded in
the extracellular space of the PYR cell even though OLM cell populations themselves
were firing at theta frequency. Further LFP signal analysis decomposition showed that
removing only basal excitation disrupted the robustness of the predicted regime. This
suggests that a synergy of OLM cell inputs and basal excitatory inputs as co-activation
of distal inhibition and proximal excitation is important to produce robustness in the
predicted regime. Overall, an essential aspect in comparing model and experiment LFPs
to predict model parameters and decipher cellular contributions was to match sources
and sinks at different layers. Thus, having recordings from multiple layers is important.

Morphological details, synaptic locations and related studies

As the main contribution to the LFP is thought to stem from synaptic input to neurons
and the subthreshold dendritic processing, various studies have investigated how morpho-
logical characteristics and intrinsic resonances shape the features of the LFP signal. In
most cases input synapses are activated according to Poissonian statistics [98, 100, 122].
However, in our study here the origin population consisted of point neuron cell represen-
tations that had been constrained based on experimental patch clamp recordings from
the whole hippocampus preparation. We used a scheme which is a combination of point
neuron origin populations and a multi-compartment PYR cell model which served as a
processor of synaptic inputs and produced the LFP. This scheme is conceptually very
similar to the hybrid scheme proposed in [69].

One factor modulating the amplitude of LFPs was related to the somatodendritic
location of synaptic inputs on the PYR cell tree. Different populations of GABAergic
interneurons target different dendritic domains and the domain-specific targeting of vari-
ous interneurons supports the hypothesis of domain-specific synaptic integration in CA1
PYR cells [153]. In CA1 PYR cells, distal and middle apical dendrites comprise two
distinct dendritic domains with separate branching connected by a thick apical dendrite.
This cytoarchitectonic separation of the cluster of distal dendrites relative to middle and
proximal dendrites was shown to critically reduce the effect of distal EPSCs to somatic
excitability [154]. The presence of a single apical dendrite with many obliques in stratum
radiatum caused a large shunting of EPSCs traveling from the tuft dendrites to the soma.
Thus we can appreciate our observation that OLM cells, which target distal dendrites,
minimally affected LFP power in stratum pyramidale considering the limited ability of
distal inhibition to reach more proximal and somatic regions of the CA1 PYR where
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maximum power was recorded. This is not just due to the distal location of these inputs
but more due to the cytoarchitectonic separation of the cluster of distal dendrites relative
to middle and proximal dendrites. This separation prohibited inhibitory inputs in distal
regions from effectively propagating to somatic and proximal regions of CA1 PYR cells
and thus being reflected in the extracellular space.

We can further consider our results in light of another theoretical modeling study
by [62] which showed that inhibitory inputs can affect excitatory inputs locally and/or
globally, depending on the relative locations of the excitatory and inhibitory synapses.
In particular this can help us understand the loss of robust power in the predicted regime
after removal of OLM cells. The predicted regime consists of different connectivities that
generated different spiking patterns that gave rise to fluctuations in inhibitory input in
different synaptic locations. First, inhibitory input hyperpolarized the membrane po-
tential, which resulted in shunting of the adjacent dendritic compartments. Activation
of excitatory synapses within the shunted compartments will thus generate smaller de-
polarization, compared with non-shunted dendrites (“local” effect). Second, the local
shunting would suppress excitatory input in a nonlinear fashion at locations that were
not directly affected by the shunting (“global” effect). Thus, when inhibitory inputs were
activated simultaneously with excitatory inputs, the average evoked membrane potential
within shunted dendritic compartments should be smaller compared with compartments
that had no inhibitory input. At the same time, excitatory effects throughout the entire
dendritic tree would be reduced in a nonlinear fashion, and which can be quantified as
the change (with versus without inhibitory input) of the trial-to-trial variability of the
membrane potential. In our case the activation of excitatory inputs occurred in regions
not close by the OLM cell inhibitory inputs, thus the overall power did not increase but
the robustness was affected. In [62] the authors examined the spread of shunt level im-
plications using a CA1 reconstructed neuron model receiving inhibition at three distinct
dendritic subdomains: the basal, the apical, and the oblique dendrites as innervated by
inhibitory synapses. They found that the shunt level spread effectively hundreds of mi-
crometers centripetally to the contact sites themselves spanning from the distal dendrites
to the somatic area. This observation thus showed that the somatic area was indeed in-
fluenced by shunting inhibition which means that excitatory input non-linearities in our
model will be reduced in the presence of global inhibition in the somatic area leading to
a decrease in variability and thus robustness in the membrane potential. Of course, the
LFP is a measurement of transmembrane currents and not membrane potential. However
the reduction of excitatory input mediated non-linearities will also reduce the variability
in the distribution of return currents and thus the variability in the LFP.
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Limitations and future considerations

Our present study was limited in terms of not considering more inhibitory cell types
(e.g., see [14]) and by considering ongoing intrinsic theta rhythms since theta frequency
inputs were used (Fig 6.1). However, our inhibitory network models were constrained
by the experimental context and our less complex model representations enabled us to
explore many thousands of simulations and directly compare our biophysical LFPs with
experimental LFP features. This aspect was key in allowing us to constrain parameter
value sets and to gain insights.

Theta rhythms are foremost generated due to subthreshold activity and dendritic
processing of synaptic inputs. Here we used a passive PYR cell model as the spiking
component has been shown to mainly contribute to the LFP at frequencies higher than
90Hz [139] while the active voltage-gated channels that were eliminated here were shown
to influence LFP characteristics more prominently in frequencies above the theta range
[136]. Thus, although the presence of voltage-gated channels will influence the exact
distribution of return currents, we thought that it was a reasonable simplification to not
include them in this study. Indeed in an additional set of simulation (data not shown)
we observed that the presence of h-channels on the PYR cell did not influence the sink-
source LFP profile and frequency examined here although it did affect the waveform
characteristics.

Another limitation is the usage of a single PYR cell to predict network dynamics.
However we note here that since the LFP is a linear summation of the transmembrane
currents in the extracellular space (Equation 1), incorporating more PYR cells could
result in a linear additive effect in the extracellular space. This would lead to the same
LFP profiles as in the case of a single cell only significantly magnified provided that the
cells have a similar morphology, physically arborizing in ways that facilitate superposition
rather than cancellations of fields, and receive similar presynaptic inputs. Indeed, there is
a homogeneous cytoarchitecture disposition of the PYR cells across the CA1 layer [3] and
is one of the factors responsible for the extracellular sinks and sources recorded in CA1.
Also, PYR cells receive similar presynaptic inputs from the presynaptic populations which
project upon the same layers across cells. For this reason we do think that the conclusions
derived from the single cell LFP output will remain on the network level to some extent.
Of course, important variabilities across PYR cells also exist and considering them in
future studies will be important (e.g., see [151]). Therefore careful network modelling
will be required to assess the network-generated LFP output.

Extracellular studies suggest that the main current generators of field theta waves
are the coherent dendritic and somatic membrane potential fluctuations of the orderly
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aligned PYR cells [174, 25, 22]. Thus, distal and local ascending pathways onto PYR
cells can in principle contribute to extracellular LFP deflections. To understand theta
rhythms one needs to consider the populations projecting onto the PYR cells in CA1.
During in vivo behaviors, medial septum and entorhinal cortical inputs onto CA1 PYR
cells are prominent modulators of the amplitude, phase and waveform features of theta
rhythms in conjunction with local inhibitory and excitatory cells. However, spatiotempo-
ral coincidence of inputs makes separation difficult and thus it is challenging to determine
cellular contributions to LFP recordings. As there is significant spatiotemporal overlap
on PYR cell dendrites across ascending pathways it would be hard to disentangle the
cellular composition of these pathways and assess the cellular contribution to theta LFP
characteristics. As shown in previous studies [109] blind separation techniques such
as Independent Component Analysis produce poor results when trying to disentangle
combinations of rhythmic synaptic sources with extensive spatiotemporal overlap. By
focusing on intrinsic theta rhythms in the in vitro whole hippocampus preparation here,
we reduced the spatiotemporal overlap of different pathways and unravelled the cellular
composition of the different pathways projecting to the PYR cell. We were thus able
to decipher the contribution of OLM cells to intrinsic theta rhythms. This work could
potentially be used as a basis to understand OLM cell contributions during in vivo theta
LFP recordings.

Moving forward we aim to take advantage of the insights gained here to build hypothesis-
driven theta generating networks. In this way, we hope to be able to determine the con-
tribution of different cell types and pathways to LFP recordings that are so heavily used
and interpreted in neuroscience today.



Chapter 7

Discussion

7.1 Summary

In this thesis we have focused on the generation of theta rhythms in the CA1 hippocampus
and we have analyzed the cell-type contributions to these rhythms. In Chapter 3, we
considered a piece of the whole CA1, the segment model, and we showed that theta
rhythms are initiated by the PYR cells and that their frequency is controlled by the net
input the PYR cells receive. In Chapter 4, we considered the segment model embedded in
the CA1 network, driven by the rest of the CA1, the EC/CA3 and the recently discovered
connections from the SUB, giving rise to the adapted CA1 model. We fitted and then
validated the model against available experimental data. Decomposition of external input
drives showed that the theta rhythms still emerge if driven separately by these regions.
In Chapter 5, we extended the predictions that stemmed from analysis of the segment
and adapted models to describe how inhibitory cells contribute to theta rhythms in the
full CA1 model with its stronger cellular connectivity and larger cell numbers. Finally in
Chapter 6, we focused on the OLM cell population, a strong candidate of theta rhythms,
whose contribution to these activities has been ambiguous. We demonstrate the role of
the OLM cells in contributing to the robustness of the LFP profile across the CA1 layers,
and we compute the reach of the LFP signal.

Overall, our work constitutes a strong foundation from which state-dependent theta
and theta-gamma activities in health and disease can be elucidated. The realistic LFP
representations that we have used allowed for direct comparisons with experimental data,
while considering biophysical models with cell type intricacies and cell diversity offered
a fine, micro-level cellular perspective.
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7.2 Implications of this work

7.2.1 Alzheimer’s disease

AD is an age-related neurodegenerative disorder characterized by progressive memory im-
pairments, leading to global loss of cognitive and executive functions [158]. Accordingly,
increasing evidence suggests that oscillatory activity in the theta [168] and gamma [74]
is altered in AD patients, and changes in theta oscillations are viewed as a possible pre-
dictor for the disease [87]. For example in human studies AD patients showed increased
gamma rhythm power and lack of theta power [32], while in mice studies theta-gamma
coupling was shown to be impaired [180].

To explore whether fine alterations in hippocampal network activity might be present
at the very early stages before amyloid beta overproduction, Goutagny and colleagues
[66] used intact hippocampal preparations [67] from young transgenic TgCRND8 mice,
following earlier studies in the same preparation [85] which had reported the presence of
low/high gamma oscillations coupled with theta. The authors in [66] investigated possible
alterations in hippocampal theta and gamma oscillations as well as in the cross-frequency
coupling pattern between these two rhythms in AD mice. Their results show that theta
oscillations within the distal CA1 area of the hippocampus are impaired early in the
TgCRND8 mice, prior to amyloid beta accumulation. In addition, they observed drastic
impairments in theta/gamma cross frequency coupling. As the amount of amyloid beta is
negligible in 1-month old TgCRND8 mice their data indicated that network alterations
are present before amyloid beta overproduction and that theta/gamma coupling may
serve as an early electrophysiological signature of hippocampal network dysfunction in
animal models of AD.

The PAC mechanism we propose in this thesis can shed light on the observations in
[66]. In Chapter 4, we show how the theta and slow gamma LFP rhythms are generated
by different mechanisms and as such their power can be modulated separately. The
theta rhythm is a PYR cell mediated rhythm, while the slow gamma rhythm relies on
the gamma-paced entrainment of the noisy-firing PYR cells. As such, the power of the
theta rhythm mainly relies on the strong participation of the PYR cells (assuming that
the net input they receive is appropriate to drive their rhythmic theta bursting), while the
power of the slow gamma rhythm relies not only on the number of PYR cells firing, but
also on the inhibitory connections between gamma bursting inhibitory cells (PV+BCs,
AACs, but also CCK+BC) and the PYR cells. As such, if these inhibitory-excitatory
connections are impaired, that would have negative effects on the power of the slow
gamma rhythm and consequently on theta/gamma PAC.
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7.2.2 Epilepsy

Cognitive functions including memory are impaired in numerous other pathologies includ-
ing temporal lobe epilepsy (TLE). Epilepsy along with AD are two of the most common
forms of neurodegenerative disorders characterized by the loss of cells and progressive
irreversible alteration of cognitive functions, such as attention and memory.

TLE is the most common and pharmacologically resistant type of adult focal epilepsy.
In patients with TLE, a selective and marked degradation of episodic (autobiographic)
memory was shown, in which specific memory items are placed within temporal context
during encoding and retrieval [47]. Animals with TLE also exhibited a highly specific
impairment of the episodic-like memory while preserving other forms of hippocampal-
dependent memories [24]. The analysis of hippocampal LFPs in neurosurgical patients
during the execution of episodic memory tasks revealed a sharp increase of gamma os-
cillations before successful item encoding in non-epileptogenic hippocampi. At the same
time, the epileptogenic hippocampi exhibited a significant decrease in the gamma band
power, which predicts successful item encoding [97]. Thus, typical changes in the gamma
band power during this process are reversed for human epileptogenic hippocampus [97].
Besides, it was shown in the TLE model [81] that kainate-treated rats with deficit of
episodic-like memory exhibited reduction of hippocampal theta power and coherence
along the CA1–dentate axis. In TLE animals, decreased theta coherence in the LFP sig-
nals was concentrated between the hippocampal SLM and DG. Inostroza and colleagues
[81] claimed that these data point to dis-coordination of hippocampal inputs from layers
III and II of the EC and from the contralateral hippocampus as a possible cause for
dysfunction of episodic-like memory in TLE animals.

Early diagnosis of these diseases is very important for their successful treatment.
Many efforts have been made for defining new biomarkers that would reflect changes
of cognitive disturbances within few milliseconds, as well as biomarkers that would de-
tect these diseases at early stages. In that vein, theta/gamma activities are promising
biomarker candidates.

7.2.3 Brain stimulation

Considering the role of theta/gamma activities as potential cognitive biomarkers, brain
stimulation techniques such as deep brain stimulation (DBS) have been used to induce
cognitive enhancement. A number of studies have attempted to enhance memory and
cognitive function by stimulating different DBS targets in humans and rodents. Recently,
it has been reported that DBS has the ability to activate local and network-wide electrical
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effects and modulate oscillatory activities [73]. Additionally, several studies have revealed
that DBS may modulate LFPs by phase desynchronization and rhythmic oscillations [45].
In Parkinson’s patients, DBS in the basal ganglia has been shown to inhibit beta LFP
oscillations in the motor cortex, thereby improving cortical functions [45]. Furthermore,
in movement-disorder patients, DBS in the ventral internal capsule/ventral striatum
increases theta oscillations in the prefrontal cortex, leading to enhanced performance
of cognitive control tasks [173]. In humans, stimulation of the EC served to enhance
spatial memory and increase theta oscillations in the hippocampus [159]. In rodents,
theta oscillations in the hippocampus were restored by stimulating the fornix, and spatial
working memory task performance was improved [17].

7.2.4 Reflections

As it has become evident, alterations in the features of theta/gamma LFPs represent
pathological changes in the underlying circuitry. This relation reveals that individuals
with ‘weak’ rhythms are expected to have poor/impaired memory. The strong correla-
tion between theta/gamma rhythms and cognitive performance suggests that the same
circuitry that underlies theta generation underlies cognitive functioning. Thus, under-
standing how theta rhythms are generated could point us to the direction of circuit inter-
ventions to help restore cognition in pathologies. Even more, as we unveil the generation
mechanism of these rhythms, by extension, we unveil mechanistic aspects of memory.

7.3 Future and ongoing work

As discussed in Chapter 5, OLM cells contribute to the robustness of the LFP laminar
profile. One aspect to explore further is the effect of the OLM cells on the laminar profile
of the theta LFP in the adapted model in conjunction with inputs from the EC/CA3
and the SUB. This investigation is part of our ongoing work.

As discussed in Chapter 3, the PYR cells-mediated theta generation mechanism in-
volves other intrinsic properties of the biophysical PYR cell models such as the h-channels
and the t-type calcium channels [88]. The h-current has been shown to be a pacemaking
current which contributes to sub-threshold resonance [18] and has been shown to play
an important role in shaping the output of LFP recordings, as determined from multi-
compartment LFP modeling studies [122, 123, 146]. How exactly h-channels in PYR cells
influence the dynamics and frequency of LFP theta rhythms in CA1 microcircuits will
be interesting to investigate further.



Chapter 8

Appendix

8.1 Complementary projects I’ve worked on and con-
tributed to

Along with Drs. Katie Ferguson and Frances Skinner I’ve also contributed to the analysis
of the minimal model in [53] and I am a co-author in the paper. Additionally, I have
written two book Chapters with Dr. Frances Skinner [149, 150].

8.2 Supplementary figures

Figure 8.1: The exploration of post-synaptic weights to the PV+BC. The
iteration over eight post-synaptic weights yields 390594 configurations.

121



Chapter 8. Appendix 122

Figure 8.2: Dependence of net theta power on the PYR cells’ excitatory
drives. Heatmaps of net theta power as a function of gpyr−pyr and gec/ca3−pyr.

Figure 8.3: Dependence of theta and delta power on the PYR cells’ excita-
tory drives. Heatmaps of A. Normalized power to include both theta and delta power
(between 2-12 Hz), as opposed to just theta (3-12 Hz) as shown in Fig. 3.4B, B. frequency
and C. afferent input stimulation as a function of gpyr−pyr and gec/ca3−pyr.

Figure 8.4: Dependence of "high" theta (6-12 Hz) power on the PYR cells’
excitatory drives. Heatmaps of A. Normalized "high" theta power, B. frequency and
C. afferent input stimulation as a function of gpyr−pyr and gec/ca3−pyr.
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Figure 8.5: Recurrent excitation and feed-forward external drive to the PYR
cells is needed for theta rhythms. Normalized theta power of the segment model
Fig. 3.3A with parameter values as shown in Fig. 3.3B is eliminated with the removal of
feed-forward external drive and recurrent excitation to the PYR cells, i.e., gpyr−pyr and
gec/ca3−pyr set to zero.
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