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Contrary to natively folded proteins, which often have a single stable 3D structure, Intrinsically Dis-

ordered Protein (IDP) structures dynamically fluctuate between many conformations. This complexity

impedes their study and the understanding of their functions. Experimental techniques can probe as-

pects of the conformations, but often different techniques or conditions offer seemingly contradictory

results. In this thesis, I use coarse-grained models and simulations to investigate the structures and

dynamics of IDPs.

One system I focus on is the Nuclear Pore Complex (NPC): a bidirectional selective gate for cargo

traveling across the nuclear envelope of eukaryotic cells. A key functional component of the NPC is

the layer of intrinsically disordered FG nucleoporins attached to the interior of the transport channel.

Elucidating the mechanism of transport remains elusive due to the size and complexity of the NPC, but

will contribute to the understanding of diseases associated with mutations in the NPC, viruses which

enter the nucleus via the NPC, and drug delivery into the nucleus, as well as the development of NPC

inspired devices for nanotechnological applications. I show how a mean field model for surface grafted

FG nups reconciles several conflicting experimental observations and theories of transport.

Due to a lack of unique structure, the influence of the amino acid sequence on IDP structures

and dynamics is unclear. Various evidence points to the overall importance of general properties of

the sequence rather than the atomistic details of the amino acids. Using coarse-grained simulations, I

investigate how the effects of several key sequence properties on the polymer dimensions and end-to-end

distance dynamics of IDPs. These results have implications for interpreting experimental measurements

as well as developing appropriate models of IDPs.
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Chapter 1

Introduction

1.1 Intrinsically Disordered Proteins

Proteins are biopolymers whose sequences are built up out of the 20 amino acids. During the past

century, the dominant view has been that a protein’s function is tied to its unique 3D structure, which is

encoded by its sequence. Over the past several decades, a new classification became necessary to account

for the mounting evidence that many proteins are intrinsically flexible yet are biologically functional

and do not conform to the classical unique structure - function paradigm. Under native conditions,

instead of maintaining a single 3D structure, their structure comprises an ensemble of conformations

(see Figure 1.1). These proteins fluctuate dynamically between the conformations, which gives rise to

their function. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) became

the common nomenclature used to distinguish this new class from traditional ordered proteins [1, 2].

Figure 1.1: Left: a unique 3D structure of an ordered protein. Right: several conformations of an IDP,
each in a different colour. Figure adapted from Uversky et al. [3].

An IDR is a region of a protein without a well defined 3D structure. The boundary separating IDPs

and folded proteins is not clearly defined, as many proteins contain both ordered regions and IDRs. In

humans, 44% of all protein coding genes contain IDRs of at least 30 amino acids in length. Intrinsic

disorder is more prevalent in eukaryotes than in bacteria or archaea as shown in Figure 1.2. Disorder is

1
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also more prevalent within proteins whose functions are currently unknown [1, 4].

Figure 1.2: Prevalence of intrinsic disorder within the proteomes of different organisms grouped by
species. The total number of proteins in the proteome of a particular species is on the x-axis. The
fraction of disordered residues (evaluated by the PONDR-VSL2B neural network predictor) is averaged
over all proteins for that species and shown on the y-axis. Figure adapted from Xue et al. [5].

Studying how an IDP’s sequence underlies its ensemble of conformations and the dynamics of inter-

conversion between the conformations is an important step to understanding the principles behind the

functions of this class of proteins. Furthermore, a broad range of human diseases are associated with the

failure of an ordered protein to adopt its native conformational state and consequently gaining some of

the structural properties of an IDP [2, 6]. Proteins associated with cancer, diabetes, neurodegenrative,

and cardiovascular diseases often have regions of structural disorder, making them leading targets of

drug development [1, 2, 7]. In IDPs, disease mutations occur in their ordered regions more often than

in the IDRs [8]. It is puzzling that structural disorder is the cause of dysfunction in one case, but both

functional and resistant to mutation in another.

1.1.1 Role of Intrinsic Disorder in IDP Function

The categories of functions of IDPs are distinct from natively folded proteins, indicating that disorder

allows for a diversity of functions which are not possible for ordered proteins or offers advantages over

ordered proteins in these functions. Due to their extended structures, IDPs can occupy more volume

per residue of the sequence than folded proteins, and therefore economize genome and protein length.

Due to their relative lack of secondary and tertiary structure, they are resistant to disease-related

aggregation and external stresses such as changes in solvent or temperature, compared with natively

folded proteins [4]. In binding interactions, IDPs are able to adopt conformations which are difficult
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for natively ordered proteins, such as protruding into or wrapping around binding partners. Further

advantages include binding promiscuity: the capability of a single IDP to bind to multiple partners by

adopting different structures, increased binding rates, as well as low affinity with high specificity binding

due to a coupling between binding and folding [3, 9, 10].

Figure 1.3: Classification of IDP functions. Figure from van der Lee et al. [4].

One of the categories of IDP functions is the “entropic chain”. This function relies purely on the

disorder of the conformations and does not involve any binding or folding. A few examples include:

entropic bristles that exclude other molecules, flexible linkers that allow movement of two domains

relative to each other, and entropic springs that can exert force [2, 4].

The IDPs of other categories function by either permanent or transient binding to other molecules

such as DNA, RNA, ligands, or other proteins. Many of these functions involve a disorder-to-order

transition upon binding. In others, IDPs remain disordered: they do not present a single binding site

and can be thought of as a binding cloud with a distribution of weak binding sites [1]. “Effector”

IDPs alter the action of the target molecule. “Scavenger” IDPs store and/or neutralize small ligands.

There is a correlation between intrinsic disorder and the number of subunits of protein complexes, and

thus “assembler” IDPs assemble and regulate large protein complexes such as the ribosome. In large

complexes, a few proteins are termed “hub proteins” which are involved in multiple connections and

organize the network. Another class of IDPs offer display sites for post-translational modifications.

Finally, many RNA and protein chaperones contain IDRs. Disorder offers advantages to chaperone

function as IDRs can bind multiple misfolded substrates and inhibit their aggregation [2, 4, 9, 11].

One specific example of IDP function is the selective transport mechanism of the Nuclear Pore Com-

plex (NPC) of eukaryotic cells. FG nucleoporins (IDPs with a recurring Phenylalanine-Glycine motif)

are attached to the interior of a cylindrical channel via a natively folded region, while the disordered

region of their sequences fills the channel. FG nucleoporins act as a barrier to most molecules but se-

lected cargo binds to transport proteins, allowing the transport protein-cargo complex to pass through
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the channel. FG nucleoporins share features with several IDP functional categories: they act both as

entropic chains that exclude inert cargo, as well as possess the capability of molecular recognition and

transient binding to transport proteins [2, 12]. Elucidating the mechanism of transport contributes to

the understanding of diseases associated with mutations in the NPC, viruses which enter the nucleus

via the NPC, and drug delivery into the nucleus, as well as the development of NPC inspired devices

for nanotechnological applications [13–16]. In Chapter 3, I will discuss which properties control the

structures of surface grafted FG nucleoporin layers, which resemble their organization in the NPC, and

how the layers are affected by transport proteins.

Just as for natively folded proteins, there is a link between the structures of IDPs and their function.

Local features such as the presence of folded motifs might be involved in mediating interactions with

binding partners. Global features such as the hydrodynamic radius might be related to the exposure of

an IDP’s binding domains, long range communication between different parts of the IDP, or its entropic

properties [2]. However, by their very nature, IDP structures cannot be experimentally characterized

using techniques such as X-ray crystallography and cryogenic electron microscopy, in the same way as

the unique structures of folded proteins.

1.1.2 IDP Structure and Dynamics

In their native state, IDPs can be in any one of a vast number of conformations. Furthermore, an IDP is

constantly fluctuating between these conformations and the dynamics of inter-conversion between them

are also important to its function. In general, a protein is identified as intrinsically disordered if it has

no unique stable structure under native conditions, and can be identified using one of several biophysical

techniques [2, 17, 18].

A protein’s structure can be defined by its configuration at a moment in time: the relative coordinates

of all of the atoms. However, no two configurations will ever be the same and even the configurations of

folded protein will be innumerable. Instead we can introduce the more tractable idea of a conformation: a

set of configurations grouped together using a threshold of structural similarity. This definition depends

upon the choice of threshold, but generally the configurations of a folded protein will be similar to their

ensemble average. This average and its variance defines the unique folded conformation and can be

characterized by X-ray crystallography. On the other hand, the average of IDP configurations will be

dissimilar from any particular configuration in the ensemble [19].

The difference between IDPs and natively folded proteins can be illustrated by comparing their free

energy landscapes in conformation space as shown in Figure 1.4. For folded proteins, this landscape

forms a funnel that has a minimum energy for a single most probable native conformation. The narrow

width of the funnel represents the low variance of the configurations. On the other hand, IDPs tend

to have a relatively flat free energy landscape and explore many similarly probable conformations via

thermal motion. This conformational landscape is shaped by the interactions between the amino acids

making up the protein, but also depends very strongly on the surrounding environment [3, 20, 21].

Protein disorder prediction is often binary, only differentiating between whether a protein has a unique

3D structure (order) or not (disorder), and hence does not describe the diversity of conformational states

available to IDPs [4]. As mentioned before, many proteins are composed of both ordered and intrinsically

disordered regions. Only ∼ 30% of known “folded” protein structures have no disordered regions within

their sequences [9]. On the other hand, many IDPs have significant amounts of transient secondary

structure and for some, their structure can be thought of as a set of several folded conformations [1,
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Figure 1.4: Comparison of two possible free energy landscapes of a folded protein (left) and an IDP
(right). Figure adapted from van Uversky et al. [3].

4]. IDP conformations are also highly sensitive to the properties of the solution and the functions of

many IDPs involve a disorder-to-order transition. In summary, the understanding of protein structure

is complicated by: the presence of both ordered and disordered regions in proteins, fluctuations between

order and disorder in time, disorder-to-order or order-to-disorder transitions as part of protein function,

and the dependence of the degree of order and disorder on the environment [9]. The binary classification

does not suffice and instead structure can be defined along a disorder-order continuum, as shown in

Figure 1.5. Because a particular protein’s structure is heavily modulated by it’s environment, the

definition of a single “native state” for ordered proteins is also called into question. Instead, a protein’s

environment contributes to its position on the disorder-order continuum [2–4, 21].

The disorder-order continuum can be coarsely partitioned into four types of protein structure. Folded

proteins with a unique native structure are at one extreme. The molten globule is a collapsed state, with

many elements of secondary structure, but lacking a single hydrophobic core, unlike folded proteins. The

pre-molten globule is larger than the molten globule but still has some hydrophobic clusters and residual

secondary structure. Finally, the most disordered IDPs fall into the random coil group. Experimental

measures of polymer dimensions which will be discussed in Section 1.2 are capable of differentiating

between these types of ensembles [1, 2, 4, 19].

In the free energy landscape picture, the disordered extreme corresponds to a relatively smooth land-

scape with similarly probable conformations. The ordered extreme corresponds to a single deep funnel

or energy minimum. Intermediate locations on the disorder-order continuum correspond to landscapes

with multiple minima of varying energies [3]. The dynamics of an IDP are determined by the ruggedness

of the free energy landscape, where the heights of transition barriers between the IDP conformations

correspond to the inter-conversion times.

A full characterization of an IDP will involve a description of all possible conformational states and the
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Figure 1.5: Order-disorder continuum of protein structure. Figure from van der Lee et al. [4].

rates of interconversion between them [20]. Practically, this is impossible and instead certain features of

the ensembles of conformations can be probed experimentally using techniques such as nuclear magnetic

resonance (NMR), small-angle x-ray scattering (SAXS), Förster resonance energy transfer (FRET), and

dynamic light scattering (DLS). To understand the complete ensemble of conformations, experiments

can be supplemented by simulations that reproduce the experimental data [2]. In the next section, I will

describe the most common experimental observables and how they can be obtained from an ensemble

of conformations.

1.2 Interpreting IDP Structure through Polymer Physics

While complete information about an IDP’s state at every instant in time is impossible to obtain experi-

mentally, several techniques can probe the conformations and reveal information about the ensembles of

IDPs: NMR, fluorescence correlation spectroscopy (FCS), or DLS can measure the diffusion coefficient

and hydrodynamic radius, FRET gives information about any inter-residue distance (such as the end-to-

end distance), and SAXS can measure radius of gyration [2, 4, 22]. Polymer physics offers a theoretical

framework for studying IDPs, linking experimental observables to conformational ensembles [2, 9, 23].

In this section I will describe a few of these observables, collectively referred to as polymer dimensions,

how they are related to a polymer’s ensemble of conformations, how they may be calculated from a

polymer model or simulation, and the predictions of simple polymer theories for their scaling with the

number of monomers and relationships between them. These relationships and scaling laws describe the

universal behaviour of polymer systems independently of the details of local properties of the IDPs or

solvent, and are useful in interpreting experimental results and identifying when IDPs deviate from ideal

behaviour [23–27].

1.2.1 Measures of Polymer Dimensions

Consider a polymer composed of N monomers connected by N − 1 links. A single conformation can

be described by the positions {~Ri} of it’s monomers for i ∈ {1, 2, ..., N}. Depending on the choice of
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model, the monomers of an IDP can be the individual atoms making up the polypeptide backbone,

individual amino acids, or equivalent monomers corresponding to several atoms or amino acids [19, 28,

29]. A polymer ensemble comprises a large number of possible conformations, which can be described

statistically in terms of probability distributions, of which moments are useful characteristics.

The end-to-end distance is measured between the first and last monomer. The ensemble average of

the square end-to-end distance is:

〈R2
e〉 = 〈(~R1 − ~RN )2〉 (1.1)

The radius of gyration is a more comprehensive measure of a polymer’s size than the end-to-end

distance, since it takes into account the positions of all the monomers rather than only two. The square

radius of gyration is the average of all the square inter-monomer distances or equivalently the average

square distance between each monomer and the average position of all the monomers (~Rc = 1
N

N∑
i=1

~Ri).

The ensemble average of the square radius of gyration is:

〈R2
g〉 =

1

N

N∑

i=1

〈(~Ri − ~Rc)
2〉 =

1

2N2

N∑

i=1

N∑

j=1

〈(~Ri − ~Rj)
2〉 (1.2)

The hydrodynamic radius Rh is the radius of a solid sphere that has the same diffusion coefficient

as the polymer. It depends not only on the ensemble of conformations but also the dynamics of in-

terconversion between them. The diffusion coefficient of the polymer is inversely proportional to the

hydrodynamic radius via the Stokes-Einstein relation [24, 25]:

De =
kBT

6πηRh
(1.3)

where kB is Boltzmann’s constant, T is the absolute temperature, η is the solvent viscosity. De can be

calculated by starting with the displacement of the polymer’s centre of mass:

D(t) =
〈(~Rc(t)− ~Rc(0))2〉

6t
(1.4)

This expression depends on t, the time at which the mean squared displacement is measured. The

average is over sample paths, and the limit ensures that there are no dynamic correlations between the

conformations. De is the long time limit of expression 1.4 [30, 31]:

De = lim
t→∞

D(t) (1.5)

Kirkwood and Riseman [32] introduced a pre-averaging approximation for the hydrodynamic in-

teractions between the monomers, allowing for an estimate of the hydrodynamic radius from just the

ensemble of conformations. The Kirkwood approximation for the diffusion coefficient of a polymer, using

the Oseen tensor for hydrodynamic interactions, is [30]:

Dk =
kBT

6πηN2




N∑

i=1


 1

ai
+

N∑

j=1,j 6=i
〈|~Ri − ~Rj |−1〉




 (1.6)

Here, ai is the hydrodynamic radius of monomer i, and again the average is over the ensemble of
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conformations. The Kirkwood approximation is equivalent to the short time limit (t → 0) of the

diffusion coefficient in Equation 1.4 [30, 31]. A derivation of this result is given in Appendix A. The

inverse of the approximation to the hydrodynamic radius is defined as:

〈R−1
k 〉 =

1

N2




N∑

i=1


 1

ai
+

N∑

j=1,j 6=i
〈|~Ri − ~Rj |−1〉




 (1.7)

For compactness of the notation in the following text, we often use a short form (without brackets

representing averaging) to refer to the polymer dimensions defined above. Re or end-to-end distance

means
√
〈R2

e〉, Rg or radius of gyration means
√
〈R2

g〉, and Rk means 〈R−1
k 〉−1. Rh refers to the long-

time limit of the hydrodynamic radius as it is defined above. Any other meaning (such as the dimensions

of a single conformation, or the average over conformations at a certain time) will be noted explicitly.

1.2.2 Predictions of Homopolymer Models

The ensemble of conformations of an IDP is governed by the inter-monomer and monomer-solvent

interactions. In polymer physics terms, the balance of the monomer and solvent interactions can be

related to the solvent quality or an effective monomer cohesiveness. Simple homopolymer models can

categorize the ensembles into regimes of behaviour and make predictions about the ensemble averages

of polymer dimensions in each regime [9, 23, 27]. In this section, I will describe the predictions for the

relative polymer dimensions, valid for large N , and the scaling with of the polymer dimensions by the

power law R ∝ Nν in three regimes most accessible by simple polymer theories.

At one extreme lies the good solvent regime, when the monomer cohesiveness is negligible and the

only interactions are short range repulsion due to excluded volume. A polymer in a good solvent can

be modeled by a self avoiding walk (SAW). 〈R2
e〉/〈R2

g〉 is larger than that in a θ solvent at ∼ 6.3 [33].

A theoretical estimate of the ratio of
√
〈R2

g〉〈R−1
k 〉 in this regime is 1.56. The scaling exponent of the

polymer dimensions is ν ≈ 0.6 [25]. In a solution with high denaturant concentration, both natively

folded proteins and IDPs follow a scaling law close to the good solvent regime [34–36].

When cohesive and repulsive interactions between monomers are balanced, a polymer is in a θ solvent,

well modeled by a random walk or a Gaussian chain. The ratio between the square end-to-end distance

and square radius of gyration is 〈R2
e〉/〈R2

g〉 = 6 and the ratio between the radius of gyration and the

Kirkwood approximation for the hydrodynamic radius is
√
〈R2

g〉〈R−1
k 〉 is approximately 1.5. All polymer

dimensions scale with ν = 0.5 [24, 25, 37]. When considered together, IDPs in native conditions follow

roughly θ solvent scaling [36, 38]

Decreasing the solvent quality is equivalent to increasing the strength of the cohesive interactions

between the monomers resulting in collapse to a compact globule. In this limit, if the polymer is

approximated as a solid sphere,
√
〈R2

g〉/Rh ≈ 0.775, and if each end is distributed uniformly inside the

sphere [39, 40], 〈R2
e〉/〈R2

g〉 = 2. Any measure of the polymer size scales with ν = 1
3 . Natively folded

proteins follow this scaling law [41].

As a simple approximation, the ensemble of conformations of IDPs and even folded protein structures

fall somewhere on this disorder-to-order continuum, depending on the balance of cohesive and repulsive

interactions determined by the inter-residue interactions due to their sequence and the properties of the

solvent [23]. Analysis of the relative polymer dimensions as well as comparison with predictions from

the scaling laws at the good and poor solvent extremes can reveal a particular protein’s location on this
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continuum. Deviations from the predicted relative polymer dimensions for that regime would indicate

deviations from the homopolymer theories and can suggest that the conformations are heavily influenced

by the heterogeneity of the sequence.

1.3 Relationships between Sequence and Structure

Analyzing the amino acid sequences of IDPs gives insight into the principles behind their structures and

consequently their functions. In general, IDP sequences have lower evolutionary conservation compared

to folded proteins [18, 42]. IDPs sequences also have lower information content in their sequences due

to the depletion of certain amino acids relative to folded proteins and repetition [4, 9, 21].

Today, there are more than 50 disorder predictors of varying levels of complexity. Even simple

predictors based on amino acid composition are capable of a high level of accuracy. For example, a

disorder or order promoting score can be assigned to each amino acid based on its composition (mean

fraction) in IDPs relative to natively folded proteins. Generally IDPs are depleted in hydrophobic

amino acids and enriched in charged, polar, and structure-breaking amino acids, such as Glycine and

Proline [42]. A predictor based only on amino acid composition is capable of 87% accuracy when

predicting disorder. After reducing the sequence alphabet by assigning each amino acid to just one of 4

types, this predictor performs almost as well as when using the full 20 amino acid alphabet [43]. Even a

predictor based only on two properties: the net charge per residue and and hydrophobicity per residue

of a protein, can differentiate between IDPs and folded proteins [1, 2, 4, 6, 17].

Due to the low conservation and complexity of IDP sequences, as well as the success of composition-

based predictors, it is possible that, compared to the unique structures of natively folded proteins, IDP

structures are less sensitive to the specific amino acid sequence. Instead, the fine details of amino acid

interactions can be coarse-grained out and IDPs can often be understood in terms of the basic physical

properties of amino acids such as charge, hydrophobicity, flexibility of the polypeptide backbone, and

how these are affected by interaction with the solvent [44].

1.3.1 IDP Amino Acid Composition

The amino acid composition as well as low sequence complexity and conservation of IDPs points to the

possibility of general relationships between an IDP’s amino acid composition and its function. Prior to

identifying the relationships to function, it is simpler to investigate the general relationships between

an IDP’s amino acid composition and its structure, and identify the sequence properties which may be

responsible for an IDP’s location on the disorder-order continuum.

In general, mean hydrophobicity is lower and mean net charge is higher in IDP sequences than in

folded proteins and therefore may contribute to the degree of disorder. Often, a lack of larger hydrophobic

amino acids prevents the folding of IDPs into a stable structures with a hydrophobic core like that of

natively folded proteins. A higher net charge contributes to greater repulsion between different segments

of IDPs. Using coarse-grained simulations, Ashbaugh and Hatch showed that sequence hydrophobicity

and net charge control the transition between expanded coil and collapsed globule states [45]. Yamada

et al. [46] measured the hydrodynamic radii of several FG nucleoporins and found that the ratio of

the fraction of charged amino acids to the fraction of hydrophobic was enough to distinguish between

the coil and globule regimes of behaviour. Furthermore, the relative expansion of Phenylalanine to

Serine mutants showed that hydrophobicity could modulate polymer dimensions. Hofmann et al. [35]
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used FRET measurements of variable length segments of IDPs to extract their scaling exponents. In

water, the exponents were highly sequence dependent, with the average being slightly more compacted

than at the θ point. There was a positive correlation between net charge and scaling exponent as well

as a negative correlation between hydrophobicity and scaling exponent. However, the variable length

subsequences of a highly heterogeneous IDP sequence may not share a single scaling exponent. At

high denaturant concentrations, the exponents converged to ν ≈ 0.62 ± 0.3 indicative of good solvent

conditions or the disordered extreme of the continuum.

Marsh and Forman-Kay [38] investigated the relationship between composition and the relative ex-

pansion of hydrodynamic radius (Rh) for several IDPs. The expansion factor of each IDP was calculated

relative to RIDPh := R0N
ν for the same number of amino acids N , and the scaling relationship was

obtained by fitting to all IDPs (ν = 0.509). Net charge and proline content were the best predictors

of expansion of Rh while hydrophobicity was only weakly correlated with compaction. Using FRET,

Muller-Spath et al. [47] also showed that expansion is associated with net charge for several IDPs. How-

ever, they also showed that the properties of the solvent are equally important. A high net charge

polypeptide will collapse at high ionic concentration, while a charge balanced one will expand.

Mao et al. [48] proposed a diagram of states (shown in Figure 1.6) relating an IDP’s composition

described by positive and negative charge fractions as well as hydrophobicity to the polymer ensemble.

Using ABSINTH simulations supported by FCS measurements, they showed differences in the polymer

dimensions of proteins with identical net charge but different numbers of positively and negatively

charged residues. They proposed three compositional parameters to determine the regime of protein

structure: net charge per residue, the fraction of charged amino acids, and the mean hydrophobicity.

These classes roughly determine whether attractive or repulsive interactions dominate and whether IDPs

form compact globule or expanded coil structures [23, 27].

Milles and Lemke [49] measured the compaction of the dimensions of several similar length fragments

of Nup153 relative to their denatured state using FRET. The relative dimensions of the IDPs varied

greatly (between 0.68 and 0.95), but surprisingly there were only weak correlations with the amino acid

compositions. The ratio of fraction of charged to fraction of hydrophobic amino acids had no correlation

with the relative dimensions and there was only a weak positive correlation between the combined fraction

of Asparagine and Glutamine (N and Q) and relative dimensions. However, both of these amino acids

were previously found to be associated with chain compaction [38], and only Glutamine (Q) is considered

a disorder promoting amino acid [42]. Although there are trends between compositional properties such

as proline content, net charge, and hydrophobicity, and an IDP’s dimensions, the conflicting experimental

findings suggest that the amino acid composition is not the only factor determining IDP structure.

1.3.2 Sequence Heterogeneity

One way proteins are distinct from other polymers is their extreme sequence heterogeneity. Functionally,

local sequences of short linear motifs in IDPs are responsible for low-affinity interactions with binding

targets [4]. However, permuting the sequence while keeping amino acid composition constant, also affects

the global structure of IDPs, which may have implications for functions other than local binding [27].

Similar to the way that the experimental insight into IDP structure is limited to a few polymer dimen-

sions, the sequence space that can be feasibly explored by experiment is limited to a small fraction of the

total. Simulations offer a way to systematically study the vast sequence space and the effect of sequence

heterogeneity on polymer dimensions.
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Figure 1.6: Phase diagram of IDP composition based on positively charged fraction (f+), negatively
charged fraction (fi), and hydrophobicity. Figure from van der Lee et al. [4].

Das and Pappu [50] demonstrated the importance of sequence on IDP structure independent of

composition using simulations of IDPs with equal numbers positively and negatively charged amino

acids. All the sequences, had the same net charge and assuming only composition was important, should

have had the same polymer dimensions. However, the radii of gyration of the sequences differed by

∼ 40% between sequences of alternating positive and negative charges and sequences were each type of

charge was confined to one half of the sequence. The parameter κ quantified the segregation of positive

and negative charges along the sequence and was correlated with polymer dimensions. Martin et al. [51],

used an analogous parameter (Ω) to describe the segregation of disorder promoting (Proline and charged

residues) and order promoting (all others) amino acids in the sequence. This sequence parameter was

based on the experimental results of Marsh and Forman-Kay [38] which showed that the Prolines and

charged residues are correlated with expansion in Rh. The sequences they studied were permutations

of the IDR of Ash1, and consequently had more a more realistic amino acid composition than those

with only charged residues. Ω was similarly correlated with polymer dimensions, confirming that less

segregation between the order promoting amino acids, independent of composition, results in compaction

of IDPs.

On one hand, IDP sequences are not conserved across species, have low complexity, and their compo-

sition can predict disorder. However, sequence independent of composition has a great effect on polymer

dimensions. Perhaps IDP sequences and structures can be represented by a model which captures

the main properties without requiring the detailed interactions between all 20 amino acids. A few of

these properties have been identified: the importance of electrostatic interactions, hydrophobicity, and
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in general the association of certain amino acids with either expansion or compaction of the IDP. If a

coarse-grained model built on these principles is sufficient for understanding the structures and dynamics

of IDPs, it will be applicable to other polymer systems. Ultimately, any model must be informed by

experiment. In the next section, I will review several experimental techniques for studying the structure

and dynamics of IDPs, emphasizing the role of polymer theory in interpreting their results.

1.4 Experimental Methods for Probing IDP Ensembles

1.4.1 Extracting Polymer Dimensions from FRET

Single-molecule Förster resonance energy transfer (FRET) is an experimental technique which discerns

between distances in the range of ∼2nm to ∼10nm, making it an appealing method of investigating

IDP dimensions. FRET donor and acceptors dyes are attached to two positions, typically near the two

opposing ends of an IDP sequence. Assuming rapid rotational reorientation of the the dyes, the rate of

energy transfer will vary only with the distance between the two dyes. For dyes at a fixed distance R

from each other, the FRET efficiency E(R) is given by:

E(R) =
1

1 + R6

R6
0

(1.8)

Where R0 is the Förster radius (typically between 5 and 7 nm), which depends on the dye pair used and

the refractive index of the medium between the dyes, and is independent of the IDP [22, 52–54].

IDPs typically undergo rapid fluctuations between their many conformational states and the distance

between the FRET dye pair on an IDP will not remain static. The experimentally observed FRET

efficiency, depends on the ensemble of conformations and dynamics of inter-conversion between them.

Four timescales are important in the FRET measurement: the rotational correlation time of the dyes, the

fluoresence lifetimes of the dyes, the end-to-end distance correlation time of the IDP, and the observation

timescale. Typically, the rotation of the dyes (∼ 100ps) is fast compared to their fluorescence lifetimes

(∼ 1ns), they are both faster than the end-to-end distance dynamics (∼ 100ns), which is faster than the

observation timescale (∼ 1ms). Under these assumptions, the experimentally observed FRET efficiency

Eobs is given by the expectation value :

Eobs ≈ 〈E(R)〉 =

∫ Rmax

Rmin

dRE(R)p(R) (1.9)

where Rmin and Rmax are the closest and farthest possible separation of the dyes respectively, the latter

being approximately equal to the contour length of the IDP, and p(R) is the probability distribution of

the dye separation. One common deviation from this behaviour, occurs due to the presence of two sub-

populations in the ensemble of conformations. If the interconversion time between the two is longer than

the FRET observation time, they will appear as two separate peaks on the FRET efficiency distribution.

Each peak is then described by Eq. 1.9, with a different p(R) for each subpopulation.

To extract chain dimensions from a FRET measurement, the conformational ensemble of the IDP,

or at least the probability distribution of the dye separation, must be known. The chain dimensions are

obtained by fitting the parameters of the distribution to reproduce the experimental FRET efficiency.

If the dyes are placed near the IDP’s ends, the approximation p(R) ≈ p(Re) is made, making it simplest
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to extract the end-to-end distance. The p(Re) provided by the Gaussian chain model (see Section 2.1.1)

is usually sufficient in this case as the only fitting parameter is the mean square end-to-end distance

〈R2
e〉 and at high denaturant concentrations it gives an error that is at most ∼ 10% when compared with

simulations [55].

FRET is also often used to make inferences about other chain dimensions, which can be the source of

discrepancies. For example, in the case of radius of gyration, the model needs to describe the probability

distributions of both end-to-end distance and radius of gyration. Although the Gaussian chain model

is successful in extracting end-to-end distance from FRET experiments, likely due to similarity of any

typical Re distribution to the Gaussian around its peak, attempting to extract the radius of gyration

often leads predictions which contradict Rg measured by SAXS. The Gaussian chain model assumes the

polymer is always in a θ solvent and gives
〈R2
e〉

〈R2
g〉 = 6 for all IDPs and solvent conditions. When compared

with simulations, this leads to predictions with up to ∼ 20% error in the radius of gyration [55].

A more detailed mean-field model, based on the Sanchez theory [56], includes both excluded volume

and intrachain attractive interactions and can explain the coil-to-globule transition of polymers. Rather

than end-to-end distance, the model only provides a probability distribution for radius of gyration p(Rg)

directly. As proposed by Ziv and Haran [57], the end-to-end distance distribution used in Eq. 1.9, is

then constructed using:

p(Re) =

∫ Rg,max

Rg,min

dRgp(Re|Rg)p(Rg) (1.10)

where p(Re|Rg) is the probability distribution of distances between two random points in a sphere of

radius
√

5Rg. The sphere radius is chosen to recreate the Gaussian chain behaviour at the θ point.

This method has been criticized for not taking into account the asphericity of the conformations at

each Rg [58]. It also suffers from the same defect as the Gaussian distribution, since
〈R2
e〉

〈R2
g〉 = 6 al-

ways, independent of the parameters and thus implicitly assumes the θ solvent relationship between

the two dimensions. This assumption leads to an overestimate of Rg in good solvent conditions and an

underestimate for poor solvents.

Simulations with various levels of coarse-graining can also be used to generate conformations and

construct the P (Re), P (Rg), and other distributions of polymer dimensions. However, care must be taken

to prevent overfitting when selecting the parameters to match the experimental FRET efficiency. Another

approach of extracting polymer dimensions from FRET data is based on sub-ensembles of conformations

proposed by Song et al. [58, 59]. First, many conformations are generated with a particular model, such

as the self-avoiding walk, and are then binned into conditional distributions p(Re|Rg). This method

does not assume a distribution p(Rg) but rather assumes that
√
〈R2

g〉 will be approximately equal to the

Rg0 whose subensemble p(Re|Rg0) most accurately reproduces the experimental FRET efficiency via:

Eobs ≈
∫ Re,max

Re,min

dReE(Re)p(Re|Rg0) (1.11)

The sub-ensemble method illustrates the fact that there is not a consistent one-to-one relationship

between different polymer dimensions such as Rg and Re, for different polymer ensembles. Even ho-

mopolymer theories show that conformations in different regimes correspond to different ratios between

their polymer dimensions, and using FRET data to derive other polymer dimensions without knowing

the regime of behaviour may lead to inconsistencies.
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1.4.2 Structural Characterization of IDP Conformations

Discrepancies between different methods of measuring chain dimensions called into question the method-

ology of dimension inference from FRET. For example, Rg of Protein L inferred using the Gaussian chain

or Sanchez theory from FRET data, showed a much greater chain compaction compared to direct SAXS

measurements of Rg as denaturant concentrations were reduced [60]. In an attempt to understand this

discrepancy, SANS and FRET measurements were performed on the polymer PEG, which is known to

be unaffected by denaturant concentrations. For varying denaturant concentrations, dye-labeled PEG

exhibited changes in Re obtained from FRET, comparable to other works studying proteins, while the

Rg of unlabeled PEG obtained using SANS was unaffected [61]. Possible explanations are that denatu-

rant affects the conformations of polymers in such a way as to affect Re more than Rg, which may be

due to interactions between the dyes [36, 62].

Borgia et al. [63] observed consistent chain expansion with increasing dentaurant, for the proteins R17

and ACTR, using multiple methods: FRET for Re, SAXS for Rg, and FCS and DLS for Rh. In order

to address previous discrepancies, ensembles were generated using the ABSINTH model and then fit to

the raw experimental data of FRET and/or SAXS using Bayesian reweighting, so that the reweighted

conformations differed minimally from the original ensemble. Ensembles reweighted either with FRET

or SAXS data, or with both showed consistent values of Rg. The hydrodynamic radii calculated using

HYDROPRO [64] from the reweighted conformations were in reasonable agreement with the FCS and

DLS data, although this method assumes that each configuration remains rigid during the protein’s

diffusion. Zheng et al. [65] showed that explicit solvent all-atom molecular dynamics simulations of

ACTR were also in accord with the experimental FRET and SAXS data and also suggested that the

FRET dyes did not have a noticeable effect on the chain dimensions and that the previous inconsistencies

were due to the method of extracting chain dimensions from FRET data.

Fuertes et al. [36] performed FRET and SAXS experiments of 10 chemically denatured proteins and

IDPs, which further elucidated the source of the previous inconsistencies. Using SAXS measurements

of both labeled and unlabeled proteins, they showed that FRET dyes do not significantly affect the

scaling laws or chain dimensions and can be incorporated into a model as an extension of the amino

acid chain by 5± 3 residues. The scaling exponent obtained from SAXS data demonstrated that, in the

absence of denaturant, IDPs exhibit roughly θ solvent scaling, however the ratio of
〈R2
e〉

〈R2
g〉 was 4.3, much

less than the Gaussian chain prediction. They proposed that this disagreement was due to a decoupling

of the two dimensions of end-to-end distance and radius of gyration. Re is very sensitive to fluctuations

of distances between the chain ends, while all inter-monomer distances contribute to Rg. To illustrate

this, they reweighted a set of conformations generated using the ABSINTH model, using a similar

procedure to Borgia et al. [63]. They showed that relative to the unweighted ensemble, reweighting

using the FRET experimental data caused a greater relative change in Re than Rg. By reweighting the

ensembles to match SAXS data and different hypothetical FRET efficiencies, they showed that all but

the most extreme FRET efficiencies could be observed with minimal changes to the ABSINTH force

field, demonstrating that observing different Re values with no change in Rg is not unexpected. The

scaling of inter monomer distances 〈〈|~Ri − ~Rj |〉〉 with sequence separation |i− j| of the different FRET

efficiency subensembles, began to spread at half of the total sequence length. The ensembles for each

of the different FRET efficiencies had different asphericities, which were only weakly coupled to the
〈R2
e〉

〈R2
g〉 ratio. The subensemble method proposed by Song et al. [58], similarly concluded that the IDP

ensembles differ from simple homopolymer models in that they are aspherical and this is responsible for
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the decoupling of FRET dimensions from SAXS dimensions. Heterogeneity of the ensembles has a great

effect on the relative polymer dimensions and explains the inconsistent results obtained using simple

polymer models.

In summary, previous inconsistencies between FRET and SAXS experiments were due to: (i) assump-

tions in the polymer models used and (ii) heterogeneity in the conformational ensemble. In Chapter 4,

I will systematically explore how the different polymer dimensions vary along the full disorder-order or

good-bad solvent continuum and demonstrate that relative dimensions can vary even in a homopolymer

model, as well as investigate the effects of sequence heterogeneity on the ensembles of conformations.

With the aid of a polymer physics framework, two or more polymer dimensions obtained with different

experimental techniques can reveal information about an IDP’s ensemble of conformations, rather than

being the source of a discrepancy.

1.4.3 End-to-end Distance Dynamics

FRET can be combined with Fluorescence Correlation Spectroscopy (FCS) to study the dynamics of

IDP conformations. Fluctuations in the distance between the donor and acceptor fluorophores, usually

placed at the ends of the chain, result in fluctuations of fluorescence intensity. In addition to obtaining

information about the end-to-end distance with FRET, the correlation time of the fluorescence intensity

can be related to the “reconfiguration time” describing the dynamics of the end-to-end distance [22].

Soranno et al. [66] investigated the end-to-end distance dynamics of the unfolded state of a cold

shock protein (Csp) and two IDP domains. The unfolded state typically appears as a separate peak on

the FRET intensity histogram due to long conversion times between the folded and unfolded states, and

its ensemble of conformations can be studied separately. An increase in the denaturant concentration,

caused a swelling of the end-to-end distance, which coincided with an initial decrease in reconfiguration

time. Naively, we would expect the reconfiguration time to increase with longer end-to-end distances.

The experimentally observed decrease is attributed to internal friction at lower denaturant concentra-

tions, which is defined as the deviation from proportionality between reconfiguration time and solvent

viscosity. The molecular origin of internal friction in IDPs is unclear and has been proposed to be due to

dihedral angle transitions or cohesive interactions such as hydrogen bonds, but could be a combination of

several intra-chain interactions [22, 67, 68]. In Chapter 5, using simulations of the coarse-grained model

introduced in Section 2.3, I will investigate the end-to-end distance dynamics of polymers, and illustrate

that cohesive interactions alone do not reproduce the denaturant dependence of reconfiguration time,

and sufficient sequence heterogeneity is required.

1.5 Coarse-Grained Modeling of IDPs

Computational approaches allow direct sampling of the conformational states of IDPs and are therefore

a great aid to experiments in studying structure and dynamics of IDPs. Challenges arise as experiments

report averages which can correspond to many different ensembles of conformations. A balance needs

to be struck between including detail in the models and overfitting the sparse experimental data [69].

All atom molecular dynamics (MD) simulations have been used as a tool in the structure prediction of

natively folded proteins for several decades. There are several obstacles when applying these methods to

IDPs. First, many MD force fields were parametrized specifically for folded proteins. And second, relative

to folded proteins, computationally expensive simulations are needed to fully explore the conformational
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space of an IDP [19, 20]. The predictions of molecular dynamics simulations for IDPs are very sensitive

to the choice of force field [70–72]. Rauscher et al. [70] showed that eight different force fields gave

divergent results for chain dimensions and secondary structure. In fact, the choice of the force field had

a stronger effect on the amount and type of secondary structure present than the amino acid sequence

itself.

Coarse graining of the atomistic details offers many advantages, especially in modelling the vast

conformational space of IDPs [29]. Reduced system size, due to the use of bead models over all atom

simulations and implicit over explicit solvents, results in lower computational complexity and the ability

to sample longer times [19, 69, 73]. A reduced amino acid alphabet reduces the number of possible

interactions which results in fewer parameters and is less likely to suffer from overfitting. If only structural

observables are needed and information about dynamics is not required, implicit modelling of the solvent

is often sufficient as it still gives a reasonable equilibrium distribution of the conformations.

The obvious flaw with coarse-graining is that it is only an approximation and may not include

enough detail to be able to capture specific interactions. It is sometimes difficult to relate the param-

eters of a coarse grained model to real biophysical quantities and convert between model predictions

and experimental results. Often, coarse-grained models must be parametrized based on all-atom MD

simulations [74].

Proteins are polymers whose monomers are amino acids. Each amino acid is composed of an identical

backbone and one of twenty variable residues, each made up of 10-26 atoms in total. There is a multitude

of possible interactions between the 20 amino acids [75, 76]. The challenge of coarse-graining is to identify

which of the properties and interactions of amino acids have the greatest influence on IDP structure [29,

69]. In the case of IDPs, the specific amino acids may be less important, than in natively folded proteins,

since IDP sequences are less conserved and are of lower complexity [4, 9, 18, 21, 42]. The properties of low

hydrophobicity, high net charge, and proline content are good predictors of disorder and expansion [1, 38,

42]. Sequence properties such as charge pattering can also tune the relative expansion of a protein [50].

1.6 Summary and Thesis Outline

At high concentrations of chemical denaturant, both IDPs and natively folded proteins obey the self-

avoiding random walk scaling [34, 35]. At this extreme, the heterogeneity of the possible amino acid

interactions becomes unimportant. This good solvent state can be thought of as the disordered extreme

of the disorder-order continuum. At intermediate denaturant concentrations, natively folded proteins

behave similarly to native IDPs, which fall somewhere on the disorder-to-order or good-to-poor solvent

continuum. Both the solvent and the amino acid sequence determine the position of a protein on this

continuum [3, 77].

One flaw with this picture is the view of the disorder-to-order continuum as one dimensional. It

assumes that proteins falling at the same location on the continuum will share structural features such

as the probability distribution of conformations, and consequently similar polymer dimensions, or follow

the same scaling law. The continuum spreads out especially at the ordered extreme, where each natively

folded protein will have a unique conformation and IDPs gain diverse transient secondary structure.

Departures of the relative polymer dimensions from homopolymer behaviour can reveal departures of

an IDP’s structure from the single disorder-to-order continuum.

Incrementally constructing a coarse-grained model, by adding in levels of detail, and observing the
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effects can reveal which properties of an IDP’s sequence are responsible for its structure and dynamics.

The simplest models - the Gaussian chain and the self-avoiding walk - can give reasonable shapes for the

distributions of polymer dimensions, but do not explain why equal length IDPs have different polymer

dimensions. Addition of a single cohesiveness parameter can tune the relative expansion/compaction of

the IDP dimensions and determine where the IDP falls on the disorder-order continuum. This parameter

integrates all of the sequence properties (both composition and patterning) as well as the properties of

the surrounding solvent (temperature, salt, denaturant, pH, etc.). Finally, to explain the role of sequence

in controlling IDP conformations, monomer heterogeneity must be included in the model, most simply

in the form of a reduced amino acid alphabet.

In Chapter 2, I will describe several coarse-grained polymer models that can be applied to IDPs.

Section 2.1 provides an overview of a few simple polymer physics theories that serve as a basis for the

other models. Section 2.2 describes the mean field model used in Chapter 3 to investigate the behaviour

of surface grafted FG nups and transport proteins. The model can explain the conflicting observations

of in vitro experiments and reconcile the various theories proposed for the mechanism of transport

through the Nuclear Pore Complex. The results of Chapter 3 have been partially reported in Refs. [78]

and [79]. The model of Section 2.3 is used for the coarse-grained simulations of Chapters 4 and 5 and

can accommodate various levels of detail such as sequence heterogeneity and hydrodynamic interactions.

In Chapter 4, I report the predictions of homopolymer and heteropolymer models for relative polymer

dimensions across the entire disorder-order continuum. The results of Chapter 4, provide an improvement

over the simple polymer theories commonly used in the interpretation of experimental measurements

of IDP dimensions, without resorting to more computationally demanding simulations. In Chapter 5, I

investigate end-to-end distance dynamics of polymers and show that sequence heterogeneity is required

to explain the increase in reconfiguration time with chain compaction of IDPs.



Chapter 2

Theory and Methods: Polymer

Models of IDPs

In this chapter, I describe the polymer models used to study IDPs in Chapters 3, 4, and 5. In Section 2.1,

I outline several simple models of single polymer chains. The models are used to make predictions about

the relative polymer dimensions and the scaling of polymer dimensions with the number of monomers.

The Lattice Model serves as the basis for the Polymer Brush Model of Section 2.2. The heights of layers

of surface tethered FG nucleoporins of the Nuclear Pore Complex and the accumulation of transport

proteins in the layers are investigated in Chapter 3 using the Polymer Brush Model. The effects of

monomer sequence on the polymer dimensions and end-to-end distance dynamics of IDPs are investigated

in Chapters 4 and 5 using the Coarse Grained Model of Section 2.3.

2.1 Models of an Isolated Polymer Chain

2.1.1 Gaussian Chain

Consider a chain of N + 1 monomers. Each monomer is connected to its two nearest neighbours (one

if it’s on the end of the chain) by bonds of length b, for a total of N bonds in the chain, and does not

interact with the solvent or non-neighbouring monomers. Ignoring non-local interactions, for large N ,

the probability density of the end-to-end distance is [37]:

p(Re) = 4πR2
e

(
3

2πNb2

) 3
2

e

(
− 3R2

e
2Nb2

)
(2.1)

For this distribution, the mean square end-to-end distance is 〈R2
e〉 = Nb2, so we will define R0 :=

√
Nb

(the scaling exponent is 1
2 with N). The most probable end to end distance (Re,mp) occurs at the

maximum of p(Re): Re,mp =
√

2
3R0 ≈ 0.816R0 and the expected value of end to end distance is

〈Re〉 =
√

8
3πR0 ≈ 0.921R0.

Using the Gaussian distribution as the probability distribution of the distance between any two

monomers i and j, we can calculate the radius of gyration (Rg) and the Kirkwood approximation to the

18
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hydrodynamic radius (Rk) of the Gaussian chain [80]:

〈R2
g〉 ≈

1

2N2

∫ N

i=0

di

∫ N

j=0

dj〈(~Ri − ~Rj)
2〉 =

R2
0

6
(2.2)

〈R−1
k 〉 ≈

1

N2

∫ N

i=0

di

∫ N

j=0

dj〈|~Ri − ~Rj |−1〉 =

√
128

3π

1

R0
=

8

3
√
π

1√
〈R2

g〉
≈ 1.5√

〈R2
g〉

(2.3)

2.1.2 Collapsed Globule

For the case of a poor solvent or very strong attraction between the monomers, it is appropriate to model

the polymer as a sphere of radius Rh and of uniform density [58]:

ρ(r) =

{
c if r ≤ Rh (2.4)

0 if r > Rh (2.5)

where r is the distance from the sphere’s centre. The radius of gyration is then [81]:

〈R2
g〉 =

∫ Rh
0

r2ρ(r)4πr2dr
∫ Rh

0
ρ(r)4πr2dr

=
3

5
R2
h (2.6)

√
〈R2

g〉 ≈ 0.775Rh (2.7)

The end to end distance may be calculated by assuming the first and last monomers of the polymer are

located at two random points inside the uniform sphere of radius Rh which follows the distribution [39,

40]:

P

(
u :=

Re
Rh

) 


3

16
u5 − 9

4
u3 + 3u2 if u ≤ 2 (2.8)

0 if u > 2 (2.9)

We can find the expectation values:

〈Re〉
Rh

=
36

35
and

〈R2
e〉

R2
h

=
6

5
which leads to:

〈R2
e〉

〈R2
g〉

= 2 (2.10)

Under the assumption that the distance between any two monomers follows the distribution of the

distance between two random points inside of a sphere [58], the prediction of the Kirkwood approximation

is:

〈R−1
k 〉 =

6

5

1

Rh
=

6
√

3

5
√

5

1√
〈R2

g〉
≈ 0.93√

〈R2
g〉

(2.11)

In general, any measure of the polymer size scales as R ∼ N 1
3 .

2.1.3 Lattice Model

Here, we follow the theory introduced by Flory for polymer solutions [25, 82, 83], to study the effects of

excluded volume and cohesive interactions on the dimensions of a single polymer. In Section 2.2, we will
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R

(a)

V ∼ R3

(b)

Figure 2.1: Lattice model of a single polymer. (a) the end-to-end distance distribution follows that
of a Gaussian chain. (b) when counting interactions between monomers, we assume they are placed
randomly on a lattice.

use this theory to construct a model for a polymer brush in a nano-particle solution. We will begin using

an approximate self-avoiding walk model, by reweighing the end-to-end distance probabilities of the

Gaussian chain model by the probability that each lattice cite is unoccupied as we place the monomers.

Consider a polymer on a lattice of spacing b and coordination number z. Each monomer or solvent

molecule occupies a single lattice site. We will calculate the free energy of the monomer and solvent

system as a function of the polymer size R. The polymer occupies a volume of roughly R3, equivalent

to V = R3

v0
lattice sites, where v0 is a volume parameter reflecting the size of one monomer. We assume

that the polymer and solvent particles are evenly distributed over the V lattice sites (see Figure 2.1 (b)).

The total number of polymer conformations with polymer size R is equal to the total number of possible

conformations (number of random walks of length N), multiplied by the probability distribution of the

end-to-end distance of the Gaussian chain (probability that the conformation has size R and R roughly

corresponds to the end-to-end distance, see Figure 2.1 (a)), and finally multiplied by the probability

that each lattice cite is unoccupied as we place the monomers [37, 83]. We also approximate the number

of monomers N + 1 ≈ N as equal to the number of bonds, which will not make a difference in the final

result.

First we will count the total number of polymer conformations, ignoring excluded volume and only

considering chain connectivity. Our result should be translationally invariant to the centre-of-mass of

the polymer in solution, so the position of the first monomer is irrelevant. There are z configurations

for the second monomer, and then z − 1 for every subsequent monomer since a bond may not go back

on itself. For a polymer of N bonds, the total number of conformations, ignoring excluded volume is:

Ω0,Total = z(z − 1)N−1 ≈ (z − 1)N (2.12)

Next, we amend this expression by considering the probability that as we place each monomer, the

lattice sites are unoccupied by the already present monomers. For every monomer i + 1 that we place,



Chapter 2. Theory and Methods: Polymer Models of IDPs 21

we multiply its possible configurations by the probability that each lattice site is unoccupied by the

previous i monomers (V−iV ), assuming they are uniformly distributed within V . This is incorrect locally,

as there is no way for monomer i+ 1 to be placed on the same site as i, or i− 1 since we cannot go back

along a bond. Beyond this, the probability of interfering with local monomers depends on the lattice

coordination number. Nevertheless, we will see that this is a good approximation. The total number of

conformations when excluded volume is considered is:

ΩTotal ≈ (z − 1)N
N−1∏

i=0

V − i
V

= (z − 1)N
V !

(V −N)!V N
(2.13)

Using Stirling’s approximation lnn! ≈ n lnn− n, and defining ψ := N
V = Nv0

R3 as the volume fraction

of monomers (and (1− ψ) is the volume fraction of solvent):

− ln ΩTotal ≈ V
(
ψ ln

(
e

z − 1

)
+ (1− ψ) ln(1− ψ)

)
(2.14)

Additionally, we multiply the total number of conformations by the probability that the end-to-end

distance is R:

Ω(R) = ΩTotal4πR
2

(
3

2πNb2

) 3
2

e

(
− 3R2

2Nb2

)
(2.15)

Since R3 = v0V , the first term in the parentheses in Equation 2.14, which is first order in ψ, will be

independent of R (when multiplied by V ), and can be ignored. Along with the contribution from the

end-to-end distance distribution (Equation 2.15), the free energy of the polymer, with excluded volume

interaction is:

βF (R) =
3R2

2Nb2
− 2 lnR+

R3

v0
(1− ψ) ln(1− ψ) + terms independent of R (2.16)

Effect of Inter-monomer Cohesiveness

We now consider the energy of the interactions among the monomer and solvent molecules. We will

approximate the energy of all configurations of a polymer of size R by the same mean field approximation

Ē(R), which assumes that the monomer and solvent molecules are uniformly mixed within the volume

occupied by the polymer, so that the free energy can be written as βF (R) = − ln Ω(R) + βĒ(R).

Consider that there are W total lattice sites in solution, and each can be occupied by one solvent

molecule or one monomer. In the volume occupied by the polymer, which has V lattice sites, there are

N monomers, and V −N solvent molecules, with volume fractions ψ and (1− ψ) respectively. Outside

of the V lattice sites, we have W − V solvent molecules with volume fraction 1. We assume that in our

lattice model, molecules interact only with their z nearest neighbours on the lattice, with interaction

energies εmm between two non-bonded monomers, εms between a monomer and a solvent molecule, and

εss between two solvent molecules. All except two of the monomers (at the polymer’s ends) are bonded to

two other monomers, so they only have z−2 adjacent non-bonded lattice sites, which have a probability

ψ that they are occupied by a monomer and (1 − ψ) that they are occupied by a solvent molecule [37,

83]. The average number of neighbouring monomer-monomer (Nmm) and monomer-solvent (Nms) pairs
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on the lattice is:

Nmm =
1

2
N(z − 2)ψ (2.17)

Nms = N(z − 2)(1− ψ) (2.18)

(2.19)

The solvent molecules may interact with all z of their neighbours. The average number of neighbouring

solvent-solvent pairs on the lattice is:

Nss =
1

2
(W − V )z +

1

2
(V −N)z(1− ψ) =

1

2
z(W − 2N +Nψ) (2.20)

The energy of the system with polymer size R is:

Ē(R) = Nmmεmm +Nmsεms +Nssεss (2.21)

=
1

2
V ψ2(εmm(z − 2) + εssz − 2εms(z − 2)) + terms indepdendent of R (2.22)

The total interaction energy can be written in terms of the number of monomer-monomer interactions

plus terms independent of R which we can again neglect. We will use the dimensionsless parame-

ter χcr = β(εmm(z − 2) + εssz − 2εms(z − 2)) to represent the balance of monomer-monomer and

solvent-solvent, against monomer-solvent interactions. Negative χcr corresponds to a poor solvent or

high monomer cohesiveness, favouring polymer compaction, while 0 χcr corresponds to a good solvent,

favouring expansion of the polymer size. χcr can be related to the second virial coefficient of monomer-

monomer interactions in the more detailed model of Section 2.3. The R dependent term of the average

interaction energy is:

βĒ(R) =
1

2
Nψχcr =

R3

v0

(
1

2
χcrψ

2

)
(2.23)

Combining this with Equation 2.16 gives:

βF (R) =
3R2

2Nb2
− 2 lnR+

R3

v0

(
(1− ψ) ln(1− ψ) +

1

2
χcrψ

2

)
(2.24)

Taylor expansion

For small ψ we can approximate (1− ψ) ln(1− ψ) ≈ −ψ + 1
2ψ

2, we have:

βF (R) =
3R2

2Nb2
− 2 lnR+

R3

v0

(
1

2
ψ2(1 + χcr)

)
+ terms independent of R (2.25)

To solve for the equilibrium polymer size, we minimize the free energy over R:

βdF (R)

dR
≈ 3R

Nb2
− 2

R
+

3R2

v0

(
−1

2
(1 + χcr)ψ

2

)
(2.26)
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θ Solvent

When χcr = −1 the repulsive and attractive interactions are balanced and we regain the Gaussian chain

expression:

βF (R) =
3R2

2Nb2
− 2 lnR (2.27)

βdF (R)

dR
=

3R

Nb2
− 2

R
(2.28)

The minimum of the free energy is at R∗ =
√

2
3

√
Nb as we found previously. This is the θ solvent or

θ temperature: the transition point between a coil and a globule. A solution of polymers undergoes a

separation into a mixture of dense and dilute phases.

Good Solvent

In a good solvent, there are no attractive interactions between the monomers (χcr = 0). The minimiza-

tion of the free energy over R (Equation 2.26) gives the equilibrium polymer size R∗. It is convenient to

use our previous definition the Gaussian chain end-to-end distance R0 :=
√
Nb. After some rearranging:

0 =
R5
∗

R5
0

− 2R3
∗

3R3
0

− v0

√
N

2b3
(2.29)

For large N , the second term on the right hand side is negligible, and we can solve for R∗:

(
R∗
R0

)5

=
v0

√
N

2b3
(2.30)

R∗ =

(
v0b

2

2

) 1
5

N
3
5 (2.31)

The scaling exponent ν is remarkably close to a more accurate estimate of 0.588 [25, 37].

Poor Solvent

For χcr < −1, we expect the chain to compact and the monomer volume fraction ψ to increase. Our

second order expansion for ln(1−ψ) is no longer valid, so we will include a third order term (ln(1−ψ) ≈
−ψ − 1

2ψ
2 − 1

3ψ
3):

βdF (R)

dR
=

3R

Nb2
− 2

R
+

3R2

v0

(
−1

2
(1 + χcr)ψ

2 − 1

3
ψ3

)
(2.32)

Denoting R∗ as the polymer size which minimizes the free energy and rearranging:

0 =

(
R∗
R0

)8

− 2

3

(
R∗
R0

)6

− (1 + χcr)v0

√
N

2b3

(
R∗
R0

)3

− v2
0

3b6
(2.33)

For a compact chain, R∗ < R0 (R0 is the equilibrium end-to-end distance of the Gaussian chain) and

and the first two terms are negligible:

(
R∗
R0

)3

≈ − 2v0

3b3(1 + χcr)
√
N

(2.34)
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The chain size scales as R ∼ N 1
3 as in the uniform density sphere limit.

2.2 Mean Field Model of the Grafted Polymer Brush

In this section, I will extend the lattice model for a single polymer of Section 2.1.3 to describe a general

model for a grafted polymer brush in a solution of nanoparticles. The aim of the model is to capture the

behaviour of the physical system with a minimal number of important parameters. The steric effects

are included by placing the monomers and nanoparticles on a lattice based on the Flory-Huggins theory

of polymer solutions [82]. The entropic elasticity of the chains is described by the Alexander-de Gennes

brush model which assumes that the monomer density is uniform inside the brush [84, 85]. Cohesive

interactions among the monomers and between the monomers and nanoparticles are included via the

mean field approximation. In the relevant parameter regime, the mean field model has been verified by

self-consistent field theory and coarse grained Brownian dynamics simulations [86, 87].

The mean field approximation to the free energy of the system can be written in the form:

F = −kBT ln Ω + Ē (2.35)

where Ω is the number of possible configurations of the system or multiplicity and Ē is the approximation

to the energy of the configurations. The layer height and number of nano-particles in the layer at

equilibrium are found by minimizing the free energy.

The first contribution to the multiplicity and subsequently the free energy is solely from the entropic

elasticity of the polymer brush. The brush is composed of Np polymers. Each polymer in the brush is

composed of N monomers connected by bonds of length b. For a Gaussian chain (see Section 2.1.1), the

probability density of the end-to-end vector is [25]:

P (~R) =

(
3

2πNb2

) 3
2

exp

(
− 3~R2

2Nb2

)
(2.36)

We will assume that one end of each polymer is grafted to a surface while the other extends to the layer

height h. The elastic contribution to the free energy which resists stretching of all the polymers in the

layer is [84, 85, 88]:

βFel =
h2Np
2Nb2

+ terms independent of h (2.37)

In order to account for excluded volume effects and the configurational entropy of the nano-particles,

we will connect the physical system to a lattice description, in which each monomer occupies one lattice

site as in Section 2.1.3. The polymers are attached to a surface with a grafting distance of a and the

polymer brush occupies a volume of Npa
2h. The monomers have a size l (volume l3) and their volume

fraction in the brush is ψ =
NNpl

3

Npa2h
. To count the lattice sites, we normalize distances by the monomer

size: the dimensionless grafting distance and bond length are ā = a
l and b̄ = b

l respectively. We rewrite

the monomer volume fraction as ψ =
NNp
V , where V is the number of lattice sites available to the

monomers: V = Npā
2 h
l . Additionally, there are M nanoparticles present in the brush. The model

assumes that the nanoparticles are larger than the monomers and their volume is v̄l3 (v̄ ≥ 1) (each

nanoparticle occupies v̄ lattice sites). The volume fraction of the nanoparticles in the brush is φ = v̄M
V .

Using the lattice description, we will estimate the configurational entropy of the nano-particles and
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h

a

Figure 2.2: Schematic of the brush model. The monomers are in blue. The ends of the polymers
are attached to a surface with grafting distance a. The other end extends to a height h defining the
layer. Nanoparticles, which are both in the polymer layer and the external solution, are shown in red.
Monomers occupy single sites and nanoparticles occupy multiple sites of the same lattice.

excluded volume effects of the monomers and nano-particles. Since the nanoparticles are larger than the

monomers, they are placed first on the lattice to not overestimate the multiplicity [87]. The number of

ways of placing M particles of volume v̄ on V lattice sites is:

Ωparticles(V,M) =
(V/v̄)!

M !(V/v̄ −M)!
(2.38)

The configurational entropy of the monomers, ignoring excluded volume, is already included in the Fel

term. To account for excluded volume interactions of the monomers, the previous term (Eq. 2.38) must

be multiplied by the probability that each lattice site was unoccupied as the monomers were placed onto

it. This probability is equal to the number of ways of placing NNp distinguishable particles (monomers)

on the V − v̄M remaining lattice sites divided by the total number of lattice sites (V ) available for each

monomer.

Ω(V,N,Np,M) =
(Vv̄ )!(V − v̄M)!

M !(Vv̄ −M)!(V − v̄M −NNp)!V NNp
(2.39)

Using Stirling’s approximation (lnn! ≈ n lnn − n), we obtain the second contribution to the free

energy [89]:

βF2 = −β ln Ω =V

(
1

v̄
φ lnφ+ (

1

v̄
− 1)(1− φ) ln(1− φ) + (1− φ− ψ) ln(1− φ− ψ)

)
(2.40)

+ terms indepdendent of h

Similar to the single polymer case, we ignore the term V ψ = NNp, which does not vary with layer height.
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Inside the large parentheses, the first term corresponds to the translational entropy of the nano-particles,

the second to the entropy reduction due to the volume difference between monomers and nanoparticles,

and the third to the translational entropy of the solvent molecules.

The final contribution to the free energy is the mean field approximation of the attractive monomer-

monomer and monomer-nanoparticle interactions. The average number (assuming monomers and nanopar-

ticles are well mixed) of monomer-monomer interactions is 1
2V ψ

2 and the number of monomer-nanoparticle

interactions is V
v̄ φψ. The energy of the average configuration is:

βĒ = V

(
1

2
χcrψ

2 +
1

v̄
χφψ

)
(2.41)

The dimensionless parameters χcr and χ describe the strengths of the monomer-monomer and monomer-

nanoparticle interactions, respectively. They roughly correspond to the attractive parts of the second

virial coefficients as explained in Section 2.3.5 for the monomer-monomer case.

The three contributions combine to the following expression for the free energy:

βF =
h2Np
2Nb2

+ V

(
1

v̄
φ lnφ+ (

1

v̄
− 1)(1− φ) ln(1− φ) + (1− φ− ψ) ln(1− φ− ψ) +

1

v̄
χφψ +

1

2
χcrψ

2

)

(2.42)

Normalized by the area of the brush Npa
2 and the number of monomers N , this expression becomes:

βF

NNpa2
=

h2

2N2b2a2
+

h

Nl3
f(ψ, φ) (2.43)

Where:

f(ψ, φ) =
1

v̄
φ lnφ+ (

1

v̄
− 1)(1− φ) ln(1− φ) + (1− φ− ψ) ln(1− φ− ψ) +

1

v̄
χφψ +

1

2
χcrψ

2 (2.44)

The layer height is normalized by the polymer contour length h̃ = h
Nb . The monomer volume fraction

and layer height have an inverse relationship which is expressed as: ψ = 1
h̃ā2b̄

.

Following this normalization the free energy is:

F̃ =
βF

NNpā2b̄
=

h̃2

2ā2b̄
+ h̃f(ψ, φ) (2.45)

2.2.1 Brush Without Nanoparticles

In the absence of nanoparticles (φ = 0), and for a specific grafting distance, bond length, and monomer

cohesiveness, the free energy (Eq. 2.45) minimized over the layer height gives an equation for the equi-

librium layer height (or monomer volume fraction ψ):

0 =
1

ψā4b̄2
+ ψ + ln(1− ψ)− χcr

2
ψ2 (2.46)

Setting χcr = 0 and using an approximation for low monomer volume fraction (ln(1− ψ) ≈ −ψ − 1
2ψ

2),

recovers the h ∼ a−
2
3 relationship for a polymer brush in a good solvent [85, 88]. In a poor solvent,

the brush cannot be compacted beyond the total volume of the monomers: ha2 = Nl3 and therefore
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h ∼ a−2.

2.2.2 Nanoparticle Solution

Nanoparticles can move between the polymer layer (which extends to height h) and the external solution.

We can derive the free energy of the external nanoparticle solution using a similar lattice construction

(beginning with a multiplicity similar to Equation 2.38):

βFc = W [c ln c+ (1− c) ln(1− c)] (2.47)

where W is the number of lattice sites available to the nanoparticles in the external solution, and c is

the volume fraction of nanoparticles in that solution. Nanoparticles will exchange between the layer

and external solution, so that at equilibrium, the chemical potential of the nanoparticles and osmotic

pressure of the polymer layer and external solution are equal.

For the external solution, the chemical potential of nanoparticles is:

βµc = β
∂Fc
∂c

= ln
c

1− c (2.48)

and the osmotic pressure is:

βΠc = − β

v̄l3
∂Fc
∂W

= − 1

v̄l3
ln(1− c) (2.49)

Therefore, finding the equilibrium conditions is equivalent to minimizing the normalized grand po-

tential Φ̃, over the layer height h̃ and volume fraction of nanoparticles in the layer φ:

Φ̃(h̃, φ) =
h̃2

2ā2b̄

+ h̃

(
1

v̄
φ lnφ+ (

1

v̄
− 1)(1− φ) ln(1− φ) + (1− φ− ψ) ln(1− φ− ψ) +

1

v̄
χφψ +

1

2
χcrψ

2

)

− h̃φ

v̄
ln

c

1− c −
h̃

v̄
ln(1− c) (2.50)

where the last two terms ensure that the chemical potential of the nanoparticles and the osmotic pressure

in the external solution are equal to those of the layer at equilibrium.

2.2.3 Conversion from volume fraction to experimentally measurable con-

centration

For M particles of volume v̄l3 in a solution of total volume V , their concentration is m = M
V

(0.1m)3

NA
mol/L

and their volume fraction is φ = l3v̄M
V . In the lattice model, monomers and nano-particles completely

fill the space, similar to neatly stacked cubes. In reality, the situation will be closer to that of randomly

packed spheres, which occupy roughly 0.5-0.64 of the volume [90]. To convert from real concentrations

to volume fractions in the model, we divide by the packing fraction. The packing fraction corrected

conversion between volume fraction and concentration is:

m = 0.625× φ

l3v̄

(0.1m)3

NA
M (2.51)
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2.2.4 Effective Monomer Size and Bond Length

In our lattice model, all polymers are composed of N monomers, separated by bonds of length b. Every

monomer occupies a lattice site or a volume of ∼ l3. The molecular details of real systems are more

complex. To simplify the conversion between the lattice model and a real system, we outline a simple way

by which we can redefine the “monomers” of our model. The original chain is composed of N1 monomers,

of size l1, freely jointed by bonds of length b1. Assuming the bonds are relatively stiff, we redefine the

monomers to each include m of the original monomers, so that the chain is now composed of N2 = N1

m

monomers. The new monomers will have bond length b2 = N1

N2
b1 = mb1, volume l32 = N1

N2
l31 = ml31. The

contour length N1b1 = N2b2 will be preserved.

2.2.5 Summary of Variables

N number of monomers in a polymer chain

Np number of polymer chains in the brush

l monomer size

l3 monomer (lattice site) volume

V number of lattice sites in the brush (normalized volume of the brush)

M number of nanoparticles in the brush

v̄ number of lattice sites occupied by one nanoparticle (normalized nanoparticle volume)

b̄ = b
l normalized bond (Kuhn) length

ā = a
l normalized grafting distance of the polymer chains

h̃ = h
Nb brush height normalized by the contour length

ψ =
NNp
V = 1

h̃ā2b̄
volume fraction of monomers

φ = v̄M
V volume fraction of nanoparticles in the brush

c volume fraction of nanoparticles in solution

nads = M
NNp

= φ
v̄ψ the number of nanoparticles in the brush normalized by the number of monomers

χ monomer-nanoparticle interaction strength

χcr monomer-monomer cohesiveness

2.3 Coarse Grained Polymer Chain Model

In this section, I will describe a generic model capable of multiple levels of detail, and applicable to various

polymer and nanoparticle systems, including IDPs. The model can be used to verify the simple mean field

model of Section 2.2 as well as extend them with more detailed interactions and sequence heterogeneity,

without the complexity of all-atom molecular dynamics. The model makes two main simplifications.

First, the model consists of spherically symmetric beads, which can represent groups of atoms. For

example, in the case of IDPs, a single bead or monomer represents one or more amino acids. Secondly,

to avoid explicitly modeling the solvent molecules, their interactions with the beads are included via

a viscous (Stokes’) drag force and a random force using the standard overdamped Langevin dynamics

algorithm [19, 25, 73, 91]. In this Section, I will only identify the relevant parameters controlling each type

of interaction. In Chapters 4 and 5, I will present the details of each specific implementation and how the

model is used to represent IDPs. The computations in Chapters 4 and 5 were performed on the GPC and

Niagara supercomputers at the SciNet HPC Consortium [92] and the supercomputer Mammouth Parallel
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2 (MP2) from Université de Sherbrooke, managed by Calcul Québec and Compute Canada. SciNet is

funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund

- Research Excellence; and the University of Toronto. The operation of MP2 is funded by the Canada

Foundation for Innovation (CFI), the ministère de l’Économie, de la science et de l’innovation du Québec

(MESI) and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT). The computations

in Appendix B were made on the MP2, Béluga, Graham, and Cedar supercomputers, enabled in part by

support provided by Calcul Québec (www.calculquebec.ca), WestGrid (www.westgrid.ca), and Compute

Canada (www.computecanada.ca).

2.3.1 Brownian Dynamics With Implicit Hydrodynamic Interactions

The Langevin equation for N beads in a fluid is [25, 93, 94]:

Ī
d~v

dt
= ~fint + ~fH + ~fB (2.52)

Here, all vectors have 3N components and all matrices are 3N×3N . Specifically, ~v is a vector containing

the velocities of all the beads:

~v =
[
v1x v1y v1z v2x ... vNz

]ᵀ
(2.53)

Ī is a diagonal matrix of the masses of the beads. ~fint are the forces on each bead due to it’s interactions

with the other beads or an external potential. ~fH = −ξ̄~v are the hydrodynamic forces exerted by the

fluid on the beads. The motions of the beads cause long range disturbances in the fluid and therefore the

hydrodynamic force on bead i depends on the velocities of all beads. This interaction is captured by the

friction matrix ξ̄, which depends on the bead positions. The inverse of x̄i is the hydrodynamic mobility

matrix described in Section 2.3.7. Ignoring hydrodynamic interactions would result in a diagonal ξ̄,

whose entries would be the Stokes’ drag constants of the corresponding beads. ~fB are the random

forces due to the collisions of the beads with the surrounding solvent. The random forces are not

correlated in time and when averaged over realizations have mean 〈~fB〉 = ~0 and covariance matrix

〈~fB(t)~fTB (t′)〉 = 2kBT ξ̄δ(t
′ − t), as a consequence of the fluctuation-dissipation theorem [37, 73, 94].

Assuming the velocity decays much faster than the timescale over which the interaction forces ~fint

change, which is roughly the time taken by a bead to diffuse it’s own size, we can neglect the inertial

term in Equation 2.52. For spherical beads with the mass and volume of an average amino acid, the

timescale of velocity decay is m
ξ = m

6πηa ≈ 4.6× 10−14s, while the timescale for a bead to diffuse its own

size is a2

D = 6πηa3

kBT
≈ 1.1× 10−10s, so the approximation is valid [95]. In these expressions a is the bead

radius and D its diffusion coefficient. In this regime, known as “overdamped”, the Langevin equation

for the bead positions (~x) is [37, 73, 91]:

d~x

dt
= ξ̄−1 ~fint + ξ̄−1 ~fB (2.54)

A rigorous interpretation in the Itô sense is the stochastic differential equation [96, 97]:

∆~x = ξ̄−1 ~fint∆t+ h̄∆~w (2.55)
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Where the random forces have been decoupled into 3N Weiner processes (~w), which are independent

with mean 0 and variance t, and h̄ is a matrix preserving the correlations between the random forces,

satisfying h̄h̄ᵀ = 2kBT ξ̄
−1. In a simulation, the positions of the displacements of the particles ∆~x are

updated each time step ∆t according to the algorithm of Ermak and McCammon [98]. The components

∆wi of ∆~w are independent random variables with Gaussian distributions such that 〈∆wi〉 = 0 and

〈∆wi(t)∆wj(t′)〉 = ∆tδ(t′ − t)δij .

In the following sections I will describe the deterministic interaction potentials that give ~Fint and

how to calculate the mobility matrix µ̄ = ξ̄−1 (and h̄).

2.3.2 Dimensionless Units and Notation

Defining the dimensionless notation: ~X = ~x
xc

, ∆T = ∆t
tc

, ~Fint =
~fint
fc

, M̄ = ξ0ξ̄
−1, and H̄ = h̄√

2kBT

ξ0

, so

that H̄H̄ᵀ = M̄ . xc, tc, and fc have the dimensions of length, time, and force respectively. ξ0 = 6πηa0

is the Stokes drag coefficient for a bead with hydrodynamic radius a0. Equation 2.55 becomes:

∆ ~X =
tcfc
ξ0xc

M̄ ~Fint∆T +

√
2kBTtc
ξ0x2

c

H̄ ~∆W (2.56)

The components ∆Wi of ~∆W are independent random variables with Gaussian distributions such

that 〈∆Wi〉 = 0 and 〈∆Wi(T )∆Wj(T
′)〉 = ∆Tδ(T ′ − T )δij .

We choose fc = 2kBT
xc

, xc =
√

2kBT
k =

√
2
3b0 (k and b0 are defined in the following Sections 2.3.3

and 2.3.4), and tc = ξ0
k , so that Equation 2.56 simplifies to:

∆ ~X = M̄ ~Fint∆T + H̄ ~∆W (2.57)

In the following sections, we describe the interactions that contribute to ~Fint. For each type of

interaction, we give the potential U(rij) and ~F (~rij), the force on bead i due to an interaction with bead

j. In these cases the force and the vector ~rij contain 3 components, e.g.:

~rij =




x3i

x3i+1

x3i+2


−




x3j

x3j+1

x3j+2


 , rij = ||~rij ||

In simulations, we sum the forces on i over interaction partners j and all interaction types. The 3N

component vector ~Fint is obtained by concatenating the 3 component vectors of the total forces on each

of the N beads.

In the following sections, we omit the subscripts i and j and give the force on bead i due to it’s inter-

action with j. Furthermore, lower case letters represent un-normalized lengths, and the corresponding

capital letters are those lengths normalized by xc.



Chapter 2. Theory and Methods: Polymer Models of IDPs 31

2.3.3 Bonded

The bonded potentials between adjacent monomers along a polymer chain preserve the polymer connec-

tivity. Bonded beads interact via the finitely extensible non-linear elastic potential (FENE) [99]:

UFENE = −1

2
kl2max ln(1−

(
r

lmax

)2

) (2.58)

This potential is harmonic close to r = 0, but diverges asymptotically as the bond length approaches

lmax. Because the FENE potential is purely attractive, a minimum bond length is maintained by the

excluded volume potential described in the next section.

The dimensionless force is:

~FFENE = −
~R

1−
(

R
Lmax

)2 (2.59)

where ~R = ~r
xc

and Lmax = lmax
xc

.

2.3.4 Excluded Volume

The repulsive term of the 12-6 Lennard-Jones potential is often used to approximate the steric repulsion

between two atoms [75, 76]. If each bead were to precisely represent multiple atoms in a particular

geometry (e.g. an amino acid), the repulsive force between beads would depend on their relative ro-

tational orientation in addition to their separation. Instead, in our model we approximate the beads

as spherically symmetric and use a phenomenological potential, a less steep 8-6 Lennard-Jones (LJ)

potential which accommodates possible closer distances between the beads for certain orientations of the

atoms [100], to describe the repulsive interactions between them.

All bead pairs interact via the 8-6 LJ potential:

UEV =




εLJ

[(
b
r

)8 − 4
3

(
b
r

)6]
+ 1

3 (εLJ − ε) if r < b

0 if r > b
(2.60)

b =
bi + bj

2

εLJ is the strength of the interaction, and b is the bead separation at which the force goes to 0 (the

sum of the radii of the two interacting beads). An exception to this rule occurs if the two interacting

beads are bonded monomers of a polymer, then b = b0, which reflects the bond length rather than the

bead radius. In this case, the repulsive potential is considered to be part of the bond interaction: the

only interactions between two bonded monomers are the FENE (attractive) and the modified 8-6 LJ

(repulsive, with b = b0) potentials. The potential is cut off at b. The potential is shifted by 1
3 (εLJ − ε)

in order to maintain continuity at r = b with the attractive potential described in the following section.

This does not affect the force or the simulations.
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The dimensionless force is:

~FEV =





4ELJ
R2

[(
B
R

)8 −
(
B
R

)6] ~R if R < B

0 if R > B
(2.61)

B =
Bi +Bj

2

where B = b
xc

, ~R = ~r
xc

, ELJ = εLJ
kT .

2.3.5 Cohesive Interactions

To capture all of the physical effects that can lead to the aggregation of molecules in solution or the

compaction of a polymer, we introduce a short-range attractive force between “cohesive” beads. These

attractive interactions can represent van der Waals forces, the hydrophobic effect [101], and any other

interactions between order promoting amino acids in an IDP, or even the poor quality of a particular

solvent.

Two non-bonded cohesive beads interact through the attractive portion of the 8-6 LJ potential:

UC =




ε
[(

b
r

)8 − 4
3

(
b
r

)6]
if b < r < 4b

0 if r ≤ b or r ≥ 4b
(2.62)

b =
bi + bj

2
, ε =

√
εiεj

The parameter ε controls the strength of the attractive forces. The particles may also have different

cohesive strengths εi and εj , in this case the square root of the product of the two strengths is taken.

The overall strength of the cohesive interaction may also be adjusted to reflect solvent quality. The sum

of the radii of the two beads (b) is the same as in the repulsive force described previously. The attrac-

tive potential begins where the repulsive ends: at separations larger than b. To reduce computational

complexity, the potential is also cut off beyond 4b, where it is ∼ 0.1% of it’s minimum depth.

The dimensionsless force is:

~FC =





4E
R2

[(
B
R

)8 −
(
B
R

)6] ~R if B < R < 4B

0 if R ≤ B or R ≥ 4B
(2.63)

B =
Bi +Bj

2
, E =

√
EiEj

E = ε
kT is the dimensionless interaction strength.

Connection Between Mean Field Theory and Simulations

Notice that in the lattice construction of Section 2.1.3, for monomer-monomer interactions, we treated

the monomers as uniformly distributed over the lattice sites. This is equivalent to a weakly interacting

gas, so we can compare the 2nd order interaction term of the lattice model to the 2nd virial coefficient
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B(β) of the combined excluded volume and cohesive interactions of the coarse grained model [102]:

N2

R3
B(β) =

R3

v0

(
1

2
ψ2(1 + χcr)

)
(2.64)

B(β) =
v0

2
(1 + χcr) (2.65)

The excluded volume and cohesive interactions are described by the 8-6 Lennard Jones potential (Equa-

tions 2.60 and 2.62 respectively), with distance parameters b, repuslive strength εLJ and cohesive

strength ε. We set βεLJ = 1. For βε = 0, there is only repulsion and so χcr = 0. Using numerical

integration, we can find:

B(β) = 2π

∫ ∞

0

r2(1− e−βU(r))dr (2.66)

B(β) ≈ 1.231b3 ≈ v0

2
(2.67)

v0 ≈ 2.462b3 (2.68)

(2.69)

We also find that B(β) = 0 at βε ≈ 0.64, and this should correspond to χcr = −1. B(β) is roughly

linear with ε, so we can write:

B(β) ≈ 1.231b3
(

1− βε

0.64

)
(2.70)

χcr ≈ −
25

16
βε (2.71)

2.3.6 Ionic Interactions

Ionic interactions between net charged monomers may be may be included in the model explicitly. In

this case, two non-bonded, charged monomers interact via the screened coulomb potential:

UQ =
q1q2

4πεr
e
− r
lD (2.72)

where q1 and q2 are the charges of the beads, and ε is the absolute permittivity of the solution. The

Debye length lD describes the implicit presence of ions in solution in addition to the charged beads. The

dimensionless force is:

~FQ = ±Q
(

1

R2
+

1

RLD

)
e
− R
LD R̂ (2.73)

Q =
|q1q2|

8πεkBTxc
(2.74)

The negative is taken for opposite charges, and the positive for like charges.

Using elementary charges, reasonable values for temperature (T ≈ 310K), and the relative permit-

tivity of water (εr ≈ 80), this expression simplifies to Q ≈ 3.367Å
xc

.

The parameters of the ionic interaction in simulations are the normalized Debye length LD = lD
xc

and the “electrostatic interaction strength” Q. The temperature, ionic strength, and choice of xc will

roughly set the values of these parameters. The Debye length at T = 310K is LD ≈ 3.09
xc
√
I
Å where I is
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the Molar ionic strength (equivalent to Molar concentration for monovalent ions) [75]. At 100mM NaCl,

LD ≈ 9.8
xc

Å. However, there is further indeterminacy in Q due to two details that are “coarse-grained”

out in the model. First, the relative permittivity of water decreases near surfaces such as the interfaces of

macromolecules [103, 104] and consequently may depend on the local conformation of the beads. Second,

a bead generally represents multiple atoms or amino acids, and the actual location of the electric charge

may not coincide with the bead center used to compute the forces in simulations [44, 105, 106].

2.3.7 Hydrodynamic Mobility Matrix

The remaining component of the simulation equation (Eq. 2.56) is the dimensionless mobility matrix

M̄ = ξ0ξ̄
−1, where ξ0 = 6πηa0 is the Stokes drag coefficient for a bead with hydrodynamic radius a0. If

we wish to obtain only ensemble averages from the simulations, it is sufficient to set M̄ to the diagonal

matrix with entries a0
ai

(the inverse relative hydrodynamic radius of each bead) and H̄ to the square

root of this matrix. This will model the viscous drag and the random forces on the beads due to the

solvent. However, the moving beads will also disturb the solvent, leading to correlations between the

motion of all the beads. These long-range correlations are captured by the off-diagonal terms of the

matrices M̄ and H̄. The Oseen tensor [32] is the simplest representation of hydrodynamic interactions

between and is valid at long distances. The Rotne-Prager-Yamakawa tensor [107] gives corrections for

distances close to the radii of the beads and accounts for possible overlap of the beads due to the “soft”

8-6 Lennard-Jones potential used for repulsion. The matrix H̄ must satisfy H̄H̄ᵀ = M̄ , hence we use

the Cholesky decomposition to calculate a triangular matrix for H̄ [98, 108].

M̄ is a symmetric 3N×3N block matrix consisting of N×N , 3×3 blocks. Each block represents the

hydrodynamic interaction between bead i and bead j. For different sized beads with hydrodynamic radii

ai and aj and separated by vector ~rij , the dimensionless Rotne-Prager-Yamakawa tensor [109] defines

the block M̄ij of M̄ (beginning at indices (3i, 3j) of M̄) as:

M̄ij =





A0

Ai
Ī if i = j (2.75)

3A0

4Rij

[(
1 +

A2
i +A2

j

3R2
ij

)
Ī +

(
1−

A2
i +A2

j

R2
ij

)
~Rij ~Rij
R2
ij

]
if i 6= j and Ai +Aj < Rij (2.76)

A0

AiAj

[
16R3

ij(Ai +Aj)− ((Ai −Aj)2 + 3R2
ij)

2

32R3
ij

Ī (2.77)

+
3((Ai −Aj)2 −R2

ij)
2

32R3
ij

~Rij ~Rij
R2
ij

]
if i 6= j and A> −A< < Rij ≤ Ai +Aj

A0

A>
Ī if i 6= j and Rij ≤ A> −A< (2.78)

A> = max(Ai, Aj) and A< = min(Ai, Aj)

Here, all the distances are normalized by xc: A0 = a0
xc

, Ai = ai
xc

, and ~Rij =
~rij
xc

. The presence of A0

is due to fact that M̄ was normalized by the Stokes’ drag coefficient of a bead of hydrodynamic radius

a0. Case 2.75 is the Stokes’ drag on bead i, case 2.76 describes the hydrodynamic interaction between

non-overlapping beads, case 2.77 describes partially overlapping beads, and case 2.78 describes when

one bead completely encloses the other.
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Unlike the short range Lennard-Jones potentials, long range interactions, including the 3N × 3N

RPY tensor, cannot be cut-off and require O(N2) operations to calculate. Even more computationally

costly than M̄ is the calculation of its Cholesky decomposition H̄ which is O(N3) [98, 108]. Approximate

methods, such as Fixman’s Chebyshev polynomial expansion (O(N2.25)) and the Truncated Expansion

Ansatz (O(N2)) offer a speedup at the cost of reduced accuracy [110]. We utilize the exact method

(Cholesky decomposition) in our simulations.If only equilibrium averages are required, hydrodynamic

interactions may be ignored by keeping only the diagonal elements of M̄ (Case 2.75), which reduces

complexity from O(N3) to O(N) [111].

2.3.8 Summary of Parameters

We set A0 = 1 (a0 = xc). This choice is arbitrary and only redefines the time units. If we were instead

to choose a0 = 2xc, at each step the deterministic forces would be multiplied by a factor of 2 and the

random forces by
√

2, the time unit tc = ξ0
k would also be double; we have sped up our simulation at the

cost of accuracy. To remedy this we would need to halve the timestep ∆T . For example, a simulation

with A0 = 1 and ∆T = 0.002 is identical to a simulation with A0 = 2 and ∆T = 0.001.

We set B0, the dimensionless LJ repulsion distance between bonded monomers, to
√

3
2 and Lmax

of the bonds to 2B0. The former is motivated by the fact that for the Rouse model (no excluded

volume interactions and Hookean bonds) the dimensionless root mean square distance between bonded

monomers would be
√

3
2 . We set ELJ , the LJ repulsion strength between bonded monomers, to 1. With

these parameters, the average bond length measured in simulations is slightly larger than B0 (about

1.35).

The values of the soft LJ diameters Bi determine the sizes of the beads, relative to the bond length.

For example, if we equate one bead in the model to one amino acid of an IDP, the bond length in

simulations (≈ 1.35) corresponds to the distance between Cα atoms of adjacent peptides (≈ 3.8Å), and

the LJ diameters can be estimated from the volumes of particular amino acids using this conversion.

The spherical beads represent the more complicated atomic arrangements of amino acids and there is no

guarantee that their hydrodynamic radii and LJ radii are the same, but as an estimate we set Ai = Bi
2 ;

similar choices are used in other coarse grained models with implicit hydrodynamic interactions [30, 31,

112]. Finally, the parameters Ei, Q, and LD control the cohesive and ionic interactions. These depend

on the properties of the beads and the solvent.

The parameters for each of the interactions in the coarse-grained model are summarized in Table 2.1.

Interaction Parameters Description

Bond Lmax Maximal bond extension (set to 2B0)

Excluded Volume B0 Separation between bonded beads (set to
√

3
2 )

Bi LJ Diameter of bead i
ELJ Strength of repulsion (set to 1)

Cohesive Ei Cohesive strength of bead i
Ionic LD Debye length

Q Electrostatic strength

Hydrodynamic Ai Hydrodynamic radius of bead i (roughly Bi
2 )

Table 2.1: Summary of coarse-grained bead model parameters.



Chapter 3

Surface Grafted FG Nucleoporin

Layers

The results this chapter have been partially reported in Refs. [78] and [79].

3.1 Introduction

The Nuclear Pore Complex (NPC) is a bidirectional selective gate for cargo traveling across the nuclear

envelope of eukaryotic cells. Understanding the mechanism of transport remains elusive due to the

size and complexity of the NPC. A visualization of the key structural elements of the NPC is shown

in Figure 3.1. The NPC consists of ∼500 proteins referred to as nucleoporins (nups) and is able to

transport ∼1000 cargo molecules per second. There are only about 30 distinct types of nups and each

is present in copies of 8-64 due to the eightfold rotational symmetry of the NPC’s cylindrical structure.

Sub-complexes referred to as the inner, outer, and membrane rings form the core structure of the NPC

which is embedded into the nuclear envelope and surrounds the transport channel. The channel is about

35-50 nm in diameter and 50-80 nm in length, and is filled with ∼ 200 intrinsically disordered proteins,

referred to as FG nups due to the recurring Phenylalanine Glycine (FG) motif in their sequence. FG nups

are anchored via their structured regions to the interior of the core structure and form the selectivity

barrier by allowing passive diffusion of small particles but restricting larger particles that do not possess

a translocation signal. Numerous theoretical, experimental, and computational approaches continue to

attack this problem as often it is explicative to study a subsystem of the full in vivo NPC. In this

chapter, I will present a model for surface grafted FG nups addressing a subset of in vitro experiments

to elucidate the structure and function of the NPC. The model reconciles the apparent contradictions

arising from several experiments and suggests how the NPC can maintain it’s function despite significant

structural perturbations [12, 113–118].

The FG domains lack secondary structure and show other features common to intrinsically disordered

regions. The sequences of the FG nucleoporins share four letter hydrophobic short linear motifs, which

are most commonly GLFG or FxFG [119, 120]. These motifs are separated by spacer sequences with

an average distance of about 15 residues [121]. The spacer regions have low hydrophobicity and can

be classified as having either a high or low fraction of charged residues. An FG domain’s fraction of

charged residues has been linked to its polymer dimensions [46]. The spacer sequences are not conserved

36
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Figure 3.1: Core structure of the NPC (shown in yellow, orange, purple, and blue) and intrinsically
disordered FG nups (shown as a single representative conformation in green). Figure from Kim et
al. [118].

across all species while retaining similar functions, hinting that the underlying NPC mechanism is very

general since it is partially independent of the primary amino acid sequences [114, 115, 122]. This

generality is reinforced by the findings showing that transport proteins are able to function with the

NPCs of a different organism [123] and yeast maintains viability even after the deletion of many of the

FG nups [123–126].

Transport proteins in the nucleus and cytoplasm bind and shuttle large cargo that cannot passively

diffuse through the NPC. Crystal structures and molecular dynamics simulations show that transport

proteins have multiple, relatively weak, binding sites for the four amino acid hydrophobic patches of FG

nups. The hydrophillic peptides surrounding the FG patches remain unstructured in the bound states.

This binding is crucial for the in vivo transport mechanism, since mutations to the binding sites on the

transport proteins reduces or eliminates transport efficiency and inhibits cell growth [122, 127–130].

Conversely, the specific interaction between FG patches and the binding sites of transport proteins

is not completely essential for transport of all cargo. Several chemical modifications to the surfaces of

molecules allow them to be shuttled through NPCs without transport proteins, indicating that interac-

tions between cargo surfaces and FG nups such as hydrophobic, electrostatic, or cation-π are all sufficient

for transport and the mechanism is non-specific [131–134].

Multiple models that hypothesize the mechanistic roles of FG nups and transport proteins in nucleo-

cytoplasmic transport have been proposed [135]. In the “virtual gate” model, the FG nups contribute to

an entropic barrier which hinders larger molecules. The barrier can be lowered by transport protein and

FG nup binding [136–138]. In the related “brush” model, the FG nups undergo a recoverable collapse

through interactions with the transport proteins allowing cargo to pass through [138–140]. In the alter-

native “selective phase” (or “gel”) model, the barrier arises through the formation of a gel-like network

of FG nups, linked by their hydrophobic FG motifs. The transport proteins bind to the FG domains

and disentangle the network allowing cargo to pass through [125, 141, 142]. It is likely that the various

effects described in these and other models all play a role in the NPC transport mechanism to some

degree.

The size and complexity of the NPC prevents the experimental study of the transport process in

vivo on the relevant time and length scales (several milliseconds and tens of nanometers) [143–146].

There are many types of intrinsically disordered FG nups, which differ across species and location in
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Figure 3.2: Locations of the Nucleoporins within the Human and Yeast NPC, organized into boxes
corresponding to their subcomplexes. FG nups are present in the green, light blue, orange, and purple
boxes. Figure from Beck and Hurt [117].

the NPC, which contribute to the selectivity barrier. The complexity of the FG nup system is further

increased by their interactions with transport proteins and cargo during the transport process [137,

147–151]. In vitro studies provide a basis for understanding the structure of the FG nup assemblies

and their interactions with the transport proteins. However, attempting to synthesize the insights from

these studies to understand NPC transport is hindered by the fact that many in vitro studies appear

to draw contradictory conclusions. Although it was shown that the mechanism of transport is highly

resilient and non-specific, the contradictions suggest that the structure and behaviour of FG nups are

highly dependent on the experimental conditions [122].

First, the relative strengths and importance of the possible interactions governing FG nup and trans-

port protein binding remain unclear [122]. Molecular dynamics reveals up to ten possible binding spots

for FG patches on the transport protein Importin-β, some of which were not present in crystal struc-

tures [130]. As stated earlier, these specific transport proteins and binding sites are not essential for

passage through the NPC and transport can be induced with chemical modifications like the addition of

hydrophobic moieties to cargo molecules [131, 133]. On FG nups, the non-FG spacer regions also have

a role in binding transport proteins [152]. In addition to hydrophobicity, electrostatic interactions are

important in the structure of FG nup assemblies and transport protein binding, as FG nups generally

carry a net positive charge in their spacer regions, while transport proteins are negatively charged [132,

153]. Experimental results disagree about the affinities of FG nup and transport protein binding [122,

135, 152, 154]. Furthermore, in vitro measurements of binding affinities between FG nups and transport

proteins suggest that the NPC would be saturated with transport proteins and lead to transport times

that are too slow, conflicting with in vivo observations of transport on the timescale of milliseconds [122,

155, 156].
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Different experimental evidence exists in support of the various proposed models of FG nup structure.

Atomic Force Microscopy measurements indicate that surface grafted FG nups behave like an entropic

polymer brush and the addition of transport proteins compacts the layer height, which recovers once

the transport proteins are removed, supporting the “brush” model [138, 139]. Free FG domains in

solution spontaneously form dense aggregates, which repulse inert cargo but permit transport proteins

and bound cargo to enter. The cohesiveness is crucial to the formation of the dense phase and its

selectivity properties, supporting the “gel” model [141, 142, 157].

The model used in this chapter addresses the surface grafted FG nup system and elucidates some

of the conflicts emerging from in vitro experiments. In one typical experimental setup, rather than fol-

lowing the cylindrical geometry of the NPC, FG nups are grafted to a flat surface at one end, while the

other end extends out into the solution, which allows measurement of the layer height using techniques

such as Atomic Force Microscopy [139], Quartz Crystal Microbalance with Dissipation monitoring [158],

or Surface Plasmon Resonance [150]. Transport proteins can penetrate this layer and alter its height.

However, even such simplified systems led to initially conflicting observations: depending on the exper-

imental conditions, the addition of transport proteins could cause both a compaction and expansion of

the layer height and in some cases caused no change. A general behaviour did emerge once concentration

was systematically increased. At low concentration of transport proteins, there is little change in the

FG nup layer height. As the concentration increases, and transport proteins accumulate in the layer,

the layer height decreases to varying degrees. Any further increase of the concentration of the transport

protein solution leads to an increase in height which eventually surpasses the initial height and swells

the layer. All combinations of FG nups and transport proteins studied exhibit this pattern of behaviour

to some degree irrespective of the species of origin or location in the NPC [150, 158–161].

These observations support the idea that the NPC is a robust system governed by a few general

principles which are not constrained by exact details such as amino acid sequences. A model which

captures these principles allows for the systematic study of NPC transport. This idea has been put into

practice by the design of synthetic channels inspired by the NPC which successfully mimic its transport

properties [16, 162–164]. Furthermore, including more details into a model may be counterproductive as

their effects can be obscured by experimental uncertainty and parametrization can lead to overfitting.

Therefore, using a coarse-grained model is often sufficient and can be more insightful. The model for

surface grafted FG nups and transport proteins utilized in this chapter aims to capture:

1. The polymer-like behaviour arising from the intrinsic disorder of the FG nups

2. The intra and inter-chain cohesiveness arising from the interactions between the FG nups

3. The attractive interactions between the FG nups and transport proteins

The model is based on the well known polymer brush theory, supported by coarse-grained Brownian

dynamics simulations [86, 87], and is derived Section 2.2. Related coarse-grained models have been

successfully applied to describe other biopolymer systems [165–168]. In Section 3.2, I explain how the

general polymer brush model is used to describe the FG nup and transport protein system specifically.

In Section 3.3, I will show that the model is able to semi-quantitatively explain the behaviour observed

in in vitro experiments and analyze the implications of the model for the greater nucleocytoplasmic

transport system.

The model reproduces the wide range of behaviour of the FG nup layers observed in experiments.

The model also suggests a resolution of the apparent controversies arising from the measured binding
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affinities, and can reconcile the debate among the proposed models over the importance of entropic and

cohesive interactions in the formation of the FG nup selectivity barrier of the NPC. Using the model, we

identify the regimes of physical variables that determine the behaviour of the FG nup assemply, which

suggest ways in which this system can be controlled. In the future, the simple theoretical framework

used in the model can be expanded with the addition of molecular and structural details to create a

more accurate description of the system. Aside from providing insight into NPC transport, the model

contributes to understanding the broad subjects of intrinsically disordered proteins and the design of

artificial pores with nanotechnological applications such as sensing and sorting [169–171].

3.2 Mean Field Polymer Brush Model for Grafted FG Nucleo-

porin Layers

In this section, I will describe how to parametrize the polymer brush model constructed in Section 2.2 to

represent a surface grafted FG nup layer in a solution of transport proteins. A schematic of the model

is shown in Figure 2.2. Equation 2.50 gives the normalized grand potential of the system:

Φ̃(h̃, φ) =
h̃2

2ā2b̄

+ h̃(
1

v̄
φ lnφ+ (

1

v̄
− 1)(1− φ) ln(1− φ) + (1− φ− ψ) ln(1− φ− ψ) +

1

v̄
χφψ +

1

2
χcrψ

2)

− h̃φ

v̄
ln

c

1− c −
h̃

v̄
ln(1− c) (3.1)

A single polymer, composed of N monomers each of size l (and volume l3) and connected by bonds of

length b, represents an FG nup. χcr captures the average cohesiveness of a particular FG nup in a single

parameter which represents monomer-monomer attractive strength. The polymers are tethered by one

end to a planar surface at intervals of the grafting distance a. The nanoparticles in the model represent

transport proteins. v̄ describes their volume relative to the FG nup monomers and χ is the strength of

their attractive interaction with the monomers. The variables h̃, ψ, φ describe the normalized height of

the layer, the volume fraction of monomers, and the volume fraction of transport proteins in the layer,

respectively. The volume fraction of monomers is inversely proportional to the layer height: ψ = 1
h̃ā2b̄

.

The layer height h̃ has been normalized by the contour length Nb of a single FG nup. Aside from the

layer height, all lengths are normalized by the monomer size l, indicated by a horizontal bar above the

letter. Thus ā is the normalized grafting distance (per monomer size), b̄ is the normalized bond length

(per monomer size), and v̄ is the normalized nano-particle volume (per monomer volume) as already

mentioned. c describes the volume fraction of the transport proteins in the solution outside of the layer.

To obtain the equilibrium layer height and monomer and the number of transport proteins in the layer

for a particular set of parameters, Equation 2.50 is minimized numerically over the normalized layer

height h̃ (or equivalently the monomer volume fraction ψ) and the transport protein volume fraction φ.

The molecular mass of a particular transport protein combined with the average protein density

(∼ 1.2 − 1.5g/cm3 [172]) gives its volume. For Karyopherin-β1 (molecular mass ≈ 97 − 103 kDa), the

volume is ∼ 120− 140 nm3. For NTF2 (molecular mass ≈33kDa), the volume is ∼ 35− 45 nm3.

The bond length parameter b in our model is equivalent to the Kuhn length. Consecutive carbon-

alpha atoms of amino acids in a polypeptide chain are separated by ∼ 0.38 nm [100]. However, due
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to the peptide backbone geometry, the outer two carbon-alpha atoms of three consecutive amino acids

may be maximally separated by ∼ 0.72 nm, and the effective contour length per amino acid is therefore

∼ 0.36 nm [106, 173]. Polypeptides are not freely jointed chains and their Kuhn lengths can include

several amino acids; different measurement techniques report values between 4-20 amino acids [44]. Lim

et al. reported that the persistence length of the FG nup Nup153 was ∼ 0.4 nm which translates to a

Kuhn length of roughly 2 amino acids [139].

Amino acid volumes range on the order of ∼ 0.072 − 0.239 nm3, with sizes ranging between ∼
0.52 − 0.77 nm [100, 174]. The effective size of the amino acids may be further altered by their non-

spherical geometries and the presence of bound ions within the Debye screening length.

Taking into account all the previous considerations, a single monomer in the model is equivalent

to between one and four amino acids: b ≈ 0.4 − 1.6 nm and l ≈ 0.5 − 1 nm. The upper limit is

motivated by the size of the hydrophobic GLFG or FxFG domains of FG nups and these particular

motifs corresponding to specific binding sites on transport proteins [128, 129]. The sensitivity of the

results to the specific choice of b and l are presented in Section 3.5, but these parameters do not affect

the qualitative behaviour or the conclusions of this chapter.

It is straightforward to normalize experimentally measured layer heights by the contour length (num-

ber of amino acids multiplied by the amino acid separation ∼ 0.36−0.38 nm [100]). Other experimental

conditions include the grafting distance of the FG nups and the concentration of transport proteins in

the external solution. The grafting distance is normalized by l and Section 2.2.3 describes the conversion

between concentrations and volume fractions. Finally, the number of transport proteins in the layer per

monomer of the FG nups nads is given by: nads = φ
v̄ψ = h̃φā2b̄

v̄ and can be easily related to experimental

quantities such as the surface density of bound transport proteins.

The final parameters are the cohesiveness of the FG nup monomers χcr and attractive strength of

monomer - transport protein interactions χ. Overall, the relative importance of hydrophobic, electro-

static, and other effects in the inter-FG and in FG nup - transport protein interactions are unknown.

Although there are specific binding sites for FG patches on transport proteins, other chemical modifi-

cations to the surfaces of cargo are sufficient for transport [128, 129, 131, 133]. The parameters χ and

χcr can depend on our exact definition of a monomer (since the number of amino acids included can

vary) as well as the specific FG nup and transport proteins used and due to the simplifications in the

model, it is difficult to relate them to biophysical quantities directly. They can be understood in terms

of the attractive parts of the second virial coefficients of the interactions between them. The mean field

parameter χcr is proportional to the strength of the cohesive interaction of the coarse grained model of

Section 2.3 as explained in Section 2.3.5. We can infer χcr from measurements of pure brushes of FG

nups without transport proteins as will be described in Section 3.3.1. χ is roughly proportional to the

number of binding sites or surface area of the transport proteins and the interaction energy between the

monomers of the FG nups and transport proteins. In Section 3.3.2, we find that the values of χ that

best agree with experiments are physically reasonable and close to the values inferred from an analogous

model for the phase separation of FG nup polymer solutions [78, 79].
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3.3 Results and Discussion

3.3.1 Morphology of FG Nup Layers in the Absence of Transport Proteins

In order to validate the model, I first consider the case of pure FG nup layers in the absence of transport

proteins. This reduces the number of variables in the model and enables parametrization of the size l

and bond length b describing our FG nup monomers and cohesiveness χcr describing the interactions

between them. A variant of the model describing the phase separation of FG nup polymer solutions has

been shown to agree well with experimental data. The parameters l, b, and χcr in bulk solution are

consistent with those found in this section for surface grafted FG nups [78]. In the absence of transport

proteins, φ = 0 and c = 0 in Equation 2.50 and after minimization over the layer height, the solutions of

Equation 2.46 give the layer height at equilibrium. This is a simple description of a polymer brush: the

polymers are tethered to a surface at regularly spaced intervals by one end while the other end extends

into the solution. The model assumes that all polymers extend to the same height and the monomer

density within the brush is uniform. The height of the brush depends on the balance of elastic and

cohesive forces resisting swelling of the layer and steric repulsion preventing compaction.

The predictions of the model for the layer height as a function of the grafting distance are summarized

in Fig. 3.3a. The height decreases with increasing grafting distance as the steric repulsion responsible for

the stretching of the chains is reduced. The height also decreases with increasing monomer cohesiveness

|χcr|. This is expected since stronger monomer cohesiveness would favour more compact conformations

which are ordinarily opposed by entropic elasticity and steric repulsion of the chains. Increasing the

cohesiveness is equivalent to changing the solvent quality from good to poor in polymer physics terms [24,

88, 89, 161, 175–179]. The exponent g, which describes how layer height scales with grafting distance

h ∼ a−g, quantifies this behaviour. For χcr = 0, the layer behaves as a purely entropic brush with

g = 2
3 . For high cohesiveness |χcr| > 2, the exponent approaches g = 2, since in the fully collapsed case

ha2 = Nl3. However, this behaviour of the exponent occurs long before the chain reaches the theoretical

maximum compaction of ψ = 1 [24, 88, 89, 161, 175–179]. The two extremes of the exponent g are

comparable to the coil-globule transition of a single polymer which occurs at |χcr| ≈ 1 and the scaling

of the polymer size with the number of monomers (see Section 2.1.3).

Figure 3.3b shows the results of the model along with the experimental results of Lim and coau-

thors [150, 159, 160]. In experiments, domains of FG nups were covalently tethered to a gold surface,

and the grafting distance, the layer height, and the surface density of transport proteins in the layer

were obtained using Surface Plasmon Resonance. The original locations of the FG nups in the NPC are

shown in Figure 3.2. In Figure 3.3b, the layers heights of five FG nup segments are plotted against their

grafting distance along with the model predictions for brushes of varying cohesiveness, but constant

monomer bond length and size (b=1.52 nm, l=1 nm). Short and long segments of Nsp1 behave similarly,

reinforcing the polymer brush model of FG nups. The heights of the FG nup layers decay with increasing

grafting distance faster than h ∼ a− 2
3 but slower than h ∼ a−2. This comparison indicates that, all FG

nups have significant cohesiveness but due to experimental uncertainty, it is impossible to determine the

exponent g and the strength of their cohesive interactions exactly. Based on the relative positions of the

experimental data in the figure Nup62 and Nup98 likely have the highest cohesion, followed by Nup153,

and Nsp1 has the weakest with χcr falling between −0.8 and −1.4.

It is impossible to learn the values of the monomer size and bond length parameters due to uncertainty

in the experimental data, but the choice of l = 1 nm and b = 1.52 nm, corresponding to the size of one FG
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Figure 3.3: (a) Cohesion makes FG nup layers more compact: theoretical predictions. Layer height
h/L normalized by the chain length as a function of the normalized grafting distance a/l for increasing
cohesiveness. χcr varies from 0 (grey) to -1.5 (black). For any value of χcr, the curve is well approximated
by the dependence h ∼ a−g. The inset shows that the exponent g increases from 2

3 to 2 as the absolute
value of the cohesion strength |χcr|.
(b) FG nup layer height depends on the grafting distance: theory vs. experiment. The dots are the
experimentally measured layer heights from [159] and [160] normalized by the FG nup length. The

colours represent: Nup62, Nup98, Nup153, long Nsp1, and short Nsp1 segments. Solid line: h ∼ a−
2
3

is the ideal brush (χcr = 0) behavior obtained from the model. Dotted line: h ∼ a−2 is the behavior of
a strongly collapsed brush with χcr = −2.5. All the FG Nups lie between these two regimes, indicating
a significant amount of cohesion. The dashed line is for χcr = −0.8. The dashed-dotted line is for
χcr = −1.4. To enhance the contrast, inset shows the same data with the height h normalized by the
ideal brush height (h ∼ a− 2

3 ). b=1.52 nm, l=1 nm.

patch or four amino acids, is reasonable since the experimental values all fall between the good and bad

solvent regime. The main results of this chapter are insensitive to the exact choice of these parameters as

shown in Section 3.5. The goal of the model is not to determine the exact parameters corresponding to

the individual FG nups but to explain the contrasting behaviour observed in experiments. The agreement

with experiments for the pure FG nup brush identifies reasonable values for monomer size, bond length,

and cohesiveness and supports the application of the model to the more complicated system of FG nups

in the presence of transport proteins.

3.3.2 Collapse and Expansion of the FG Nup Layer in the Presence of Trans-

port Proteins

I next describe the predictions of the model when transport proteins are added into the solution above the

FG nup layer and compare with experimental observations. Although initially it seems that the addition

of transport proteins to an FG nup layer can lead to highly variable behaviour, such as an increase or

a decrease in the layer height depending on the exact conditions, the experiments all follow the general

trend shown in Figure 3.4, which reproduces data of Kapinos et al. [159] and Wagner et al. [160]. At first,

the layer height is unperturbed by an increasing concentration of transport proteins. A further increase

in concentration results in some degree of compaction, eventually followed by extension of the layer at



Chapter 3. Surface Grafted FG Nucleoporin Layers 44

high transport protein concentrations. The collapse of the layer height can be negligible compared to

the pure brush, as in the case of Nup98. The collapse of the layer is concurrent with the accumulation

of transport proteins inside the layer. The width and the magnitude of the collapse, transport protein

concentration at the layer collapse, as well as the curve describing accumulation of transport proteins in

the layer depends on the grafting distance, the transport proteins, as well as the specific FG nups forming

the layer. In particular, there is a clear difference between the two transport proteins Karyopherin-β1

and NTF2. NTF2 is roughly 3 times smaller in volume and the collapse of the layer height as well as the

accumulation of transport proteins in the layer occur at a transport protein concentration in solution

which is at least an order of magnitude greater than for Karyopherin-β1. Based on these observations,

we can define three qualitatively different regimes of behaviour of the layer height as the concentration

of transport proteins in the external solution is increased:

1. Initial collapse followed by recovery and extension of the layer height

2. Only extension of the layer height (no/negligible collapse)

3. Only collapse and no extension of the layer height at physiological concentrations of transport

proteins

(a) (b)

Figure 3.4: Characteristic responses of FG nup layers to the transport proteins: experimen-
tal results.
(a) Change in the layer height relative to the unperturbed layer as a function of the transport protein
concentration in the outside solution.
(b) Number of the transport proteins in the layer per unit length of the FG nup chain.
Each line corresponds to a different run with a different initial layer height and grafting distance. Differ-
ent colors correspond to different FG nups, which all exhibit qualitatively similar behavior. The colours
indicate different combinations of transport proteins and FG nups: Karyopherin-β1 on Nup62, Nup98,
Nup153, and Nsp1, and NTF2 on Nsp1. The corresponding average grafting distances are ∼ 2.5 nm,
∼ 4.2 nm, ∼ 4.5 nm, ∼ 3.75 nm, ∼ 3.75 nm. The data are from Refs. [159, 160]

Figure 3.5 demonstrates that the model reproduces the same qualitative behaviour as the experi-

ments. As the concentration of transport proteins in solution increases we see the same collapse and

subsequent extention of the FG nup layer height corresponding to the accumulation of transport pro-

teins inside the layer. Increasing the strength of monomer-monomer interactions χcr in the model, which

could vary depending on the FG nups used as well as the solvent properties in the experiments, shifts
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the location of the minimum of the layer height to lower transport protein concentrations, and has a

non-monotonic effect on the relative magnitude of the collapse, at first increasing, then reducing, and

almost eliminating it entirely. The role of monomer cohesiveness is discussed in detail in Section 3.3.3.

Increasing the grafting distance, reduces the monomer density, which has the effect of enhancing the

relative magnitude of the collapse and shifting the location of the minimum layer height in the opposite

direction - to higher transport proteins concentrations. A higher grafting distance reduces the monomer

density allowing for a greater degree of collapse. The other model properties that modulate this be-

haviour will depend on the transport proteins used - their size and interaction strength with the FG

nups.

increasing |χcr|

(a)

increasing a

(b)

Figure 3.5: Collapse and recovery: effect of cohesion and of the grafting distance.
(a) Theoretical curves show that FG nup cohesion can convert layer collapse to swelling. The cross-
linking strengths are χcr = 0,−0.4,−0.8,−1.1 for a = 5 nm and χ = −550.
(b) Increasing grafting distance increases the magnitude of the layer compaction. The lines correspond
to model predictions for a = 3, 4, 5, 6 nm for χ = −530 and χcr = −1.
The insets show that the fraction of free space in the layer, calculated as 1− φ− ψ, decreases with the
addition of the transport proteins. b = 1 nm, l = 0.67 nm in both panels.
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collapse only

collapse and swelling

swelling only

(a)

collapse only

swelling only

(b)

(c) (d)

Figure 3.6: The “phase diagrams” of predicted behaviors for the conformational transitions
and amount of transport protein in the layer
In all panels, the grayscale color denotes the degree of layer compaction, hmin/h0, relative to the unper-
turbed layer (color legend is on top). (a) and (c): v̄ = 125, roughly corresponding to Karyopherin-β1.
(b) and (d): v̄ = 40, roughly corresponding to NTF2.
(a) and (b): The colored contour lines indicate the corresponding bulk concentration cmin at which the
minimal layer height is achieved (legend on the right side). Above the dashed line, which separates the
“collapse only” and “collapse and swelling” regions, there is no swelling of the layer height for up to 1
µM transport protein concentration. The “swelling only” region is where the response of layer height
to bulk transport protein concentration (e.g. Fig. 3.5) does not have a minimum, and the boundary
between the “collapse and swelling” and “swelling only” regions is the common curve approached by the
“Concentration at Minimum Height” contour lines. A dotted line has been added manually to indicate
this boundary. The overall phase diagram topology is similar in both cases, but for smaller protein, the
collapse is more pronounced and occurs at lower χ.
(c) and (d): The colored contour lines show the amount of adsorbed proteins in the layer per chain
monomer. Higher degree of collapse is correlated with higher accumulation of the proteins in the layer.
In all panels, b = 1.52, l = 1 nm, corresponding to the ”monomer” size of roughly four amino acids.

In order to get a more comprehensive understanding of the model, its predictions are synthesized

in a “phase diagram” of behaviours shown in Figure 3.6. The diagrams show the effect of varying

monomer-transport protein interaction strength and FG nup grafting distance for two transport proteins
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of different sizes: Karyopherin-β1 and NTF2. Both Figures show the relative magnitude of maximal

collapse using grayscale shading in the background. Using coloured contour lines, Figure 3.6ab shows

the transport protein concentration at the minimum of the layer height. On the second set of diagrams

(Figure 3.6cd), the coloured contour lines show the number of transport proteins in the layer for a

fixed transport protein solution concentration of 1 µM. The upper phase diagrams (Figure 3.6ab) are

partitioned into three regions corresponding to different regimes of behaviour of the layer height. In the

lower left (weak monomer-transport protein interaction strength and low grafting distance), there is no

noticeable collapse of the layer height and only extension. In the region above the black dashed line,

there is no swelling of the layer at concentrations of transport proteins in the external solution below 1

µM. In the intermediate region between the two, there is initially a collapse followed by a recovery and

extension of the layer height. This region is effectively eliminated for NTF2.

Different experimental conditions correspond to different positions on the phase diagrams, which

can resolve some of the contradictions from experiments such as the lack of significant change in the

layer height reported by other groups [158, 161]. The collapse of the layer height is not an intrinsic

feature of the FG nups and can be reduced and eliminated entirely for some experimental conditions.

The response of the layer height to increasing transport protein concentration depends on the grafting

distance, monomer cohesion (see Section 3.3.3 for an in depth discussion), and transport protein in-

teraction strength, the latter two of which can be affected by solvent properties such as pH, salt, and

denaturant. The phase diagrams also demonstrate the diverse effects of transport protein size on the

layers. For smaller transport proteins, the concomitant collapse and extension for concentrations below

1µM is eliminated. Another interesting difference is in the effect of grafting distance on large and small

transport proteins. For the large Karyopherin-β1, increasing the grafting distance increases the number

of transport proteins that adsorb into the layer, because the monomer volume fraction decreases, reduc-

ing the repulsive barrier. For small transport proteins such as NTF2, the repulsion is less important and

an increase in grafting distance hinders their entry into the layer as there is a lower density of FG nup

monomers for them to bind to.

Figure 3.7 shows a semi-quantitative comparison of the model with experimental measurements

of layers of Nsp1 in solution with Karyopherin-β1 or NTF2 from [160]. Due to the relatively large

experimental uncertainty, a range of grafting distances and interaction strengths are used to make

predictions from the model. The easily discernible effects of the two transport proteins on layers of the

FG nup Nsp1 are: greater magnitude of the collapse but at a higher transport protein concentration

for NTF2, as well as a delayed but steeper increase of the number of adsorbed transport proteins in

the layer again for the smaller NTF2. The model succeeds in reproducing these qualitative differences,

but a more precise comparison would require both less uncertainty in the experimental measurements as

well as a more sophisticated model. In general, as transport protein volume varies and χ per transport

protein surface area remains fixed, the relative magnitude of the collapse is more pronounced for smaller

transport proteins, and occurs at higher concentrations in solution.

The physics behind the penetration of a single transport protein into the FG nup layer relies on the

balance between the entropic cost and energetic gain of entering the layer. Although there is significant

free space within the layer, this entropic repulsion is sufficient for creating the permeability barrier for

non-binding molecules and no cohesive interactions or formation of a network between FG nups are

necessary, although monomer cohesiveness will further strengthen the barrier to inert molecules. If the

FG nup - transport protein interaction is sufficiently strong, the transport protein will enter the layer.
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(a) (b)

Figure 3.7: Comparison of the theoretical predictions with the experimental data. Theoretical
predictions for the range of the parameter values approximately corresponding to the experimental ones
for Nsp1 layers infiltrated by Karyopherin-β1 and NTF2.
(a) Layer height vs bulk concentration of the transport factor.
(b) Amount of adsorbed transport protein in the layer as a function of the concentration in the solution.
The shaded regions correspond to 3.5 < a < 4 nm and −185 < χ < −175 for Karyopherin-β1 and
−73 < χ < −63 for NTF2. For all lines, b = 1.52, l = 1 nm and χcr = −1. The insets show the
corresponding experimental data from [160].

At low concentrations, the transport proteins do not cause significant conformational changes as there

is ample empty space in the layer for them to occupy. Once a sufficiently high number of transport

proteins has accumulated in the layer or for high interaction strengths, further addition of the transport

proteins causes a cooperative transition of the FG nups leading to either collapse or swelling of the

layer. The collapse is due to the energetic gain of more contacts between the FG nups and transport

proteins outweighing the entropic cost of a denser volume fraction in the layer. The swelling is due to

the already dense layer needing to increase it’s height in order to make room for and continue to adsorb

more transport proteins.

3.3.3 The Role of Monomer Cohesiveness

Section 3.3.1 showed that in the absence of transport proteins, an increase in the cohesive strength

between monomers (|χcr|) always causes a decrease in the layer height. The presence of transport

proteins in the solution results their penetration into the FG nup layer. As described in Section 3.3.2,

increasing the concentration of transport proteins in solution causes an initial collapse, which can be

negligible, followed by a recovery and swelling of the FG nup layer height. This behaviour is determined

by the balance of the energetic gain of contacts formed between the FG nups and transport proteins

and the entropic cost of entering the brush. Intuitively, an increase in monomer cohesiveness should

enhance the FG nup barrier of the NPC. In this section we will see that without altering the transport

protein properties or monomer-transport protein interaction strength, monomer cohesiveness alone can

also enhance the collapse of the FG nup brush and penetration of transport proteins into the layer.
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Figure 3.8: Effect of cohesiveness on the layer height.
(a) and (b): χcr is varied between 0 and -1.35.
(c) and (d): χcr is varied between -1.35 and -1.8.
(a) and (c): Collapse and recovery of normalized layer height
(b) and (d): Number of adsorbed transport proteins in the layer.
The transport protein properties are: χ = −187.5 and v̄ = 125. The monomers have size l = 1 nm and
bond length b = 1.52 nm.

Figure 3.8 shows the response of the relative height of the FG nup layer and the number of transport

proteins adsorbed into the layer as the concentration of transport proteins in solution is increased, for

different strengths of monomer cohesiveness. As |χcr| is increased from 0 to 1.35, the relative swelling of

the layer increases and the collapse region is shifted to lower concentrations and eventually disappears.

The relative magnitude of the collapse also increases initially with increasing |χcr|. The number of

adsorbed transport proteins similarly increases for relevant concentrations in solution, but reaches a

maximum at a lower value of |χcr|. When the cohesiveness is further strengthened beyond this point,

the number of adsorbed transport proteins, relative magnitude of the collapse, and the relative swelling

of the all layer decrease.
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Figure 3.9: The “phase diagrams” of predicted behaviors: effect of grafting distance and
monomer cohesiveness. The grayscale color denotes the degree of layer compaction, hmin/h0, relative
to the unperturbed layer (color legend is on top).
(a): The colored contour lines indicate the corresponding bulk concentration cmin at which the minimal
layer height is achieved (legend on the right side). There is no layer swelling above the dashed line (up
to 1 µM transport protein concentration).
(b): The colored contour lines show the amount of adsorbed proteins in the layer per chain monomer.
In the lower panel we see a non-monotonic variation in the number of transport proteins in the layer at
1 µM for cohesiveness and grafting distance.
The transport protein properties are: χ = −187.5 and v̄ = 125. The monomers have size l = 1 nm and
bond length b = 1.52 nm.

Figure 3.8 demonstrated that increasing monomer cohesiveness results in an increased number of

transport proteins in the layer for certain concentrations of transport proteins in solution. However,

the non-monotonic behaviour is not universal to all choices of parameters as more clearly shown in

Figure 3.9 for varying grafting distance and monomer cohesiveness. Above a grafting distance of about

4 nm, increasing the strength of monomer cohesiveness |χcr|, causes an initial increase in the number

of adsorbed transport proteins per monomer for a concentration of 1µM of transport proteins in the

external solution. The number of adsorbed transport proteins per monomer peaks between 3.5×10−3

and 4.0×10−3 at a monomer cohesiveness which increases with grafting distance. The region of grafting

distances and monomer-transport protein interaction strengths where this behaviour persists is summa-

rized in the contour plot in Figure 3.10. The critical χcr is the value at which the number of transport

proteins in the layer reaches its maximum for a particular concentration in solution. In the region where

the critical χcr is 0, any increase of monomer cohesiveness only lowers the number of transport proteins

in the layer.

It is surprising that for certain combinations of parameters, increasing the cohesiveness between

monomers in the layer would result in greater adsorption of transport proteins into the layer. Intuitively,

it would seem that cohesiveness would compact the layer, increasing entropic repulsion and only forcing

transport proteins out. However, a higher cohesiveness results in a higher density of monomers and more

binding events between monomers and transport proteins, increasing the energetic gain for a transport

protein to enter the layer. The balance between these two contributions can be tuned using the grafting
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Figure 3.10: A contour map showing the monomer cohesiveness at which the number of transport
proteins in the layer is maximized for 100 nM (a) and 1000 nM (b) of transport proteins in solution.
The transport protein volume is v̄ = 125. The monomers have size l = 1 nm and bond length b = 1.52
nm.

distance. At low grafting distances, the monomer density is already high at χcr = 0 and for transport

proteins entering the layer, the entropic penalty outweighs any energetic gain. At high grafting distances,

the monomer density is fairly low and the permeability can be improved by an increase in cohesiveness as

the energetic gain would outweigh the negligible entropic cost. As the cohesiveness is increased further

(|χcr| >∼ 1.2), the entropic cost dominates in all cases, reducing the permeability of the FG nup layer.

3.4 Conclusions

The model introduced in Section 2.2 provides a rigorous physical framework for investigating the struc-

ture of surface grafted FG nups and their interactions with transport proteins. The complexity of the

FG nups and transport proteins is encapsulated by a small number of key parameters. The model

explains the behaviour of collapse and extension and accumulation of transport proteins in the layer

and the regimes of parameters which control this behaviour have been identified. The model is able

to qualitatively and semi-quantitatively reproduce the range of in vitro experimental observations and

explains how initial contradictions could arise between them.

One of the discrepancies in the experimental measurements of binding affinities of transport proteins

to FG nups is the range of measured dissociation constants from nanomolars to micromolars. Some of

these affinities are also inconsistent with transport times in the millisecond range [119, 122, 143, 147,

155, 156, 180]. These discrepancies might stem from the fundmental statistical physics of the transport

protein-FG nup interaction. The adsorption of transport proteins into the layer is a cooperative process

and is not well described by a single Langmuir isotherm typically used to interpret binding assays.

Additionally, the entry of transport proteins into the layer is not only due to energetic but also entropic

effects and therefore the measured affinity does not reflect the binding energies directly. Even the

energetic component of the interaction can vary with experimental conditions, since the average number
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of monomers available to bind to a transport protein depends on the monomer concentration which itself

depends on the layer height and grafting distance [150, 159, 180, 181]. These points reinforce the idea

that the classical characterization of transport protein-FG nup binding by a single affinity value is not

informative for the complex interactions of spatially extended objects such as FG nup layers.

The model can reconcile conflicting theories of the roles of FG nups and transport proteins in NPC

transport. The analysis of the model suggests that both entropic (“brush”-like) and cohesive (“gel”-

like) effects naturally cooperate in determining the structure of the FG nup and transport protein

layers. Quantitative comparison with experiments shows that all FG nups likely possess some degree

of cohesiveness, which modifies the structural transition and enhances the selectivity barrier for some

transport proteins and reduces it for others. The different classes of “extended” and “collapsed” FG

nups [46] can be mapped to different values of the cohesiveness parameter χcr.

Partially due to uncertainty of experiments, but also due to the simplicity of the model, a full

quantitative comparison with experiments is not possible, and a more sophisticated model would need to

be developed. The limitations of the model include the way amino acid and transport protein geometries

are represented, the uniform density assumption of the FG nup layer, and the mean field approximation

of the energy of the monomer-monomer and monomer-transport protein interactions. Nevertheless,

the results of the model are in good agreement with more detailed simulations [86, 87]. Furthermore,

one needs to be careful when using in vitro experiments to make inferences about the NPC transport

mechanism and the same can be said for our model. The model aims to address surface grafted FG

nups, which differ from the cylindrical geometry of the NPC. Some recent work of polymers in channel

geometries allows us to evaluate which predictions of the model are applicable to the NPC [171]. Polymers

in relatively wide channels, such that the center is unoccupied, will collapse towards the walls and extend

towards the center with increasing transport protein concentrations analogous to brushes on a flat surface

collapsing and extending their height as in the model. However, if the polymers are long enough relative

to the channel width, there will be accumulation of chains at the center, this case is not reducible to

the planar brush model. More work is needed to understand where between these two extremes lies the

structure of FG nups in the NPC. Because the model assumes that the transport proteins are isotropic, it

cannot address the effect that the shapes of transport proteins and cargos could have on the morphology

of the FG nup layers. Even if the shape does not significantly alter the equilibrium properties of the

layers, Moussavi-Baygi and Mofrad [182] showed, using Brownian dynamics simulations, that elongated

cargo require fewer binding sites and a smaller nudging force in order to penetrate into an FG nup

assembly in a channel geometry, when compared to spherical cargo, indicating that elongated shapes

may be transported more efficiently through the NPC.

The success of the model relies on the robust physical mechanisms underlying the function of the

NPC. The collapse and expansion of the layer height as the concentration of transport proteins increases

is not unique to FG nups but general for all surface grafted polymer systems with adsorbent molecules.

Thus, the results are applicable not only to understanding NPC structure and function and but also

the design of biomimetic transporters. Recently, several NPC mimics have been developed, featuring a

DNA scaffold for the central channel and tunable parameters such as the number, type, and position of

FG nups [183, 184]. The analysis of the model identified and classified the important parameters and

behaviours and shows how an analogous system can be controlled. Another interesting observation which

can be understood within the framework of the model, is the ability of the NPC to maintain viability

even when significant numbers of the FG nups are deleted. The deletion of FG nups roughly parallels
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lowering the grafting distance in the model, while maintaining the qualitative regime of behaviour. When

this deletion is performed in the NPC, the neighbouring chains may simply swell without significantly

altering the selectivity properties of the layer [124, 126].

Finally, although the qualitative behaviour described by the model and observed experimentally is

very general, the specific quantitative features such as the exact layer height (which is normalized out

in the analysis of the model) and the degree of compaction are rather sensitive to the exact parame-

ter values, such as the grafting distance, transport protein concentration, and the interaction strength.

This raises the question of how the NPC can maintain its function with large variations in size, spatial

organization, and divergence of FG nup sequences across species, and despite large perturbations such

as deletion of many of the FG nups? One possible solution is that the NPC is finely tuned and only

works correctly when all of the parameters are just right: FG nup types, amounts, and localization,

local transport protein and other molecule concentration, pH, and ionic strength, are all exactly set by

cellular homeostatis. The other possibility is that the NPC is robust: any structure of FG nups with ap-

proximately the right physical properties will function efficiently enough to maintain selective transport,

which would provide an example of function conservation in the absence of sequence conservation.

3.5 Parameter Sensitivity Analysis

The model used in this chapter required assumptions about the monomer size and bond length. We made

the choice: l = 1 nm, b = 1.52 nm, corresponding to about 4 amino acids per monomer. In this section,

we demonstrate that the model is not sensitive to changes in these parameters. We present results for

the parameters b and l corresponding to around 2 or 3 amino acids in Figure 3.11, although we tested

other combinations with similar predictions for reasonable values. The phase diagrams recapitulate the

qualitative behaviour from before. The same behaviour of collapse and expansion is observed and the

model is able to differentiate between the behaviour of large Kap-β1 transport proteins, and small NTF2.



Chapter 3. Surface Grafted FG Nucleoporin Layers 54

collapse only

collapse and swelling

swelling only

(a)

collapse only

swelling only

(b)

(c) (d)

Figure 3.11: The “phase diagrams” of predicted behaviors. The grayscale color denotes the degree
of layer compaction, hmin/h0, relative to the unperturbed layer (color legend is on top). Upper panels (a)
and (b): conformational transitions of the layer. The colored contour lines indicate the corresponding
bulk concentration cmin at which the minimal layer height is achieved (legend on the right side). There
is no layer swelling above the dashed line (up to 1 µM transport protein concentration). Lower panels
(c) and (d): amount of transport protein in the layer. The colored contour lines show the amount of
adsorbed proteins in the layer per chain monomer (legend on the right side). Higher degree of collapse
is correlated with higher accumulation of the proteins in the layer. Left panels (a) and (c): v̄ = 295,
roughly corresponding to Karyopherin-β1; Right panels (b) and (d): v̄ = 95, roughly corresponding to
NTF2. The overall phase diagram topology is similar in both cases, but for smaller protein, the collapse
is more pronounced and occurs at lower interaction strengths χ. In all panels b = 1.4, l = 0.75 nm,
corresponding to the ”monomer” size of roughly between two and three amino acids.



Chapter 4

Relationships Between Amino Acid

Composition and IDP Dimensions

The results of this chapter are being prepared for publication.

4.1 Introduction

In Chapter 1, we reviewed how the structures of IDPs may be viewed through the framework of polymer

physics. An IDP’s ensemble of conformations lies somewhere on the disorder-to-order continuum, and

depends on its amino acid composition, sequence, and the properties of the solvent. At the disordered

extreme, all polypeptides may be described by good solvent polymer models, and sequence heterogeneity

is unimportant. At the ordered extreme, natively folded proteins adopt unique conformations encoded

by their sequences, requiring atomistic detail for a proper description. IDPs are located at intermediate

locations on this continuum [3, 23, 77]. Simple polymer theories can lead to discrepancies when inter-

preting experimental results, most notably between the polymer dimensions obtained using FRET and

SAXS [60, 61]. On the other hand, all-atom descriptions are often unfeasible due the vast numbers of

possible conformations of IPDs and are prone to overfitting [70]. Some properties of the sequences of

IDPs suggest that the atomistic details may be coarse-grained out [4, 9, 18, 21, 42]. In this Chapter,

I use coarse-grained models to investigate the effects of monomer cohesiveness and sequence patterning

on the polymer dimensions of IDPs.

The mean field model used in Chapter 3 and analogous model successfully described both surface

grafted layers and polymer solutions of FG nucleoporins [78, 79]. The inter-monomer interactions and

solvent properties were encapsulated by a single parameter χcr representing the overall cohesiveness of

the FG nups. Despite their successes, mean-field models fail to differentiate between different polymer

dimensions (end-to-end distance, radius of gyration, and hydrodynamic radius) and cannot capture the

effects of sequence heterogeneity. FG nup sequences contain patches of cohesive amino acids, interspersed

by spacer regions which can contain charged amino acids [46, 120, 121]. Although specific cases have

been investigated, the effect and importance of the patterning of the different types of amino acids on

the dimensions and functions of the FG nups and IDPs in general are unknown [23, 27, 46, 50, 51].

In Section 4.2, I present the results of simulations of a homopolymer model, which includes a minimal

level of detail but is capable of discerning between the ensembles of IDPs with different locations on the

55
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disorder-to-order continuum. Similar to the mean-field model used in Chapter 3, all information about

an IDP’s sequence and the properties of the solvent are encapsulated in a single cohesiveness parameter

ε. Unlike the mean-field model, the simulations are able to differentiate between the various polymer

dimensions: end-to-end distance, radius of gyration and hydrodynamic radius, and how the relative

polymer dimensions change with ε. These results can potentially address the discrepancies arising from

experimental results due to the use of simple monomer theories to infer the polymer dimensions of

IDPs. For example, if an IDP at a particular denaturant concentration, is associated with a unique

cohesiveness value, it is not surprising that the radius of gyration measured with SAXS would disagree

with the radius of gyration inferred from the end-to-end distance information from a FRET measurement

under the assumption that the ratio between end-to-end distance and radius of gyration is constant [36,

53].

In Section 4.3, to investigate the effects of sequence heterogeneity on the ensemble of conformations,

the homopolymer model is expanded to a four letter model: every amino acid is represented by a

monomer of one of four types (cohesive, neutral, positively charged, or negatively charged). This model

can distinguish between disorder and order promoting amino acids within a sequence as well as the

patterning of charged amino acids. Instead of focusing on specific IDPs, I infer general relationships

between sequence patterning and the polymer dimensions, and show how the relative polymer dimensions

can deviate from the predictions of the homopolymer model. Specifically, I investigate three sequence

features, which can qualitatively be described as: (i) the segregation of charged residues, (ii) the size of

cohesive patches, and (iii) the segregation of charged and cohesive residues. In each case, the composition

(fraction of each type of monomer) remains fixed as the sequence varies. Sequences of 50 and 60

monomers are studied to match the amino acid lengths of sequences previously studied using the all-

atom ABSINTH model [50] and the typical length of IDP fragments used in FRET characterization [35,

36].

4.2 Ratios of Polymer Dimensions as a Ruler for IDP Confor-

mations

4.2.1 Homopolymer Model

In the homopolymer model the parameters for the interactions, described in Section 2.3, are identical for

all monomers. All properties of the solvent, and the composition and sequence of an IDP are captured

by a single parameter ε (or E = ε
kT ), which is the cohesiveness between the monomers in the coarse-

grained model. A low ε represents a protein in high denaturant conditions or an IDP with many disorder

promoting amino acids in its sequence. Increasing ε represents decreasing the denaturant concentration

or substituting order promoting amino acids into an IDP sequence.

In simulations, the range (diameters) of excluded volume and cohesive interactions was B = B0 =√
3
2 . The maximal extension of the FENE bonds between monomers was Lmax = 2B0. The strength

of excluded volume interactions was εLJ
kT = 1. The hydrodynamic radii of the monomers were A = B

2 .

Cohesive forces were cutoff at a distance of 4B. There were no electrostatic interactions between the

monomers.

Simulations were performed for N = 100 monomers and cohesive interactions strengths ranging from
ε
kT = 0 to ε

kT = 1.9 inclusive, in intervals of 0.1. For each ε, 40 runs were performed, each lasting
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108 steps, with a time step of ∆T = 0.001. Each run began from a self-avoiding random walk initial

condition. The first 106 steps were excluded from the analysis in order to avoid biasing the results by

the initial conditions, and averages were taken over steps over runs and steps.

4.2.2 Ensemble of Conformations and Dimensions Determined by ε

In this section, we explore the effects of the cohesiveness parameter ε on a polymer’s ensemble of confor-

mations. Chemically denatured proteins follow the scaling laws of the good solvent or SAW model [34,

35]; this corresponds to ε = 0. Although the homopolymer model cannot differentiate between the

unique structures of folded proteins, the ordered extreme can be approximated by high cohesiveness be-

tween the monomers (roughly ε > 1.5), which is equivalent to a poor solvent [41]. Homopolymers adopt

collapsed globule conformations at high cohesiveness [77, 80]. Based on measurements of the polymer

dimensions and scaling behaviour of IDPs [35, 36, 38], on average, IDP cohesiveness is equivalent to the

θ point of the homopolymer. For our model, the θ point occurs at ε
kT ≈ 0.7− 0.75, and is investigated

in Appendix B. However, individual IDPs deviate from this average and as a first approximation we can

associate each one with a unique ε.

In general, all of the polymer dimensions compact with increasing ε and are shown in Figure 4.1a.

The figure shows the square roots of the ensemble averages of square end-to-end distance and radius

of gyration, and the hydrodynamic radius. The end-to-end distance has been scaled down by a factor

of
√

6 to be comparable to the other dimensions. Overall, all of the polymer dimensions undergo a

similar transition at the θ point when ε
kT ≈ 0.7 − 0.75. The dimensions decrease monotonically as

the chain compacts from a coil to a globule. The end-to-end distance undergoes the greatest relative

compaction, while the hydrodynamic radius experiences the least change. The inset of Figure 4.1a shows

the predictions of the mean-field model of Section 2.1.3 for the equilibrium polymer size R∗, which does

not correspond to any of the dimensions directly [37]. The mean-field model predicts that the θ point

occurs at a corresponding ε ≈ 0.64 kT (see Section 2.3.5).

Another common measure of the shapes of polymer conformations is the asphericity δ (sometimes

referred to as the shape anisotropy) [36, 58]. Compared to the end-to-end distance, the asphericity is

less sensitive to the positions of the chain ends, and describes the global shape of the polymer, however

it is not readily accessible by experiment. For a rod δ = 1 and for a sphere δ = 0. The ensemble average

of the asphericity is:

〈δ〉 = 1−
〈

3(λxλy + λyλz + λzλx)

(λx + λy + λz)2

〉
(4.1)

where λx, λy, and λz are the eigenvalues of the 3 × 3 gyration tensor for a single conformation, whose

entries are:

Sxy =
1

N

N∑

i=1

(Ri,x −Rc,x)(Ri,y −Rc,y) =
1

2N2

N∑

i=1

N∑

j=1

(Ri,x −Rj,x)(Ri,y −Rj,y) (4.2)

Ri,x and Rc,x are the x-components of the position of monomer i and the center of mass respectively.

The radius of gyration for that conformation is: R2
g = λx + λy + λz. Although, the ensemble average

monomer density will be isotropic for any polymer, the individual conformations may not be, giving

a non-zero average asphericity. Figure 4.1b shows the asphericity for the different values of monomer

cohesiveness, which decreases from ∼ 0.45 for the coil to close to 0 for compact globule conformations.
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Figure 4.1: (a) Polymer dimensions of a homopolymer for varying monomer cohesiveness. Inset: equi-
librium polymer size predicted by the mean-field model of Section 2.1.3 with b = 1.35, v0 ≈ 4.52, and
N = 100. b was based on the average bond length in the simulations. The estimate of v0 and the
conversion between χcr and ε shown on the top x-axis is explained in Section 2.3.5.
(b) Asphericity of a homopolymer for varying monomer cohesiveness. Inset: the ratio of end-to-end
distance to radius of gyration for the corresponding asphericity.
The good solvent corresponds to ε = 0, the θ solvent occurs at ε ≈ 0.7− 0.75 kT, and poor solvents are

ε > 1.5 kT. The number of monomers is N = 100. Polymer dimensions are in units
√

2
3b0 where b0 is

the 8-6 LJ repulsion distance between bonded monomers described in Section 2.3.4. ε is in units of kT .
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Coarse-grained simulations can complement experimental measurements by providing the ensemble

of conformations of a polymer directly. Inference of the polymer dimensions from FRET experiments

requires an appropriate polymer model (see Section 1.4.1). For example, in order to extract the radius

of gyration, a model based on the Sanchez theory [56] is sometimes used. Rather than the end-to-end

distance, the model only provides a probability distribution for radius of gyration p(Rg) directly. As

proposed by Ziv and Haran [57], the end-to-end distance distribution of conformations with a particular

radius of gyration p(Re|Rg) is the probability distribution of distances between two random points

in a sphere (see Equation 2.9) of radius
√

5Rg. In Figure 4.2, this assumption is compared to the

conditional distributions of p(Re|Rg) obtained from simulations. The distributions are not noticeably

affected by the strength of the cohesive interactions ε. The distribution of the distance between two

random points in a sphere matches the simulations for compact conformations, which usually have high

ε, but underestimates the end-to-end distance for large conformations, which have low ε. In order to

match the raw experimental data, assuming the distribution of random points in a sphere for p(Re|Rg)
would tend to overestimate the radius of gyration for polymers with low cohesiveness or in good solvents.

Figure 4.2: Probability distributions of the end-to-end distance, conditioned on the radii of gyration
of the individual conformations (not ensemble average in both cases). The circles indicate simulation
results with the amount of grey and red representing low to high ε. The bin size for simulation data
was 0.5, so the probability at RE = 20 for P (RE |RG = 8) in the figure means the probability that
20 ≤ Re < 20.5 for conformations with 8.0 ≤ Rg < 8.5. The p(RE |RG) for each ε and RG was plotted
only if the number of conformations used to calculate it exceeded 3000. The black dashed line shows the
distribution of the end-to-end distance if the ends were at two points chosen randomly within a sphere of
radius

√
5Rg (see Equation 2.9). The number of monomers is N = 100. Polymer dimensions are in units√

2
3b0 where b0 is the 8-6 LJ repulsion distance between bonded monomers described in Section 2.3.4.

4.2.3 Relative Dimensions of a Homopolymer

We can more readily identify a polymer’s position on the order-disorder continuum by studying the ratios

between the various polymer dimensions rather than the quantities themselves. From simple models we

know the universal values of these ratios at the extremes (good, θ, and poor solvents) and as the number

of monomers N → ∞. These values are calculated in Chapter 2. R2
e/R

2
g is 6 for an ideal chain or at

the θ point, when excluded volume interactions are balanced by attractive forces; this ratio is slightly



Chapter 4. Relationships Between Amino Acid Composition and IDP Dimensions 60

higher than 6 for a good solvent and decreases for more compact conformations. In the compact regime

(high cohesiveness), the polymer can be approximated as a uniformly dense sphere. If the positions of

the ends are independent and uniformly distributed inside the sphere, R2
e/R

2
g = 2. Rg/Rh approaches

∼ 1.5 in a good solvent for N → ∞ and decreases to ∼ 0.774 when the polymer can be approximated

as a uniform sphere. The Kirkwood approximation predicts a different lower limit of Rg/Rk ∼ 0.93.

Figure 4.3 shows the ratios of the square end-to-end distance to the square radius of gyration and

radius of gyration to hydrodynamic radius for varying values of polymer cohesiveness ε. The ratios

obtained from simulations approach the theoretical limits, and the two are expected to coincide as

N → ∞ [185] and for higher ε in the case of the poor solvent. Specifically, the ratio of end-to-end

distance to radius of gyration in simulations agrees with the Gaussian chain prediction at the θ point.

For the homopolymer model, the asphericity is well correlated with the ratio of end-to-end distance to

radius of gyration (Inset of Fig. 4.1b).

There has been a discrepancy between the polymer dimensions of IDPs and chemically denatured

proteins measured using different experimental techniques, most prominently FRET and SAXS [60,

61]. In FRET, assumptions about the distribution of the end-to-end distance are needed to infer the

ensemble average value. Further assumptions about the polymer model are made to infer the radius

of gyration, which has led to the discrepancy between the radii of gyration obtained from FRET and

SAXS experiments. Song et al. [58] have emphasized that conventional models used in FRET inference

overestimate the radius of gyration and proposed a subensemble method which finds the most probable

radius of gyration which is consistent with the experimental FRET efficiency. Borgia et al. [63] and

Fuertes et al. [36] have shown that end-to-end distance and radius of gyration values are decoupled: one

can reweight the conformations to create many ensembles with similar radii of gyration but drastically

different end-to-end distances. The initial discrepancies between FRET and SAXS radii of gyration

have been attributed to the assumptions of the hompolymer models (usually Gaussian chain or Sanchez

theory) used in FRET inference. The true ensembles of IDPs are heterogeneous and aspherical. In

this section, we found that a homopolymer model can predict aspherical conformations and differing

ratios for the polymer dimensions although both are still correlated with ε and chain compaction. In

the next section (4.3), we investigate to what degree the variation of the polymer dimensions is due to

the heterogeneity of the sequence versus overall chain cohesiveness and compaction.

4.2.4 Hydrodynamic Radius and the Kirkwood Approximation

Accurate simulations of dynamics are required to measure the hydrodynamic radius or long time limit

of the diffusion coefficient. The Kirkwood approximation gives the short time limit of the hydrodynamic

radius and diffusion coefficient, and can be obtained from the equilibrium ensemble of conformations

without requiring dynamics. The ensembles can be generated from Monte Carlo or Brownian dynamics

simulations. By performing Brownian dynamics simulations with the addition of implicit hydrodynamic

interactions, Liu et al. [30] and Schmidt et al. [110] have previously found that the Kirkwood approxima-

tion overestimates the hydrodynamic radius by < 4% for a SAW and a worm-like chain model. In this

section, we extend the comparison between the Kirkwood approximation and the hydrodynamic radius

to all values of cohesiveness.

From the simulations, we calculate a time dependent diffusion coefficient by varying the time interval

over which we measure the centre of mass displacement of the polymer. In the limit of short times this

time dependent diffusion coefficient approaches the Kirkwood approximation (Eq. 1.6). As the interval
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Figure 4.3: Ratios between polymer dimensions of a homopolymer for varying monomer cohesiveness.
(a) Square end-to-end distance to square radius of gyration. (b) Radius of gyration to hydrodynamic
radius. The Kirkwood approximation is shown in purple and the long time limit is shown in blue.
The dashed lines correspond to the Gaussian chain predictions, the solid lines correspond to a uniform
sphere. The ratio of square end-to-end distance to square radius of gyration agrees with the Gaussian
chain prediction (R2

e/R
2
g = 6) at the θ point (ε ≈ 0.7− 0.75 kT). The number of monomers is N = 100.

ε is in units of kT .
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is increased and the polymer samples more conformations as it diffuses, the diffusion coefficient relaxes

to its long time limit (Eq. 1.5 and Fig. 4.4a).

As the polymer cohesiveness increases and the polymer adopts more compact configurations, the

diffusion coefficient increases as expected. However, the relative difference between the short and long

time limits of the diffusion coefficients also increases. If we convert to the hydrodynamic radius we can see

that for low cohesiveness, ranging from good to θ solvents, the Kirkwood approximation overestimates

the true diffusion coefficient by 3-5% in agreement with other studies [30, 110]. In the poor solvent

regime the relative difference increases to beyond 10% and is larger for longer polymers (Fig. 4.4b).

4.3 Effects of Amino Acid Sequence Heterogeneity on IDP Di-

mensions

4.3.1 Sequence Heterogeneity Model

To capture the importance of sequence effects on IDP structures, the homopolymer model can be aug-

mented by ascribing different properties to the monomers resulting in heterogeneous sequences. These

can include: monomer size (LJ diameters representing the range of the excluded volume and cohe-

sive interactions), variable strengths of the cohesive interactions, and variable charges and electrostatic

interactions between the monomers. The parameters were originally introduced in Section 2.3.

Rather than attempt to map the amino acids to specific coarse-grained model parameters, we focus on

discovering universal relationships between sequence and polymer dimensions. We introduce a four letter

model (“HP+-”), where monomers can be either: neutral/disorder promoting (“P”), cohesive/order

promoting (“H”), positively charged (“+”), or negatively charged (“-”). The first two types of monomers

are inspired by the Hydrophobic-Polar model of proteins [186]. Overall, this model takes into account

the basic features of IDP sequences: that polymer dimensions are correlated with order and disorder

promoting amino acids [38], that net charge and hydrophobicity can distinguish IDPs from natively

folded proteins [1], and the importance of the sequence of charged residues on polymer dimensions [50].

The charged monomers directly represent charged amino acids, while the cohesive monomers represent

order promoting or hydrophobic amino acids, and the neutral monomers are polar or disorder promoting

amino acids. Neutral monomers do not interact via cohesive or electrostatic interactions (εi = 0 and

qi = 0). Cohesive monomers interact identically only with other cohesive monomers via the cohesive

interaction (overall strength E = ε
kT ). Charged monomers interact only with other charged monomers

via the electrostatic interactions.

In simulations, the range (diameters) of excluded volume interactions between bonded monomers

was B0 =
√

3
2 . The maximal extension of the FENE bonds between monomers was Lmax = 2B0.

The strength of excluded volume interactions was ELJ = εLJ
kT = 1. For excluded volume and cohesive

interactions between non-bonded monomers, the range (diameters) Bi varied for each specific simulation.

The diameters were originally inspired by the volumes of real amino acids [100, 174], however the results

can be applied more generally and we expect the small variation in radii to not have had a great effect.

The hydrodynamic radii of the monomers were Ai = Bi
2 . Cohesive forces were cutoff at a distance of

4B. The strength of electrostatic interactions Q = 2 and the Debye length was LD = 4 in simulation

units (see Section 2.3.6 for an explanation of these parameters).

The simulations can be directly compared to real polypeptides in the following way: the distance
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Figure 4.4: (a) Time Dependence of Diffusion coefficient. Homopolymer model with N = 100.
(b) Error of the Kirkwood Approximation. Homopolymer model with N = 100. Inset: relative
difference between the Kirkwood approximation and the long limit of the hydrodynamic radius for
polymers with 50, 100, 200 and 400 monomers.
ε is in units of kT . Distance and time are in simulation units as defined in Section 2.3.2.
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(a) (b)

Figure 4.5: Visualizations of example conformations of heterogeneous sequences.
(a) Sequence “sv19” (shown in Fig. 4.6).
(b) The (HP)30 sequence from Section 4.3.3.
Each monomer is represented by a sphere of diameter 0.7Bi. White, green, red and blue colours represent
neutral, cohesive, positively and negatively charged monomers respectively. Bonded monomers are
connected using a cylinder.

between two Cα atoms of adjacent amino acids is roughly 0.38 nm [100], this corresponds to the distance

between bonded monomers in simulations which was ∼ 1.35. The Debye length corresponds to ∼ 1.1 nm,

which is equivalent to ∼ 75 mM of NaCl. However, the goal of this section is not to create a mapping

between amino acids and the coarse-grained model parameters, but instead investigate what degree of

detail is important when modeling IDPs and investigate the general relationships between sequence and

IDP dimensions.

For each sequence and interaction parameters ε, Q, and LD, 8 runs were performed, each lasting

108 steps, with a time step of ∆T = 0.001. Each run began with a self-avoiding random walk initial

condition. The first 106 steps were excluded from the analysis, and averages were taken over steps over

runs and steps.

4.3.2 Sequences of Charged Residues

Many IDPs contain higher fractions of charged amino acids in their sequences, when compared with

natively folded proteins [23, 27]. Das and Pappu [50] introduced a patterning parameter κ to quantify

the segregation of positive and negative charges in a sequence. This value is low for well mixed sequences

and high for completely segregated sequences, and is further normalized by a hypothetical maximally

segregated sequence where all of the positive charges lie at one end and the negative charges at the

opposite end. From simulations using the ABSINTH model, they found that the radius of gyration

decreased for increasing κ for sequences of equal numbers of positively and negatively charged amino

acids. In the ABSINTH model, ensembles are generated using the Monte Carlo method. All atoms of

the amino acids and ions in solution are modeled explicitly, while the solvent molecules are included

implicitly [187].

The definition of the sequencing parameter is inspired by the charge asymmetry σ of a polyelectrolytic

sequence:

σ =
(f+ − f−)2

f+ + f−
(4.3)

f+ and f− are the fractions of positively and negatively charged amino acids respectively. For the se-
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Figure 4.6: IDPs with identical compositions but differing sequences. Each is composed of identical
numbers of positively (“K”) and negatively (“E”) negatively charged amino acids, and the sequence is
quantified by the charge segregation parameter κ. Figure from Das and Pappu [50].

quences of equal numbers of positively and negatively charged amino acids studied by Das and Pappu [50]:

σ = 0. To differentiate between sequences with identical compositions, the local charge asymmetry σi

of a consecutive group i of amino acids is introduced:

σi =
(f+ − f−)2

i

(f+ + f−)i
(4.4)

σi is typically calculated for every group of g = 5 or 6 consecutive amino acids in the sequence, including

overlaps. The average square deviation of the local charge asymmetry from the global value quantifies

the segregation of positive and negative charges:

δ =

∑Ng
i=1(σi − σ)2

Ng
(4.5)

Where Ng = N + 1 − g is the number of groups for which σi is calculated. The sequence parameter

κ = δ
δmax

is the average square deviation of local charge asymmetry (δ), normalized by the value δmax

for a maximally charge segregated sequence with the same composition (all the positive charges placed

at the C-terminus and all the negative charges at the N-terminus). κ can also be thought of as roughly

quantifying the average net charge of groups of 5 or 6 consecutive of amino acids or the average size of

contiguous like-charged patches.

In order to evaluate the coarse-grained model relative to atomistic simulations, we performed simu-

lations of 30 sequences with κ values ranging from 0 to 1 of an IDP composed of 25 negatively charged

and 25 positively charged monomers. The sequences are shown in Figure 4.6. Ignoring atomistic details,

we only consider the screened Coulomb interactions between the charges of the monomers, the bonds
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between consecutive monomers along the chain, and excluded volume interactions through the LJ di-

ameters which are set to B− = 2.29 and B+ = 2.44 reflecting the relative volumes of the corresponding

amino acids (“E” and “K”). The charged interaction strength Q = 2 and the Debye length is LD = 4.

We reproduce the general trend of decreasing radius of gyration with increasing κ (Fig. 4.7a), as well

as the partially reproducing the undulations within this dependence. In order to minimize the percent

difference (Inset of Fig. 4.7) between our results and those of Das and Pappu [50], our radii of gyration

are rescaled by a factor of ∼ 1.4 (the ratio of the average radii of gyration over all sequences between

our results and those of Das and Pappu). This difference could be due to several assumptions of the

coarse grained model: the bond angle restrictions between subsequent amino acids are neglected, amino

acids are treated as spherically symmetric and side-chain geometries are ignored, and the amino acid

size in the 8-6 LJ repulsive potential is based on the volumes of amino acids from folded proteins, which

could differ from the excluded volume of amino acids in IDPs [100, 174]. The agreement between the

two models is better for sequences with higher κ, and for low κ there are a few sequences for which

the coarse-grained model predicts greater compaction. The sequence with the highest disagreement is

“sv19” (shown in Fig. 4.6) with κ = 0.1941. This sequence is made up of repeating motifs of 5 negative

followed by 5 positive amino acids. It is likely that the simple bead geometries and lack of bond angle

restrictions in the CG model, results in more compact conformations specifically for this sequence.

In Figure 4.7b, the results are reordered according to the Sequence Charge Decoration (SCD) pa-

rameter introduced by Sawle and Ghosh [188]. Lin and Chan [189] found that the radius of gyration

simulated by Das and Pappu had a smoother dependence on SCD than on κ. For the coarse-grained

model results, we find a similar improvement in the correlation of radius of gyration with SCD over κ.

For the homopolymer, the dimensions were controlled by the cohesiveness parameter ε. Without

varying any of the interactions, and only the sequence, we observed a similar compaction of the radius of

gyration, now correlated with the parameters κ and SCD. Using a random-phase-approximation polymer

theory, Lin and Chan [189] found that SCD and Rg were both correlated with the critical temperature

describing the tendency of an IDP to phase separate, which provides a connection to the χcr parameter

of mean-field models. Thus, the effect of modifying the sequence of charged monomers quantified by the

parameters κ or SCD on the radius of gyration and phase separation behaviour of IDPs is analogous

to adjusting the global cohesiveness parameter of a homopolymer. Figure 4.8 shows the ratios of the

polymer dimensions for the different sequences. For the homopolymer, the dimensions were decoupled,

but the ratios still varied with overall compaction controlled by the cohesiveness parameter ε. For the

polyampholytic sequences, the ratio of end-to-end distance to radius of gyration is very sensitive to the

specific sequence. A FRET measurement will be more indicative of local structure of the polymer ends,

and cannot be used to infer the other polymer dimensions. On the other hand, the ratio of radius of

gyration to the hydrodynamic radius is correlated with κ or SCD and overall compaction, and determines

the position of the ensemble on the disorder-to-order continuum.

4.3.3 Effect of Length of Cohesive Patches

In this section, I investigate the patterning of neutral (disorder promoting) and cohesive (order promot-

ing) monomers, specifically the length of continuous cohesive patches. Martin et al. [51] augmented the

charge patterning parameter κ of Das and Pappu [50] to incorporate all amino acids. Since, in general,

Proline and charged amino acids are disorder promoting, their positions in a sequence are expected to

influence the dimensions of an IDP. They introduced the parameter Ω, defined analogously to κ, except
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Figure 4.7: Radius of gyration of sequences composed of 25 positively and 25 negatively charged amino
acids. Inset: percent error of the coarse-grained model (relative to ABSINTH model [50]). (a) The κ
parameter introduced by Das and Pappu [50] is on the x-axis. (b) Sequence Charge Decoration (SCD)
introduced by Sawle and Ghosh [188] is on the x-axis.
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Figure 4.8: Ratios between polymer dimensions of polyampholyte sequences. (a) Square end-to-end
distance to square radius of gyration. (b) Radius of gyration to hydrodynamic radius (Kirkwood ap-
proximation). The dashed lines correspond to the Gaussian chain predictions, the solid lines correspond
to a uniform sphere. Top: The κ parameter introduced by Das and Pappu [50] is on the x-axis. Bottom:
Sequence Charge Decoration (SCD) introduced by Sawle and Ghosh [188] is on the x-axis.
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fP,+,−, the combined fraction of Proline and charged residues, takes the place of f+ and fothers, the

fraction of all other amino acids, takes the place of fi. Using ABSINTH simulations, they found that

Ω was correlated with compaction, meaning sequences where disorder promoting amino acids were well

spread out, were more expanded.

We simulated 5 different sequences of 30 cohesive (“H”) and 30 neutral (“P”) monomers using the

coarse-grained model. The LJ diameters of the beads were set to
√

1.5 for all monomers. The sequences,

shown in Table 4.1, vary in the size of the cohesive and neutral clusters increasing from 1 to 5. The

values of Ω increase as the consecutive cluster size increases and the order and disorder promoting amino

acids become more and more segregated.

Ω Sequence
0.00086 (HP)30

0.00414 (PHHP)15

0.00086 (PHHHPP)10

0.04056 PP(HHHHPPPP)7HH
0.17943 (PPHHHHHPPP)6

Table 4.1: Sequences of cohesive (“H”) and neutral (“P”) monomers with different sizes (1, 2, 3, 4, or
5) of cohesive (and neutral) clusters.
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Figure 4.9: Radius of gyration of sequences composed of 30 cohesive and 30 neutral monomers for
varying monomer cohesiveness. The size of the hydrophobic patches varies from 1 to 5 and the exact
sequence is shown in the legend. The subscript indicates the number of times that motif is repeated.
For comparison, a homopolymer sequence of 60 cohesive monomers is shown in black. On the x-axis,
the monomer cohesiveness has been rescaled according to the mean-field assumption. fH refers to the

fraction of cohesive monomers in the sequence. ε is in units of kT . Radius of gyration is in units
√

2
3b0

where b0 is the 8-6 LJ repulsion distance between bonded monomers described in Section 2.3.4.

We varied the cohesiveness ε of the “H” monomers and measured the effects of the overall cohesiveness

and the size of cohesive clusters on polymer dimensions. At low cohesiveness, the radii of gyration of

the different sequences converged to the same value (Fig. 4.9). The radii of gyration for a homopolymer

of 60 cohesive monomers is shown for comparison. On the x-axis, the monomer cohesiveness parameter
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Figure 4.10: Ratios between polymer dimensions of sequences composed of 30 cohesive and 30 neutral
monomers for varying monomer cohesiveness. (a) Square end-to-end distance to square radius of gy-
ration. (b) Radius of gyration to hydrodynamic radius (Kirkwood approximation). The dashed lines
correspond to the Gaussian chain predictions, the solid lines correspond to a uniform sphere. For compar-
ison, a homopolymer sequence of 60 cohesive monomers is shown in black. On the x-axis, the monomer
cohesiveness has been rescaled according to the mean-field assumption. fH refers to the fraction of
cohesive monomers in the sequence. ε is in units of kT .

ε is rescaled by the square fraction of cohesive monomers, according to the mean-field assumption under

which the polymer dimensions would be equivalent. The correspondence with the homopolymer begins

to break down around the θ-point (ε ≈ 0.7−0.75 kT). For intermediate cohesiveness, the sequences with

larger cluster sizes exhibited an earlier and steeper coil to globule transition. At the highest values of

cohesiveness, there was a non-monotonic relationship between the size of the clusters and the polymer

dimensions. This is likely due to the sequences close to the ends having an exaggerated effect due to the

short sequence lengths. This behaviour is more pronounced when we look at the ratio of the end-to-end

distance to the radius of gyration compared with the ratio of radius of gyration to hydrodynamic radius

(Fig. 4.10). For the former, the ratios vary greatly even for collapsed sequences, and the length of the

neutral tails at the end of each sequence likely have a greater effect on the end-to-end distance than

the other dimensions. On the other hand, the ratio of radius of gyration to hydrodynamic ratio follows

the overall compaction of the polymer. These results emphasize again how end-to-end distance how

discrepancies may arise when inferring the other polymer dimensions from the end-to-end distance.

4.3.4 Patterning of Charged and Cohesive Monomers

Mao et al. [48] proposed a classification of the conformational ensembles of IDPs by composition based

on their mean hydrophobicity, and fractions of positively and negatively charged amino acids. Polyelec-

trolytic sequences are abundant in either positively or negatively charged amino acids, resulting in a

high fraction of charged residues and a high net charge per residue, and are expected to adopt swollen

coil structures. In this section, we investigate the effects of sequence patterning of cohesive and charged

amino acids on the dimensions of polyelectrolytic IDPs [190]. Beginning with the sequences composed

of positively and negatively charged amino acids used by Das and Pappu [50] that looked at the effects
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of charge segregation (shown in Figure 4.6), the negatively charged amino acids are replaced with cohe-

sive amino acids. The results apply identically to sequences of negative and cohesive monomers. The

patterning parameter Ω proposed by Martin et al. [51] describes the segregation of disorder promoting

amino acids (Proline and charged amino acids) and order promoting amino acids (all others), and in

this case the values of Ω of the charged/cohesive sequences are equivalent to the values of κ for the cor-

responding original polyampholytic sequences. Low Ω for these sequences corresponds to good mixing

of the positively charged and cohesive residues with the lowest value given to the sequence composed

of the “H+” motif repeated. The maximum value of Ω = 1 is assigned to the sequence with maximum

segregation: 25 positively charged amino acids followed by 25 cohesive. Martin et al. [51] considered

permutations of the sequence of Ash1, which had a combined total of 35% Proline and charged amino

acids (≈ 19% positively charged and ≈ 1.2% negatively charged). They observed a monotonic decrease

of radius of gyration with increasing Ω. For comparison, in our sequences 50% of the residues are all

positively charged and the rest are order promoting (cohesive). We varied the monomer cohesiveness, ε

from 0 to 5.1, in intervals of 0.3. This is similar to starting from all disorder promoting amino acids in

the uncharged regions, and increasing the fraction of order promoting or cohesive amino acids in those

regions.

For well mixed sequences, repulsive interactions dominate, swelling their conformations. As ε, the

strength of attraction between cohesive monomers, increases we observe an initial decrease in the radius

of gyration that is more pronounced for sequences with higher Ω. This is expected as higher segregation

means larger size of cohesive patches which resulted in an earlier coil to globule transition as shown in

the previous section. However, as ε increases further, the sequences with the highest values of Ω fail to

collapse, and the smallest radii of gyration are observed for intermediate sequences (Fig. 4.11a) This can

be explained by the long positively charged regions within sequences with high Ω resisting the global

compaction and overpowering the cohesive monomers found within them.

Figure 4.11b shows the non-monotonic relationship between radius of gyration and the sequence

parameter Ω more clearly. At sufficiently high ε, as we increase the segregation between charged and

hydrophobic residues we initially observe a decrease in radius of gyration, as we increase the segregation

parameter further, we observe a recovery in the polymer size. As before, the ratio of end-to-end distance

to radius of gyration is highly sequence specific, and there is no trend between it and Ω or the radius of

gyration.

4.4 Conclusions

In Section 4.2, we investigated the dimensions of a homopolymer for varying cohesiveness using coarse-

grained simulations. An increase in cohesiveness resulted in a compaction of all the polymer dimensions

(end-to-end distance, radius of gyration, and hydrodynamic radius). The compaction factor differs for

each of the polymer dimensions and their relative values (the ratio of the square end-to-end distance

to the square radius of gyration and the ratio of the radius of gyration to the hydrodynamic radius)

also vary with cohesiveness. Additionally, we found that the conformations of the homopolymer are

aspherical for low values of ε and the ratio of end-to-end distance to radius of gyration was correlated

with asphericity. For the homopolymer model, the dimensions are decoupled in the sense that they vary

with ε, however they are still correlated with the cohesiveness and compaction of the polymer.

In Section 4.3, we investigated the role of sequence patterning by introducing four types of monomers
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Figure 4.11: Radius of gyration of sequences composed of 25 cohesive and 25 positively charged
monomers. The sequence parameter Ω describes the segregation of the cohesive and charged monomers.
(a) Monomer cohesiveness ε is on the x-axis and the results for 7 sequences with varying Ω are shown.
(b) The sequence parameter Ω is on the x-axis and the results for two values of the strength of cohesive
interactions ε are shown. Inset: the ratio of square end-to-end distance to radius of gyration. ε is

in units of kT . Radius of gyration is in units
√

2
3b0 where b0 is the 8-6 LJ repulsion distance between

bonded monomers described in Section 2.3.4.
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(neutral, cohesive, positively charged, and negatively charged). In general, we found that sequence het-

erogeneity can modulate the polymer dimensions independently of composition or the overall cohesive-

ness. The sequences studied included polyampholytes composed of positively and negatively monomers

described by the κ parameter [50], sequences composed of cohesive and neutral monomers with differing

cluster size, and polyelectrolytes composed of positively charged and cohesive monomers described by

the Ω parameter [51]. The dimensions of the polyampholytes were similar to those predicted by an

all-atom model (within 5% error for over half of the sequences). For polymers composed of cohesive

and neutral monomers, an increase in the size of cohesive patches resulted in compaction of the polymer

dimensions at a weaker overall cohesiveness value. The dimensions of chains composed of charged and

cohesive monomers had a non-monotonic relationship with the sequence parameter describing the seg-

regation of the two types of monomers: well mixed or mostly segregated sequences adopted expanded

conformations but those in between the two extremes tended to be more compacted. Overall, the ratio

of radius of gyration and hydrodynamic radius was correlated with sequence patterning parameters and

is a good measure of global conformational features of an IDP. On the other hand, end-to-end distance

was highly sequence specific and the ratio of end-to-end distance to radius of gyration can be used to

describe local conformational features of the IDP’s ends. Future investigations could include sequences

composed of three or more of the monomer types of the four letter model (e.g. cohesive, positive, and

negative) requiring both sequence parameters. Also, the relationships between polymer dimensions and

sequence parameters almost certainly depend on the composition (fraction of cohesive, neutral, posi-

tive, and negative monomers), and future investigations should look at what these relationships are for

different compositional classes of IDPs.

After scaling the radius of gyration by a factor of ∼ 1.4, the coarse-grained model was in good

agreement with the all atom ABSINTH model for sequences of positively and negatively charged amino

acids [50]. Based on the sequence whose radius of gyration differed the most and the overall conversion

factor, neglecting backbone geometry in the coarse grained model is the reason that a direct quantitative

comparison with IDP dimensions impossible. Further development of the model could include the

addition of the backbone geometry information in the form of bond angle potentials since this would

not perceptibly increase the runtime of the simulations. Validation could include more comprehensive

matching to all atom simulations or experimental results.

The results of this Chapter might be able to clarify the discrepancies arising between the FRET and

SAXS inferred radii of gyration. The models commonly used to infer the radius of gyration from FRET

measurements, such as the Gaussian chain and Sanchez models [22, 53, 57], assume a constant ratio

between the end-to-end distance and the radius of gyration. The homopolymer model showed that this

ratio varied with monomer cohesiveness. Furthermore, the four letter model showed that the end-to-end

distance and subsequently the the ratio of end-to-end distance to radius of gyration is highly sequence

dependent and not correlated with overall compaction, and therefore cannot reliably be used to infer the

other dimensions. Our coarse grained model offers an improvement over the simple models commonly

used in FRET analysis without resorting to all atom simulations as it gives the probability distributions

of the individual polymer dimensions. Rather than being the source of a discrepancy, the combined

measurements of several polymer dimensions can be used to describe the conformational ensemble, and

guide theoretical and computational models of IDPs. This is analagous to the use of the heights of

the pure FG nup layers at various grafting distances to infer the cohesiveness of the polymers in the

brush model of Chapter 3. For example, the ratio between radius of gyration and hydrodynamic radius
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can reveal the location of a particular IDP on the disorder-to-order continuum and the cohesiveness

parameter of the IDP, while the ratio of end-to-end distance to radius of gyration may reveal the local

conformation of the IDP’s ends and whether or not a homopolymer model is appropriate.



Chapter 5

Polymer Dynamics of IDPs

5.1 Introduction

In the previous two chapters, we have studied the equilibrium ensembles of conformations of IDPs: specif-

ically the heights of surface grafted FG nup layers and transport proteins in Chapter 3 and the polymer

dimensions of single IDPs and and their relationship to the sequence and solution properties in Chapter

4. In this chapter, we continue to use the coarse-grained models of Chapter 4 to study the dynamics of

IDP ensembles, specifically the dynamics of the end-to-end distance which can be characterized experi-

mentally using Förster resonance energy transfer (FRET) in combination with Fluorescence Correlation

Spectroscopy (FCS) [22, 52, 191]. Understanding of the link between the amino acid composition and

sequence of an IDP, and their dynamics will lead to understanding of their diverse functions such as:

how fast they find their binding targets, coupled folding upon binding transitions, and the dynamics of

flexible linkers and entropic bristles [2, 4].

FRET, which gives structural information about the ensemble of conformations, can be combined

with FCS, to obtain the dynamics of inter-conversion between the conformations. The fluorescence

intensities of FRET dyes, typically attached at the two ends of an IDP or natively folded protein, depend

on the distance between them. As an IDP transitions between different conformations, fluctuations of the

distance between the dyes will cause fluctuations in their fluorescence intensities. The decay times of the

correlation functions of the fluorescence intensities will capture the dynamics of the inter-dye distance.

This can be related to the decay of the reconfiguration time of the chain defined as the relaxation time

of the end-to-end distance auto-correlation function [22, 52–54, 191].

One characteristic experiment quantifying the dynamics of disordered proteins was performed by

Soranno et al. [66]. A natively folded protein and two IDPs were labeled with FRET dyes close to

their termini. The native protein was a 68 residue mutant of cold shock protein (Csp). The IDPs were a

segment of HIV-1 integrase (IN) with low net charge and low hydrophobicity, and a highly net negatively

charged segment of human prothymosin α (ProTα), both 60 residues long. FRET measurements of end-

to-end distance and FCS measurements of the reconfiguration time were performed at various denaturant

concentrations (0-7 M [GdmCl]). Overall, decreasing the denaturant concentrations led to more compact

chains. However, the reconfiguration times first decreased as denaturant concentration was lowered and

then increased as the solvent approached native conditions. Despite having similar reconfiguration

times at high denaturant, all three proteins exhibited different behaviours as the GdmCl concentration

75
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decreased. Csp had the greatest slowing of the end-to-end distance dynamics, while those of ProTα were

almost unchanged, and the behaviour of IN was in between the other two. Some of these changes are due

to the changing polymer dimensions, in this case radius of gyration inferred from FRET, of the proteins:

for Csp and IN the radii of gyration were comparable until the lowest denaturant concentrations (<2

M [GdmCl]) where Csp became more compact, and ProTα had a larger radius of gyration than the

other two and compacted similarly to IN. Naively, one would expect the dynamics of the end-to-end

distance to speed up with chain compaction simply due to the reduction of the polymer dimensions as is

the case for the Gaussian chain model. However, as the chain compacts, the amount of inter-monomer

interactions increases and it is not unexpected that the reconfiguration time is a function of the protein

sequence and the denaturant concentration.

Although there is still a debate over the molecular details, denaturants, such as Guanidinium Chloride

(GdmCl), weaken the inter-residue interactions of a protein, either directly or indirectly by disrupting the

hydrophobic effect, leading to unfolding or a swelling of its dimensions [77, 101]. The effect of denaturant

on reconfiguration times is not as straightforward. At high denaturant, larger dimensions would lead to

longer global reconfiguration times (slower dynamics), however this is accompanied by weaker and less

numerous inter-residue interactions which both lead to faster dynamics. Another complication arises as

increasing denaturant concentration increases the solvent viscosity leading to a slowing of dynamics [192].

The overdamped Langevin dynamics equation (2.54) states that any time scale is proportional to

the solvent viscosity. The solvent viscosity can be varied independently of denaturant concentration

in experiments, by varying glycerol concentration, and in molecular dynamics simulation with explicit

solvent, by changing the mass of the water molecules [66, 68, 193]. Both experiments and molecular

dynamics simulations show a deviation from inverse proportionality with solvent viscosity for protein

folding rates [194]. Similarly, Soranno et al. [66] found that the deviation of end-to-end distance recon-

figuration time from proportionality with the solvent viscosity increased as GdmCl concentration was

lowered. These observations are attributed to the “internal friction” of the polypeptides [54, 66, 195].

The presence of internal friction indicates that some of the assumptions of the overdamped Langevin

dynamics equation break down at the level of molecular interactions between the solvent and amino

acids. These assumptions include: that monomers are spherical beads experiencing Stokes drag forces,

that the random forces due to collisions with the solvent are uncorrelated in time, and that the timescale

of monomer motion is significantly longer than the relaxation time due to solvent drag [73, 91, 98].

Multiple explicit solvent molecular dynamics studies of short polypeptides have been performed in

order to understand the molecular origins of internal friction [67, 68, 193, 196]. The mechanisms that

contribute to internal friction are likely a combination of dihedral angle transitions, hydrogen bonding

and other inter-residue interactions. Although several heuristic relationships exist, it is difficult to isolate

the contributions to dynamics from solvent and internal friction [194].

Highly coarse-grained models such as the Rouse (or Zimm) model with internal friction can phe-

nomenologically capture the experimental effect of solvent viscosity on reconfiguration time [66, 197,

198]. The standard Rouse model describes a polymer as a series of beads connected by Hookean springs

undergoing Brownian dynamics. Aside from the linear forces between neighbouring beads along the

chain, there are no other interactions (excluded volume or other interactions between non-neighbouring

beads) [25, 37]. The Rouse model can be extended to the “Rouse model with internal friction” by adding

a bond friction term that acts to dampen changes in the relative velocities of the neighbouring beads.

This term is inherently independent of the solvent viscosity and leads to expressions for the relaxation
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times of the normal modes of the form:

τr = τi + τs = τi +
η

η0
τs(η0) (5.1)

where τi and τs are the relaxation times associated with internal friction and solvent respectively and

η is the solvent viscosity [198]. When experimental reconfiguration times are interpreted using this

model, any deviation from proportionality with solvent viscosity can be explained by the bond friction

term. Although the Rouse model with internal friction can capture the experimental effects, only bond

interactions are included, and other interactions which may contribute to the increase in reconfiguration

time for decreasing denaturant are ignored. Additionally, more complicated models and molecular

dynamics simulations show that the contribution to reconfiguration time from internal friction is also

dependent on the solvent viscosity and may not be so easily separated using the linear assumption [198].

It must be emphasized that there are two separate effects observed in the experimentally inferred

reconfiguration times: the deviation from solvent viscosity proportionality as denaturant concentrations

are lowered and the increase in the reconfiguration time in the same regime. Both are concomitant with

the compaction of the polymer dimensions and the associated increase in strength and number of inter-

residue interactions [23, 77]. However, to address the former requires an investigation of the molecular

origins of internal friction, which are not accessible using the coarse-grained Langevin dynamics model.

Instead I will focus on the latter: investigating how the strength of inter-residue interactions which

lead to IDP compaction affect the end-to-end distance dynamics. Additionally, I will isolate the effects

of cohesive inter-residue interactions from sequence heterogeneity by comparing homopolymer and het-

eropolymer simulations. The coarse-grained model introduced in Chapter 2 can include several effects

not captured in simpler Rouse and Zimm-like models: excluded volume repulsion, cohesive interactions

between non-bonded monomers, and sequence heterogeneity. Simulations of the coarse-grained model

can be thought of as occurring at a sufficiently high but constant solvent viscosity, so that the contribu-

tions from internal friction are neglected.

In the rest of the chapter, I will quantify the end-to-end dynamics of polymer chains, using the

coarse-grained model introduced in Chapter 2. Section 5.2.1 includes a description of the end-to-end

vector and end-to-end distance auto-correlation functions, emphasizing the distinction between the two.

Section 5.2.2 reviews the homogeneous and heterogeneous models used to represent compaction of an

IDP for various compositions, sequences, and denaturant concentrations. Section 5.3 presents the auto-

correlation times of the end-to-end vector and end-to-end distance for the homopolymer and two het-

erogeneous sequences. The results suggest that sequence heterogeneity, and not solely inter-monomer

interactions, is responsible for the experimental observations of increase in reconfiguration time. The

analysis of the dynamics of the end-to-end distance offers advantages over the model commonly used in

experimental inference and has various implications for IDP functions: the increase in reconfiguration

time is due to the IDP exploring conformation states that are more separated in space.

5.2 Definitions and Methods

5.2.1 Correlation Times of End-to-end Dynamics

The end-to-end distance reconfiguration time, which is inferred from FRET and FCS experiments [22,

52, 191], is distinct from the end-to-end vector relaxation time (approximated by the Rouse or Zimm
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time) [25, 197]. The latter includes global rotations of the chain in addition to changes in only the

distance. Here I define how these quantities are calculated in simulations.

The normalized autocorrelation function of the end-to-end vector is defined as:

c~Re(t) =
〈〈~Re(t) · ~Re(0)〉〉

〈R2
e〉

(5.2)

The decay time of this function is referred to as the relaxation time of the end-to-end vector or the

rotation time [25, 199]. The double angle brackets represent averaging over instantiations and realizations

(or initial conditions and sample paths).

The normalized autocorrelation function of the end-to-end distance is defined as:

cRe(t) =
〈〈|~Re(t)||~Re(0)|〉〉 − 〈|~Re|〉2

〈~R2
e〉 − 〈|~Re|〉2

(5.3)

The decay time of this function is referred to as the relaxation time of the end-to-end distance or the

reconfiguration time [22, 199].

For the Rouse model, the auto-correlation of the end-to-end vector can be expressed as a sum over

the odd normal modes, each of which follows a simple exponential decay. The Rouse time is defined as

the longest relaxation time, corresponding to the decay of the first mode and follows τR ∝ ηR4
g

kBT
∝ N2 for

a θ solvent. The Zimm model provides an improvement by including a pre-averaging approximation of

the hydrodynamic interactions. The longest relaxation time (Zimm time) in good and θ solvent regimes

follows τZ ∝ ηR3
g

kBT
∝ N3ν (with a differing prefactor for the two regimes) [25].

5.2.2 Computational Model to Investigate End-to-end Dynamics

In FRET and FCS experiments, the reconfiguration times are calculated for natively folded proteins

and IDPs for varying concentrations of chemical denaturant [66, 195, 200]. In addition to increasing the

solvent viscosity, the denaturant inhibits the inter-residue cohesive interactions and swells the proteins,

measured as an increase in the FRET derived end-to-end distance.

In our model, we aim to capture two effects: the effect of denaturant on weakening the inter-residue

interactions, and heterogeneity of the protein sequences and inter-residue interactions. We do not con-

sider the change in solvent viscosity with denaturant concentration. As in Chapter 4, we make use of

the coarse-grained overdamped Langevin dynamics with hydrodynamic interactions model described in

Section 2.3 and first implemented in Section 4.2.1. In this model, the strength of the cohesive interac-

tions between monomers is controlled by the parameter ε; small ε ≈ 0 corresponds to high denaturant

concentrations (e.g. 6-8 M [GdmCl]), while an increase in ε is corresponds to a decrease in GdmCl

concentration.

We investigate three sequences ofN = 100 monomers. The first is the homopolymer model introduced

in Section 4.2.1. The other two are heterogeneous sequences composed of cohesive (“H”) and neutral

(“P”) monomers first described in Section 4.3.1. These sequences consist of: the repeated “HP” motif

and the repeated “HPP” motif. The difference between the homopolymer and heterogeneous sequences

in the simulations is that only the cohesive monomers interact via the cohesive/attractive potential, and

the neutral do not. All other parameters (LJ diameters, hydrodynamic radii, etc.) are the same.

Because the sequences have different fractions of cohesive monomers, different values of global

monomer cohesiveness are required to obtain the same change in polymer dimensions. For the ho-
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mopolymer the cohesive interactions strengths ranged from E = ε
kT = 0 to E = ε

kT = 1.9 inclusive, in

intervals of 0.1. For the “(HP)50” sequence, the cohesive interaction strengths were: 0.5, 1, 1.5, 2.0, 2.2,

2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, and 4.8. For the “(HPP)33H” sequence, the cohesive

interaction strengths were: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and

6.

For each E = ε
kT , 240 runs were performed, each lasting ∼ 1.8 × 107 steps, with a time step of

∆T = 0.001. Each run began with a SAW initial condition. The first 2× 106 steps were excluded from

the analysis, and averages were taken over steps over runs and steps. For each run, the autocorrelation

function was calculated using the Fast Correlation Algorithm, which uses the Fast Fourier Transform,

described in Section 4.1 of Ref. [201] and then the functions were averaged over different runs for each ε.

When analyzing simulation results, we define the relaxation times τ of the end-to-end vector and

distance as the integral of their normalized autocorrelation functions: τ =
∫ 3τe

0
c(t)dt where c(t) is c~Re(t)

or cRe(t), and τe is a preliminary estimate of the decay time, which satisfies c(τe) = e−1. Other methods,

such as fitting a single exponentially decaying function, produce substantially the same results, but more

investigations are required to understand the shapes of the autocorrelation functions. Alternatively, the

auto-correlation time of the end-to-end vector can be obtained from simulations using the expression

τZ ≈ 〈R
2
g〉

6De
[202], since the longest relaxation time should be proportional to the time it takes the chain

to move a distance comparable to its size [203]. Here De is the long time limit of the diffusion coefficient

of the center of mass of the polymer.

5.3 Effects of Cohesiveness and Sequence Heterogeneity on End-

to-end Dynamics of IDPs

The Zimm model predicts that in good and poor solvents, the autocorrelation function of the end-to-

end vector is a sum of exponentially decaying terms. The slowest of these has a relaxation time of

τZ ∼ ηN3ν

kBT
∼ R3

g [25]. From simulations with hydrodynamic interactions we calculate the autocorrela-

tion functions of the end-to-end vector and end-to-end distance (shown for the homopolymer in Fig. 5.1)

directly. For all three sequences (homopolymer and two heterogeneous sequences), the end-to-end vec-

tor relaxation time decreases monotonically with ε and the simulation results for the homopolymer are

compared to the Zimm scaling prediction in Figure 5.2. For all sequences, both the vector and dis-

tance relaxation times (defined as the integral of the normalized autocorrelation function) are shown in

Figure 5.3a. This figure compares the sequences by mean square end-to-end distance (on the x-axis), con-

trolled by the global cohesiveness parameter ε in the simulations, which differs for the three sequences

at each
√
〈R2

e〉. For the homopolymer and (HP)50 sequence, the end-to-end distance reconfiguration

times decrease monotonically with increasing ε. For the more heterogeneous (HPP)33H sequence, the

end-to-end distance reconfiguration time has a non-monotonic dependence on ε, similar to experimental

measurements for varying denaturant concentrations [66].

In Figure 5.2 the relaxation time of the end-to-end vector of a homopolymer in all solvent regimes

is compared with the Zimm scaling prediction of τ ∼ R3
g. The deviation of the simulation results from

the Zimm scaling prediction is not unexpected as the simulations give the relaxation time of a polymer

with N = 100 in different solvent regimes where the prefactor to the Zimm scaling relationship could

change, rather than the relaxation time for different N and unchanging solvent properties. For weak

cohesiveness, the relaxation time of the end-to-end vector agrees with
〈R2
g〉

De
(where De is the long time
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Figure 5.1: Normalized autocorrelation functions of the end-to-end vector (a) and end-to-end distance
(b). Homopolymer model with N = 100.

limit of the diffusion coefficient of the centre of mass of the polymer) which is the time needed for

the polymer to diffuse it’s own size [204]. They diverge for stronger cohesiveness and more compact

conformations. This may be due to end-to-end distance fluctuations having a stronger contribution to

the vector auto-correlation but not affecting the overall diffusion coefficient of the polymer.

The end-to-end distance relaxation time, shown in Figure 5.3a, excludes contributions from rotational

dynamics of the entire polymer, and is closer to the reconfiguration time captured by FRET and FCS

experiments [22, 197, 199]. In the good and θ solvent regimes, the reconfiguration time (relaxation of

the end-to-end distance) follows a different scaling relationship with the polymer dimensions than the

rotation time. Beyond the θ point and for poor solvents, the reconfiguration time of the homopolymer and

the (HP)50 sequence shows a decrease similar to the rotation time (relaxation of the end-to-end vector).

However for the (HPP)33H sequence there is a larger deviation from the Zimm scaling relationship of

the rotation time and an increase in reconfiguration time when the polymer compacts beyong the θ

point, the latter being similar to the behaviour observed for chemically denatured IDPs and natively

folded proteins in FRET and FCS experiments. Excluded volume effects and cohesive inter-monomer

interactions which lead to chain compaction are not enough to cause an increase in reconfiguration time,

instead sufficient heterogeneity in the sequence is necessary.

In order to infer reconfiguration times from experiments [22], 1D normal diffusion in a potential

defined by the end-to-end distance of a Gaussian chain is commonly assumed (see Appendix C). Un-

der these assumptions, for a particular τ and 〈R2
e〉, the equivalent normal diffusion coefficient will be

proportional to
〈R2
e〉
τ , and therefore an increase in τ as 〈R2

e〉 decreases will predict a slower end-to-end

distance diffusion coefficient. Using simulations, we can look at the distributions of end-to-end distance

(Fig. 5.3b) to gain an understanding of the configurational landscape of the different sequences. As

cohesiveness increases and the polymers compact, there is a shift to lower end-to-end distances in all

distributions. For the homompolymer and the (HP)50 sequence, the distributions have a single peak

and the Gaussian chain assumption is reasonable. However, for the (HPP)33H sequence, multiple peaks

emerge immediately after the polymer compacts beyond the θ solvent condition. This is illustrated in
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Figure 5.2: The relaxation time of the end-to-end vector autocorrelation function and
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for a ho-

mopolymer model with N = 100. The x-axis shows the mean squared radius of gyration set by monomer
cohesiveness. The grey solid line is the expected scaling with polymer size from the Zimm model, for
constant cohesiveness/solvent conditions (by varying N) [25]. Distance and time are in simulation units.

the inset of the figure by the difference between the variances of the end-to-end distances of the three

sequences. For the more homogeneous sequences, the variance decreases with compaction, while for

the heterogeneous sequence there is a regime where the variance dependence on end-to-end distance is

relatively flat. In conclusion, the increase in reconfiguration time is due to heterogeneity of the inter-

monomer interactions. The energy landscape in conformation space is wider and more rugged, and the

polymer is sampling a few highly probable conformations rather than smoothly transitioning between

conformations of a Gaussian chain.

5.4 Conclusions

Both IDPs and chemically denatured proteins can exhibit a non-monotonic dependence of end-to-end

distance reconfiguration times on denaturant concentrations and the associated chain compaction [66,

195]. Molecular dynamics studies have proposed various inter-monomer interactions as sources for this

behaviour, but its microscopic origins still remain unclear, and the role of sequence has not been in-

vestigated [67, 68]. Theoretical approaches based on Rouse (and Zimm) like models can capture the

experimentally observed effects but often assume the end-to-end distance dynamics resemble those of

the end-to-end vector [197–199]. In this chapter, we have quantified both end-to-end vector and end-

to-end distance dynamics, and investigated the role of general inter-monomer interactions and sequence

heterogeneity on the dynamics of the polymer ends.

In summary, we have investigated how general inter-monomer interactions affect the dynamics of
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Figure 5.3: (a) Relaxation time of the end-to-end vector (rotation time) and the end-to-end distance
(reconfiguration time) for the different sequences indicated in the legend. The x-axis shows the mean
square end-to-end distance controlled by monomer cohesiveness in the simulations. The θ solvent line is
the linear interpolation of

√
〈R2

e〉 at ε
kT = 0.725 for the homopolymer (based on Appendix B). (b) Two

end-to-end distance probability distribution functions (with different monomer cohesiveness ε) for each
of the three sequences described in the legend. Inset: variance of the end-to-end distance VS the root
mean square end-to-end distance (controlled by monomer cohesiveness in the simulations). The values
of root mean square end-to-end distance and variance of the end-to-end distance of the distributions
plotted in the main figure are indicated using stars in the inset.
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the ends of a polymer using coarse-grained simulations with hydrodynamic interactions. These results

are valid in the overdamped regime where solvent viscosity dominates all timescales. Our model in-

cludes monomer connectivity, excluded volume interactions, and intra-chain cohesion is modulated by

an attractive force between monomers. As cohesiveness varies, the scaling of the end-to-end vector

relaxation time with radius of gyration is similar to the prediction of the Zimm model for good and

θ solvents, and the deviations can be attributed to the differing prefactor between the poor and good

solvent regimes. For the homopolymer, the end-to-end distance reconfiguration time decreases with

increasing cohesiveness and decreasing polymer dimensions but does not follow a power law akin to the

end-to-end vector relaxation time. Therefore, only increasing the strength of intra-chain interactions

is not sufficient to cause an increase in the reconfiguration time. Heterogeneity in the sequence was

included via a simple hydrophobic-polar model, and we found that the “(HPP)33H” sequence exhibits

an increase in reconfiguration time with the compaction of the polymer dimensions, qualitatively follow-

ing the experimental behaviour [66]. In contrast to the 1D normal diffusion models commonly used in

experimental analysis [22], this increase was simultaneous with the emergence of multiple peaks in the

end-to-end distance distribution, and was primarily due to the increase of the variance of end-to-end

distance (a wider conformational landscape), when compared with the homopolymer.

Although further investigations are required in order to make a direct comparison to experiments

possible, our model allows a potential qualitative interpretation of the experimental measurements of end-

to-end distance reconfiguration times of IDPs and unfolded states of natively folded proteins by Soranno

et al. [66], which were introduced in Section 5.1. At high denaturant, all polypeptides follow the behaviour

of the self-avoiding walk model, equivalent to the low cohesiveness regime in the simulations. As the

denaturant concentration is lowered, the different responses of reconfiguration time can be understood

in terms of the overall amino acid composition as well as the sequence heterogeneity. The unfolded

state of Csp likely has a more rugged conformational landscape than the IDPs at lower denaturant

concentrations leading to longer reconfiguration times. The two IDPs, ProTα and IN, likely have a

smoother conformational landscape leading to shorter reconfiguration times [3]. ProTα also carries a

high net charge, which maps to an overall weaker cohesiveness parameter accounting for its lack of

increase in reconfiguration time at lower denaturant concentrations. Thus the results of this chapter are

in qualitative agreement with experimental measurements on real IDPs and natively folded proteins [66].

For the most heterogeneous sequence ((HPP)33H), the increase in reconfiguration time and widen-

ing of the end-to-end distance distribution occurred after the cohesive strength increased beyond the

conditions of the θ solvent. Experimental measurements of IDP dimensions at native conditions point

towards equivalent solvent qualities close to the θ point [35, 36, 38]. These results suggest that there

are multiple structural and dynamical behaviours of IDPs modulated by their sequence heterogeneity

and which can be probed experimentally. Those with more homogeneous sequences explore Gaussian

chain-like conformational landscapes and have faster end-to-end distance reconfiguration times, while

those with more heterogeneous sequences explore conformational states that are more distant in space

and therefore have slower reconfiguration times. This difference between the conformational ensembles

would not appear in a static measurement of polymer dimensions.
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Conclusions

Our understanding of IDPs is hindered by their complexity: IDP structures dynamically explore vast

conformational ensembles. Viewing IDPs through the framework of polymer physics and analysis of the

sequences of IDPs suggest that, in some cases, the atomistic details of the amino acids may be coarse-

grained out. In this thesis, I employed several polymer models and simulations in investigations of the

structures and dynamics of IDPs. The models encapsulated the complexity of the IDPs using a small

number of key parameters.

The mean field polymer brush model used in Chapter 3 provides a rigorous physical framework for

investigating the structure of surface grafted FG nups and their interactions with transport proteins.

The model explains the behaviour of collapse and extension and accumulation of transport proteins in

the layer and the regimes of parameters which control this behaviour have been identified. The results

can qualitatively and semi-quantitatively reproduce the range of in vitro experimental observations and

explain how initial contradictions could arise between them. The mean-field model reconciles several

theories of transport and shows how surface grafted polymer and nanoparticle systems may be controlled.

In order to better understand the limitations of the mean field model, the effects of monomer cohesive-

ness and sequence patterning on the dimensions of homopolymers and heteropolymers were investigated

using coarse-grained simulations in Chapter 4. For the homopolymer model, all of the dimensions were

correlated with the cohesiveness and compaction of the polymer, although their ratios varied. We found

that sequence heterogeneity can modulate the polymer dimensions independently of composition or the

overall cohesiveness. Overall, the ratio of radius of gyration and hydrodynamic radius was correlated

with sequence patterning parameters and is a good measure of global conformational features of an IDP.

On the other hand, the end-to-end distance was highly sequence specific and the ratio of end-to-end

distance to radius of gyration can be used to describe local conformational features of the IDP’s ends.

The results of Chapter 4 can clarify some of the discrepancies arising between the FRET and SAXS

inferred polymer dimensions. The models commonly used to infer the radius of gyration from FRET

measurements assume a constant ratio between the end-to-end distance and the radius of gyration. The

homopolymer model showed that this ratio varied with monomer cohesiveness. Furthermore, the het-

eropolymer models showed that the end-to-end distance and consequently the the ratio of end-to-end

distance to radius of gyration is highly sequence dependent and is not correlated with overall compaction,

and therefore cannot reliably be used to infer the other dimensions. Our coarse grained model offers an

improvement over the simple models commonly used in FRET analysis without resorting to all atom
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simulations as it gives the probability distributions of the individual polymer dimensions. Rather than

being the source of a discrepancy, the combined measurements of several polymer dimensions can be

used to describe the conformational ensemble, and guide theoretical and computational models of IDPs.

For example, the ratio between radius of gyration and hydrodynamic radius can reveal the location of

a particular IDP on the disorder-to-order continuum and the cohesiveness parameter of the IDP, while

the ratio of end-to-end distance to radius of gyration may reveal the local conformation of the IDP’s

ends and whether or not a homopolymer model is appropriate.

In Chapter 5, coarse-grained simulations were used to study the effects of monomer cohesiveness

and sequence heterogeneity on the end-to-end dynamics of polymers. For homopolymers, the end-

to-end distance reconfiguration time decreases with increasing cohesiveness and decreasing polymer

dimensions. Therefore, only increasing the strength of intra-chain interactions is not sufficient to cause

an increase in the reconfiguration time. Sufficient heterogeneity in the sequence does lead to an increase

in reconfiguration time as cohesiveness increases, qualitatively following the experimental behaviour

of proteins in varying concentrations of chemical denaturant. The increase in reconfiguration time is

due to a wider conformational landscape, in contrast to the assumptions of the 1D normal diffusion

model commonly used in experimental analysis. The results of Chapter 5 suggest how the multiple

structural and dynamical behaviours of IDPs, modulated by their sequence heterogeneity, can be probed

experimentally. For IDPs of similar lengths and polymer dimensions, those with shorter end-to-end

distance reconfiguration times likely explore Gaussian chain-like conformational landscapes and can be

modeled using homopolymer models. Longer end-to-end distance reconfiguration times indicate that

those IDPs explore more rugged landscapes with conformational states that are more distant in space.

One possible direction for future investigations is to refine the amino acid representation of the coarse-

grained model to allow for a more quantitative experimental comparison for specific IDP sequences. This

would involve using experimental data of the dimensions for specific sequences to determine parameters

for the individual amino acids and create a straightforward one bead per amino acid mapping. After the

mapping is obtained, the model could be applied to study specific systems involving IDPs or in FRET and

FCS analysis. Another direction is to continue the investigation of the general relationships between

amino acid sequence and an IDP’s ensemble of conformations and dynamics. Possible investigations

could include sequences composed of three or more of the monomer types of the four letter model

(e.g. cohesive, positive, and negative) requiring at least two sequence parameters (e.g. κ and Ω) to

capture the sequence heterogeneity. Also, the relationships between polymer dimensions and sequence

parameters almost certainly depend on the composition (fraction of cohesive, neutral, positive, and

negative monomers), and future investigations should look at what these relationships are for different

compositional classes of IDPs. Lastly, a more thorough investigation of the effect of sequence on end-

to-end distance dynamics is needed since it was so far limited to only three sequences and only two

monomer types (neutral and cohesive).



Appendix A

Derivation of the Kirkwood

Approximation or Short Time

Diffusion Coefficient

The following derivation is adapted from Ref. [30]. In order to find the short time limit of the translational

diffusion coefficient, we calculate the center of mass displacement of a polymer whose monomer motions

can be simulated using the Ermak-McCammon algorithm [98].

The hydrodynamic radius RH of a polymer is the radius of a spherical bead with the same transla-

tional diffusion coefficient.

De =
kBT

6πηRH
(A.1)

A single spherical particle in a fluid with low Reynolds number moves with velocity v under the influence

of a force F :

~v =
1

ξ
~F (A.2)

ξ = 6πηa =
kBT

De
(A.3)

where ξ is called the friction constant and a is the radius of the particle.

If a force ~F is exerted on a fluid, the velocity perturbation ~vh at a point ~r away will be:

~vh(r) = M̄(~r)~F (A.4)

M̄(~r) =
1

8πηr

(
I +

~r~r

r2

)
(A.5)

where the Oseen tensor is used for the hydrodynamic interactions M̄ . Consider a polymer of N spherical

monomers each under the influence of a force ~Fn:

~vn =
1

ξn
~Fn +

N∑

m 6=n
M̄(~rn − ~rm)~Fm (A.6)
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or

~vn =

N∑

m=1

M̄nm(~r)~Fm (A.7)

where M̄nm for two monomers n and m is defined as:

M̄nm(~r) = M̄(~rn − ~rm) for n 6= m (A.8)

M̄nn =
1

ξn
I (A.9)

For the model of Section 2.3, the displacement of a monomer along 1 dimension over a single time

step of the simulation is:

∆xn =∆t
∑

m

MnmFm +
∑

m

Hnm∆wm

The matrix H̄ satisfies H̄H̄T = 2D , and Dnm = kBTM̄nm. The elements of ~∆w are uncorrelated

with 〈∆wn〉 = 0 and 〈∆wn∆wm〉 = ∆tδnm. The displacement of the polymer’s center of mass along 1

dimension is:

∆xCM =
1

N

∑

n

∆xn

=
1

N
(∆t

∑

n

∑

m

MnmFm +
∑

n

∑

m

Hnm∆wm)

〈(∆xCM )2〉 =
∆t2

N2
〈(
∑

n

∑

m

MnmFm)2〉+

+
1

N2
〈
∑

n

∑

m

∑

i

∑

j

Hnm∆wmHij∆wj〉+

+
∆t

N2
〈
∑

n

∑

m

∑

i

∑

j

MnmFmHij∆wj〉

=
∆t2

N2
〈(
∑

n

∑

m

MnmFm)2〉+
∆t

N2
〈
∑

n

∑

m

∑

i

HnmH
T
mi〉+

+
∆t

N2
〈
∑

n

∑

m

∑

i

∑

j

MnmFmHij〉〈∆wj〉

=
∆t2

N2
〈(
∑

n

∑

m

MnmFm)2〉+
2∆t

N2
〈
∑

n

∑

i

Dni〉

The diffusion coefficient is:

〈(∆xCM )2〉
2∆t

=
∆t

2N2
〈(
∑

n

∑

m

MnmFm)2〉+
1

N2
〈
∑

n

∑

i

Dni〉

DK = lim
t→0

〈(∆xCM )2〉
2∆t

=
1

N2
〈
∑

n

∑

i

Dni〉

DK =
1

N2

∑

n

∑

m

〈Dnm〉
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In the 3D case:

DK = lim
t→0

〈(∆~rCM )2〉
6∆t

=
1

3N2

∑

n

∑

m

Tr〈Dnm〉

Substituting in the Oseen tensor:

DK =
kBT

3N2
(
∑

n

3

6πηbn
+
∑

n

∑

m 6=n
〈 1

8πηrnm
(3 + 1)〉)

=
kBT

6πηN2
(
∑

n

1

bn
+
∑

n

∑

m 6=n
〈 1

rnm
〉)

For identical particles:

DK =
kBT

6πη


 1

Nb
+

1

N2

∑

n

∑

m6=n
〈 1

rnm
〉






Appendix B

Scaling Exponent of Radius of

Gyration

Using the coarse-grained model of Section 2.3, we investigate the effects of monomer cohesiveness ε

on the scaling exponent ν of the radius of gyration of a homopolymer with the number of bonds:

〈R2
g〉 ∝ N2ν . In Section 2.3.5, we found that the second virial coefficient for the excluded volume and

cohesive interactions is 0 when ε ≈ 0.64 kT.

10050 60 70 80 90 200 300 400

N

102〈R
2 g
〉

ε =0 kT

ε =0.64 kT

ε =0.7 kT

ε =0.75 kT

(a)
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2
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(b)

Figure B.1: (a) Dependence of radius of gyration on the number of bonds in the chain for different
monomer cohesiveness ε. (b) The variation of the scaling exponent of 〈R2

g〉 ∝ N2ν with monomer
cohesiveness ε.

Figure B.1 shows the dependence of radius of gyration on the number of bondsN in the homopolymers

for different monomer cohesiveness ε and the fitted scaling exponent ν. At ε = 0, we find good agreement

with a more exact prediction of 0.588± 0.001 [25] for the self-avoiding walk. We also find that ε at the

θ point (where ν = 0.5) is between 0.7 kT and 0.75 kT, which is larger than the predicted value of 0.64

kT. The exact deviation is dependent on the details of the repulsive and attractive potentials used in

the model [205].
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We performed simulations of homopolymers with N + 1 = 50, 100, 150, 200, 300, 400 monomers at

ε = 0, 0.64, 0.7, 0.75 kT. All other simulation parameters were the same as the homopolymer model of

Section 4.2.1. The total runtime (number of steps) and number of independent runs (from different initial

conditions) varied. Simulations where initialized from a self-avoiding walk (N + 1 = 50, 100, 150, 200) or

a random walk initial condition (N = 200, 300, 400). Correlation functions of R2
g(t) were calculated for

N + 1 = 50, 100, 150 and fit with exponential decays in order to estimate the correlation times τ . The

correlation times for N+1 = 50, 100, 150 were then fit with a power law in order to obtain a relationship

of the form τN ∝ Nα. The initial 2τN or more of each simulation were excluded from the analysis. The

error was estimated as Var(〈R2
g〉) =

Var(R2
g)

nsnt
where ns is the number of independent runs and nt = tr

2τN
,

where tr is the minimum simulation time included in the analysis for that N [111].



Appendix C

1D Model for Diffusion of

End-to-end Distance

In FCS experiments, the observables are the correlation functions of the fluoresence intensities of the

dyes, often attached at the two ends of a polypeptide chain. Combined with the inferred end-to-end

distance from FRET (〈R2
e〉), the relaxation times of the end-to-end distance is extracted by modeling

fluctuations of the distance between the two dyes as normal diffusion in a 1D potential of mean force given

by U(r) = −kBT ln peq(r), where peq(r) is the probability distribution of the end-to-end distance of a

Gaussian chain (Equation 2.1). Along with a model of the FRET photo-physics, the diffusion coefficient

DG that best reproduces the measured fluoresence intensity correlation functions is extracted. The

relaxation time of the end-to-end distance or “reconfiguration time” is calculated from
〈R2
e〉

DG
[22].

In this model, the Langevin equation for the end-to-end distance is:

dr

dt
= − DG

kBT

dU

dr
+ ξ(t) = DG

(
2

x
− 3x

〈r2〉

)
+ ξ(t)

where 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2DGδ(t − t′). We can non-dimensionalize the above by setting

R = r
xc

, T = t
tc

, DG =
x2
c

tc
, and 〈r2〉 = x2

c〈R2〉, where xc and tc are the units of distance and time, the

Ito stochastic differential equation becomes:

dR =

(
2

R
− 3R

〈R2〉

)
dT +

√
2dW

The dimensionless mean square end-to-end distance is the only parameter of the Langevin equation.

But it is straightforward to verify that for any observed end-to-end distance 〈r2
e〉 and end-to-end dis-

tance reconfiguration time τ from experiments or simulations, the diffusion coefficient of the end-to-end

distance according to the 1D model will follow: DG =
C〈r2e〉
τ , where C is a numerical constant. The 1D

model, which is commonly used in experimental analysis [22], assumes normal diffusion in a potential of

width comparable to the end-to-end distance.
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