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Designing optimization models that capture decision-maker preferences typically re-

quires guidance from domain experts. We can instead employ machine learning (ML) to

design contextual optimization models using data sets of past decisions. In this thesis, we

propose techniques to formulate and solve problems where the objective or the feasible

set is dependent on decision-maker preferences. We apply these methods to automate the

design of personalized radiation therapy treatments for head-and-neck cancer patients.

Here, the prevailing framework is Knowledge-based planning (KBP), which is a two-stage

pipeline that involves generating an expected dose and optimizing a treatment to deliver

the generated dose.

We first propose an ensemble learning framework for Inverse Linear Optimization

(ILO), which is a structured prediction problem for estimating the cost vector of a lin-

ear program from observed decisions. Our framework specializes to existing variants in

the literature, admits new solution algorithms, and includes a statistical goodness-of-fit

metric. We employ our framework to develop the first ensemble KBP pipeline that incor-

porates multiple di↵erent dose generation models to yield better treatments than existing

single-dose pipelines.

Next, we develop a deep learning-based dose generation model that uses a generative

adversarial network to map from CT images to dose distributions. Previous dose gener-

ation models employed classical ML to estimate dose summary statistics. Our approach

outperforms classical models on clinical metrics.
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We then explore contextual optimization when the feasible set varies as a function

of features. We present Interior Point Methods with Adversarial Networks (IPMAN),

an algorithm for learning the feasible set and predicting corresponding optimal decisions

for contextual problems. We prove our approach yields optimality guarantees and gen-

eralization bounds. We then re-cast dose generation as an optimization problem and

implement IPMAN to predict optimal doses. Our predictions achieve clinical metrics

better than baselines and also demonstrate a transfer learning to new clinics that use

di↵erent metrics.

Finally, motivated by data augmentation for IPMAN, we consider the task of sampling

infeasible decisions from an optimization problem. We present a Markov Chain Monte

Carlo algorithm for sampling from the complement of a polyhedron that provably covers

the complement and demonstrate its e↵ectiveness in numerical experiments.
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Chapter 1

Introduction

Constrained optimization is a flexible modeling language that is used to solve operational

problems in business (Fabozzi and Valente, 1976), economics (Bernhard, 1969), engineer-

ing (Luo and Yu, 2006), finance (Cornuejols and Tütüncü, 2006), healthcare (Stinnett

and Paltiel, 1996), logistics (Mula et al., 2010), and so forth. However, constrained op-

timization models must be carefully designed in practice. If the model’s objectives and

constraints do not perfectly reflect the domain-specific problem, then the decisions may

ultimately not be useful.

A decision-maker and an optimization expert may work together to construct a model.

The decision-maker’s understanding of the problem is motivated by domain expertise,

which is often intuitive and may not be amenable to concise mathematical expressions.

For example, a clinician selecting a combination of treatments for a patient may un-

derstand interaction e↵ects from anecdotal experience with previous patients. In other

cases, the optimization model may be contextual depending on auxiliary features. Given

a specific patient’s history, the clinician may require a custom prescriptive model.

The availability of large sets of decision data presents opportunities for designing opti-

mization models without manually incorporating a decision-maker’s contextual intuition.

Machine learning techniques can leverage past decisions to infer the behavior preferences

of decision-makers, which in turn, can automate the design of future optimization models.

For example, we can learn from previously delivered medicines that patients with certain

characteristics require aggressive treatments and incorporate this information into the

optimization model.

This thesis develops algorithms for learning to formulate and solve constrained opti-

mization problems. We propose machine learning, optimization, and sampling techniques

that use historical decisions to estimate the objective function and feasible set of opti-

mization models. To demonstrate their e�cacy, we apply these methods towards aspects

1



Chapter 1. Introduction 2

of a clinical problem of designing personalized medicine for patients with head-and-neck

cancer. We implement several novel technologies for the automated planning of inten-

sity modulated radiation therapy (RT) treatments that leverage past clinical treatments

to learn personalized objectives and constraints that meet the approval criteria of clini-

cal domain experts. Our automated treatment design technologies thus can reduce the

current overhead required from clinicians to direct and approve the design of custom

treatments for each patient.

1.1 Motivating application: Intensity-modulated ra-

diation therapy

The concrete motivating application in this thesis is the automated generation of ra-

diation therapy treatment plans in oropharyngeal (head-and-neck) cancer. Intensity-

modulated radiation therapy (RT) is one of the most widely-used cancer treatment tech-

niques and is recommended for over 50% of all cancer cases (Delaney et al., 2005). In

RT, a linear accelerator (LINAC) outputs high-energy x-ray beams from multiple angles

around a patient to deliver a prescribed dose of radiation to a tumor while minimizing

dose to the healthy tissue. An RT treatment plan is the result of a complex design process

involving medical professionals and several software systems. This includes specialized

optimization software that determines the beam characteristics (e.g., aperture shapes for

each beam angle, dose delivered from each aperture) required to deliver the final dose

distribution. The optimization model takes as input a set of computed tomography (CT)

images of the patient, various dosimetric objectives and constraints, and other parameters

that guide the optimization process. The model outputs a treatment plan that is subse-

quently evaluated by an oncologist. The oncologist usually proposes modifications to the

plan, which then requires the treatment planner to re-solve the optimization model using

updated parameters. Figure 1.1 summarizes the total process, which is labor intensive,

time-consuming, and costly, as the back-and-forth between the planner and oncologist is

often repeated multiple times until the plan is approved. The design of a single treatment

plan may take several days (Das et al., 2009). Combined with growing patient volumes

in cancer clinics worldwide, this leads to strain in the operation of a cancer center and

significant delays in treatment for patients (Atun et al., 2015).

The significant manual e↵ort associated with the current treatment planning paradigm,

along with the fact that RT plans are generally quite similar for patients with similar

geometries, has motivated researchers to investigate how automation can be used in



Chapter 1. Introduction 3

Treatment
planner

Oncologist
New

patient

Tunes model parameters to
generate a treatment plan

Reviews dose delivered
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Figure 1.1: An overview of the clinical treatment design process. A treatment planner
and oncologist iterate over model parameters until an approvable plan is constructed.
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Figure 1.2: An overview of the clinical treatment design process. A treatment planner
and oncologist iterate over model parameters until an approvable plan is constructed.

the planning process (Sharpe et al., 2014). A key enabler of automation is known as

knowledge-based planning (KBP), which leverages historically delivered treatments to

generate new plans for similar patients. Figure 1.2 depicts the two main components of

a KBP-driven automated planning system:

• Dose generation: a machine learning model that uses CT-derived patient geo-

metric features to predict a clinically acceptable three-dimensional dose distribu-

tion (Appenzoller et al., 2012; Kearney et al., 2018; McIntosh et al., 2017; Shiraishi

et al., 2015; Yang et al., 2013; Younge et al., 2018). The dose distribution is a map

of how much radiation each cubic volume of a patient is expected to receive.

• Plan optimization: an optimization model that converts the prediction into a

“deliverable” plan (Babier et al., 2018a; McIntosh and Purdie, 2017; Petersson

et al., 2016; Wu et al., 2017). This step ensures the treatment plan produced by

the machine learning model satisfies the physical delivery constraints imposed by

the LINAC.

Existing KBP frameworks can be improved in several directions. First, treatment
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plans generated by automation are evaluated on a set of competing clinical criteria.

While real clinical plans reflect an oncologist-driven balance of these metrics, specific

KBP pipelines typically lead to plans that over-fit to specific subsets of the criteria. A

second drawback of many dose generation methods is in their reliance on low-dimensional

hand-tailored features that limit their e↵ectiveness in performance. Finally, the protocols

for radiation therapy often vary between clinics (e.g., Geretschläger et al., 2015 versus

Babier et al., 2018b). It is not possible to deploy the same automated planning pipeline

at multiple institutions because current prediction models do not factor the prescriptive

nature of the prediction. Models trained using data from one clinic may not satisfy

protocols (e.g., hidden constraints) at other institutions (Wu et al., 2017).

1.2 Contributions and outline

We summarize our contributions and the structure of this thesis below. Each chapter is

self-contained but draws on the KBP background summarized in Chapter 2. Chapters 3

and 5 introduce methods for learning the objective and the feasible set of an optimization

problem, respectively. Chapter 4 presents a numerical study in using deep learning for

treatment planning; this work inspires the general methodology in Chapter 5. Finally,

Chapter 6 presents a data augmentation procedure used to learn the feasible set of an

optimization problem.

Ensemble inverse linear optimization

In Chapter 3, we explore the problem of estimating the cost vector of a linear optimization

problem min{cTx | Ax � b} from a data set of multiple observed decisions. This is

motivated by the setting of learning a consensus objective from a group of decision-

makers each considering di↵erent solutions to an optimization problem. We develop a

general inverse linear optimization framework that unifies prior techniques for which we

derive assumption-free, exact solution algorithms. We apply our framework to develop a

novel KBP plan optimization technique that uses an ensemble of di↵erent dose generation

models to design a treatment plan reflecting a consensus from di↵erent estimators. While

current KBP dose generation models over-fit to a single metric, our ensemble framework

achieves better aggregate performance than single-point frameworks.

While there is a growing body of literature in inverse convex optimization (i.e., es-

timating parameters for a convex optimization problem), such methods often do not

take into account linear programming idiosyncrasies that can permit more e�cient algo-
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rithms. In this chapter, we develop a complete suite of solution algorithms that maps

each inverse optimization problem into a polynomial number of linear programs. We

additionally introduce several special cases where inverse optimization admits e�cient

analytic solutions or linear programming algorithms. Finally, our ensemble KBP pipeline

is the first in the clinical literature to use multiple predictions and shows performance

improvements over traditional automated planning models on aggregate metrics. This

chapter contains work done in collaboration with Aaron Babier, Timothy C. Y. Chan,

Taewoo Lee, and Daria Terekhov.

Dose generation with generative adversarial networks

In Chapter 4, we investigate deep learning dose generation models for KBP and intro-

duce a Generative Adversarial Network (GAN) to estimate dose distributions. The prior

dose generation literature consisted of classical machine learning techniques (e.g., linear

regression, random forests) that use a set of hand-tailored patient-geometry features to

predict low-dimensional representations of the dose. Instead, GANs re-cast dose gen-

eration into a computer vision task: given a 3-D CT image, estimate a dose image of

the patient. We demonstrate that our deep learning approach outperforms conventional

models over the set of clinic-mandated satisfaction criteria and dose similarity metrics.

This chapter contains the first use of GANs to generate radiation therapy treatment

plans. We are the first to treat KBP prediction as an image colorization problem (i.e., re-

color a contour image to a dose image) for which GANs are known to perform especially

well. Furthermore, oropharyngeal cancer is one of the most di�cult cancers for designing

treatments. Since our site-independent method outperforms classical ML for this cancer

type, we also expect similar performance for GANs for simpler sites such as prostate and

stomach cancers. This chapter contains work done in collaboration with Aaron Babier,

Timothy C. Y. Chan, Adam Diamant, and Andrea McNiven.

Learning to optimize with hidden constraints

In Chapter 5, we develop an algorithm to estimate the feasible set and predict optimal de-

cisions for optimization problems dependent on contextual features. We use a data set of

historical decisions and features to train two machine learning models: the first classifies

whether a decision is feasible, while the second generates candidate decisions. We learn

an unstructured representation of the feasible set and ensure optimality guarantees and

out-of-sample generalization bounds. We apply this algorithm to construct an optimal

dose generation model for automated KBP. These doses imitate oncologist preferences by
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making the same trade-o↵s as in real clinical plans. Furthermore, our algorithm adapts

to criteria from di↵erent clinics, i.e., a form of transfer learning. We use clinical data

from one institution to learn the criteria of a di↵erent clinic and demonstrate that our

algorithm can be easily deployed to new institutions that do not have su�cient data.

This chapter is the first work in the operations and machine learning literature where

the feasible set itself must first be learned in order to estimate decisions. Our learning

algorithm can be used with any machine learning model. Furthermore, we provide the-

oretical results that connect the machine learning literature to interior point methods

by proving that our algorithm satisfies optimality guarantees and both in-sample and

out-of-sample error bounds. Finally, we demonstrate practical implications by showing

that it can be used for prescriptive purposes to create treatment plans structurally dif-

ferent from the ground truth, i.e., the data that was originally used to train the learning

model. This chapter contains work done in collaboration with Aaron Babier, Timothy C.

Y. Chan, and Adam Diamant.

Sampling from the complement of a polyhedron

In Chapter 6, we introduce an MCMC algorithm for generating points in the complement

of a polyhedron. High-dimensional sampling has historically only considered sampling

from the interior and the boundary of a convex set. Our algorithm is based on the classical

Shake-and-bake algorithm used to sample from the boundary of a polyhedron. While the

complement of a polyhedron is itself a non-convex set, our algorithm is as e�cient as the

Shake-and-bake and enjoys a relevant property of covering the entire complement.

This topic is motivated by Chapter 5 where we use infeasible decisions to an optimiza-

tion problem to learn a barrier function for the feasible set. Data-driven optimization

typically features only data sets of feasible decisions, but using real feasible and sam-

pled infeasible decisions, we can accurately learn to estimate when a decision is feasible.

Our numerical results show that we are often 20% more accurate than unsupervised

learning techniques that do not use infeasible data. This chapter contains work done in

collaboration with Timothy C. Y. Chan and Adam Diamant.



Chapter 2

Background on radiation therapy

This chapter collates the clinical background for our radiation therapy (RT) application,

including a summary on treatment planning and clinical criteria, a discussion of recent

results in automated Knowledge-based planning (KBP), and details on our clinical data

set.

2.1 Treatment planning for oropharyngeal cancer

An RT treatment is delivered by a linear accelerator (LINAC) that delivers high-energy

X-rays from di↵erent angles to a patient’s tumor. The patient’s body is discretized into

tiny voxels in order to calculate the dose delivered to each voxel. The design of an

IMRT treatment plan is done by mathematical optimization where the decision variable

is composed of two components that represent the beamlets and the dose delivered (in

Gy) as a result of the intensities of the beamlets, respectively.

Oropharyngeal cancer is a challenging form of cancer to design treatments for because

this cancer type typically involves multiple tumor locations, referred to as planning target

volumes (PTVs). An RT plan may need to account for up to three PTVs that each require

di↵erent prescription doses (i.e., our institutional data source uses PTV56, PTV63, and

PTV70 with 56 Gy, 63 Gy, and 70 Gy as prescription doses, respectively. Furthermore,

the head-and-neck area contains several crucial organs that are particularly sensitive to

radiation. These structures are referred to as organs-at-risk (OARs) and an an RT plan

may need to account for up to eight OARs: brain stem, spinal cord, right parotid, left

parotid, larynx, esophagus, mandible, and limPostNeck.

The quality of an RT plan is assessed in terms of several pass-fail clinical criteria.

These criteria are specific to a given institution. In this work, we use the default criteria

from our institutional data source, which features one clinical criteria per PTV and

7
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Table 2.1: Clinical criteria used to evaluate all plans.

Structure Clinical criteria

O
A
R
s

Brainstem Mean  54 Gy
Spinal Cord Mean  48 Gy
Right Parotid Mean  26 Gy
Left Parotid Mean  26 Gy
Larynx Mean  45 Gy
Esophagus Mean  45 Gy
Mandible Max  73.5 Gy

P
T
V
s PTV70 99%-ile � 70 Gy

PTV63 99%-ile � 63 Gy
PTV56 99%-ile � 56 Gy

OAR. Table 2.1 lists the clinical criteria from our institution. Since the limPostNeck is

an artificially defined region used solely for optimization, it does not possess a clinical

criteria. Note that the clinical criteria for OARs generally consist of upper bounds on the

mean or the maximum dose spread over the OAR, but the PTV criteria are are bounds

on the 99%-ile or the Value-at-Risk (VaR) to the structure.

2.2 Knowledge-based planning

KBP can automate large parts of the iterative treatment design problem via a two-

stage procedure. First, a machine learning model that has been trained on historical

treatments, estimates a clinically desirable dose distribution for the patient. Then, an

optimization model uses the dose estimate to construct a treatment plan that can deliver

a dose of similar quality.

Many di↵erent approaches have been tested for the machine learning dose genera-

tion component of a KBP-driven automated planning pipeline (see Figure 1.2). Query-

based methods identify previously treated patients who are su�ciently similar to the

new patient, and use the historically achieved dose metrics as predictions for the new

patient (Wu et al., 2009, 2011). Another common approach uses principal component

analysis (PCA), in conjunction with linear regression, to predict dose metrics for new

patients (Yuan et al., 2012; Zhu et al., 2011). However, these well-established techniques

only predict two-dimensional dose metrics. Previous research has shown that 3-D dose

distribution predictions can also be generated using random forests (McIntosh et al.,

2017; Shiraishi and Moore, 2016). Nevertheless, for these approaches to work e↵ectively,

significant e↵ort must be spent in feature engineering, i.e., introducing features specific
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to the cancer site. More recently, neural network models have been used to great e↵ect

to predict 3-D dose distributions (Babier et al., 2020a; Kearney et al., 2018; Nguyen

et al., 2019). Chapter 4 and 5 of this thesis cover two novel methods for predicting dose

distributions via neural networks. Such deep learning-based approaches typically do not

require feature engineering unlike classical machine learning.

For plan optimization, there are two main approaches for turning predictions into

treatments. The first is “dose mimicking”, which amounts to minimizing a 2-norm loss

on the predicted dose, while enforcing deliverability constraints (Petersson et al., 2016).

The second approach uses inverse optimization (see Chapter 3) to learn the parameters

of a dosimetrist’s optimization model given a predicted dose, followed by solving the

forward problem using the learned parameters (Chan et al., 2014). Here, a predicted

dose is treated as an “observed decision” (Babier et al., 2020a). A key advantage of

inverse optimization is that it better replicates the trade-o↵s implicit in clinical treatment

plans (Chan and Lee, 2018). Chapter 3 introduces a novel inverse optimization approach

for KBP that employs multiple prediction models to generate a single treatment.

2.3 Data

In our experiments, we obtain treatment plans from 217 oropharyngeal cancer patients

treated at a single institution, Princess Margaret Cancer Centre, with a 6 MV, step-and-

shoot intensity-modulated radiation therapy LINAC. All plans are for a prescription of

70 Gy, 63 Gy, and 56 Gy to the gross disease (PTV73), intermediate risk (PTV63), and

elective (PTV56) target volumes, respectively.

Our data set includes a 3-D CT image for each patient. Every voxel (a 3-D pixel of

size 4 mm ⇥ 4 mm ⇥ 2 mm) of this CT image is classified by clinically drawn contours

that denote the structure. All voxels are assigned a structure-specific color, and in cases

where the voxel is classified as both target and OAR, we default to target. All unclassified

tissue is left as the original CT image grayscale.

Let x denote an RT treatment decision variable, consisting of the dose and the beamlet

intensities. For each patient k in our data set, we associate parameters (Ck,Ak,bk) and

a corresponding multi-objective linear optimization problem, the Forward Optimization

Radiation Therapy Problem, RT–FO(↵k) : minx

�
↵T

k
Ckx | Akx � bk , x � 0

 
, where

Ck is the matrix whose rows represent di↵erent cost vectors and ↵k is a vector of objective

weights. In the iterative clinical procedure (e.g., see Figure 1.1), a dosimetrist would

tune ↵k to generate a treatment and an oncologist would review the optimal solution

of RT–FO(↵k) and suggest areas of improvement. Note that the optimization problem
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for each patient is distinct. That is, each patient has a di↵erent Ak and bk, since these

constraints must also encode a patient’s physical geometry (i.e., the specific location

of the OARs and PTVs for that patient). Furthermore, Ck may vary from patient to

patient, since not every patient has all 10 structures. For example, some patients may

only have two rather than three PTVs. We provide the full formulation of RT–FO(↵k)

in Appendix A.3.



Chapter 3

Ensemble inverse linear optimization

Inverse optimization is a longstanding approach for gaining insight into decision-generating

processes and guiding subsequent decision-making. Inverse optimization has been used

in diverse fields, for example capturing equilibrium estimates of asset returns for future

portfolio optimization (Bertsimas et al., 2012), using past electricity market bids to fore-

cast power consumption (Saez-Gallego et al., 2016), and estimating incentives to design

future health insurance subsidies (Aswani et al., 2019).

Inverse optimization determines optimization model parameters to render a data set

of observed decisions minimally sub-optimal for the model. The inverse optimization

literature considers di↵erent settings that vary based on data characteristics (e.g., a single

feasible decision or multiple points from di↵erent instances) or the optimization model

(e.g., a linear or convex forward problem). A practitioner also chooses a sub-optimality

measure to minimize, of which there exist three main variants. The first variant, known as

the absolute duality gap, minimizes the di↵erence between the objective values incurred

by data and an imputed optimal value (Bertsimas et al., 2015; Esfahani et al., 2018;

Saez-Gallego et al., 2016; Zhao et al., 2015). The second variant, known as the relative

duality gap, minimizes the ratio instead of the absolute di↵erence and has been studied

for inverse linear optimization with a singleton data set (Babier et al., 2018b; Chan et al.,

2014, 2019). These two methods are referred to as objective space models. The third

variant is a decision space model that minimizes the distance between observed and

optimal decisions (Aswani et al., 2018, 2019; Esfahani et al., 2018).

This chapter explores an ensemble inverse optimization framework using an arbitrary

data set of decisions for a single linear optimization forward model. Our general motiva-

tion is as follows. Consider a single decision-making problem which we model as a linear

program whose cost vector must be estimated. Multiple experts generate decisions for

the problem. These experts may be human decision makers with their own parameter

11
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estimates or even di↵erent heuristics applied to the problem; their proposed decisions

may be sub-optimal or even infeasible. Using these decisions, we impute a single cost

vector that best represents the optimization problem attempted by the experts (Troutt,

1995). We then re-solve the problem with the imputed parameter to generate an optimal

decision of similar solution quality to the candidate decisions.

Our setting is analogous to ensemble methods in machine learning. Consider the

canonical example of a random forest, which averages predictions from a set of decision

trees (Breiman, 2001). Individual trees train on di↵erent subsets of data similar to how

individual experts use di↵erent experiences to guide their decision making. An ensemble

method averages out the biases of the individual models, just as inverse optimization

learns an objective that balances the biases of di↵erent decision makers (Troutt, 1995).

Practical evidence from machine learning shows ensemble methods generally outperform

base prediction models. We similarly show in our application that ensemble inverse

optimization can improve over approaches based on individual decisions.

Application to radiation therapy

Inverse optimization can be used to learn the parameters of radiation therapy (RT)

treatment planning optimization models for head-and-neck cancer patients (Babier et al.,

2018a,b). Treatments are designed by solving a multi-objective optimization model, for

which in the clinical practice, the objective weights are obtained by iterative parameter

tuning (see Figure 1.1). This requires several days to finalize for a single patient and

leads to operational strains and potential delays (Das et al., 2009), thereby necessitating

KBP as a means of automating the process. The key intuition for inverse optimization in

this application is that a predicted dose obtained in the first stage of KBP can be treated

as an “observed decision” for the forward radiation therapy optimization problem.

The variety of machine learning models each predict di↵erent representations of dose

and have their own advantages and disadvantages. Since treatment plans are clinically

evaluated on a set of competing dosimetric criteria, di↵erent prediction models lead

to plans that find di↵erent trade-o↵s between the clinical evaluation criteria. Given a

plethora of prediction models where none are strictly dominating, a naive approach may

take each prediction, generate a corresponding treatment plan via optimization, and then

compare the plans on their dosimetric performance to identify the best plan for a patient

(see Figure 3.1a). However, this approach is excessively laborious and the final plan is

still determined from a prediction model that may be over-fit to specific clinical criteria.

We propose a natural alternative, which has not been previously considered, to obtain
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(b) Multiple predictors are ensembled into one optimization to produce a single plan.

Figure 3.1: Existing KBP pipelines versus our proposed ensemble approach.

plans that better fit all of the clinical criteria. Analogous to an ensemble learning model

combining weak predictors to form a better estimate, we harness a set of prediction

models into an ensemble inverse optimization model that yields a single treatment plan

that captures the best qualities of all of the estimates (see Figure 3.1b). Di↵erences in

the prediction models imitate the biases of di↵erent clinical experts that may lead them

to suggest di↵erent plans for a given patient, even though they all aim to satisfy the

same clinical criteria. Our inverse optimization model is a consensus-building treatment

planner whose plans compromise between predictions to satisfy aggregate metrics better

than any individual model.
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Contributions

Methodologically, we extend the generalized inverse optimization framework in Chan

et al. (2019), which considered only a single feasible decision (“single-point”), to the case

of multiple observed decisions (“ensemble”) of arbitrary feasibility. Previous results do

not trivially generalize to our assumption-free settings and we require a suite of several

new proof techniques to extend the results in these two directions. Our framework is

founded on a flexible model template and specializes to several di↵erent models via the

specification of model hyperparameters. We develop methods to impute the best-fit cost

vector for a variety of di↵erent loss measures under a general setting (i.e., no assump-

tions on data), while also introducing e�cient techniques under mild application-specific

assumptions. Finally, we generalize a previous goodness-of-fit metric for inverse optimiza-

tion (Chan et al., 2019) to the ensemble case. Together, the model and goodness of fit

metric form a unified framework for model fitting and evaluation in inverse optimization

applicable to arbitrary decision data for a single linear optimization problem.

Data-driven inverse optimization has received growing interest, particularly for learn-

ing in a class of parametrized convex forward problems (Aswani et al., 2018; Bertsimas

et al., 2015; Esfahani et al., 2018; Keshavarz et al., 2011). Contrasting previous chapters,

which consider a separate feasible set for each decision, our methods are tailored for a

single feasible set, given the motivating assumption that di↵erent decision makers are

solving the same forward problem. This leads to more e�cient solution algorithms that

leverage the geometry of linear programming. We further develop new bounds relating

the performance of di↵erent variants that are tighter than previous bounds for the general

convex case if applied to the linear case (Bertsimas et al., 2015; Esfahani et al., 2018).

The specific contributions of this chapter are as follows:

1. We develop an inverse linear optimization framework applicable to decision data

sets of arbitrary size and feasibility for a single optimization problem, motivated by

ensemble learning methods. This model is expressed in terms of hyperparameters

used to derive di↵erent model variants.

2. We develop exact and assumption-free solution methods for each of the model

variants. Under mild data assumptions, we demonstrate how geometric insights

from linear optimization can lead to e�cient and even analytic solution approaches.

3. We propose a goodness-of-fit metric measuring the model-data fit between a for-

ward problem and arbitrary decision data. We prove several intuitive properties

of the metric, including optimality with respect to the inverse optimization model,



Chapter 3. Ensemble inverse linear optimization 15

boundedness, and monotonicity.

4. We implement the first ensemble-based automated planning pipeline in radiation

therapy, using multiple predictions to design a single treatment for head-and-neck

cancer patients. Our plans achieve better clinical trade-o↵s and our domain-

independent goodness-of-fit metric validates our approach.

3.1 Background

We first review the formulation and main results from Chan et al. (2019), which intro-

duced an inverse optimization model for linear optimization problems (linear programs)

unifying both decision and objective space models, but only for a data set with a single

feasible observed decision. Let x, c 2 Rn denote the decision and cost vectors, respec-

tively, and A 2 Rm⇥n
,b 2 Rm denote the constraint matrix and right-hand side vector,

respectively. Let I = {1, . . . ,m} and J = {1, . . . , n}. We refer to the following linear

program as the forward optimization model

FO(c) : minimize
x

c
T
x

subject to x 2 P := {x | Ax � b}.

We assume that P is full-dimensional and that FO(c) has no redundant constraints.

Given a feasible decision x̂ 2 P , the single-point generalized inverse linear optimization

problem is

GIO({x̂}) : minimize
c,y,✏

k✏k (3.1a)

subject to A
T
y = c, y � 0 (3.1b)

c
T
x̂ = b

T
y + c

T✏ (3.1c)

kck
N
= 1 (3.1d)

c 2 C, ✏ 2 E . (3.1e)

Above, y 2 Rm represents the dual vector for the constraints of the forward problem.

Constraints (3.1b) ensures y is dual feasible with respect to c. Constraint (3.1c) connects

c and y with a perturbation vector ✏ 2 Rn by enforcing that the pair (x̂ � ✏,y) satisfy

strong duality with respect to c. Note that these constraints do not imply that the pair

is primal-dual optimal (as we have not enforced primal feasibility), but rather that x̂� ✏

lies on a supporting hyperplane {x | cTx = b
T
y} of the feasible set. Constraint (3.1d) is
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a normalization constraint to prevent the trivial solution of c = 0, where k·k
N
denotes an

arbitrary norm that may di↵er from the one in the objective. Finally, constraints (3.1e)

define application-specific perturbation and cost vectors via the sets E and C, respectively.
We also leave the choice of the norm in the objective open. The tuple (k·k , k·k

N
, C, E)

forms the inverse optimization model hyperparameters. By selecting them appropriately,

GIO({x̂}) specializes into models that minimize error in objective or decision space.

Although GIO({x̂}) is non-convex, it admits a closed-form solution for x̂ 2 P , which

can be determined by projecting x̂ to the boundary of P of minimum distance as measured

by k·k. Specifically, let Hi =
�
x | aT

i
x = bi

 
be the hyperplane corresponding to the i

th

constraint and

⇡i(x̂) = argmin
x2Hi

kx̂� xk (3.2)

be the projection of x̂ to Hi. The hyperplane projection problem has an analytic

solution ⇡i(x̂) = x̂ � aT
i
x̂�bi

kaikD
⌫(ai), where k·kD is the dual norm of k·k and ⌫(ai) 2

argmaxkvk=1

�
v
T
ai

 
(Mangasarian, 1999) . This result leads to an analytic characteri-

zation of an optimal solution.

Theorem 1 (Chan et al., 2019). Let x̂ 2 P, i⇤ 2 argmin
i2I

n
aT
i
x̂�bi

kaikD

o
, and ei be the i

th

unit vector. There exists an optimal solution to GIO({x̂}) of the form

(c⇤,y⇤
, ✏⇤) =

✓
ai⇤

kai⇤kN
,

ei⇤

kai⇤kN
, x̂� ⇡i⇤(x̂)

◆
. (3.3)

If x̂ 2 P , then by Theorem 1, an optimal cost vector describes a supporting hyperplane

(i.e.,
�
x | c⇤Tx = b

T
y
⇤ ) that also corresponds to a constraint of the forward problem.

3.2 Ensemble inverse linear optimization

We extend GIO({x̂}) to the case of multiple observed decisions with no data assump-

tions. Let D = {x̂1, . . . , x̂Q} be a data set, i.e., an ensemble of Q observed decisions,

indexed by Q = {1, . . . , Q}. We seek to impute a single cost vector c
⇤ that minimizes

the aggregate loss over all decisions.

Given that Theorem 1 admits an analytic solution, one computationally desirable ap-

proach may be to solve GIO({x̂q}) for each x̂q and impute a set of cost vector estimates.

We may then consider classical ensemble methods like a random forest, which average

weak predictions (Breiman, 2001). However, such a method applied to our setting e↵ec-

tively ignores the geometry of P , which provides useful information in the estimation of
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Figure 3.2: Illustration of Example 1. The feasible set for FO(c) is shaded. The black
and red squares are x̂ and x̂� ✏̂⇤ from solving GIO({x̂}) independently. The solid arrows
are potential cost vectors.

a single cost vector. For example, naively averaging the set of cost vectors to obtain a

consensus may lead to pathological outcomes.

Example 1. Let FO(c) : min
x

{c1x1 + c2x2 | x1  7, x2  7, x1 � 1, x2 � 1} and

consider D = {(2, 2.25), (6, 2.25)}. Solving GIO({(2, 2.25)}) and GIO({(6, 2.25)}) yields
cost vectors (�1, 0) and (1, 0), respectively, with an average cost vector c̄ = 0. Note that

a more intuitive best-fit cost vector would be c
⇤ = (0,�1), pointing to the bottom facet of

P. Figure 3.2 illustrates this example.

Instead, we design an ensemble inverse optimization model to minimize the aggregate

error induced by all points with respect to a single imputed cost vector. We introduce

perturbation vectors ✏q for every q 2 Q and form our problem:

GIO(D) : minimize
c,y,✏1,...,✏Q

QX

q=1

k✏qk (3.4a)

subject to A
T
y = c, y � 0 (3.4b)

c
T
x̂q = b

T
y + c

T✏q, 8q 2 Q (3.4c)

kck
N
= 1 (3.4d)

c 2 C, ✏q 2 Eq, 8q 2 Q. (3.4e)

Constraints (3.4b) and (3.4d) are carried from the single-point model. (3.4c) and (3.4e)

are ensemble extensions of (3.1c) and (3.1e) respectively, ensuring that for each q 2 Q,
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the data points x̂q achieve strong duality with respect to c after being perturbed by

✏q 2 Eq. The objective minimizes the sum of the norms of the individual perturbation

vectors. Note that this problem is non-convex due to the bilinear terms in (3.4c) and the

normalization constraint (3.4d). We first show that GIO(D) specializes to objective and

decision space variants, before developing tailored solution methods.

3.2.1 Objective space

Inverse linear optimization in the objective space is based on the premise that sub-optimal

observed decisions are characterized by sub-optimal objective values. Consider the dual

problem for FO(c). For each decision x̂q, the corresponding duality gap is a distance

measure between the objective value of x̂q and the optimal value of the dual problem. By

choosing the norm in the objective (3.4a) and the sets Eq for each q 2 Q appropriately,

the problem is transformed to measure a function of the duality gap. We consider two

objective space models, the absolute and relative duality gaps.

Absolute duality gap.

The absolute duality gap method minimizes the aggregate duality gap between the primal

objectives of each decision and the imputed dual optimal value:

GIOA(D) : minimize
c,y,✏1,...,✏Q

QX

q=1

|✏q| (3.5a)

subject to A
T
y = c, y � 0 (3.5b)

c
T
x̂q = b

T
y + ✏q, 8q 2 Q (3.5c)

kck
N
= 1. (3.5d)

This model specializes GIO(D) by measuring error in terms of scalar duality gap vari-

ables. We show that it can be recovered from GIO(D) with an appropriate choice of

model hyperparameters.

Proposition 1. Let µ(c) 2 Rn be a parameter satisfying kµ(c)k1 = 1 and let µ(c)Tc =

1. A solution
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
is optimal to GIOA(D) if and only if the solution

�
c
⇤
,y

⇤
, ✏

⇤
1µ(c

⇤), . . . , ✏⇤
Q
µ(c⇤)

�
is optimal to GIO(D) with hyperparameters

�
k·k , k·k

N
, C, E1, . . . , EQ

�
=
�
k·k1 , k·k

N
,Rn

, {✏1µ(c)} , . . . , {✏Qµ(c)}
�
.

Proof. For any c, setting each ✏q = ✏qµ(c) implies k✏qk1 = |✏q| kµ(c)k1 = |✏q|. Thus, (3.4a)
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becomes (3.5a). Similarly, (3.4c) becomes (3.5c), since c
T✏q = ✏qc

T
µ(c) = ✏q. Then, any

feasible solution toGIO(D) with the suggested hyperparameters yields a feasible solution

to GIOA(D) and vice versa, with the same objective value.

Proposition 1 shows that the specialization of GIO(D) to GIOA(D) depends on each

✏q being a rescaling of some µ(c) that is dependent only on the cost vector. Note that

µ(c) is only a vehicle to aid in the specialization of GIO(D), and is useful to interpret

solutions of GIOA(D) in the context of GIO(D). For all c satisfying kck
N

= 1, µ(c)

must satisfy kµ(c)k1 = 1 and µ(c)Tc = 1. Given a specific k·k
N
, we can propose a

structured µ(c). For example, if k·k
N
= k·k1, let µ(c) = sgn (c) be the sign vector of c,

ensuring that the conditions on µ(c) are satisfied for all c with kck1 = 1. If k·k
N
= k·k1,

let µ(c) = sgn (cj⇤)ej⇤ be the j
⇤-th unit vector, where j

⇤ 2 argmax
j2J {|cj|}.

General solution method. Since the normalization constraint is the sole non-convexity

in GIOA(D), this model can be solved exactly by polyhedral decomposition. The e�-

ciency of this approach depends on the choice of the norm. For example, 2n linear

programs are needed if k·k
N
= k·k1.

Theorem 2. Let
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
be optimal to GIOA(D) under k·k

N
= k·k1. There

exists j 2 J such that
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
is also optimal to GIOA(D; j), defined as:

GIOA(D; j) : minimize
c,y,✏1,...,✏Q

QX

q=1

|✏q|

subject to A
T
y = c, y � 0

c
T
x̂q = b

T
y + ✏q, 8q 2 Q

(cj = 1) _ (cj = �1)

|ck|  1, 8k 2 J /{j}.

(3.6)

Proof. Let j
⇤ 2 argmax

j2J

�
|c⇤

j
|
 
, implying |c⇤

j⇤ | = 1. Then,
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
is feasible

to GIOA(D; j⇤). Conversely, for any j 2 J , every feasible solution to GIOA(D; j) is

feasible to GIOA(D), so all optimal solutions to each GIOA(D; j) lie in the feasible set

of GIOA(D).

For each j, the problem GIOA(D; j) separates into two linear programs (one with the

constraint cj = 1 and the other with cj = �1), thus totaling 2n linear programs. When

k·k
N
6= k·k1 in general, an exponential number of linear programs may be required. We

next discuss special cases that simplify the solution approach for GIOA(D).
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Non-negative cost vectors. In many real-world applications, feasible cost vectors

should be non-negative (i.e., C ✓ Rn

+). Here, it is advantageous to set k·k
N

= k·k1,
because the normalization constraint becomes c

T
1 = 1 and GIOA(D) simplifies to a

single linear optimization problem.

Feasible observed decisions. Most inverse optimization literature focuses on the

situation where all observed decisions are feasible for the forward model (i.e., D ⇢ P). In

this case, D can be replaced by the singleton {x̄}, where x̄ is the centroid of the points

in D. A similar result was presented in Goli (2015, Chapter 4), but for a model with a

di↵erent normalization constraint that did not prevent trivial solutions. We present the

analogous result in the context of our model (3.5).

Proposition 2. If D ⇢ P and x̄ is the centroid of D, GIOA(D) is equivalent to

GIOA({x̄}).

Proof. If all observations are feasible, then by weak duality ✏q � 0 8q 2 Q, and we can

simplify the objective function

QX

q=1

|✏q| =
QX

q=1

✏q =
QX

q=1

�
c
T
x̂q � b

T
y
�
=
�
c
T
x̄� b

T
y
�
Q,

where the last equality follows by the definition of the centroid (i.e., x̄ =
P

Q

q=1 x̂q/Q). We

similarly compress constraint (3.5c) to a single constraint for x̄, resulting in GIOA({x̄}).

Together, Proposition 2 and Theorem 1 imply that GIOA(D) is analytically solvable

when D ⇢ P .

Infeasible observed decisions. Finally, we address scenarios where the observed deci-

sions are all infeasible. We first consider the case where D is a single, infeasible observed

decision x̂ in which case GIOA({x̂}) possesses an analytic solution. In contrast, the

original work in (Chan et al., 2019) restricted observed decision points to lie within P .

Proposition 3. Assume x̂ /2 P.

1. If x̂ satisfies a
T
i
x̂ > bi for some i 2 I, then there also exists i

⇤ 2 I such that ỹ is

ỹi =
1

aT
i
x̂� bi

, ỹi⇤ =
1

bi⇤ � aT
i⇤x̂

, ỹk = 0 8k 2 I \ {i, i⇤} (3.7)
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and c̃ = A
T
ỹ. The corresponding normalized solution

�
c
⇤
,y

⇤
, ✏

⇤� =
�
c̃/ kc̃k

N
, ỹ/ kc̃k

N
, 0
�

is an optimal solution to GIOA({x̂}) and the optimal value is 0.

2. If Ax̂  b, there exists i⇤ 2 I such that (3.3) is an optimal solution to GIOA({x̂}).

Proof.

1. Assume without loss of generality that there exist i, j 2 I such that a
T
i
x̂ > bi

and a
T
j
x̂ < bj, respectively. The corresponding ỹ defined in (3.7) satisfies the

strong duality constraint (3.5c) with ✏ = 0. Furthermore, (c̃, ỹ) satisfy the duality

feasibility constraints (3.5b) by construction. We normalize the solution to satisfy

constraint (3.5d). The normalized solution still satisfies all other constraints. This

solution is feasible for GIOA({x̂}) with zero cost and is thus optimal.

2. Here, the duality gap is non-positive (i.e., ✏  0). We rewrite the single-point

version of (3.5) with � = �✏, shown in model (3.8) below. Now consider the forward

problem min
x

{�cTx | Ax  b} with the observed solution x̂ and the corresponding

inverse optimization model (3.9).

minimize
c,y,�

�

subject to A
T
y = c, y � 0

c
T
x̂ = b

T
y � �

kck
N
= 1.

(3.8)

minimize
c,y,�

|�|

subject to A
T
y = c, y � 0

� c
T
x̂ = �bT

y + �

kck
N
= 1.

(3.9)

By assumption, x̂ is feasible for the above-defined forward problem and therefore,

� � 0 in (3.9). Consequently, formulation (3.8) is equivalent to (3.9) after removing the

absolute value in the objective and rearranging the duality gap constraint. We can solve

formulation (3.9) using Theorem 1, arriving at an optimal solution for the original inverse

optimization problem.

Proposition 3 provides geometric insights regarding the structure of optimal solutions.

In objective space inverse optimization, all points that lie on a level set of a cost vector

yield the same duality gap. Recall that the hyperplane H =
�
x | c⇤Tx = b

T
y
⇤ is a

supporting hyperplane of P , or in other words, a level set of the cost vector with zero
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(a) If one constraint is satisfied, x̂ projects to

that constraint.

(b) If all constraints are violated, we solve the

inverse problem for FOA(c) (hatched).

Figure 3.3: Illustration of Proposition 3. The feasible set for FO(c) is shaded. The
black and red points are x̂ and x̂ � ✏⇤, respectively. The dashed line is the supporting
hyperplane yielding an optimal value of 0.

duality gap. If x̂ /2 P but satisfies a
T
i
x̂ > bi for some i, then there always exists a

supporting hyperplane that intersects with x̂ (e.g., Figure 3.3(a)). If Ax̂  b, then

no such supporting hyperplane exists. However, consider the alternate forward problem

FOA(c) := min
x

�
�cTx | Ax  b

 
obtained by reversing the signs of all constraints and

the cost vector. The single-point inverse problem for x̂ and FOA(c) is equivalent to the

original problem. Since x̂ is feasible for FOA(c), Theorem 1 applies for GIOA({x̂}).
Geometrically, the constraints of FOA(c) describe the nearest supporting hyperplanes

of FO(c). Solving one problem solves the other (e.g., Figure 3.3(b), where x̂ projects

to an infeasible point for FO(c) with no duality gap). Finally, we leverage this insight

to the case with multiple infeasible decisions to show that if all data points violate all

constraints, then the multi-point ensemble problem reduces to a single-point.

Corollary 1. Suppose that Ax̂q  b for all q 2 Q, and D ⇢ Rn\P. Let x̄ be the centroid

of D. Then, GIOA(D) for the forward problem FO(c) is equivalent to GIOA({x̄}) for

FOA(c).

Proof. Since all observations are infeasible for the initial forward problem, the duality gap

terms are all non-positive (i.e., ✏q  0 for all q 2 Q). As such, we use the same argument

as used in Prop. 3 Part 2 to show that the formulation of GIOA(D) is equivalent to the

formulation of an absolute duality gap inverse optimization problem over the alternative
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forward problem min
x

{�cTx | Ax  b}. As D ⇢ {x | Ax  b}, Proposition 2 reduces

the problem to GIOA({x̄}).

Relative duality gap.

The relative duality gap variant minimizes the sum of the ratios between the duality

gap for each decision and the imputed dual optimal value for the forward problem:

GIOR(D) : minimize
c,y,✏1,...,✏Q

QX

q=1

|✏q � 1| (3.10a)

subject to A
T
y = c, y � 0 (3.10b)

c
T
x̂q = ✏qb

T
y, 8q 2 Q (3.10c)

kck
N
= 1. (3.10d)

Duality gap ratio variables ✏q replace the perturbation vectors used in the general for-

mulation GIO(D). These variables are well-defined except when the imputed forward

problem has an optimal value of 0. In this subsection, we assume b 6= 0. Further-

more, note that if bT
y = 0 for feasible y, then ✏q are free variables; in this case, we

assume ✏q := 1 for all q. First, we show GIOR(D) can be recovered from GIO(D) with

appropriate hyperparameters.

Proposition 4. Let µ(c) be a function that satisfies kµ(c)k1 = 1 and µ(c)Tc = 1 for

all c. A solution
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
for which b

T
y
⇤ 6= 0, is optimal to GIOR(D) if and

only if
�
c
⇤
,y

⇤
,b

T
y
⇤ (✏⇤1 � 1)µ(c⇤), . . . ,bT

y
⇤ �
✏
⇤
Q
� 1
�
µ(c⇤)

�
is optimal to GIO(D) with

hyperparameters (k·k , k·k
N
, C, E1, . . . , EQ) equal to

�
k·k1 /|bT

y
⇤|, k·k

N
,Rn

,
�
b
T
y
⇤ (✏1 � 1)µ(c⇤)

 
, . . . ,

�
b
T
y
⇤ (✏Q � 1)µ(c⇤)

 �
.

Proof. For any c, setting ✏q = b
T
y (✏q � 1)µ(c) forces k✏qk1 /|bT

y| = |✏q � 1|, giving
us the objective (3.10a). The same substitution into (3.4c) gives the strong duality

constraint (3.10c). Thus, every feasible solution ofGIOR(D) has a corresponding feasible

solution in GIO(D) (after setting the hyperparameters), and vice versa, with the same

objective value.

Remark 1. Proposition 4 addresses the case where bT
y
⇤ 6= 0 only. However, if bT

y
⇤ = 0,

GIOR(D) and GIO(D) are still equivalent in that they both yield an optimal value of

0. To see this, suppose that an optimal solution to GIOR(D) satisfies b
T
y
⇤ = 0. Then



Chapter 3. Ensemble inverse linear optimization 24

for all q 2 Q, c⇤Tx̂q = 0 and since ✏q becomes a free variable, we set it to 1 and obtain

an optimal value of 0. On the other hand, we can use the same (c⇤,y⇤
,0, . . . ,0) as a

feasible solution to GIO(D) and observe that setting ✏q = 0 for all q 2 Q satisfies the

strong duality constraint, giving an optimal value of 0.

General solution method Unlike the absolute duality gap problem, which is non-

convex only because of the normalization constraint, GIOR(D) possesses an additional

non-convexity due to a bilinear term in the duality gap constraint (3.10c). We first

address the bilinearity by introducing three sub-problems. We then use polyhedral de-

composition to address the normalization constraint.

Proposition 5. Consider the following three problems:

GIO
+
R(D;K) :

min
c,y,

✏1,...,✏Q

QX

q=1

|✏q � 1|

s. t. A
T
y = c, y � 0

c
T
x̂q = ✏q, 8q 2 Q

b
T
y = 1

kck
N
� K,

(3.11)

GIO
�
R(D;K) :

min
c,y,

✏1,...,✏Q

QX

q=1

|✏q � 1|

s. t. A
T
y = c, y � 0

c
T
x̂q = �✏q, 8q 2 Q

b
T
y = �1

kck
N
� K,

(3.12)

GIO
0
R(D;K) :

min
c,y

0

s. t. A
T
y = c, y � 0

c
T
x̂q = 0, 8q 2 Q

b
T
y = 0,yT

1 = 1

kck
N
� K.

(3.13)

Let z
+ be the optimal value of GIO

+
R(D;K) if it is feasible, otherwise z

+ = 1. Let

z
� and z

0 be defined similarly for GIO
�
R(D;K) and GIO

0
R(D;K), respectively. Let

z
⇤ = min {z+, z�, z0} and let

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
be an optimal solution for the corre-

sponding problem. We assume ✏⇤1 = · · · = ✏
⇤
Q
= 1 for GIO

0
R(D;K). Then there exists

K such that the optimal value of GIOR(D) is equal to z
⇤ and an optimal solution to

GIOR(D) is
�
c
⇤
/ kc⇤k

N
,y

⇤
/ kc⇤k

N
, ✏

⇤
1, . . . , ✏

⇤
Q

�
.

Proof. Let (ĉ, ŷ) be an optimal solution to GIOR(D) and let

K =

8
<

:
1/|bT

ŷ| if bT
ŷ 6= 0

1/ŷT
1 otherwise.

(3.14)

We omit the variables (✏1, . . . , ✏Q) when writing optimal solutions for conciseness. First,

we show that (ĉ, ŷ) maps to a corresponding feasible solution for one of GIO
+
R(D;K),

GIO
�
R(D;K), or GIO

0
R(D;K) with the same objective value. Conversely, every feasible
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solution to formulations (3.11)–(3.13) has a corresponding feasible solution in GIOR(D)

with the same objective value.

First, suppose b
T
ŷ > 0 and consider (c̃, ỹ) =

�
ĉ/b

T
ŷ, ŷ/b

T
ŷ
�
. This solution is

feasible to GIO
+
R(D;K) as b

T
ỹ = 1 and kc̃k

N
= K. Furthermore, by substituting

c̃ = ĉ/b
T
ŷ, we see that the objective value of this solution for GIO

+
R(D;K) is equal to

the optimal value for GIOR(D):

QX

q=1

��c̃Tx̂q � 1
�� =

QX

q=1

���ĉTx̂q

�
/
�
b
T
ŷ
�
� 1
�� .

Similarly, when b
T
ŷ < 0, we construct (c̃, ỹ) =

�
ĉ/|bT

ŷ|, ŷ/|bT
ŷ|
�
, which is feasible to

GIO
�
R(D;K) and incurs the same objective value as the optimal value of GIOR(D). Fi-

nally, if bT
ŷ = 0, then the optimal value of GIOR(D) is 0. Let (c̃, ỹ) =

�
ĉ/ŷ

T
1, ŷ/ŷ

T
1
�
.

It is straightforward to show that this solution is feasible for GIO
0
R(D;K). Thus, an

optimal solution to GIOR(D) can be scaled to construct a solution that is feasible for

exactly one of the formulations (3.11)–(3.13).

The converse is proven by showing that every feasible solution of (3.11)–(3.13) can be

scaled to a feasible solution ofGIOR(D). Let (c̃, ỹ) be a feasible solution to one of (3.11)–

(3.13), and let (ĉ, ŷ) = (c̃/ kc̃k
N
, ỹ/ kc̃k

N
). This solution is feasible for GIOR(D) with

the same objective function value.

In terms of objective value, all feasible solutions of GIO
+
R(D;K), GIO

�
R(D;K), and

GIO
0
R(D;K) have a one-to-one correspondence with feasible solutions of GIOR(D) and

the best optimal solution to formulations (3.11)–(3.13) can be scaled to an optimal solu-

tion for GIOR(D).

Proposition 5 breaks GIOR(D) into three cases: b
T
y > 0, bT

y < 0, and b
T
y = 0.

We then normalize b
T
y and alter (3.10d). Note that the ✏q terms become free variables

when b
T
y = 0, which is why we assume ✏q = 0 for GIO

0
R(D).

There are two issues to note. First, Proposition 5 requires the selection of an appropri-

ate value for the parameterK, which can be accomplished by solving an auxiliary problem

(see Appendix A.1 for details). Second, formulations (3.11), (3.12), and (3.13) are still

non-convex due to the normalization constraint kck
N
� K. As in GIOA(D), this can

be addressed via polyhedral decomposition. For example, if k·k
N
= k·k1, GIO

+
R(D;K)
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decomposes to 2n linear programs GIO
+
R(D;K, j) (see Theorem 2):

GIO
+
R(D;K, j) : minimize

c,y,✏1,...,✏Q

QX

q=1

|✏q � 1|

subject to A
T
y = c, y � 0

c
T
x̂q = ✏q, 8q 2 Q

b
T
y = 1

(cj � K) _ (cj  �K) .

(3.15)

The complete algorithm for solving GIOR(D) exactly in this assumption-free setting

is provided in Appendix A.1. We briefly remark here that an alternative approach is to

relax the normalization constraints in formulations (3.11), (3.12), and (3.13). If solving

the relaxations yields an optimal c⇤ 6= 0, then this cost vector can be re-scaled as in

Proposition 5 (see Corollary 5).

Feasible observed decisions. As in the absolute duality gap case, the relative duality

gap model reduces to a single-point problem, which has an analytic solution according

to Theorem 1.

Proposition 6. If D ⇢ P and x̄ is the centroid of D, then GIOR(D) is equivalent to

GIOR({x̄}).

Proof. When all of the observed points are feasible, cTx̂q � b
T
y � 0, 8q 2 Q. Thus,

objective (3.10a) becomes

QX

q=1

|✏q � 1| =
QX

q=1

c
T
x̂q � b

T
y

|bTy| = Q

✓
c
T
x̄� b

T
y

|bTy|

◆
.

Noting that x̄must also be feasible, the last term equals the objective forGIOR({x̄}).

Infeasible observed decisions. Proposition 7 below is analogous to Proposition 3,

and provides an analytic solution for GIOR({x̂}) if x̂ /2 P . Corollary 2 extends Propo-

sition 7 to multiple infeasible decisions similar to Corollary 1 extending Proposition 3.

The proofs (omitted) are similar to before.

Proposition 7. Assume x̂ /2 P.

1. If x̂ satisfies aT
i
x̂ > bi for some i 2 I, then there exists i⇤ 2 I such that (3.7) is an

optimal solution to GIOR({x̂}) and the optimal value is 0.
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2. If Ax̂  b, there exists i⇤ 2 I such that (3.3) is an optimal solution to GIOR({x̂}).

Corollary 2. Suppose that Ax̂q  b for all q 2 Q and let x̄ be the centroid of D. Then,

GIOR(D) for the forward problem FO(c) is equivalent to GIOR({x̄}) for FOA(c).

3.2.2 Decision space

Inverse optimization in the decision space measures error by distance from optimal de-

cisions, rather than objective values. The model identifies a cost vector that produces

optimal decisions for the forward problem that are of minimum aggregate distance to the

corresponding observed decisions:

GIOp(D) : minimize
c,y,✏1,...,✏Q

QX

q=1

k✏qkp (3.16a)

subject to A
T
y = c, y � 0 (3.16b)

c
T
x̂q = b

T
y + c

T✏q, 8q 2 Q (3.16c)

A (x̂q � ✏q) � b, 8q 2 Q (3.16d)

kck
N
= 1. (3.16e)

GIOp(D) resembles GIO(D), except that the objective function is the sum of p-norms

(p � 1) and constraint (3.16d) is added to enforce primal feasibility of the perturbed

decisions x̂q � ✏q. Unlike in the objective space models, we require primal feasibility

because the ✏q perturbation vectors have a physical meaning as the distance from observed

x̂q to optimal x⇤
q
decisions. It is straightforward to show GIOp(D) is a specialization of

GIO(D) (proof omitted).

Proposition 8. A solution
�
c
⇤
,y

⇤
, ✏⇤1, . . . , ✏

⇤
Q

�
is optimal to GIOp(D) if and only if it

is optimal to GIO(D) with the hyperparameters (k·k , k·k
N
, C, E1, . . . , EQ) equal to

⇣
k·k

p
, k·k

N
,Rn

, {✏1 | A (x̂1 � ✏1) � b} , . . . , {✏Q | A (x̂Q � ✏Q) � b}
⌘
.

Although GIOp(D) is non-convex, we show that an optimal cost vector coincides

with one of the constraints (e.g., Theorem 1). However, directly projecting all x̂q to a

hyperplane may result in projections being infeasible, violating (3.16d). Thus, we define
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the feasible projection problem:

minimize
x

kx̂q � xk
p

subject to Ax � b

a
T
i
x = bi.

(3.17)

Let  i(x̂q) be an optimal solution to problem (3.17), which identifies the closest point

in P to x̂q on the hyperplane Hi =
�
x | aT

i
x = bi

 
. We first derive a structured optimal

solution to GIOp(D).

Lemma 1. There exists i 2 I such that an optimal solution to GIOp(D) is given by

�
c
⇤
,y

⇤
, ✏⇤1, . . . , ✏

⇤
Q

�
=

✓
ai

kaikN
,

ei

kaikN
, x̂1 �  i(x̂1), . . . , x̂Q �  i(x̂Q)

◆
. (3.18)

Proof. Without loss of generality, assume that kaikN = 1 for all i 2 I. Solution (3.18) is

feasible to GIOp(D) for all i 2 I. We show that for any feasible solution that is not of

the form (3.18), there exists a feasible solution of that form whose objective value is at

least as good.

Consider a feasible solution (c̃, ỹ, ✏̃1, . . . , ✏̃Q) to GIOp(D), where ỹ 6= ei for any

i 2 I. Without loss of generality, assume ỹ1, . . . , ỹk > 0 for some 1 < k  m and

let K = {1, . . . , k} denote the corresponding index set. Let x̃q = x̂q � ✏̃q denote the

perturbed decision for all q 2 Q. The primal feasibility constraint (3.16d) implies that

Ax̃q � b for all q 2 Q. The strong duality constraint (3.16c) implies for all q 2 Q, that

0 = c
T
x̃q � b

T
ỹ =

kX

i=1

ỹi

�
a
T
i
x̃q � bi

�
,

which follows from substituting c̃ =
P

k

i=1 ỹiai. Using the non-negativity of ỹ and primal

feasibility (i.e., aT
i
x̃q � bi for all i 2 I), we see that x̃q for all q 2 Q are feasible solutions

to the feasible projection problem (3.17) for each i 2 K.

Let (ĉ, ŷ, ✏̂1, . . . , ✏̂Q) = (ai⇤ , ei⇤ , x̂1 �  i⇤(x̂1), . . . , x̂Q �  i⇤(x̂Q)) for an arbitrary index

i
⇤ 2 K. For all q 2 Q,  i⇤(x̂q) is, by definition, an optimal solution to (3.17). Therefore,

we have

QX

q=1

k✏̂qkp =
QX

q=1

kx̂q �  i⇤(x̂q)kp 
QX

q=1

k✏̃qkp ,

with the inequality following from the optimality of (3.17). Thus, given any feasible
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solution toGIOp(D) not of the form defined in (3.18), we can construct a feasible solution

of the form (3.18) with the objective value at least as good as the original.

The intuition behind Lemma 1 is as follows. Given a feasible set of vectors ✏1, . . . , ✏Q,

every observed decision x̂q is perturbed by ✏q to a point that satisfies both strong duality

and primal feasibility. Strong duality implies thatH =
�
x | c⇤Tx = b

T
y
⇤ is a supporting

hyperplane, and so x̂q � ✏q lies on that supporting hyperplane for all q 2 Q. Every

feasible solution not of the form (3.18) must satisfy multiple constraints with equality,

and is dominated by solutions that involve the feasible projection to just one of those

constraints. Since Lemma 1 holds regardless of the chosen norm and feasibility of the

observed decisions, we can show GIOp(D) can be solved via m convex optimization

problems (which become linear with appropriate p-norms).

Theorem 3. Consider the following optimization problem:

min
i2I

min
✏1,i,...,✏Q,i

QX

q=1

k✏q,ikp (3.19a)

s. t. A (x̂q � ✏q,i) � b, 8q 2 Q (3.19b)

a
T
i
(x̂q � ✏q,i) = bi, 8q 2 Q. (3.19c)

For each i 2 I, let (✏⇤1,i, . . . , ✏⇤Q,i
) denote an optimal solution to the inner optimization

problem and let i⇤ 2 argmin
i2I
P

Q

q=1

��✏⇤
q,i

�� denote an optimal index determined by the

outer optimization problem. Then,
�
ai⇤/ kai⇤kN , ei⇤/ kai⇤kN , ✏⇤1,i⇤ , . . . , ✏

⇤
Q,i⇤

�
is an opti-

mal solution to GIOp(D).

Proof. For each i, the inner optimization problem produces solutions with the structure

in (3.18). Thus, the inner optimization problems, along with the corresponding (c,y)

enumerate all possible solutions to GIOp(D) with the structure in (3.18). By Lemma 1,

we select the one yielding the lowest objective value.

3.2.3 Summary of models and comparison with literature

Table 3.1 summarizes the model variants of GIO(D). Next, we relate and bound the

optimal values of the three variants.

Theorem 4. Assume D ⇢ P and let z⇤A and z
⇤
p
denote the optimal values of GIOA(D)

and GIOp(D), respectively. Then z
⇤
p
� z

⇤
A.

Proof. First note that due to the dominance between p-norms, (i.e., k✏k
p
� k✏k1) we

have z
⇤
p
� z

⇤
1, since the choice of p only a↵ects the objective and the two problems
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share the same feasible set. We then lower bound the optimal value of GIO1(D) using

Theorem 3:

min
i2I

min
✏1,i,...,✏Q,i

QX

q=1

k✏q,ik1

s. t. A (x̂q � ✏q,i) � bi, 8q 2 Q
a
T
i
(x̂q � ✏q,i) = bi, 8q 2 Q

9
>>>>=

>>>>;

= min
i2I

(
QX

q=1

kx̂q �  i(x̂q)k1

)
(3.20)

� min
i2I

(
QX

q=1

kx̂q � ⇡i(x̂q)k1

)
(3.21)

= min
i2I

(
QX

q=1

��aT
i
x̂q � bi

��
kaik1

)
(3.22)

= min
i2I

⇢
Q

✓
a
T
i
x̄� bi

kaik1

◆�
. (3.23)

The inequality in (3.21) comes from the fact that the projection problem (3.2) is a

relaxation of the feasible projection problem (3.17), by removing the feasibility constraint.

The equality of (3.22) comes from Mangasarian (1999) (e.g., see Theorem 1), which

provides the analytic optimal value of the projection problem. Because x̂q 2 P for all

x̂q 2 D, we bypass the absolute values to average. Note that (3.23) is equal to the optimal

value of GIO({x̄}).
Now consider GIOA(D). Because, D ⇢ P , Proposition 2 yields z⇤A = z

⇤�
GIO({x̄})

�
,

i.e., the optimal solution to GIO({x̄}) where x̄ =
P

Q

q=1 x̂q/Q is the centroid of D. In

conjunction with (3.23), we conclude that z⇤
p
� z

⇤
1 � z

⇤
A.

Theorem 4 implies that if the decision space model returns a low error, so does the

absolute duality gap model. Note that although bounds between objective and decision

space inverse convex optimization models exist (Theorem 1 in Bertsimas et al. (2015)

and Proposition 2.5 in Esfahani et al. (2018)), the previous bounds were developed using

constants based on the non-linearity of the objective function of the forward problem

(e.g., Bertsimas et al. (2015) assumes the gradient of the objective is strongly monotone),

which are not applicable in our linear setting. Furthermore, due to the nature of relative

versus absolute measures, we can also bound the performance of the absolute and relative

duality gap models, and consequently connect all three variants.

Corollary 3. Let z
⇤
A and z

⇤
R denote the optimal values of GIOA(D) and GIOR(D),

respectively. Let f ⇤
A and f

⇤
R be the optimal values of the forward problem FO(c) using cost

vectors obtained by GIOA(D) and GIOR(D), respectively. Then, |f ⇤
R| z⇤R � z

⇤
A � |f ⇤

A| z⇤R.
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Proof. We remark that Corollary 3 is in fact a special case of a more general statement

regarding error measures in the absolute versus relative space. Below, we prove a more

general statement and specialize the result to the case of inverse optimization.

Let f(x) and g(x) be two functions and f(x) 6= 0 for all x. Consider two optimization

problems:

min
x

QX

q=1

|gq(x)� f(x)|

s. t. x 2 X

(3.24)
min
x

QX

q=1

����
gq(x)� f(x)

f(x)

����

s. t. x 2 X

(3.25)

Let x⇤
A and z

⇤
A be an optimal solution and value, respectively for (3.24). Similarly, let

x
⇤
R and z

⇤
R be an optimal solution and value, respectively for (3.25). We will prove that

|f(x⇤
R)|z⇤R � z

⇤
A � z

⇤
R|f(x⇤

A)|.
First note that x⇤

A is feasible for (3.25) and x
⇤
R is feasible for (3.24). Then,

z
⇤
A =

QX

q=1

|gq(x⇤
A)� f(x⇤

A)|


QX

q=1

|gq(x⇤
R)� f(x⇤

R)|

=
QX

q=1

����
gq(x⇤

R)� f(x⇤
R)

f(x⇤
R)

���� |f(x
⇤
R)|

= z
⇤
R|f(xR)|.

The inequality comes from the feasibility of x⇤
R for (3.24) and the second equality comes

from multiplying by |f(x⇤
R)|/|f(x⇤

R)|. This proves the left inequality in the Corollary

statement.

We next show

z
⇤
R =

QX

q=1

����
gq(x⇤

R)� f(x⇤
R)

f(x⇤
R)

����


QX

q=1

����
gq(x⇤

A)� f(x⇤
A)

f(x⇤
A)

����

=
QX

q=1

|gq(x⇤
A)� f(x⇤

A)|
1

|f(x⇤
A)|

= z
⇤
A

1

|f(x⇤
A)|

.
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Table 3.1: Summary of the di↵erent variants of GIO(D).

k·k k·k
N

C Eq, 8q 2 Q Solution approach

GIOA(D) k·k1 k·k
N

Rn {✏q | ✏q = ✏qµ(c)} Polyhedral decomposition
GIOR(D) k·k1 /|bT

y| k·k
N

Rn
�
✏q | ✏q = b

T
y (✏q � 1)µ(c)

 
Three sub-problems

GIOp(D) k·k
p

k·k
N

Rn {✏q | A (xq � ✏q) � b} Formulation (3.19)

The inequality comes from the feasibility of x⇤
A for (3.25). This proves the right inequality

in the Corollary statement.

Finally, we observe that letting x = (c,y), X = {(c,y) | AT
y = c,y � 0, kck

N
= 1,

gq(x) = c
T
x̂q, and f(x) = b

T
y converts (3.24) into GIOA(D) and (3.25) into GIOR(D).

Finally note that for any feasible pair (c,y), bT
y is equal to the optimal value of the

forward problem FO(c). Substituting the terms for the absolute and relative duality gap

problems respectively completes the inequality.

Next, we briefly compare our models with similar models from the literature. AN

in-depth technical comparison is provided in Appendix A.2. GIOA(D) and GIOp(D)

can be seen as special cases of previous inverse convex optimization models (Aswani

et al., 2018; Bertsimas et al., 2015; Esfahani et al., 2018). There, the forward problem is

minx{f(x;u, c) | g(x;u, c)  0}, where f(x;u, c) and g(x;u, c) are convex di↵erentiable

functions and u is an exogenous instance-specific parameter. Thus, the data set in their

setting is D = {(x̂1, û1), . . . , (x̂Q, ûQ)}. Here, we remove u and set f(x; c) = c
T
x and

g(x; c) = b�Ax to obtain a linear forward problem with a fixed feasible set.

While the assumption of instance-specific parameters generalize our setting, we ob-

serve that the consequent formulations and methods are on the whole, less e�cient than

those presented in our chapter. The implication of di↵erent forward models is the need

for additional dual variables and dual feasibility constraints for each feasible set. For

a large-scale forward optimization problem, the additional variables and constraints re-

quired to formulate the inverse problem grows both in the number of feasible sets and

the size of D. For example in our application, n (dimension of the decision vector) and

m (number of constraints) for the forward problem are on the order of 105. Inverse op-

timization frameworks from the literature (which impute instance-specific parameters)

lead to inverse problems that grow significantly with every data point. In contrast, our

ensemble approach using a single forward model does not su↵er from this curse.

Bertsimas et al. (2015) study inverse optimization by minimizing a first-order vari-

ational inequality (which reduces to the absolute duality gap in linear programs) and

construct a convex inverse problem without a normalization constraint (e.g., kck
N
= 1).

Although normalization can be avoided with a carefully chosen C, setting f(x;u, c) = c
T
x
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with a general C = Rn implies that (c,y, ✏1, . . . , ✏Q) = (0,0, 0, . . . , 0) is trivially optimal.

Esfahani et al. (2018) study distributionally robust inverse convex optimization prob-

lem, which can specialize to absolute duality gap inverse linear optimization with a

normalization constraint. Their formulation decomposes to a finite set of conic optimiza-

tion problems after polyhedral decomposition. While their approach specializes to ours

in the non-robust case, we further analyze several other special cases that yield e�cient

solution methods (e.g., Propositions 2 and 3, and Corollary 1).

Aswani et al. (2018) propose a decision space inverse convex optimization model that

satisfies a statistical consistency property given several identifiability conditions that as-

sume the data set of decisions are noisy perturbations of optimal solutions to di↵erent

forward problems. However, these assumptions may not hold in general, e.g., if they

arrive from an ensemble of independent prediction models as in our application (see Ap-

pendix A.2.2 for details). Furthermore, our solution method reformulates GIOp(D) to

m convex problems. In contrast, Aswani et al. (2018) enumeratively solve the inverse

problem using fixed c from a quantized subset of C. They state that their algorithm is

practical only when the parameter space C is modest (i.e., at most four or five param-

eters). However for GIOp(D), we assume C = Rn and our algorithm for GIOp(D) is

insensitive to n.

Finally, we remark that the relative duality gap variant has not been studied in

inverse convex optimization. It has been studied in inverse linear optimization but only

when given a single feasible decision (Chan et al., 2019). Our case study in Section 3.4

demonstrates the value of GIOR(D).

3.3 Measuring goodness of fit

In this section, we present a unified view of measuring model-data fitness by develop-

ing a metric that is easily and consistently interpretable across di↵erent inverse linear

optimization methods, forward models, and applications. As shown in Example 2 be-

low, assessing the aggregate error may not provide a complete picture of model fitness,

necessitating a context-free fitness metric.

Previously proposed fitness measures for inverse optimization exist but are less general

(e.g., Chow and Recker (2012); Troutt et al. (2006) for application-specific measures or

Chan et al. (2019) for a metric applicable to only a single feasible decision). Our new

metric builds o↵ the latter metric, referred to as the coe�cient of complementarity and
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denoted ⇢({x̂}):

⇢({x̂}) = 1� k✏⇤k
1
m

P
m

i=1 k✏ik
.

Analogous to the coe�cient of determination R
2 in linear regression, ⇢({x̂}) provides a

scale-free, unitless measure of goodness of fit. The numerator is the residual error from

the estimated cost vector, equal to the optimal value of GIO({x̂}). The denominator is

the average of the errors corresponding to the projections of x̂ to each of them constraints

defining the forward feasible region (i.e., ✏i = x̂� ⇡i(x̂) for i 2 I). Just as R2 calculates

the ratio of error of a linear regression model over a baseline mean-only model, ⇢({x̂})
measures the relative improvement in error from using FO(c⇤) compared to a baseline

of the average error induced by m candidate cost vectors.

We now generalize ⇢({x̂}) for GIO(D). For convenience, we omit the data set and

denote the absolute duality gap, relative duality gap, and p-norm variants of ⇢ as ⇢A, ⇢R,

and ⇢p, respectively.

3.3.1 Ensemble coe�cient of complementarity

We define the (ensemble) coe�cient of complementarity, ⇢(D), as

⇢(D) = 1�
P

Q

q=1

��✏⇤
q

��
1
m

P
m

i=1

⇣P
Q

q=1 k✏q,ik
⌘ . (3.26)

The numerator is the optimal value of GIO(D), i.e., the residual error from an opti-

mal solution to the inverse optimization problem. The denominator terms
P

Q

q=1 k✏q,ik
represent the aggregate error induced by choosing baseline feasible solutions (c,y) =

(ai/ kaikN , ei/ kaikN):

• For absolute duality gap, GIOA(D),

QX

q=1

k✏q,ik =
QX

q=1

��aT
i
x̂q � bi

��
kaik1

. (3.27)

• For relative duality gap, GIOR(D), under the assumption that bi 6= 0 for all i 2 I,

QX

q=1

k✏q,ik =
QX

q=1

����
a
T
i
x̂q

bi
� 1

���� . (3.28)
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• For decision space, GIOp(D),
P

Q

q=1 k✏q,ik are the optimal values of the inner prob-

lems in (3.19).

Our choice of baseline (denominator) is a direct extension from the single-point case,

where an optimal cost vector can be found by selecting amongst one of the vectors ai

defining the m constraints. We maintain this choice of baseline for several reasons. First,

an optimal solution will be exactly one of the ai in the general decision space problem

(see Lemma 1) and in several special cases of the objective space problem (see Proposi-

tions 2 and 6). Second, calculation of the denominator is straightforward either directly

from the data (e.g., (3.27) and (3.28)) or via the solution of m convex optimization

problems (3.19). Third, this definition directly generalizes the single-point metric, inher-

iting several attractive mathematical properties that we present in Section 3.3.2. Finally,

given Propositions 2 and 6, the ensemble coe�cient of complementarity is equal to the

single-point version for objective space models when all data points are feasible.

Proposition 9. Let x̄ be the centroid of D ⇢ P. Then, ⇢A(D) = ⇢A({x̄}) and ⇢R(D) =

⇢R({x̄}).

The proof (ommitted) follows from Propositions 2 and 6, and algebraic manipulation.

3.3.2 Properties of ⇢

Theorem 5. The following properties hold for ⇢ defined in (3.26):

1. Optimality: ⇢ is maximized by an optimal solution to GIO(D).

2. Boundedness: ⇢ 2 [0, 1].

3. Monotonicity: For 1  k < n, let GIO
(k)(D) be GIO(D) with additional con-

straints ci = 0, for k+ 1  i  n and let ⇢(k) be the coe�cient of complementarity.

Then, ⇢(k)  ⇢
(k+1).

Proof.

1. Given D, A, and b, the denominator term in ⇢ is fixed. An optimal solution to

GIO(D) minimizes the numerator of 1� ⇢, thus maximizing ⇢.

2. We prove 1 � ⇢ 2 [0, 1]. It is easy to see that 1 � ⇢ � 0, because it is the ratio of

sums of norms, which are nonnegative. To show 1� ⇢  1, note that
P

Q

q=1

��✏⇤
q

�� 
P

Q

q=1 k✏q,ik for all i, as setting c = ai/ kaikN will yield a feasible but not necessarily

optimal solution to GIO(D).
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3. An optimal solution to GIO
(k)(D) is feasible for GIO

(k+1)(D), since the latter

problem is a relaxation of the former. Invoking the first statement in this theorem,

⇢
(k)  ⇢

(k+1).

These properties are analogous to the properties of R2. The first property underlines

how ⇢ integrates into GIO(D). Although one can select any cost vector and calculate the

⇢ value with respect to the data D, an optimal cost vector obtained by solving GIO(D)

is guaranteed to attain the maximum value for ⇢. Like least squares regression and R
2,

our inverse optimization model and this ⇢ metric form a unified framework for model

fitting and evaluation in inverse linear optimization.

The second property makes ⇢ easily interpretable as a measure of goodness of fit, with

higher values indicating better fit. Note that ⇢ = 1 if and only if
P

Q

q=1

��✏⇤
q

�� = 0 (i.e.,

every point in D lies on a supporting hyperplane of P). In this case, the model perfectly

describes all of the data points, analogous to the best fit line passing through all data

points in a linear regression. Conversely, ⇢ = 0 if and only if
P

Q

q=1

��✏⇤
q

�� =
P

Q

q=1 k✏q,ik
for all i 2 I. This scenario occurs when an optimal solution to the inverse optimization

problem does not reduce the model-data fit error with respect to any of the baseline

solutions, akin to when a linear regression returns an intercept-only model.

The third property states that goodness of fit is nondecreasing as additional degrees of

freedom are provided to the modeler, analogous to the property that R2 is nondecreasing

in the number of features in a linear regression model. Because of this similarity, ⇢ also

shares a weakness of R2 related to overfitting. When using ⇢ to compare several models,

one should ensure that higher values of ⇢ represent true improvements in fit, rather than

artificial increases that lack generalizability.

3.3.3 Numerical examples

Examples 2 and 3 illustrate the value of fusing ⇢ instead of an unnormalized error measure

such as the aggregate error. Intuitively, a given error with a larger feasible set indicates

better fit than the same error in a smaller set. Further, ⇢ degrades when individual data

points are forced to deviate from their preferred cost vector to minimize aggregate error.

Example 4 showcases ⇢ for a problem where three points in the data set are fixed and

the fourth is varied. Due to primal feasibility in GIOp(D), decision and objective space

yield di↵erent ⇢.
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(a) FO(c;�2, 10). ⇢ = 0.76. (b) FO(c; 4, 4). ⇢ = 0.34.

Figure 3.4: Illustration of Example 2. GIOA(D) with two FO(c; u, v), the same c
⇤ and

✏⇤, but di↵erent ⇢. GIOA(D) for two di↵erent cases of FO(c; u, v). The feasible sets are
shaded. The black and red squares are x̂q and x̂q� ✏⇤

q
, respectively. Both problems yield

the same c
⇤ and ✏⇤

q
, but have di↵erent model fitness.

Example 2. Consider a forward problem parameterized by u and v:

FO(c; u, v) : min
x

c1x1 + c2x2

s. t. � 0.71x1 + 0.71x2 � �2.83

u  x1  7

1  x2  v

and let D = {(5, 2.5), (4.75, 3.75), (5.5, 3)}. Consider two cases of the problem: FO(c;�2, 10)
and FO(c; 4, 4). GIOA(D) yields c

⇤ = (�0.5, 0.5) and
P3

q=1 |✏⇤q| = 2.75 for both, but

⇢ = 0.76 for FO(c;�2, 10) and ⇢ = 0.34 for FO(c; 4, 4). In Fig. 3.4(a), D is closer to

the bottom facet, relative to the other facets, while in Fig. 3.4(b), D is near the “center”

of the polyhedron rather than one facet.

Example 3. Let

FO(c) : min
x

c1x1 + c2x2

s. t. 1  x1  7

1  x2  7.



Chapter 3. Ensemble inverse linear optimization 38

(a) D1 = {(3.75, 2), (4, 2.25), (4.25, 2)}. ⇢ =

0.64.
(b) D2 = {(1.5, 2), (4, 6.25), (6.5, 2)}. ⇢ = 0.17.

Figure 3.5: Illustration of Example 3. GIOA(D) with two di↵erent data sets for the
same FO(c). The feasible set is shaded. The black and red squares are x̂q and x̂q � ✏⇤

q
,

respectively. Both problems yield the same c⇤ but have di↵erent errors and model fitness.

and let D1 = {(3.75, 2), (4, 2.25), (4.25, 2)} and D2 = {(1.5, 2), (4, 6.25), (6.5, 2)}. Both

GIOA(D1) and GIOA(D2) impute c
⇤ = (0, 1). In Fig. 3.5(a), the points are close to-

gether and prefer the bottom facet (⇢ = 0.64). In Fig. 3.5(b), the points are further apart,

each with a di↵erent preferred cost vector, but aggregate error is minimized by selecting

a new di↵erent cost vector, resulting in poorer fit (⇢ = 0.17).

Example 2 and 3 show that the aggregate error and the imputed cost vector from

inverse optimization can hide poor model-data fitness. However, poor fitness arises from

poor models or poor data. In Example 2, the forward model FO(c; 4, 4) uses constraints

that are potentially too tight given the data. On the other hand in Example 3, the data

set D2 is spread out and unlikely to be all generated with respect to a single objective.

Example 4. Let

FO(c) : min
x

c1x1 + c2x2

s. t. 0.71x1 + 0.71x2 � 4.24

0.71x1 � 0.71x2 � �2.83

x1  7

1  x2  7
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(a) GIOA(D) (b) GIO2(D)

Figure 3.6: Illustration of Example 4. Heat maps of ⇢ for di↵erent GIO(D) where D
consists of three fixed points and the fourth variable point. The feasible set is highlighted
and the squares are the fixed x̂q ofD. ⇢ is high forGIOA(D) along the relevant supporting
hyperplanes, but is only high for GIO2(D) along the facets.

and consider all data sets of the form

D = {(2, 5), (3, 6), (5, 4), (�1, �2)} .

Fig. 3.6 shows heatmaps of ⇢ for GIOA(D) and GIO2(D). For GIOA(D), fitness is

maximized when the fourth point lies on H1 = {(x1, x2) | 0.71x1 � 0.71x2 = �2.83}. If

we solve GIOA(D) with the three fixed points, then c
⇤ = (0.5,�0.5). Thus, when the

fourth point lies on H1, there is zero additional loss. ⇢ is also high when the fourth point

lies on H2 = {(x1, x2) | 0.71x1 + 0.71x2 = 4.24}, and degrades as it moves away from

these two hyperplanes.

We observe di↵erent behavior for ⇢ in GIO2(D): maximum model fitness occurs when

the fourth point lies along the facets of P defined by H1 and H2. Due to primal feasibility,

if the fourth point is infeasible, it must project to P and thus incur some positive loss.

3.4 Ensemble inverse optimization for treatment plan-

ning in radiation therapy

In this section, we implement GIO(D) and demonstrate the use of ⇢ in the context of

automated RT treatment planning. We consider a KBP pipeline where (1) a machine
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learning model first predicts an appropriate dose distribution for a given patient, (2) an

inverse optimization model treats the dose as an “observed decision” to impute candidate

objective weights, and (3) the objective weights are input to the multi-objective planning

problem to reconstruct a final plan (Babier et al., 2018b).

Since di↵erent prediction models lead to plans that over-fit to di↵erent clinical crite-

ria, we harness an ensemble of predictions to generate a single treatment plan. However,

instead of averaging predictions (like in a random forest), we keep each prediction sep-

arate, and feed them all into one inverse optimization model (see Figure 3.1(b)). Until

now, KBP has never been used to generate a single plan from multiple predictions.

We develop an ensemble KBP approach using eight di↵erent predictions and show

that the relative duality gap model dominates the absolute duality gap model for this

application. Plans from the relative duality gap model outperform the majority of the

single-point models on our overall clinical metric. Finally by removing certain low-

quality predictions, we design a final model that outperforms all of the single-point KBP

baselines. Although the final model requires clinically-driven model engineering, we use

⇢ as domain-independent validatation of the clinical intuition.

3.4.1 Data and methods

We use our clinical data set of 217 treatment plans for patients with oropharyngeal can-

cer randomly split into 130 plans for training and 87 plans for testing (see Chapter 2

for details on the data). The training set is used to train our predictive models and

then discarded; the testing set is used to implement our inverse optimization framework.

For each patient k, a treatment plan is generated by solving a multi-objective optimiza-

tion problem RT–FO(↵k) : minx

�
↵T

k
Ckx | Akx � bk , x � 0

 
, where Ck is the matrix

whose rows represent di↵erent cost vectors and ↵k is the vector of objective weights.

The decision vector contains two subvectors, x = (w,d), where w is the intensity of each

beamlet of radiation and d is the dose delivered to each voxel of the patient’s body, com-

puted from a linear transformation of w. This multi-objective model fits into GIO(Dk)

by specifying the set of feasible cost vectors for patient k as Ck =
�
C

T
k
↵ | ↵ � 0

 
. Fur-

thermore, the optimization problem for each patient is distinct. For a specific patient, the

feasible set is fixed and a single treatment optimization problem is solved. The ensemble

arises from the multiple dose predictions for the patient.

We first train four di↵erent dose prediction models, labeled Random Forest (RF), 2-D

RGB GAN, 2-D GANCER, and 3-D GANCER (Babier et al., 2018b, 2020a; Mahmood

et al., 2018). For each model, we also implement versions with scaled predictions (suf-
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fixed with ‘-sc.’), which are known to produce plans that better satisfy target (tumor)

criteria (Babier et al., 2020a). Thus, we have eight predictions per patient, which vary

in their dose trade-o↵s between the targets and healthy organs. We predict the dose

d̂k,q for each test patient k 2 {1, . . . , 87} with prediction model q 2 {1, . . . , 8} and let

Dk =
n
d̂k,1, . . . , d̂k,8

o
be data for each patient-specific problem. We then use inverse

optimization to construct an optimal treatment plan given these predictions.

For each patient k in the test set, we implement the absolute and relative duality gap

models, referred to as RT–IOA(Dk) and RT–IOR(Dk), respectively. They are derived

from GIOA(Dk) and GIOR(Dk) by setting Ck as defined above, along with the template

hyperparameters of Proposition 1 and Proposition 4, respectively. Once an objective

weight vector ↵⇤
k
is imputed from one of the inverse models, we solve RT–FO(↵⇤

k
) to

determine the beamlets w⇤
k
and dose d

⇤
k
. The dose d

⇤
k
is then evaluated using di↵erent

clinical criteria. Note that we are not attempting to re-construct beamlets or a dose

distribution that is similar in p-norm to the predictions, but rather learning the objective

function weights that the predictions appear to prioritize in order to construct a plan that

best reflects clinical preferences. Since plan quality is evaluated on dosimetric values in

practice, we focus only on the objective space model variants. Detailed descriptions of the

prediction models and the formulation of the inverse optimization models are provided

in Appendix A.3.

3.4.2 The value of ensemble inverse optimization

In practice, a suite of quantitative metrics are evaluated to assess whether su�cient dose

is delivered to the tumor and the surrounding healthy tissue is su�ciently spared. In line

with clinical practice, we use 10 binary criteria for plan evaluation (see Table 2.1; also

Babier et al. (2018a)). To evaluate our plans on these criteria, we first check whether

the corresponding clinical (ground truth) plan satisfied given criteria. If the clinical plan

satisfied the criteria, we evaluate whether the generated plan also satisfied that criteria.

The columns of Table 3.2 list the proportion of plans generated by RT–IOA(D) and

RT–IOR(D) that satisfied the corresponding clinical criteria. The ‘All’ row reflects the

percentage of plans that satisfied all of the criteria that were also met by the correspond-

ing clinical plans and is an aggregate measure of plan quality. We first use all eight

predictions to solve RT–IOA(D) (column 3) and RT–IOR(D) (column 4). RT–IOR(D)

substantially outperforms the RT–IOA(D) over every criterion, suggesting that the ab-

solute duality gap model is not well-suited to this application. This result is consistent

with results observed for single-point inverse optimization in RT (Chan et al., 2014, 2019;
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Table 3.2: The percentage of final plans of each KBP population that satisfy the same
clinical criteria as the corresponding clinical plans. OARs are assigned a mean or maxi-
mum dose criteria depending on relevance. PTVs are assigned criteria to the 99%-ile.

Structure Criteria (Gy) RT–IOA(D) RT–IOR(D)
8 Pts. 8 Pts. 6 Pts. 4 Pts. 2 Pts.

Brainstem Max  54 100 100 100 100 100
Spinal Cord Max  48 100 100 98.9 98.9 100
Right Parotid Mean  26 58.8 88.2 88.2 82.4 94.1
Left Parotid Mean  26 63.6 81.8 81.8 81.8 81.8
Larynx Mean  45 59.2 95.9 95.9 93.9 95.9
Mandible Mean  45 74.4 100 100 100 100
Esophagus Max  73.5 51.5 100 98.5 95.5 97.0
PTV70 99%-ile � 66.5 51.7 91.4 94.8 96.6 86.2
PTV63 99%-ile � 59.9 50.0 98.0 98.0 98.0 98.0
PTV56 99%-ile � 53.2 30.4 45.7 80.4 100 69.6

All Structures 26.4 60.9 75.9 83.9 70.1

Goli et al., 2018) and we conjecture that it is due to the wide range of objective func-

tion magnitudes in the forward problem. The absolute duality gap model adjusts each

objective value by the same absolute amount, causing relatively large adjustments to

objectives with low values and small adjustments to those with high values; thus, it has

di�culty balancing di↵erent criteria.

Although RT–IOR(D) with eight predictions is generally e↵ective at satisfying the

OAR criteria, these plans sacrifice the PTV criteria, especially PTV56. We hypothesize

that this performance for PTV criteria is due to the large variability in the quality of

predictions. For example, the 2-D RGB GAN, 2-D GANCER, and 3-D GANCER models

are known to produce plans that emphasize OAR criteria at the expense of the PTV.

Criteria satisfaction for single-point RT–IOR({x̂}) using each of the individual predic-

tions is shown in Table 3.3. Depending on which prediction is used, the single-point KBP

population varies from 10.9% to 95.7% in terms of satisfying the PTV56 criteria. The

ability of the single-point models to satisfy all clinical criteria ranges between 44.8% and

80.5%, suggesting that some single-point KBP models make poorer trade-o↵s in criteria

satisfaction than others. Regardless of the variability among predictions, the ensemble

model outperforms all but the top three single-point models in satisfying all criteria. In

cases where the cost of determining model performance is expensive (e.g., having to solve

inverse and forward models over multiple predictions and patients), ensemble inverse

optimization can reliably provide high-quality plans.

Using multiple points of varying quality as input to the ensemble model may lead to
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Table 3.3: The percentage of single-point inverse optimization plans of each KBP popu-
lation that satisfy the same clinical criteria as the clinical plans.

Structure Criteria (Gy) RT–IOR({x̂q})
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Brainstem Max  54 100 100 100 100 98.9 100 100 100
Spinal Cord Max  48 100 98.9 100 98.9 98.9 100 98.9 98.9
Right Parotid Mean  26 94.1 94.1 82.4 88.2 94.1 88.2 88.2 94.1
Left Parotid Mean  26 100 90.9 81.8 63.6 72.8 63.6 81.8 81.8
Larynx Mean  45 98.0 89.8 89.8 87.8 95.9 91.8 85.7 93.9
Mandible Mean  45 100 100 100 100 98.7 100 100 100
Esophagus Max  73.5 100 100 100 98.5 100 100 89.4 84.8
PTV70 99%-ile � 66.5 81.0 36.2 81.0 69.0 63.8 91.4 98.3 100
PTV63 99%-ile � 59.9 92.0 100 100 100 98.0 98.0 100 100
PTV56 99%-ile � 53.2 10.9 58.7 19.6 82.6 47.8 65.2 95.7 95.7

All Structures 44.8 47.1 47.1 59.8 55.2 67.8 77.0 80.5

poor model-data fit (see Example 3). We experiment with IO models based on subsets

of the eight predictions to determine which subset of KBP prediction models best fit

RT–FO(↵). The clinical KBP literature shows that some of the prediction models gen-

erally perform better than others: scaled GANCER models typically predict better than

RF, which themselves predict better than RGB-GAN and unscaled GANCER (Babier

et al., 2020a; Mahmood et al., 2018). Using the prior literature and qualitative assess-

ment from a clinical collaborator, we propose an ordering of the models from weak to

strong: 3-D GANCER, 2-D RGB GAN, 2-D GANCER, 2-D RGB GAN-sc., RF-sc., RF,

2-D GANCER-sc., 3-D GANCER-sc. Note the general pattern is more important than

the exact ordering. That is, we rate the scaled GANCER models as strongest, followed by

RF models, followed by RGB GAN and unscaled GANCER. We implement RT–IOR(D)

with data sets of decreasing size by sequentially removing the two weakest predictors.

For example, the 6 Pts. IO model uses the very strong, strong, and weak predictions,

while the 4 Pts. model uses the very strong and strong predictions. Columns 5–7 of Ta-

ble 3.2 show the performance of the three subset IO models. The 6 Pts. model markedly

improves over the 8 Pts. model on PTV criteria, while satisfying almost all OAR criteria,

resulting in an additional 15% of the final plans being able to satisfy all criteria. Simi-
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Table 3.4: The percentage of plans from di↵erent ensemble models that satisfy the same
clinical criteria as the corresponding clinical plans. RT–IOR(D) refers to the 4 Pts.
model from Table 3.2. We present the best performing setting for each baseline.

Structure Criteria (Gy) RT–IOR(D) Centroid MWA

Brainstem Max  54 100 100 100
Spinal Cord Max  48 98.9 100 100
Right Parotid Mean  26 82.4 88.2 88.2
Left Parotid Mean  26 81.8 81.8 63.6
Larynx Mean  45 93.9 87.8 91.8
Mandible Mean  45 100 98.5 100
Esophagus Max  73.5 95.5 100 100
PTV70 99%-ile � 66.5 96.6 96.6 93.1
PTV63 99%-ile � 59.9 98.0 100 98.0
PTV56 99%-ile � 53.2 100 80.4 67.4

All Structures 83.9 77.0 69.0

larly, the 4 Pts. model improves over the 6 Pts. model by achieving near perfect PTV

criteria satisfaction while mostly preserving OAR performance. In fact, this model now

outperforms the best single-point model, 3-D GANCER-sc. (see Table 3.3). Interestingly,

performance does not improve in the 2 Pts. model. This model uses two predictions (2-D

GANCER-sc. and 3-D GANCER-sc.) that individually achieve high PTV satisfaction in

their single-point models, but fail to do so when combined in an ensemble. We conjecture

that the 2 Pts. model reaches a local minimum in PTV satisfaction because the forward

objectives do not directly target PTV criteria (see Appendix A.3).

Overall, these experiments demonstrate the value of ensemble inverse optimization

for turning an ensemble of predictions into a single plan. While an o↵-the-shelf ensemble

model immediately outperforms most single-point constituents, careful selection of data

is required to maximize performance and beat all single-point KBP models.

3.4.3 Comparison with existing ensemble learning techniques

We next compare RT–IOR(D) with two conventional ensemble learning baselines that do

not account for linear programming geometry. The first baseline is an “ensemble-then-

inverse optimization” approach where for each patient k, the centroid d̄k of the individual

predictions is input into a single-point inverse optimization problem RT–IOR({d̄k}).
The second baseline is a Multiplicative Weights Algorithm (MWA), commonly used in

“learning from experts” settings (Arora et al., 2012). Here, we first solve the single-point

problem RT–IOR({d̂k,q}) with each prediction model for the training set patients. We
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Table 3.5: ⇢ for the Weak, Medium, and Strong subsets of 2, 4, and 6 Pts. The All
criteria percentage satisfaction for each model are in parentheses. The Strong column
reflects the predictions used in Table 3.2. Highest performing models are grayed.

Weak Medium Strong

2 Pts. 0.63 (42.5) 0.65 (60.9) 0.90 (70.1)
4 Pts. 0.56 (30.1) 0.68 (62.1) 0.73 (83.9)
6 Pts. 0.64 (51.7) 0.63 (57.5) 0.67 (75.9)

treat each prediction model as a di↵erent expert and learn a probability distribution over

the set of prediction models using the aggregate error as a loss function. Then for each

patient in the test set, we use this distribution to randomly sample a prediction model

and solve a single-point problem. Implementation details are given in Appendix A.3.6.

We implement the Centroid and the MWA model using all eight predictions per pa-

tient (i.e., 8 Pts.), as well as the 4 Pts. predictions (RF-sc., RF, 2-D GANCER-sc.,

and 3-D GANCER-sc.). Table 3.4 compares our incumbent, the 4 Pts. RT–IOR(D),

with the best-performing Centroid and MWA models. If all dose predictions were fea-

sible with respect to RT–FO(↵), then by Proposition 6, our ensemble model and the

Centroid model would be equivalent. Each prediction model outputs feasible doses for

approximately 85% of the patients (see Table A.1 in Appendix A.3). Consequently,

RT–IOR(D) yields di↵erent plans from RT–IOR(d̄k). Our incumbent outperforms the

baseline on the ‘All’ criteria by 6.9%. Nonetheless, the Centroid model is similar to

RT–IOR(D) for each individual criteria. We intuit that if only a small fraction of points

in D are infeasible, then centroid inverse optimization is an e�cient approximation of

ensemble inverse optimization.

The MWA baseline randomly selects a single-point inverse optimization model for

each patient according to a learned probability distribution. This approach is a tractable

alternative to solving eight inverse optimization problems and selecting the best plan

for each patient (see Figure 3.1a). As shown in Table 3.3, some single point models are

significantly better than others. Thus, most of the test set patients will receive plans from

RF, 2-D GANCER-sc. or 3-D GANCER-sc. However, RT–IOR(D) already outperforms

each of these single-point models on most of the criteria. Consequently, RT–IOR(D)

outperforms the MWA baseline on all criteria by 14.9%.

3.4.4 Using ⇢ to validate the best subset of the data

Above, we showed that using a targeted subset of the predictions yielded a better model.

The intuition follows Example 3, where points that are individually far from each other
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induce poor fit. While our ranking scheme was domain-specific, here we demonstrate a

domain-independent validation of the selection of the data sets in the 6 Pts., 4 Pts., and

2 Pts. models.

We consider three variants for each of the 6 Pts., 4 Pts., and 2 Pts. models by select-

ing subsets of strong, medium, and weak predictions according to our clinical ordering.

Strong subsets correspond to the models developed in Section 3.4.2, Weak subsets use

the worst predictions and sequentially remove the best from these subsets, and Medium

subsets use the predictions from 2-D RGB GAN to 2-D GANCER-sc. and sequentially

remove one strong and weak prediction. Table 3.5 compares ⇢ across models with vary-

ing quality of predictions. Note that we are not studying the e↵ect of data set size Q

(along columns of Table 3.5), but rather the e↵ect of quality (along rows of Table 3.5).

For fixed Q, the Strong model always yields the highest ⇢, which suggests that the Top

predictions are the best fit for the clinical forward model. Furthermore in parentheses in

Table 3.5, we show that the clinical criteria satisfaction rates for each of the ensemble

models also reflect similar trends as ⇢. Since ⇢ is a general metric, we can evaluate the

model quality for a given number of points without domain specific knowledge, and come

to nearly the same conclusion as via the clinical criteria, which are domain-specific and

require additional computation due to re-solving the forward model.

However, ⇢ is not a perfect surrogate for criteria satisfaction. For example, the Weak

6 Pts. model has a slightly higher ⇢ than the Medium 6 Pts. model. Note that the two

data sets share four of six points and the relatively similar ⇢ reflects a similar criteria

satisfaction rate. We also observe that the data set with the best fit from an inverse op-

timization perspective (Strong 2 Pts.) is not the one resulting in the best clinical criteria

evaluation (Strong 4 Pts.). This result is due to the fact ⇢ is calculated via the average

distance of the predictions to the constraints, but the constraints only approximate the

criteria (see Appendix A.3.1). Because the predictions are close to the constraints but

not criteria, ⇢ is overly optimistic for this model. Using diverse predictions of high clinical

quality allows us to obtain ⇢ values that are more representative of the clinical problem.

3.5 Conclusion

Inverse optimization is an increasingly popular model-fitting paradigm for estimating

the cost vector of an optimization problem given decision data. Motivated by ensemble

methods in machine learning, we develop a framework that uses a collection of deci-

sions for a single problem to estimate a cost vector. The data is drawn from di↵erent

decision-makers attempting to solve a single problem or, as in our application, a family of
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machine learning-generated predictions of an optimal solution. We propose a generalized

inverse linear optimization framework that unifies several common variants of inverse

optimization from the literature and derive assumption-free exact solution methods for

each. Comparing with the inverse convex optimization literature shows that by focusing

on our specialized context, we can leverage the geometry of linear optimization to pro-

duce tighter performance bounds and more e�cient solution methods. To complete our

framework, we develop a general goodness of fit metric to measure model-data fit in any

inverse linear optimization application. By virtue of possessing properties analogous to

R
2 in linear regression, this metric is easy to calculate and interpret.

We propose a novel application of ensemble inverse optimization in the automated

construction of radiation therapy treatment plans. In contrast to traditional approaches,

which generate plans from individual predictions, we use a family of predictions, each

with di↵erent characteristics and trade-o↵s, to form treatment plans that better imitate

clinically delivered treatments. Finally, while constructing the best inverse optimization

model requires careful clinical expertise, we show how our goodness-of-fit metric provides

domain-independent validation of our model engineering. Beyond the specific context

and application presented in this chapter, we believe there will be new applications of

predict-then-inversely optimize frameworks that can build on our foundation.



Chapter 4

Dose generation with generative

adversarial networks

A key enabler of automated KBP is the dose generation module. While dose generation

typically uses CT images to predict a clinically acceptable dose distribution, previous dose

generation models consisted of classical machine learning that relied on low-dimensional

hand-tailored geometric features drawn from a CT image (e.g., a regression model pre-

dicting the dose to a cubic region may use the distance from that region to the nearest

tumor structure). In this chapter, we propose a paradigm for generating KBP predictions

that learns to predict a 3-D dose distribution directly from a CT image. Specifically, we

recast dose generation as an image colorization problem, which we solve using a genera-

tive adversarial network (GAN) (Goodfellow et al., 2014). GANs, which have produced

impressive results in other image colorization applications (Isola et al., 2017; Zhu et al.,

2017), involve a pair of neural networks: a generator that performs a task and a discrim-

inator that evaluates how well the task is performed. In our application, the generator

imitates a dosimetrist that designs a treatment, while the discriminator plays the role of

the oncologist who critiques the generated dose distribution by comparing it to the real

treatment plan. Both neural networks train simultaneously on historical data, e↵ectively

replicating and aggregating the combined knowledge gained during the iterative manual

process used to design clinically acceptable treatments.

We develop an automated KBP pipeline for head-and-neck cancer that uses a GAN

to predict three-dimensional dose distributions. In contrast to previous machine learn-

ing methods, our approach does not require the pre-specification of an extensive set of

feature variables for prediction. Instead, our model learns what features are important

to produce clinically acceptable treatment plans. We apply our KBP methodology to

our clinical dataset of 217 patients with head-and-neck cancer (i.e., 26,279 2-dimensional

48
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CT image slices). We input all predictions into a plan optimization and evaluate on

deliverable plans. We compare our approach to feature-based machine learning models

and a standard convolutional neural network (CNN) to demonstrate that we outperform

these baselines in achieving clinical criteria and similarity metrics.

Remark 2. The dose generation model that we introduce in this chapter is equivalent

to the 2-D RGB GAN used in experiments from Chapter 3. While the results were

chronologically completed before the previous chapter, we include it here to also motivate

the next chapter, which advances on dose generation techniques.

4.1 Background

GANs are a well-studied class of deep learning algorithms used in generative modeling,

i.e., in the creation of new data (Goodfellow et al., 2014). Although initially used to

artificially generate 2-D images, and later 3-D models (Wu et al., 2016), their success

has garnered increasing interest for healthcare applications. GANs have been used for

medical drug discovery (Kadurin et al., 2017), generating artificial patient records (Choi

et al., 2017; Esteban et al., 2017), the detection of brain lesions (Alex et al., 2017), and

image augmentation for improved liver lesion classification (Frid-Adar et al., 2018).

A GAN consists of two neural networks, a generator and a discriminator, working

in tandem. The generator G(·) takes an initial random input z ⇠ pz and attempts

to generate an artificial data sample x = G(z) (i.e., the 3-D dose distribution). The

discriminator D(·) is a classifier that takes generated and real data samples, and tries

to identify which is which, i.e., D(x) 2 [0, 1] where 1 suggests the generated sample is

satisfactory. The interaction between the networks can be formalized mathematically as

a minimax game. If x ⇠ pdata is the probability distribution over the real data samples,

then the game is defined as

min
G

max
D

n
V (G,D) := Ex⇠pdata

h
logD(x)

i
+ Ez⇠pz

h
log
�
1�D(G(z))

�io
.

GANs have been proven e↵ective in Style Transfer problems, where the generator

input z is a data sample corresponding to one style (or characteristic) and the output x

is a mapping to a di↵erent style (Isola et al., 2017; Zhu et al., 2017). For example, Style

Transfer can be used to transform grayscale images to colored photos (Sangkloy et al.,

2017), in facial recognition for surveillance-based law enforcement (Wang et al., 2017),

and in 3-D reconstruction of damaged artifacts (Hermoza and Sipiran, 2017). In our

setting then, z corresponds to a CT image, while x represents a dose distribution. The
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generator G(z) learns the mapping between styles that generates samples resembling the

ground truth. Since key structures in the output may be entangled with noise from the

generator, the desired output is often achieved by modifying the original minimax game

with a penalty term on large deviations between the real and generated samples:

min
G

max
D

n
V (G,D) + �Ex⇠pdata,z⇠pz

h
kx�G(z)k1

io
, (4.1)

where � is a regularizer that balances the trade-o↵ between the two objectives.

4.2 Methods

We use contoured CT images and clinically acceptable dose distributions from the treat-

ment plans of past oropharyngeal cancer patients to train a Style Transfer GAN. We

then pass out-of-sample predicted dose distributions through an IO pipeline (Babier

et al., 2018a) to generate the final treatment plans. For baseline comparisons, we also

implement several methods from the prior literature using the complete pipeline. Details

on our clinical data set are given in Chapter 2.

4.2.1 Dose generation

We first divide each 3-D CT image into 2-D slices of 128⇥128 pixels. The generator uses

a single CT image slice to predict the dose distribution along that same plane without

considering the vertical relationship between di↵erent slices. This process is repeated for

every slice until a full 3-D dose distribution can be produced. Our training set consists

of all 2-D slices from the 3-D CT images for 130 patients, totaling 15,657 images. The

CT images from the remaining 87 patients are used for out-of-sample evaluation.

Our GAN learning model is built on the pix2pix Style Transfer architecture of Isola

et al. (2017). We use a U-net generator that passes a 2-D contoured CT image slice

through consecutive convolution layers, a bottleneck layer, and then through several de-

convolution layers. The U-net also employs skip connections, i.e., the output of each

convolution layer is concatenated to the input of a corresponding deconvolution layer.

This allows the generator to easily pass “high dimensional” information (e.g., structural

outlines) between the inputted CT image slice and the outputted dose slice. The discrim-

inator passes a 2-D slice of the dose distribution along several consecutive convolution

layers, outputting a single scalar value. In the training phase, the discriminator receives

one real and one generated dose distribution before backpropagation. The discriminator



Chapter 4. Dose generation with generative adversarial networks 51

is disconnected after training, at which point the generator receives only a contoured CT

slice. We refer the reader to Appendix B.1 for details on the network architectures.

The GAN is trained via the loss function given by (4.1) with � = 90 using the Adam

optimizer (Kingma and Ba, 2014) with learning rate 0.0002 and �1 = 0.5 and �2 = 0.999

for 25 epochs. We use the default Adam settings from Isola et al. (2017), as they were

proven to be efefctive for a variety of di↵erent Style Transfer problems. We find these

default settings to be su�cient with minimal subsequent improvement and consequently

avoid extensive parameter tuning. The code for all experiments, along with the parameter

settings is provided at http://github.com/rafidrm/gancer.

4.2.2 Plan generation

We input our predicted dose generation models into a single-point inverse optimization

model to generate optimized plans (see Chapter 3). We use Gurobi 7.5 to solve the

inverse and forward optimization problems associated with the IO pipeline. Details on

the forward and inverse problems are provided in Appendix A.3 and Appendix B.3.

Remark 3. Our inverse optimization model follows the same approach as the experi-

ments in Chapter 3 with two di↵erences. First, note that we use a single dose estimate

rather than an ensemble. Second, the formulation here relaxes the dose forward safety

constraints since these constraints are not necessary for modeling.

4.2.3 Baseline approaches

We compare our GAN approach to generating predicted dose distributions with several

baseline techniques. We briefly describe the baseline approaches here.

• Bagging query (BQ): A look-up method identifies patients with similar geome-

tries who have undergone radiation therapy and outputs their doses as predictions.

This approach predicts dose volume histograms (DVHs), i.e., 2-D summaries of the

3-D dose delivered to specific targets and OARs (e.g., Babier et al. (2018b); Wu

et al. (2009)).

• Generalized PCA (gPCA): A method combining PCA with linear regression

using patient geometry features. Similar to BQ, this method also predicts DVHs

(e.g., Babier et al. (2018b); Yuan et al. (2012)).

• Random forest (RF): Predicts dose to each voxel (3-D dose prediction) using

ten customized features based on patient geometry (inspired by McIntosh et al.

(2017)). Additional details can be found in Appendix B.2.
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• U-net (CNN): Predicts dose to each voxel in 2-D slices from a CT image using a U-

net convolution neural network architecture (e.g., Nguyen et al. (2017)). Additional

details can be found in Appendix B.1.

Note that while RF and CNN predict dose distributions, BQ and gPCA do not. We feed

all baseline predictions into the same IO pipeline as the GAN to ensure a fair comparison

between deliverable plans.

4.3 Results

4.3.1 Sample generated dose distributions

The Style Transfer function mapping the CT image to the predicted dose distribution

appears easy to learn. This is because the GAN generated dose distributions had the hall-

marks of a deliverable plan, like the sharp dose gradients that are generated by individual

beams. However, our experiments demonstrated subtle deliverability characteristics that

the GAN cannot always identify. The optimization step enforces these physical deliv-

erability constraints to correct for these idiosyncracies. This result can be observed in

Figure 4.1, where sample slices of a clinical, predicted, and optimized plan are shown.

Visually, the GAN predictions resemble clinical plans with slight blurring artifacts.

4.3.2 Clinical criteria satisfaction

We measure plan quality by evaluating how frequently each plan satisfies the standard

clinical criteria for head-and-neck cancer treatment plans (see Table 2.1). Clinicians

commonly use criteria satisfaction as a metric to evaluate plan quality and approve a

treatment plan after it satisfies a su�cient number of the criteria. Thus, each criterion

(one per OAR and target) is measured on a pass-fail basis depending on whether the

mean dose, maximum dose, or the dose to 99% of the volume of that structure (i.e.,

value-at-risk to the 99-th percentile), is above or below a given threshold.

Remark 4. The evaluation approach for criteria satisfaction in this chapter di↵ers

slightly from Chapter 3. Here, we evaluate generated plans on whether they satisfy each

criteria independent from the performance of the ground truth clinical plans. In the pre-

vious chapter, we evaluated whether the generated plans that matched the same criteria

as the clinical plans; that is, evaluating plans only for the criteria that the correspond-

ing ground truth plans satisfied. Therefore here, we can also compare generated plans

with clinical plans and investigate potential ine�ciencies with delivered plans. However,
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CT

Clinical

GAN

Prediction

GAN

Plan

Figure 4.1: Sample of slices from a test patient. From top to bottom: contoured CT
image (generator input), clinical plan (ground truth), GAN prediction, and GAN plan
(post optimization).

generated plans evaluated on this metric may not make the same clinical trade-o↵s (i.e.,

meeting a specific criteria at the cost of another). Furthermore to facilitate comparisons,

we re-scale the doses corresponding to all of the generated plans so that the dose delivered

to the PTV70 from each generated plan is equal to the dose delivered to the PTV70 of

the corresponding clinical plan.

Table 4.1 presents the percentage of the GAN and baseline treatment plans that

satisfied the clinical criteria. There are more than triple the number of OAR criteria as

PTV criteria since after all plans are normalized to the PTV70, we are left only with the

PTV63 and PTV56 to evaluate. We note that clinically acceptable plans typically cannot

satisfy all criteria simultaneously because of the proximity of the targets to the OARs

and the complexity of the head-and-neck site in general. We observe that the BQ and

gPCA plans tend to satisfy PTV criteria more frequently, which suggests that they may

recommend delivering a higher dose to the target relative to the clinical plan. However,

they fail to achieve mean and maximum dose criteria to the OARs. On the other hand,

the RF plans satisfy fewer clinical criteria associated with the target as compared to
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Table 4.1: The percentage of final plans of each KBP population that satisfy all of the
clinical criteria of each category.

BQ gPCA RF CNN GAN Clinical

OAR criteria 61.6 65.8 71.5 72.5 72.8 72.0
PTV criteria 83.5 85.7 68.0 76.3 81.3 76.8
All criteria 67.6 71.2 70.7 73.6 75.2 73.3

the clinical plans. While the CNN plans achieve the closest level of performance to the

clinical plans, the GAN plans obtain the best overall performance compared to all KBP

pipelines. Our GAN-based KBP pipeline o↵ers a balanced trade-o↵ between the OARs

and targets, and even outperforms the clinical plans on clinical criteria satisfaction.

The previous results focused on pass-fail performance with respect to the clinical

criteria. In addition to pass-fail performance with respect to the clinical criteria, we also

examine the magnitude of passing or failing via head-to-head comparisons of the GAN

and baseline plans with respect to the clinical plans (see Figure 4.2). The x-axis in each

figure is the di↵erence in Gray (Gy) between the KBP and the clinical plans (KBP minus

clinical) for the criterion on the corresponding y-axis. For each criterion, the majority of

GAN plans outperform their clinical counterparts by several Gy (Figure 4.2(e)). This is a

significant result given that the clinical plans are heavily optimized and delivered to actual

patients. In contrast, the BQ, gPCA, and RF plans display substantial variability in

performance when compared to the clinical plan. Consistent with Table 4.1, performance

of the CNN plans are closest to the GAN plans although, as shown in Figure 4.2(f), the

GAN plans maintain a small, yet consistent, advantage.

Finally, we compare the KBP plans against the clinical plans using the gamma passing

rate (GPR) metric. GPR measures the similarity between two dose distributions on a

voxel-by-voxel basis, computing for each voxel, a pass-fail test. We consider the standard

choice of GPR, i.e., a 3%/3 mm tolerance (Low et al., 1998), which roughly means that

a voxel in the evaluated dose distribution (KBP) “passes” if there is at least one voxel in

the reference dose distribution (clinical) within 3 mm that receives a dose that is within

±3% of the reference dose. Table 4.2 summarizes the average GPR achieved over all

KBP-generated plans. A score of 1.0 means that every voxel has passed the criteria; in

other words, the two dose distributions were considered identical (within the tolerance).

Overall, we observe that the GAN plans generate dose distributions that most closely

resemble the clinical dose distributions, followed by the CNN, and then the gPCA plans.

Notably, the GAN dose distributions best resemble the clinical dose distribution around

the target, which is of primary importance. The GAN plans perform poorer on the
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Figure 4.2: Head-to-head: (a)–(e) the plans from each KBP-generated model versus
their clinical counterparts; (f) the plans from the GAN versus the CNN. We mark the
75th and 25th percentiles and the median in the box. Whiskers extend to 1.5 times the
interquartile range.

OARs, but this result is expected given the prior results in Table 4.1, which indicate that

the GAN plans achieve more OAR clinical criteria than the clinical plan (i.e., the GAN

is able to deliver a lower dose to the OARs as compared to the clinical dose distribution).

4.4 The value of GANs for dose generation

Unlike BQ and gPCA, the RF, CNN, and GAN all directly predict the 3-D distribution

of dose to each voxel of the patient’s geometry. However, there are several di↵erences

between these three models that a↵ect their performance. First, the RF is trained via

supervised learning to predict the dose to any voxel using ten customized features based

on the location of that voxel with respect to the PTVs and OARs. In contrast, the

CNN and GAN are deep learning models that learn relevant geoemtric features via the

convolution operations in these networks. The size of the networks implies that these

models may learn a large number of important features that are more e↵ective than

the predetermined features of the RF. Consequently we find that the GAN and CNN
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Table 4.2: Average GPR for each population of KBP plans compared to clinical plans.

BQ gPCA RF CNN GAN

All OARs 0.548 0.584 0.535 0.566 0.549
All PTVs 0.533 0.728 0.503 0.741 0.761
All Structures 0.536 0.669 0.518 0.670 0.675

outperform the RF on both clinical criteria satisfaction and GPR.

The GAN is further di↵erentiated from the RF and CNN due to the specific Style

Transfer loss function. The RF is trained via CART (Breiman, 1996) and thus tries to

minimize distance from the ground truth on a per voxel basis. The CNN is trained to

minimize l2 loss, i.e., Mean-Squared Error, which is also a physical distance measure but

simply on 2-D axial slices. In contrast, the GAN is trained via an adversarial loss where

the discriminator tries to learn the “characteristics” of a clinically desirable plan. This

approach is better than conventional supervised learning in our application because our

evaluation metric, clinical criteria satisfaction, is not necessarily amenable to physical

distance. For example, consider a ground truth clinical plan where every voxel in the

PTV56 receives 56 Gy. A plan generated via KBP where the dose to every voxel of the

PTV56 is 55.5 Gy will have an average l2 error of 0.25, but it fails the PTV56 criteria.

On the other hand, a generated plan where the dose to every voxel of the PTV56 is 57 Gy

will have an average l2 error of 1, but it would satisfy the PTV56 criteria and therefore

be more desirable. We conjecture that a discriminator tries to learn this di↵erence, which

then helps train the generator to create clinically acceptable plans.

4.5 Conclusion

In this chapter, we propose the first GAN-based KBP pipeline to generate radiation

therapy treatment plans. We train our complete pipeline on 130 patients, test on 87

out-of-sample patients diagnosed with head-and-neck cancer, and compare our technique

with several state-of-the-art planning frameworks including a query-based approach, a

PCA-based method, a random forest, and a CNN. All methods are evaluated on standard

clinical criteria for plan evaluation (i.e., OARs sparing and target coverage), showing that

the GAN plans outperform all baseline KBP methods. We also demonstrate that the

GAN plans outperformed the clinical plans by satisfying additional criteria on OAR dose

sparing and target dose coverage. Finally, we use the gamma passing rate, a standard

metric in the radiation therapy literature, to evaluate the similarity of the full 3-D dose

distribution between the KBP and clinical plans demonstrating that the GAN plans are
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the most similar to clinical plans on average. Note that the performance of automated

planning methods should be measured based on their ability to re-create clinical quality

plans with minimal manual e↵ort. If the auto-generated plans manage to improve upon

clinical plans, that would be a better outcome.

Our approach eschews the classical paradigm of predicting low-dimensional represen-

tations, or engineering features, by training a generic neural network to learn desirable

dose distributions. Specifically, the GAN recasts KBP prediction as an image coloriza-

tion problem. Moreover, the GAN is trained by mimicking the iterative process between

the dosimetrist and oncologist; the generator network acts as the dosimetrist by de-

signing dose distributions while the discriminator acts as the oncologist by determining

whether the plans are good or bad. The implication is that selecting the appropriate

neural network architecture may be su�cient when creating an automated KBP pipeline

that generates deliverable plans. Further, our approach does not add site-specific feature

variables which suggests that the good performance we observe may not be limited to pa-

tients with oropharyngeal cancer. Finally, since the GAN plans improve upon the clinical

plans, it may be useful to analyze the results to generate useful insights for practitioners.



Chapter 5

Learning to optimize with hidden

constraints

Consider a decision-maker who regularly solves instances of a continuous optimization

problem. There is a fixed objective and set of constraints, but each instance is also de-

pendent on some auxiliary input that may change the feasible set in a way that cannot be

easily characterized. The e↵ect of this input represents the decision-maker’s contextual

understanding of the problem. For example, a clinician may regularly solve an optimiza-

tion problem to construct personalized treatments for her patients. However, each patient

possesses features which the clinician will take into account. Moreover, this accounting

may depend on clinical knowledge, intuition, and anecdotal experiences with prior pa-

tients, meaning that it cannot easily be formalized into mathematical representation. In

these settings, the relationship between the contextual features and the solution require

estimation by analyzing historical data stores. Techniques from operations research and

machine learning suggest contrasting approaches to solving these types of problems and

each field’s advantages reveals the other’s deficiencies.

In operations research, the e↵ect of the context is typically first to be estimated. The

result is then used as an input to a constrained optimization problem; this is known as

the ‘predict-then-optimize’ paradigm (Elmachtoub and Grigas, 2017). There are many

estimation approaches; each attempts to predict the direct e↵ect of the context on the

objective function or the corresponding decisions (e.g., Ban and Rudin, 2018; Bertsimas

and Kallus, 2020; Mǐsić, 2019). For example, a predictive model can estimate the likeli-

hood terms of a conditional stochastic objective with context-dependent features. Such

optimization problems can be challenging to solve; the literature primarily explores op-

timizing over context-dependent objectives involving linear, tree, or neighborhood-based

models. However, once a relationship between the contextual features and the optimiza-

58
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tion model is established, the optimization problem can be solved to produce provably

optimal solutions.

In machine learning, there has been renewed interest in directly predicting solutions to

optimization problems (e.g., Bengio et al., 2018; Hopfield and Tank, 1985). Specifically,

deep neural networks can learn a mapping from contexts to decisions, for example, they

can estimate an optimal traveling salesman tour given a graph (Kool and Welling, 2018;

Vinyals et al., 2015). While inference requires a fraction of the time as compared to

solving a mathematical program (Larsen et al., 2018), there are no feasibility or optimality

guarantees, especially for out-of-sample instances. Further, these methods rely on a large

data set of optimal decisions for training, whereas many applications feature smaller data

sets of feasible, potentially sub-optimal decisions.

Application to radiation therapy

This work is motivated by the dose generation problem in automated RT treatment

planning. In the clinical planning procedure (see Figure 1.1), all plans must be approved

by an oncologist based on their performance across institutionally mandated criteria.

Since it is impossible to simultaneously satisfy all criteria (e.g., tumor dose may be

sacrificed to reduce dose to nearby critical structures or vice versa), oncologists make

subjective trade-o↵s by choosing a subset of relevant criteria for a given patient based

on prior expertise. These oncologist-driven trade-o↵s can be viewed as e↵ectively latent

constraints that are parameterized by the patient’s information and can be learned from

examining past decisions (i.e., treatment plans) approved by the oncologist.

Dose generation models estimate dose from CT images (e.g., Chapter 4) use con-

ventional supervised learning techniques rather than incorporating characteristics of the

optimization problem within the learning problem. Conventional techniques have several

drawbacks. First, they do not take into account the pass-fail nature of clinical criteria,

nor any evaluation of delivering “low” dose (i.e., dosage that minimizes the radiation

delivered to healthy tissue). Second, the protocols for radiation therapy treatment often

vary between institutions (e.g., Geretschläger et al., 2015 versus Babier et al., 2018b).

This makes it di�cult to deploy the same automated planning pipeline at multiple in-

stitutions because o↵-the-shelf prediction models trained using data from one clinic may

not satisfy protocols (e.g., hidden constraints) at other institutions (Wu et al., 2017). A

clinic attempting to implement an automated planning pipeline would first need to train

a custom prediction model using institution-specific data, which is especially di�cult for

smaller clinics or those ramping up in developing countries.
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Contributions

In this chapter, we combine the best of both machine learning and operations research

to learn to generate decisions to contextual optimization problems. From the machine

learning perspective, we introduce a predictive approach to generating optimal solutions

to constrained optimization problems with context-dependent features; this approach is

amenable for use with deep neural networks. From the operations research perspective,

we use historical data sets of feasible decisions and ensure that our approach generates

decisions that have both in-sample and out-of-sample optimality guarantees and demon-

strate how these bounds can be iteratively improved with new data. Specifically, we

formulate a linear optimization problem that includes a set of unknown (potentially non-

convex), context-dependent constraints. Given a context vector, we estimate the feasible

set and generate an optimal solution. To do this, we transform our contextual optimiza-

tion problem into two prediction problems. The first problem predicts feasibility using

a binary classifier that is trained on past context vectors and decisions. The second

problem trains a generative model to produce decisions that the classifier would predict

as feasible. To augment training, a feasibility oracle, which can be a prior model of the

problem or a human decision-maker, labels new decisions as feasible or infeasible in order

to achieve better optimality guarantees.

To navigate the region that a classifier deems feasible, we train our generator via

an interior point method (IPM). Since IPMs are primarily used for well-defined convex

optimization problems, we first derive a new ✏-optimality guarantee for IPMs when the

feasible set of a problem is unknown. As a result, the classifier learns to act as a barrier

function within a data-driven IPM while the generator enjoys a related ✏-optimality

guarantee when predicting decisions. Our technical contributions are as follows:

1. We introduce the concept of a �-barrier ; a barrier function for a relaxation of the

feasible set. We then define a (�, ✏)-optimality guarantee for optimization prob-

lems where the feasible set can only be partially characterized and generalize key

properties of IPM algorithms to this setting. By combining IPMs and adversarial

learning, we predict (�, ✏)-optimal solutions to problem instances given context-

dependent features.

2. We present a new, oracle-guided algorithm—Interior Point Methods with Adversar-

ial Networks (IPMAN)—that progressively predicts tighter (�, ✏)-optimal solutions

to a constrained optimization problem by iteratively growing the data set.

3. We prove a generalization bound on the out-of-sample (�, ✏)-optimality gap for any
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model that predicts solutions to an optimization problem. As a result, we charac-

terize the in-sample and out-of-sample optimality gap of the IPMAN algorithm.

We apply IPMAN to predict the dose distribution to be delivered to head-and-neck

cancer patients. In this context, we model the clinical criteria that must be met before

a treatment is accepted as latent constraints to be learned from historically delivered

treatment plans. After the classifier is trained, the generative model produces dose

distributions that the classifier predicts will satisfy the relevant clinical criteria for that

patient. The oracle labels the generated output as correct if the plan satisfied all of

the hidden constraints that the oncologist had determined were relevant for the patient.

By incorporating the evaluation of feasibility and optimality in training, our approach

extends state-of-the-art generative adversarial network (GAN) frameworks for predicting

dose distributions (c.f., Chapter 4). Our final product is a generative model that outputs

dose distributions that, with high probability, are guaranteed to be within a neighborhood

of optimality (both in-sample and out-of-sample).

In our numerical experiments, we find that the doses predicted by our model better

resemble clinical doses compared to current state-of-the-art baselines. We then show that

once the latent constraints are learned, they can be altered using IPMAN so that dose

distributions can be predicted for institutions with di↵erent protocols, without collecting

a new institution-specific data set. This result has implications for the transfer of auto-

mated treatment planning technology between institutions (Wu et al., 2017), as well as

closing the global gap in supply of radiation therapy by enabling all clinics to perform

automated planning (Atun et al., 2015).

5.1 Background

Our approach to generating decisions combines methods from several fields. First, we em-

ploy two learning models, one to evaluate and one to generate solutions. This is common

in reinforcement learning (e.g., actor-critic methods, Konda and Tsitsiklis, 2000) and

deep learning (e.g., generative adversarial networks). Our learning function is derived

using interior point methods (Nesterov and Nemirovskii, 1994) and our learning guar-

antees extend Rademacher complexity results for data-driven optimization (Bertsimas

and Kallus, 2020). Finally, our learning algorithm bears a loose resemblance to estima-

tion of distribution algorithms (EDAs), commonly used in evolutionary and black-box

optimization (Pelikan et al., 2002). We detail the most relavant work below.
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5.1.1 Interior point methods

Interior point methods (IPMs) are among the most popular techniques for solving con-

strained optimization problems (Nesterov and Nemirovskii, 1994). A constrained op-

timization problem minx

�
c
T
x
�� x 2 P

 
is transformed into an unconstrained, di↵eren-

tiable problem minx{cTx� � logB(x)}, where � > 0 is a dual parameter and B(x) is a

barrier, i.e., a function that is non-zero when x is strictly feasible and zero otherwise.

IPMs have been applied to many problems in linear and quadratic optimization where

they can quickly converge to optimal solutions (Gondzio, 2012). Recent results on bar-

rier functions for arbitrary convex sets have renewed interest in IPMs (Badenbroek and

de Klerk, 2018; Bubeck and Eldan, 2019). IPMs also exist for non-convex optimization

problems (Benson et al., 2004; Hinder and Ye, 2018; Vanderbei and Shanno, 1999). These

prior papers all assume access to explicit constraints or a barrier that is well-defined for

the entire feasible set. Here, we construct a barrier function (i.e., our classifier) that

approximates a relaxation of the feasible set and develop an IPM theory for this setting.

5.1.2 Contextual optimization

The most common approach to contextual optimization is the ‘predict-then-optimize’

paradigm, i.e., to construct a parametric optimization model of the decision-making

problem and use machine learning to predict parameters from context-dependent in-

puts (Angalakudati et al., 2014; Elmachtoub and Grigas, 2017; Ferreira et al., 2015). A

non-parametric alternative is to directly estimate the e↵ect of the context in terms of a

conditional stochastic optimization model. For example, a stochastic objective that is

conditioned on the context vector may be characterized by embedding a machine learning

model to estimate probability weights on the objective (Ban and Rudin, 2018; Bertsimas

and Kallus, 2020; Bertsimas and McCord, 2018; Hannah et al., 2010; Kao et al., 2009).

Our work is most similar to Ban and Rudin (2018) who use Empirical Risk Minimiza-

tion (ERM) to construct a predictor for the optimal solution to a Newsvendor problem.

The Newsvendor problem is only constrained by the non-negativity of the variables, and

thus, we generalize their result to an arbitrary set of restrictions by incorporating con-

straint satisfaction via a binary classifier. Bertsimas and Kallus (2020) remark on the

challenges of constraint satisfaction when using ERM and instead, propose a weighted

learning framework that estimates the weights (i.e., conditional probability terms) in a

sample-average optimization problem. They prove several generalization results that arise

from ERM theory. We extend their generalization bounds to out-of-sample ✏-optimality

guarantees, in particular, for problems where the feasible set is not fully specified.
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5.1.3 Deep learning for constrained optimization

Recent advances in deep learning have prompted a growing interest in using neural net-

works to solve constrained optimization problems (Bengio et al., 2018). Task-specific

neural networks are trained by customized learning algorithms to predict feasible and

optimal decisions. Di↵erent approaches to this objective include supervised learning

with a data set of instances and optimal solutions (Larsen et al., 2018; Vinyals et al.,

2015), reinforcement learning (Bello et al., 2017; Kool and Welling, 2018), or task-based

learning (Donti et al., 2017).

Predicting solutions is faster than using an optimization approach since a prediction

model outputs solutions via a single function call. However, a trained model may not

guarantee that predicted solutions can satisfy every constraint. There are, however,

several approaches that address this issue. For instance, training a supervised learning

technique on a large data set may help make predictions more accurate (Larsen et al.,

2018). Recently, a class of neural network layers can be used to directly learn the implicit

function associated with feasible solutions provided the structure of the constraints are

known (Agrawal et al., 2019; Amos and Kolter, 2017). Finally, the loss function may be

customized to encourage constraint satisfaction (Donti et al., 2017). Our approach trains

a prediction model using a loss function motivated by IPM theory. This encourages the

model to produce feasible solutions and allows us to prove optimality guarantees on the

generated solutions. In addition, as opposed to previous work in this area, we relax the

assumption that the training data must consist of optimal solutions to problem instances

with di↵erent contexts.

5.2 Problem setup

In this chapter, we use the following standards for notation. Vectors are denoted in bold

and sets in calligraphic. The interior, boundary, and closure of a set are int(X ), bd(X ),

and cl(X ) respectively. The exclusion of X1 from X2 ◆ X1 is denoted X2 \X1. We denote

probability distributions with P. The support of a distribution is supp(P). Finally, we

use k·k as the l2-norm.

Let x 2 Rn denote a decision vector and u 2 U be a context vector. Consider the

problem

OP(u) : min
x

n
c
T
x

��� x 2 X (u), x 2 P
o
,

where c 2 Rn is a cost vector (assumed without loss of generality that kck = 1),
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P :=
�
x | aT

m
x  bm,m = 1, . . . ,M

 
is a known set of linear constraints, and X (u) is

an unknown and potentially non-convex set of instance-specific constraints that must be

learned. We assume in this paper that the context space U and feasible sets X (u) are

well-behaved.

Assumption 1 (Compactness and feasibility).

1. For all u 2 U , the feasible set X (u) is compact and has a non-empty interior.

Further, the joint set {(x,u) | u 2 U , x 2 X (u)} is compact and has a non-empty

interior.

2. The known constraints P =
�
x
�� aT

m
x  bm, m = 1, . . . ,M

 
define a compact poly-

hedron whose interior bounds the hidden feasible set, i.e., X (u) ⇢ int(P) for all

u 2 U .

The first statement ensures compactness and feasibility. The second states that the

known constraints are relaxations of the hidden set. This is trivially satisfied when P and

X (u) are compact since one can always re-define a larger P with no change to OP(u).

Let x⇤(u) denote an optimal solution to OP(u). In Section 5.3, we first consider opti-

mizing over a single instance of OP(u). We introduce a barrier function for a relaxation

of the feasible set and show that an optimal solution to the corresponding unconstrained

barrier problem satisfies an optimality bound that depends on the size of the relaxation.

In Section 5.4, we address our main problem, which is to construct a generative model

F : U ! Rn, i.e., a function that takes as input a context vector and outputs a decision.

Furthermore, decisions produced by this model must satisfy an error bound

���cTF (u)� c
T
x
⇤(u)

��� < ✏ (5.1)

for some ✏. We assume access to a data set of Nx feasible and N̄x infeasible decisions as

well as Nu context-dependent inputs. Due to the complexity of optimally solving OP(u),

we do not assume that the given feasible decisions are optimal. Instead we have:

• A data set of context vectors Û := {ûi}Nu

i=1.

• A training data set of feasible decisions D := {(x̂i, ûi)}Nx
i=1, where ûi 2 Û and

x̂i 2 X (ûi) for all i 2 {1, . . . , Nx}. This data may consist of decisions that were

implemented in the past. Note that for training, D may include multiple feasible

decisions for each ûi.



Chapter 5. Learning to optimize with hidden constraints 65

• A training data set of infeasible decisions D̄ := {(x̄ī, ûī)}N̄x

ī=1, where x̄ī 2 Rn\X (ûī).

This data set may consist of decisions that were not implemented by the decision-

maker or generated by random sampling (e.g., ?).

Some applications may not possess high-quality data with both feasible and infeasible

decisions. Thus in Section 5.5, we demonstrate how to train the models using an itera-

tive framework which includes a data augmentation procedure that creates new labelled

points. Here, we assume access to an oracle of feasibility  (x,u), where  (x,u) = 1 if

x 2 X (u) and 0 otherwise. Oracles have been used for in-the-loop labelling in machine

learning, for example with human annotators correcting predictions in real-time during

training (Castrejon et al., 2017). In our numerical experiments, we construct data-driven,

rule-based oracles defined only over the training set for which we can make a large num-

ber of queries. However, the oracles are not available when generating predictions for

out-of-sample instances.

5.3 Optimization with a hidden feasible set

In this section, we extend IPM theory to the case where the barrier function can only

partially characterize the feasible region. In particular, consider the problem OP(u)

for a single context vector u. Although we do not know the hidden feasible set X (u),

we do know the constraints associated with the relaxation P . Thus, we first define

the notion of a barrier function for partially specified feasible sets and then propose a

barrier optimization problem that produces a solution OP(u) that satisfies an optimality

guarantee.

If OP(u) had no hidden constraints then one could construct a canonical log-barrier,

i.e., logB(x) =
P

M

m=1 log
�
bm � a

T
m
x
�
, to solve OP(u) within an IPM (see Nesterov and

Nemirovskii, 1994). In our case, X (u) ⇢ P and thus, a canonical barrier using P may

incorrectly return non-zero values for x 2 P \X (u). This canonical barrier can be viewed

as a barrier function over a relaxation or superset of X (u). As a result, we define a new

class of functions that are strictly positive for all x 2 X (u) (as in a barrier), and are zero

for all x that are su�ciently far from X (u). We refer to such functions as �-barriers.

Definition 1. For some � > 0, let N� (X (u)) = {x+ ✏ | x 2 X (u), k✏k < �} be a neigh-

borhood of X (u). A �-barrier B� : Rn⇥U ! [0, 1) is a continuous function that satisfies

X (u) ⇢
�
x
�� B�(x,u) > 0

 
✓ N� (X (u)) .
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Note that any function B(x) supported over a superset of X (u) is a �-barrier for �

at least equal to the Hausdor↵ distance dH(·, ·) between X (u) and the support of B(x),

i.e.,

� � dH

�
X (u),

�
x
�� B(x) > 0

 �
= min

⇠�0

n
⇠

���
�
x
�� B(x) > 0

 
✓ N⇠ (X (u))

o
. (5.2)

Given the set of known constraints P and Assumption 1, a �-barrier for X (u) can always

be constructed simply by re-scaling the canonical barrier for P . In particular, let CP
>

maxm2{1,...,M},x2P
�
bm � a

T
m
x
 
be a normalization factor and consider the function

B
P(x) :=

MY

m=1


bm � a

T
m
x

CP

�+
. (5.3)

This function is a �-barrier for X (u) where � = dH(X (u),P).

Suppose we have a �-barrier B�(x,u) for some �. Let � > 0 be a constant correspond-

ing to a Lagrangian dual variable and consider the unconstrained barrier optimization

problem

BP(u, B�,�) : min
x

n
c
T
x� � logB�(x,u)

o
. (5.4)

We show that the optimal value ofOP(u) is bounded by the optimal value ofBP(u, B�,�).

Theorem 6. For any � > 0, BP(u, B�,�) has an optimal solution x
�(u). Furthermore,

this solution is (�, ✏)-optimal for OP(u):

c
T
x
�(u)� ✏ < c

T
x
⇤(u) < c

T
x
�(u) + �, (5.5)

where ✏ = C� with C being a positive constant.

Proof. For notational simplicity, we use x
� amd x

⇤ in place of x�(u) and x
⇤(u), respec-

tively. We first prove that an optimal solution exists for any � > 0. From the Weierstrauss

Theorem, an optimal solution to BP(u, B�,�) exists if there is a sub-level set of the ob-

jective that is non-empty, bounded, and closed. Let x̄ be a point in the interior of X (u);

by Assumption 1, x̄ exists. Furthermore, B�(x,u) > 0 for all x 2 X (u) implies that x̄

admits a finite objective for BP(u, B�,�). Moreover, the objective for BP(u, B�,�) is

only finite within {x | B�(x,u) > 0} ✓ N� (X (u)). Consequently the sub-level set

n
x

��� cTx� � logB�(x,u)  c
T
x̄� � logB�(x̄,u)

o
✓ N� (X (u))
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is non-empty, bounded, and closed (since the objective is continuous) and x
�(u) exists.

Suppose we choose ✏ = �� logB�(x⇤
,u)). By definition, 0 < B�(x⇤

,u) < 1, meaning

C := � logB�(x⇤
,u) > 0 is a positive constant. Let x

� be an optimal solution to

BP(u, B�,�). We now prove that cTx� � ✏ < c
T
x
⇤:

c
T
x
⇤ + ✏ = c

T
x
⇤ � � logB� (x

⇤
,u)

� c
T
x
� � � logB�

�
x
�
,u
�

> c
T
x
�
.

The first inequality follows from the optimality of x� for BP(u, B�,�) while the second

inequality follows from logB�(x�
,u) < 0, meaning that �� logB�(x�

,u) > 0. Moving ✏

to the right-hand-side gives the lower bound.

The proof of cTx⇤
< c

T
x
� + � has two cases. If x� 2 X (u), then by the optimality

of x⇤, we trivially satisfy c
T
x
⇤  c

T
x
�
< c

T
x
� + �. If x� 2 N� (X (u)) \ X (u), then let

x̃ 2 argminx2X (u)

��x� � x
�� be the projection of x� on X (u). Then,

c
T
x
⇤ � c

T
x
�  c

T
x̃� c

T
x
�


��cTx̃� c

T
x
�
��


��x̃� x

�
��

< �.

The first inequality follows from the optimality of x
⇤ over x̃ for OP(u). The third

inequality follows from the Cauchy-Schwartz inequality and kck = 1, while the fourth

inequality follows from the fact that for x� 2 N� (X (u)), there exists x 2 X (u) such that��x� x
�
�� < � and that x̃ minimizes this distance. This proves the upper bound.

The (�, ✏)-optimality inequalities from Theorem 6 generalize the classical ✏-optimality

bound of IPMs (Nesterov and Nemirovskii, 1994) to problems where the feasible set can

only be partially characterized. That is, when � = 0, (5.5) reduces to the classical ✏-

optimality bound c
T
x
�(u) � ✏ < c

T
x
⇤(u) < c

T
x
�(u) which applies when the feasible

set can be fully characterized. Further, similar to classical IPMs, the (�, ✏)-optimality

of solutions to BP(u, B�,�) can be controlled by tuning �. Because ✏ = C� for a fixed

C, as � goes to 0, so does ✏. However, in contrast to classical theory on IPMs, � is a

property of the barrier function and does not change with �. Intuitively, we may expect

that when � is large (i.e., ✏ is also large), then x
�(u) may also have large objective

function value and be sub-optimal for OP(u) and that when � is small (as is ✏), x�(u)



Chapter 5. Learning to optimize with hidden constraints 68

f(x)

x
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Figure 5.1: The bold shape is P and the filled region is X (u). The dotted lines represent
level sets for logBP(x). An optimal solution to OP(u) is x⇤(u).

may have small objective function value and be infeasible for OP(u). We show in the

Electronic Companion C.1 that under certain regularity assumptions on the �-barrier, we

can guarantee x
�(u) 2 X (u) is feasible for a su�ciently large � and that as � decreases,

x
�(u) eventually becomes infeasible. Figure 5.1 shows a sample sequence of decreasing

� values and the corresponding solutions x�(u). Thus, we demonstrate that an interior

point algorithm using �-barriers can be developed in much the same way as IPMs that

use canonical barrier functions.

5.4 Learning to optimize with hidden constraints

For a constrained optimization problem with a hidden feasible set, Section 5.3 demon-

strates that we can solve a barrier optimization problem and obtain a (�, ✏)-optimal

solution. However, the theory rests on two strong assumptions: (i) that we have access

to a �-barrier; and (ii) that we optimize OP(u) over a single context vector u . In this

section, we relax both assumptions. In particular, we assume that a �-barrier must be

constructed from data and learn to predict (�, ✏)-optimal solutions to OP(u) for any

context vector u as input. To this end, we first construct a function that serves as a

�-barrier for any u by training a classifier using a data set of feasible (D) and infeasible

decisions (D̄). This classifier takes as input a decision x̂ and a context vector u and

outputs 1 when it predicts a decision to be feasible and 0 otherwise. Then, to predict

solutions to OP(u), we adversarially train a generative model, or generator, using the

previously developed classifier as a �-barrier.

Let B := {B : Rn⇥U ! [0, 1]} denote the model class of classifiers and let F := {F :
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U ! Rn} denote the model class of generators. We assume both models are continuous

in their parameters and in the decision vector x. The two learning tasks are defined

below:

1. Learning a �-barrier from classification: Train B 2 B to label (x̂i, ûi) 2 D as

feasible and (x̂ī, ûī) 2 D̄ as infeasible via a Feasibility Classification Problem:

FCP(D, D̄) : max
B2B

(
1

Nx

NxX

i=1

logB(x̂i, ûi) +
1

N̄x

N̄xX

ī=1

log (1� B(x̄ī, ûī))

)
. (5.6)

Let B⇤(x,u) be a classifier trained by minimizing FCP(D, D̄).

2. Learning to generate solutions to the barrier problem: For j 2 {1, . . . , J}
steps, let �j denote a decreasing dual parameter (i.e., �j+1 < �j). We train the

generator over context vectors Û via the Generative Barrier Problem:

GBP(Û , B⇤
,�j) : min

F2F

(
1

Nu

NuX

i=1

c
T
F (ûi)� �j logB⇤�

F (ûi), ûi

�
� �j logBP�

F (ûi)
�
)
,

(5.7)

where B⇤(x,u) is a trained classifier and B
P(x) is the canonical barrier from (5.3).

For each j, let F (j)(u) be a generator trained by minimizing GBP(Û , B⇤
,�j).

In Figure 5.2, we visualize the training procedure for a single context vector ûi. In

the left-hand figure, a classification model uses points in D and D̄ to train a barrier

function to distinguish between feasible and infeasible decisions. In the right-hand fig-

ure, the barrier function is used to train a sequence of generative models with decreasing

�j. That is, we solve GBP(Û , B⇤
,�j) for J steps to obtain a set of trained generators

�
F

(1)(u), . . . , F (J)(u)
 
; there is one generator for each value of �j. As in classical IPM

theory, the sequence of generators produce solutions that are sub-optimal but feasible for

large values of �j and infeasible for small values of �j (see C.1 for conditions the guar-

antee strict convergence). After training has completed, we select a particular generator

F
(j⇤)(u) by cross-validating the feasibility of decisions outputted by the model with a

decision-maker or oracle of feasibility (c.f. Section 5.5) for a held-out set of context vec-

tors. That is, we select the model F (j⇤)(u) that most often predicts feasible decisions

while still ensuring a suitably low objective function value. Thus, �j e↵ectively acts as a

tunable regularization parameter.

Given enough training data, the classifier will learn to become a su�ciently strong

�-barrier. Furthermore, the Generative Barrier Problem has a bounded support which
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(a) After B⇤
is trained, the support of the

classifier (in red) approximates a �-barrier.
(b) The points in the line represent the set

of predictions F (j)
(ûi) for j.

Figure 5.2: The two learning problems for a single ûi and corresponding OP(ûi). ⌃ and
⇤ represent points in D and D̄, respectively. The filled region is X (ûi). The solid line
shows the support of B(x, ûi).

ensures that the final generator, which is trained by minimizing the empirical risk, outputs

in-sample predictions that satisfy a (�, ✏)-optimality bound with respect to OP(u). Thus,

after solving these two learning tasks, we can use the trained generator to take as input

a context vector u and predict a (�, ✏)-optimal decision for OP(u).

5.4.1 Learning a �-barrier using classification

A classifier learns from decision data to output larger values when x 2 X (u) and smaller

values when x 2 Rn \ X (u). If the classifier can output positive values for all x 2
X (u), and zero for all x su�ciently far from X (u), then it is e↵ectively a �-barrier. By

minimizing a Binary Cross Entropy (BCE) loss function, the Feasibility Classification

Problem in (5.6) attempts to train a classifier with this behavior. While nearly any

learning algorithm and model class can be trained to approximate a �-barrier, minimizing

BCE is easy-to-implement with deep learning models because it is di↵erentiable and can

be customized to most tasks by incorporating application-specific terms (Goodfellow

et al., 2016).

We now provide a population level argument for choosing to minimize BCE. Let

P(x,u) be a distribution of feasible pairs, i.e., (x,u) where x 2 X (u), and let P̄(x,u) be a

distribution of infeasible pairs, i.e., (x,u) where x /2 X (u). These pairs can correspond

to empirical data distributions or any other arbitrary probabilities. Then, consider the
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stochastic optimization variant of the Feasibility Classification Problem:

S–FCP(P(x,u), P̄(x,u)) : max
B2B

n
Ex,u⇠P(x,u)

h
logB(x,u)

i
+ Ex,u⇠P̄(x,u)

h
log
�
1� B(x,u)

�io
.

Lemma 2. Assume that P(x,u) and P̄(x,u) have closed and disjoint supports and that B
contains all continuous functions mapping Rn ⇥ U ! [0, 1].

1. There exists a continuous function B
⇤(x,u) of S–FCP(P(x,u), P̄(x,u)) where B⇤(x,u) =

1 for all (x,u) 2 supp(P(x,u)) and B
⇤(x,u) = 0 for all (x,u) 2 supp(P̄(x,u)) that

achieves an optimal value of 0 for S–FCP(P(x,u), P̄(x,u)).

2. If supp(P(x,u)) = {(x,u) | x 2 X (u),u 2 U}, then for any u 2 U , the product

B
⇤(x,u)BP(x) is a �-barrier with � = dH(X (u),P).

Proof. This result is an application of Urysohn’s Smooth Lemma, which states that given

two closed and disjoint sets A and A0, there exists a continuous function f(·) 2 [0, 1] for

which f(A) = 1 and f(A0) = 0 (Engelking, 1977). Letting A = supp(P(x,u)), and A0 =

supp(P̄(x,u)) means there is a continuous function B
⇤(x,u) that satisfies B

⇤(x,u) = 1

for all (x,u) 2 supp(P(x,u)) and B
⇤(x,u) = 0 for all (x,u) 2 supp P̄(x,u). To prove that

B
⇤(x,u) is a maximum, note that every B 2 B satisfies B(x,u) 2 [0, 1], meaning that

0 is an upper bound on the optimal value. Substituting B
⇤(x,u) into the objective of

S–FCP(P(x,u), P̄(x,u)) achieves this value.

To prove Statement 2, consider a fixed u. First note that B
⇤(x,u) = 1 for all

x 2 X (u). Because B
⇤(x,u) is continuous, we must have X (u) ⇢ {x | B⇤(x,u) > 0}.

Then, note that BP(x) = 0 for all x 2 Rn \ P . Consequently,

{x | B⇤(x,u)BP(x) > 0} ✓
�
x | BP(x) > 0

 
= P ✓ NdH(X (u),P) (X (u)) .

Finally, although B
⇤(x,u) 2 [0, 1] rather than in [0, 1) as per the definition of a �-barrier,

this can be rectified by simply scaling the classifier by a multiplicative factor.

The first statement Lemma 2 is a variation of a result by Arjovsky and Bottou (2017,

Theorem 2.1), which demonstrates that an optimal continuous function binary classifier

trained by minimizing BCE will equal to 1 and 0 over the distributions for each respective

class. The second statement indicates that a product of classifiers is a �-barrier when

trained with a probability distribution over feasible decisions. Although the lemma is

stated in terms of population-level probability distributions, the assumption of closed

and disjoint supports is satisfied with empirical data distributions and thus, it holds

without loss of generality. Further, Lemma 2 assumes that the model class B contains
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all continuous mappings of Rn ⇥ U ! [0, 1]. This assumption is a su�cient rather

than necessary condition. Since large neural networks can approximate any continuous

function classifier (see Hornik 1991), we find that in practice, designing a neural network

model of appropriate size and architecture produces a classifier of su�cient quality for

our prediction tasks.

5.4.2 Learning to generate solutions to the barrier problem

We train a generator F (j)(u) to solve GBP(Û , B⇤
,�j) (an empirical risk minimization of

the barrier problem presented in Section 5.3) for a decreasing sequence of dual regularizers

�j > 0. In this subsection, we show that training a generator via GBP(Û , B⇤
,�j) ensures

that for all in-sample context vectors ûi 2 Û , the error between the solution generated

by F
(j)(ûi) and the optimal value of OP(ûi) is bounded. In particular, the generative

model outputs decisions satisfying the optimality guarantee given by (5.1).

Recall that GBP(Û , B⇤
,�j) has two barrier terms consisting of the classifier and the

known constraints. Let B⇤,P(x,u) := B
⇤(x,u)BP(x) be the product of the two barriers

as described in Lemma 2. We simplify (5.7) to formulate the single-barrier objective

function

min
F2F

(
1

Nu

NuX

i=1

c
T
F (ûi)� �j logB⇤,P�

F (ûi), ûi

�
)
.

From Lemma 2, given su�cient training data, the product barrier will be a �-barrier. Fur-

thermore, since P is compact under Assumption 1, B⇤,P(x,u) will always have bounded

support. This property ensures that all solutions satisfy an in-sample optimality bound.

Theorem 7. For �j > 0, let F (j)(x,u) and B
⇤,P(x,u) = B

⇤(x,u)BP(x) be the trained

generator and product barrier, respectively. For any ûi 2 Û , let x�j(ûi) be an optimal

solution to BP(ûi, B
⇤,P

,�j). Then, there exists �, ✏ > 0 such that

��cTF (j)(ûi)� c
T
x
⇤(ûi)

�� <
��cTF (j)(ûi)� c

T
x
�j(ûi)

��+max(�, ✏). (5.8)

Proof. Using the same argument as in Theorem 6, as long as B
⇤(x,u) is a continuous

function, x�j(ûi) will exist. For notational simplicity, we use x⇤ and x
�j in place of x⇤(ûi)

and x
�j(ûi), respectively. By the Triangle inequality,

��cTF (j)(ûi)� c
T
x
⇤�� 

��cTF (j)(ûi)� c
T
x
�j

��+
��cTx�j � c

T
x
⇤�� .

Even if B⇤,P(x, ûi) is not a �-barrier for OP(ûi), we will prove that x
� is an optimal
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solution to a barrier problem BP(ûi, B�,�j) for some �-barrier, and therefore, satisfies a

(�, ✏)-optimality bound |cTx�j � c
T
x
⇤| < max(�, ✏) for some � > 0 and ✏ > 0. We split

the proof into two separate cases: when B
⇤,P(x⇤

, ûi) > 0 and when B
⇤,P(x⇤

, ûi) = 0.

First, if B
⇤,P(x⇤

, ûi) > 0, we construct a new constrained problem for which x
⇤

is an optimal solution and show that B
⇤,P(x, ûi) is a �-barrier for the new problem.

Let 0 < "  B
⇤,P(x⇤

, ûi) be any su�ciently small parameter value and consider the

optimization problem with a smaller feasible set than X (ûi), below:

min
n
c
T
x

��� x 2 X (ûi), B
⇤,P(x, ûi) � "

o
(5.9)

and note that because x⇤ is feasible for (5.9), it is optimal. Further, {x | B⇤,P(x, ûi) > 0}
is a superset of the feasible set of (5.9), meaning that B

⇤,P(x, ûi) is a �-barrier for the

above problem for some � > 0. Then, from Theorem 6, x�j , which is an optimal solution

to BP(ûi, B
⇤,P

,�j), is (�, ✏)-optimal for (5.9) with ✏ = �� logB⇤,P(x⇤
, ûi) > 0.

Second, if B
⇤,P(x⇤

, ûi) = 0, then x
⇤ does not lie in the support of the classifier.

Instead, we construct a “test” �-barrier B
Test(x) for X (ûi) and show that x

�j is also

an optimal solution to BP(ûi, B
Test

,�j), meaning that it satisfies an alternative (�, ✏)-

optimality bound. Let xP 2 argminx{cTx | x 2 P} and let B̄ be a constant defined as

follows:

B̄ = B
⇤,P(x�j , ûi)min

⇢
1 , exp


� 1

�j

�
c
T
x
�j � c

T
x
P�
��

. (5.10)

Note that B̄ 2 (0, 1). We now define B
Test(x) as a continuous function that satisfies:

B
Test(x) =

8
>>>>>><

>>>>>>:

B
⇤,P(x, ûi), 8x 2 {x | B⇤,P(x, ûi) � B̄}

B̄, 8x 2 {x | B⇤,P(x, ûi) < B̄, x 2 X (ûi)}

 B̄, 8x 2 {x | B⇤,P(x, ûi) < B̄, x 2 P \ X (ûi)}

0, 8x 2 Rn \ P .

The third condition is left as an inequality since we only need a continuous function

B
Test(x) to satisfy an inequality in that range. We argue that such a function must exist.

Because B
⇤,P(x, ûi) is continuous in x, the first region {x | BTest(x) � B̄} is closed.

Furthermore because the the support of B⇤,P(x, ûi) is a subset of P , the first region is

disjoint from Rn \ P . By Urysohn’s Smooth Lemma, a continuous function within [0, 1]

that is equal to 1 for x 2 {x | BTest(x) � B̄} and 0 for x 2 Rn \ P exists; scaling this

function gives BTest(x).



Chapter 5. Learning to optimize with hidden constraints 74

The support of BTest(x) is a superset of X (ûi) and B
Test(x) is in the range [0, 1),

meaning that it is a �-barrier for OP(ûi) for some � > 0. It only remains to prove that

x
�j is an optimal solution for BP(ûi, B

Test
,�j), i.e.,

c
T
x
�j � �j logBTest(x�j)  c

T
x� �j logBTest(x), 8x 2 {x | BTest(x) > 0}.

First, consider the region {x | BTest(x) � B̄}. From (5.10), B̄  B
⇤,P(x�j , ûi) meaning

B
Test(x�j) = B

⇤,P(x�j , ûi). Because x
�j is optimal for BP(ûi, B

⇤,P
,�j) and this region

is a subset of the support of B⇤,P(x, ûi), we have

c
T
x
�j � �j logBTest(x�j)  c

T
x� �j logBTest(x), 8x 2 {x | BTest(x) � B̄}.

Now, consider the region {x | BTest(x) < B̄}. Replacing the minimum in (5.10) with

an inequality and taking the logarithm on both sides yields

� log B̄ � � logB⇤,P(x�j , ûi) +
1

�j

�
c
T
x
�j � c

T
x
P�

.

We further re-arrange this inequality to

c
T
x
�j � �j logB⇤,P(x�j , ûi)  c

T
x
P � �j log B̄ (5.11)

c
T
x
�j � �j logBTest(x�j)  c

T
x� �j log B̄ 8x 2 {x | BTest(x) < B̄} (5.12)

c
T
x
�j � �j logBTest(x�j)  c

T
x� �j logBTest(x) 8x 2 {x | BTest(x) < B̄} (5.13)

We obtain (5.12) by substituting B
Test(x�j) = B

⇤,P(x�j , ûi) and noting c
T
x
P  c

T
x for

all x 2⇢ P . We obtain (5.13) because BTest(x) < B̄. Thus, x�j is an optimal solution to

BP(ûj, B
Test

,�) and is (�, ✏)-optimal for OP(ûi) where ✏ = ��j log B̄.

Theorem 7 ensures that for any predicted decision from an in-sample context vector

ûi 2 Û , the optimality gap is bounded from above by the sum of two terms: (i) the

empirical error between the optimal solution to BP(ûi, B
⇤,P

,�j) and OP(ûi) as given in

Theorem 6; and (ii) a (�, ✏)-optimality bound. The value of this bound, and hence the

quality of the trained generator F (j)(u), depends on the quality of the classifier. Recall

that �j is e↵ectively a regularization parameter for training F
(j)(u). If the classifier

is su�ciently trained so that it is a �-barrier for ûi, then selecting an appropriate �j

ensures that the trained generator produces a solution that is arbitrarily close to the

optimal value for OP(ûi).

In the proof of Theorem 7, we demonstrate that ✏ can be calculated using known
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quantities. However, � is a property of the classifier and the hidden feasible set X (ûi).

Since we may not be able to characterize X (ûi) exactly, we do not know the exact value

of �. The next result demonstrates that we can bound this value as a function of the

data.

Corollary 4. For any ûi 2 Û , � in (5.8) is bounded by �  dH ({x̂ | (x̂, ûi) 2 D} , P).

Proof. The � term in the bound of (5.8) is derived from the fact that an optimal solution

x
�j(ûi) to BP(ûi, B

⇤,P
,�j) is also an optimal solution to some barrier problem with a

�-barrier. The proof of Theorem 7 invokes two separate cases with two di↵erent bounds,

i.e., � takes a di↵erent value if B⇤,P(x⇤
, ûi) > 0 or if B⇤,P(x⇤

, ûi) = 0. We consider each

case separately and show that � can be bounded by the above in both cases.

If B
⇤,P(x⇤

, ûi) > 0, then the proof of Theorem 7 follows by constructing a new

optimization problem (5.9) with a smaller feasible set and showing that the product

classifier is a �-barrier for that problem, where � is equal to the Hausdor↵ distance

between this feasible set and the support of the product classifier

� = dH

��
x
�� x 2 X (ûi), B

⇤,P(x, ûi) � "
 
,
�
x
�� B⇤,P(x, ûi) > 0

 �
.

Because we can choose any su�ciently small value for the " parameter, we select a

value such that B
⇤,P(x̂, ûi) � " for all (x̂, ûi) 2 D. Furthermore, all x̂ in this data

set are feasible decisions to OP(ûi). Thus, we have
�
x
�� x 2 X (ûi), B⇤,P(x, ûi) � "

 
�

{x̂ | (x̂, ûi) 2 D}. Finally,
�
x
�� B⇤,P(x, ûi) > 0

 
⇢ P . Substituting the subset and su-

perset into the definition of the Hausdor↵ distance yields the upper bound on � for this

case.

If B⇤,P(x⇤
, ûi) = 0, then the proof of Theorem 7 follows by constructing a new barrier

function B
Test(x) for OP(ûi). Then, � = dH

�
X (ûi),

�
x | BTest(x) > 0

 �
. However,

again note that X (ûi) � {x̂ | (x̂, ûi) 2 D} and that
�
x | BTest(x) > 0

 
✓ P . Substituting

these two sets into the definition of the Hausdor↵ distance yields the same upper bound

for this case.

Corollary 4 reveals the key challenge of learning to optimize over hidden feasible sets.

While we may generate decisions that satisfy a (�, ✏)-optimality guarantee, the quality

of the �-barrier is highly dependent on the available training data. Indeed, in order to

appropriately train a classifier to learn to become a �-barrier, we require a significant

amount of data that includes both feasible D and infeasible D̄ decisions. This setup

is typical of many deep learning applications. For example, the FaceNet architecture

(Schro↵ et al., 2015) used more than 400,000 samples to train a neural network to verify
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and recognize faces. In addition, D only has to contain feasible decisions (as opposed

to optimal solutions) which may be easier to obtain. Nevertheless, many operational

applications do not feature large data sets (Gupta and Rusmevichientong, 2020). Thus,

in the next section, we propose an approach to increase the amount of training data for

our prediction models.

5.5 Improving learning to optimize with data aug-

mentation

Data augmentation is the practice of artificially generating data to improve the accuracy

of predictive models and has been used with great success, particularly for computer

vision applications with deep neural networks (Perez and Wang, 2017). The goal is to ar-

tificially create new data points to enhance the training signal so that the model acquires

more generalization power. For instance, many image classification models rotate, flip,

and blur images in the training set; the transformed images constitute a new sample with

the same label as the original images (Yoo et al., 2020). Recently, human oracles have

been used to augment data by correcting model predictions during training (Castrejon

et al., 2017). The challenge for any data augmentation technique is to ensure that the

artificially generated data points do not hinder the model’s ability to learn. Thus, in this

section, we introduce a computational oracle of feasibility to label predicted decisions in

order to augment the classifier data. We then prove that embedding our models within

an iterative framework with this data augmentation step will improve learning.

We assume access to a perfect feasibility oracle  (x,u), which labels decisions by

outputting  (x,u) = 1 if x 2 X (u) and 0 otherwise. Using this oracle, we propose an

iterative learning algorithm where the classifier trains with a progressively larger data

set of both feasible and infeasible decisions. We prove that the classifier will learn to

better approximate the hidden feasible set after each iteration which, in turn, improves

the ability of the generator to learn to predict solutions to the optimization problem

OP(u) for any context u.

5.5.1 Constructing data-driven oracles

In our context, we consider an oracle to be a black-box model used in training to label

feasibility with respect to the context vectors in the data set Û . For example, this may be

a human-in-the-loop decision-maker involved in the training process (e.g., Emmanouilidis

et al., 2019). It may also be a data-driven oracle which is constructed by assuming some
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knowledge of the hidden feasible set. For example, if we know that the hidden set contains

a linear constraint but do not know the right-hand-side value, we can analyze D and D̄
to identify the largest feasible right-hand-side. Below, we present a simple example

for creating such a data-driven oracle; we use similar constructions in our numerical

experiments.

Example 5 (Data-driven oracle). Suppose that the hidden feasible set consists of a single

linear constraint X (u) = {x | aT
x  b(u)} where the vector a 2 Rn is known and is

independent of the context. The right-hand-side can take one of two potential values that

are dependent on the context vector, i.e., b(u) 2 {b1, b2} where b1 < b2. Since every

(x̂i, ûi) 2 D is a feasible pair, we can estimate the right-hand-side for any context vector

in the training set by evaluating a
T
x̂i and designing the corresponding oracle:

 (x, ûi) =

8
>>><

>>>:

1 if aT
x  b1 and max(x̂,ûi)2D a

T
x̂  b1

1 if aT
x  b2 and b1  max(x̂,ûi)2D a

T
x̂  b2

0 otherwise

, 8ûi 2 Û .

Data-driven oracles, such as the one presented in Example 5, o↵er a significant ad-

vantage as compared to a human-in-the-loop. A computational oracle can be called a

large number of times during training and does not need to be defined for all possible

context vectors. Nevertheless, one disadvantage of a rule-based oracle is that it may

represent a tighter subset of X (e.g., if D contains feasible decisions that inadvertently

satisfy more conservative constraints even though a larger value would have been su�-

cient). While this edge case may limit the quality of generated decisions, it occurs only

if D is pathologically poor.

5.5.2 Interior Point Methods with Adversarial Networks

We now introduce an iterative oracle-guided algorithm, Interior Point Methods with

Adversarial Networks (IPMAN). In each iteration of the algorithm, we train a classifier

and a generator in succession as described in Section 5.4. Then, for each context ûi 2 Û ,
we have the trained generator predict decisions that are not present in the training data.

We use the oracle to label each predicted decision as feasible or infeasible and then

augment the existing data sets of feasible and infeasible decisions for the next iteration.

Let k 2 {1, . . . , K} index an iteration of training and superscript (k) index the model

and data sets after the k-th iteration. Algorithm 1 summarizes our approach.

In each iteration, the classifier B(k+1)(x,u) is trained with data sets D(k+1) and D̄(k+1),
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Algorithm 1 Interior Point Methods with Adversarial Networks (IPMAN)

Input: Number of IPMAN iterations K and IPM steps J ; Dual regularizers {�j}Mj=1;

Initial data sets D(1), D̄(1), and Û .
Output: Final generative models F (j,K) for j 2 {0, . . . , J}
1: for k = 1 to K do

2: Train classifier B(k) via FCP(D(k)
, D̄(k)).

3: for j = 1 to J do

4: Train generator F (j,k) via GBP(Û , B(k)
,�j).

5: Update D(k+1) = D(k)[Q, Q :=
n
(F (j,k)(ûi), ûi)

��  (F (j,k)(ûi), ûi) = 1, ûi 2 Û
o
.

6: Update D̄(k+1) = D̄(k)[Q̄, Q̄ :=
n
(F (j,k)(ûi), ûi)

��  (F (j,k)(ûi), ûi) = 0, ûi 2 Û
o
.

7: end for

8: end for

9: return F
(j,K) for j 2 {1, . . . , J}

respectively, which are larger than the data sets D(k) and D̄(k) due to the labelling

procedure of the oracle. Due to this data augmentation step, the optimal solution set of

the Feasibility Classification Problem can be shown to contract after each iteration, i.e.,

B
(k+1)(x,u) represents a tighter approximation to X (u) than B

(k)(x,u), which we now

show formally.

Proposition 10. Assume that B contains all continuous functions mapping U ⇥ Rn !
[0, 1]. For any k, let B(k) be the optimal solution set of FCP(D(k)

, D̄(k)). Then, B(k+1) ⇢
B(k).

Proof. When B is unrestricted, Lemma 2 states that for any k, the optimal value of

FCP(D(k)
, D̄(k)) is 0 and can be achieved when the optimal solution satisfies B(k)(x̂, û) =

1 for all (x̂, û) 2 D(k) and B
(k)(x̂, û) = 0 for all (x̂, û) 2 D̄(k).

In the (k + 1)st iteration, D(k+1) = D(k) [Q and D̄(k+1) = D̄(k) [ Q̄ where Q and Q̄
are defined as in Algorithm 1. To show that B(k+1) ⇢ B(k), we first prove B(k+1) ✓ B(k)

and then present a counter-example which disproves the equivalence.

The objective function of FCP(D(k+1)
, D̄(k+1)) is

1

|D(k+1)|
X

(x̂,û)2D(k+1)

logB(x̂, û) +
1

|D̄(k+1)|
X

(x̂,û)2D̄(k+1)

log
�
1� B(x̂, û)

�

=
↵

|D(k)|
X

(x̂,û)2D(k)

logB(x̂, û) +
1� ↵
|Q|

X

(x̂,û)2Q

logB(x̂, û)

+
↵
0

|D̄(k)|
X

(x̂,û)2D̄(k)

log
�
1� B(x̂, û)

�
+

1� ↵0

|Q̄|
X

(x̂,û)2Q̄

log
�
1� B(x̂, û)

�
,
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Figure 5.3: The trained classifier after an iteration of data augmentation. ⌃ and ⇤
represent points in D(k+1) and D̄(k+1), respectively, with the colored (red) points denoting
the augmented points. The filled region is X (u). The gray line shows the support of
B

(k)(x,u) and the red line shows the support of B(k+1)(x,u).

where ↵ = |D(k)|/|D(k+1)| and ↵
0 = |D̄(k)|/|D̄(k+1)| are the mixture weights defining

the ratio of existing to new points in each data set. Because the optimal value of

FCP(D(k+1)
, D̄(k+1)) is 0 and B(x,u) 2 [0, 1], each of the individual terms must be equal

to 0 for an optimal solution. However, the first and third terms define the objective

function for FCP(D(k)
, D̄(k)). Thus, any optimal solution B

(k+1) to FCP(D(k+1)
, D̄(k+1))

must also be optimal for FCP(D(k)
, D̄(k)) implying B(k+1) ✓ B(k).

To prove the inclusion is strict, consider the sets D(k) [ Q̄ and D̄(k). We can define a

function B
⇤(x,u) such that B⇤(x,u) = 1 for all (x,u) 2 D(k)[Q̄ and B

⇤(x,u) = 0 for all

(x,u) 2 D̄(k), i.e., B⇤ 2 B(k). However, then B
⇤(x̂, û) = 1 for all (x̂, û) 2 Q̄ and B

⇤(x,u)

has an infinite objective function value for FCP(D(k+1)
, D̄(k+1)). Thus, B⇤

/2 B(k+1).

Proposition 10 demonstrates that by iteratively increasing the amount of available

data using the oracle, we can sequentially contract the optimal solution set. Because

the sets are augmented with correctly labelled data (since the oracle is perfect), data

augmentation removes classifiers that are a looser approximation to the feasible set.

Intuitively, it allows the classifier to correct regions it had previously mislabelled as

feasible and reinforce regions it had correctly labelled so that it does not incorrectly

mislabel them in future iterations. Figure 5.3 shows an example of this behavior; the red

classifier is a tighter approximation of X (u) than the gray classifier due to the presence

of the additional points.

Recall from Theorem 7 that a trained generator satisfies a (�, ✏)-optimality bound

where � is a property of the classifier. Corollary 4 demonstrates that while � cannot
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be directly calculated, we can compute its upper bound which is dependent on the data

set of feasible decisions D. In IPMAN, by increasing the size of the data set after each

iteration, we ensure that this upper bound is non-increasing and the resulting optimality

gap decreases.

5.6 Generalization of optimality guarantees to un-

seen instances

The IPMAN framework iteratively trains a generative model to predict solutions to a

barrier optimization problem when given a context vector. In this section, we analyze the

potential for our approach, and any machine learning model used to generate solutions

to contextual constrained optimization problems, to predict (�, ✏)-optimal solutions when

given an out-of-sample context vector u. To this end, assume there exists a probabil-

ity distribution over context vectors Pu and that the data set of context vectors Û is

sampled i.i.d. according to Pu. We then use Rademacher complexity theory to obtain

a probabilistic bound on the empirical error from an out-of-sample input (Bartlett and

Mendelson, 2002).

Definition 2 (Bertsimas and Kallus (2020)). Let F ⇢ {F (u) : U ! Rn} be a function

class and Û ⇠ Pu be an i.i.d. data set. The empirical multivariate Rademacher complexity

of F is

R̂Nu(F , Û) = E�⇠p�

"
2

Nu
sup
F2F

NuX

i=1

�T
i
F (ûi)

����� Û = {ûi}Nu

i=1

#
,

where �i ⇠ p� is an n-dimensional vector of i.i.d. Rademacher variables. The multi-

variate Rademacher complexity of F is RNu(F) = EÛ⇠Pu

h
R̂Nu(F , Û)

i
.

In statistical learning theory, Rademacher complexities are used to generate risk

bounds that are dependent on the class of learning model that is used (F) and the

training data (Bartlett and Mendelson, 2002). Bertsimas and Kallus (2020) use the

theory to develop generalization bounds for predicting decisions to problems with a con-

ditional stochastic optimization objective; we extend their work by providing a proba-

bilistic bound on (�, ✏)-optimality when the feasible set is not fully specified. Typically,

models that can learn complex relationships will require a more complex model class.

The IPMAN algorithm is agnostic to the class of model used. However, if a specific

generalization bound is required, a model class F with a tightly bounded Rademacher
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complexity should be selected.

Remark 5. Although the literature mostly focuses on the single-variate Rademacher com-

plexity, Bertsimas and Kallus (2020) and Maurer (2016) prove bounds for linear multi-

variate classes (e.g., FR = {Wu | kWk  R}). In general, if F (u) = (F1(u), . . . , Fn(u)),

then F ⇢ ⇥n

`=1F`, where F` = {F (u)Te` | F 2 F} and e` is the `-th identity vector.

Then, R̂Nu(F , Û) 
P

n

`=1 R̂Nu(F`, Û) decomposes to a sum of single-variate complexi-

ties. We refer to Bartlett and Mendelson (2002) for bounds on linear and tree models

and Bartlett and Mendelson (2002); Neyshabur et al. (2015) and Foster et al. (2018) for

neural networks.

Instead of using the product barrier composed of the classifier and the barrier for the

known constraints, we assume that the generator is trained using a �-barrier B�(x,u) for

some � > 0, i.e., by minimizing GBP(Û , B�,�). Note that since we are using a fixed data

set Û , there is no guarantee that F (u) will be feasible or even satisfy B�(F (u),u) > 0

for an arbitrary u. Because P is available, however, we can always project any gener-

ated solution to the polyhedron to ensure that the generator predicts decisions that are

bounded.

Assumption 2. Consider a �-barrier B�(x,u) and generator F (u) trained via the Gen-

erative Barrier Problem GBP(Û , B�,�). We use the projected generator

F
⇤(u) = argmin

x
{kx� F (u)k | x 2 P}

at test time.

Our generalization bound follows from Bertsimas and Kallus (2020). While they de-

rive an empirical risk bound on an unconstrained stochastic optimization problem, we

focus on (�, ✏)-optimality for a constrained continuous optimization problem (see Ap-

pendix C.2 for proof).

Theorem 8. Let F ⇤ satisfy Assumption 2, K and L1 be su�ciently large positive con-

stants, and fix � 2 (0, 1). Then, for any � > 0, the following inequality holds

Pu

n
c
T
F

⇤(u)� ✏� � < c
T
x
⇤(u) < c

T
F

⇤(u) + � + �

o

� 1�

1

Nu

NuX

i=1

��cTF ⇤(ûi)� c
T
x
�(ûi)

��+K

s
log(1/�)

2Nu
+
p
2nL1RNu(F)

�
,

with probability at least 1� � with respect to the sampling of Û ⇠ Pu.
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Theorem 8 bounds the (�, ✏)-optimality of a random context vector. It specifies, given

a � and F
⇤, the probability that the model will predict a (� + �/L, ✏ + �)-optimal solu-

tion for an out-of-sample context vector uNu+1 ⇠ Pu. The first term (
P

Nu

i=1 |cTF ⇤(ûi)�
c
T
x
�(ûi)|)/Nu, is the empirical error associated with solvingGBP(Û , B�,�) versusBP(ûi)

for all ûi 2 Û . It e↵ectively measures how well the model performs on in-sample data.

The second term is dependent on the constants K and 1/� and scales with O(1/Nu).

Thus, as the size of the data set increases, the smaller this term becomes. The third term

is dependent the Rademacher complexity of F . The greater the representative capacity of

the learning model the larger its Rademacher complexity. The summation of these terms

is a prediction bound on the optimality of unseen instances and holds with probability

at least 1 � �. Thus, in order to obtain a tight and useful bound, we must balance the

trade-o↵ between a model class with high complexity versus obtaining a model with low

empirical error.

5.7 Optimal dose generation for radiation therapy

treatment planning

We implement IPMAN to predict optimal dose distributions for patients with head-and-

neck cancer. Unlike previous machine learning dose generation techniques, we recast the

task of predicting a clinically acceptable dose distribution to constructing an optimal

dose distribution for a given patient. The selection of clinical criteria to satisfy for a

patient is modeled as a latent choice constraint dependent on the CT image, which is

both specific to a patient and the institution providing care. Specifically, a given dose is

feasible if it satisfies the same set of criteria that the oncologist prescribed for the patient.

By treating dose generation as an optimization problem, we set an objective to min-

imize the average dose to OARs. That is, every dose generated will seek to minimize

the radiation to the healthy tissue. Note that this implies for dose generation that we

employ a single objective for all patients. While the later stages of automated planning

may involve multiple objectives, using a single objective at the dose generation stage

allows us to form a standard notion of treatment optimality from the perspective of an

oncologist. We show in our comparisons with benchmark prediction models that treat-

ment plans generated from IPMAN both (i) capture the same clinical trade-o↵s that

oncologists would prescribe after evaluation, and (ii) deliver the same or lower dose on

average to healthy tissue. We further show that IPMAN has the ability of adapting to

learning institution-specific criteria without training on an institution-specific data set of
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delivered plans. In particular, we use the oracle to learn a constraint that was not present

in the original data to demonstrate how IPMAN can be deployed at cancer centers with

di↵erent clinical criteria.

5.7.1 Data and model

We use our clinical data set of 217 treatment plans, randomly split into 100, 67, and 50

plans for training, validation, and held-out testing, respectively (see Chapter 2 for details

on the data). Each patient contains up to four OARs and three tumor volumes, referred

to as planning target volumes (PTVs), that have been contoured and labelled.

Remark 6. The experiments in this chapter only model the larynx, mandible, left parotid,

and right parotid rather than all seven OARs as in the previous chapters. This simpler

model facilitates computation and the clinical criteria for these three regions are nearly

always satisfied for 100% of patients (e.g., see Table 3.3). Further details are available

in Appendix C.

Let O and T index the OARs and PTVs, respectively, and let R := O [ T index

all structures of interest. For each structure, let Vr index the corresponding voxel set

(elements of x and u). Let zr denote the average dose delivered to structure r and z 2 R7

denote the vector of zr. To illustrate the IPMAN methodology, we formulate an RT opti-

mization problem that minimizes the sum of average doses delivered to the OARs subject

to satisfying the relevant clinical criteria and known polyhedral constraints (see Babier

et al., 2018b). This model closely approximates the traditional weighted optimization

models that are used as a surrogate to the treatment planning problem. Although the

objective is simplified for the sake of computational e�ciency, the constraints are repre-

sentative of the realistic clinical problem, which is the focus of our methodology (more

discussion on model choice is given in Appendix C.3.1). The clinical criteria for each

OAR is an upper bound on either the mean zo or maximum dose delivered z
max
o

, while

the criteria for each PTV is a lower bound on the minimum dose delivered to the 90-

th percentile z
90
t

(z90 2 R3) of the target structure, a Value-at-Risk (VaR) metric. We

formulate each of the clinical criteria as a hidden bound ẑr(u) dependent on the patient

geometry and oncologist choice. The optimization problem is summarized below:

RT(u) : minimize
x,z,zmax,z90

1

|O|
X

o2O

zo (5.14a)

subject to zr =
1

|Vr|
X

v2Vr

xv 8r 2 R (5.14b)
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z
max
o
� xv 8o 2 O, v 2 Vo (5.14c)

z
90
t

= VaR90

�
{xv | v 2 Vt}

�
8t 2 T (5.14d)

z
r
 zr  zr 8r 2 R (5.14e)

zo  ẑo(u) 8o 2 {Right Parotid, Left Parotid, Larynx} (5.14f)

z
max
0  ẑo(u) 8o 2 {Mandible} (5.14g)

z
90
t
� ẑt(u) 8t 2 T . (5.14h)

Constraints (5.14b)–(5.14d) define the dose summary statistics of the mean, maxi-

mum, and VaR. In (5.14e), we mandate a fixed set of polyhedral constraints on z obtained

by calculating the maximum and minimum mean doses over all patients in the ground

truth data set; this constitutes the polyhedral relaxation P . Finally, (5.14f)–(5.14h) de-

fine the hidden patient-specific constraints, i.e., the clinical criteria that must be learned.

Whereas (5.14f) and (5.14g) ensure that the dose delivered to each OAR is below a thresh-

old, (5.14h) ensures that PTVs receive a su�ciently high dose of radiation. Because it is

not often possible to simultaneously satisfy all clinical criteria, these hidden constraints

are conditional. If the ground truth plan from the data set satisfied a hidden constraint

(i.e., an oncologist deemed it necessary), we require that a generated plan must satisfy

it as well. In other words for any patient ûi in our clinical data set,

ẑr(ûi) =

8
>>><

>>>:

ẑr if the ground truth dose for ûi satisfies the bound in Table 5.1

+1 otherwise for r 2 O

0 otherwise for r 2 T

.

The hidden nature of these constraints arises from the fact that a planner does not

know a priori if the constraint is needed. Note that the VaR criteria for each PTV is a

non-convex constraint and thus, the model would be di�cult to solve even if the hidden

constraints were known. The values for the bounds ẑr are given in Table 5.1 (column 2).

5.7.2 Methods

We use two benchmark models to analyze the quality of the predictions produced by

IPMAN: a 3-D U-net convolutional neural network (CNN) (Kearney et al., 2018; Nguyen

et al., 2019), and a 3-D generative adversarial network (GAN) (Babier et al., 2020a). Nguyen

et al. (2019) implement a CNN that predicts dose distributions from 3-D CT images and

show its e↵ectiveness in the prediction stage of automated planning. The CNN is trained



Chapter 5. Learning to optimize with hidden constraints 85

via supervised learning by minimizing an l2 norm of predicted doses from a ground truth

clinical data set. The conditional GAN is a 3-D extension of the one introduced in Chap-

ter 4. This network predicts dose distributions from 3-D CT images in one shot, whereas

the GAN in Chapter 4 predicted 2-D slices individually before concatenation.

Remark 7. The 3-D CNN of Nguyen et al. (2019) is an extension of the original 2-D

U-net CNN of Nguyen et al. (2017) which we used as a baseline in Chapter 4. The 3-

D GAN is a more powerful variant of the 3-D GANCER-sc. model that was proposed

by Babier et al. (2020a) and used as a dose prediction in Chapter 3.

As the generator and classifier in IPMAN play similar roles to the generator and

discriminator in a GAN, we use a slightly modified architecture from Babier et al. (2020a)

(c.f. Chapter 4) to create F (u) and B(x,u) (details are provided in Appendix C.3.2).

Specifically for the experiments in Section 5.7.3, we include an l1 regularization term

kF (u)� uk1 to the loss function of GBP(Û , B,�j), which is commonly used for model

stability in Style Transfer GANs (e.g., Isola et al., 2017). All models are trained using

the Adam optimizer with (�1, �2) = (0.5, 0.999). We train the classifier with a learning

rate of 1 ⇥ 10�3 and the generator with a learning rate of 2 ⇥ 10�5. Initially, the data

set of feasible decisions D = {(ûi, x̂i)}Nu
i=1 consists solely of the 100 clinical plans used

in training, the data set of parameters Û = {ûi}Nu
i=1 contains their corresponding patient

CT images, and the data set of infeasible decisions is empty (i.e., D̄ = ;).

Using the training set of patients, we train the generator and classifier iteratively

with IPMAN. At the end of each iteration, we evaluate the predictions made by the

generator on the validation set of patients. After 11 iterations, constraint satisfaction on

the validation set stabilizes and we use the held-out test set to assess performance.

We train four generative models corresponding to � 2 {256, 64, 16, 4}. In each itera-

tion, the generator predicts solutions to the corresponding barrier problem, meaning that

training over a range of � ensures that in every iteration, the oracle labels and augments

the data sets with predictions lying in a diverse set of areas in and around the feasible

set. Similarly, we train each baseline model for 200 epochs (approximately 24 hours).

This is roughly the same duration of time required to train 11 iterations of IPMAN,

thus maintaining a fair comparison. The data generation, implementation, and training

details are provided in Appendix C.3.3. Below, we highlight the initialization steps and

refinements to the IPMAN algorithm made for our computational experiments.
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Pre-training to initial feasible decisions.

Classical IPMs generally require an initial point x(0) that is strictly feasible. Analogously

in IPMAN, ensuring that F (u) is initialized at a stage where it usually predicts feasible

decisions implies that the training loss is not extremely high at early stages and helps to

stabilize training. Thus, before starting the IPMAN algorithm, we pre-train F (u) as the

generator in a GAN and save the weights.

Generating an initial D̄.

Before training the classifier in the first iteration of IPMAN, we require an initial data

set of infeasible decisions D̄. During the pre-training stage, the generator of the GAN

creates a set of candidate decisions. We label the generated decisions and assign them to

the appropriate sets D and D̄ in order to initialize IPMAN with an augmented data set.

Learning multi-label feasibility.

A feasible dose distribution must satisfy multiple polyhedral and hidden constraints cor-

responding to di↵erent PTVs and OARs. Learning to classify a decision as feasible is

challenging due to the granularity of constraint satisfaction and the variety of constraints

that are present. Consequently, we separate the classification problem into one for each

of the four OARs and three PTVs of the patient. That is, for each structure of in-

terest, we train a separate classifier. The �-barrier optimization problem is then the

sum of the di↵erent classifier outputs; this is equivalent to the classical barrier prob-

lem. That is, let Br(x,u) be a classifier for r 2 R that assesses whether the polyhedral

and hidden constraints for that structure are satisfied. Then, the barrier problem is

minx{cTx� �
P

r2R Br(x,u)}.

5.7.3 Learning to predict optimal dose distributions

We use a slightly modified version of the clinical satisfaction criterio introduced in Chap-

ter 2 for our evaluation (see column 2 of Table 5.1). As the relevancy of criteria (i.e.,

feasibility) for each patient is determined by an oncologist, we evaluate generated doses

on whether they satisfy the same set of criteria as the the ground truth, just as in Chap-

ter 3. For numerical stability, satisfaction is defined as meeting the dose bound to within

a 1 Gy relaxation. In the clinical literature, dose predictions are commonly evaluated

on a voxel-level to within 3% of the maximum prescribed dose, i.e., 2.1 Gy for our prob-

lem (Low et al., 1998). In our analysis, we consider constraints rather than direct voxels
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(a) Objective function and fraction of feasible plans with respect to the hidden and polyhedral constraints.
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(b) Average di↵erence from the hidden constraint bound ẑr(u). The dashed line is 0 Gy. Above 0 suggests

plans satisfy the constraints on average.

Figure 5.4: Statistics on the validation set obtained during training on criteria from our
institution.

and tighten the tolerance to 1 Gy. The relaxation can also be interpreted as the � for a

�-barrier; if all decisions satisfy a given constraint, the the corresponding classifier is a

�-barrier with � = 1 Gy.

Figure 5.4(a) displays the average objective function value and the fraction of plans

that satisfy the hidden and polyhedral constraints over training iterations. We find that

in training, the objective function value improves as a function of the number of iterations,

while hidden constraint satisfaction also increases. For example, in the first iteration,

89% of predictions in the validation set satisfy all of their hidden constraints, whereas

this fraction increases to 97% by iteration 11. Polyhedral constraint satisfaction also

increases from 88% to 95%. This suggests that the IPMAN algorithm trains the model

to generate fewer infeasible doses. In other words, the classifier is learning to produce a

tighter characterization of the feasible set (see Proposition 10).

Figure 5.4(b) shows the average di↵erence from the boundary of the hidden constraint

for each structure. If the di↵erence is positive, doses on average satisfy the hidden criteria.
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Table 5.1: The percentage of predicted decisions on the held-out test set that satisfy
each hidden constraint to 1 Gy relaxation. The best performing models on the summary
statistics are highlighted.

Structure Criteria (Gy) Baselines IPMAN (�)

GAN CNN 256 64 16 4

Right Parotid zo  26 85.7 85.7 86.2 90.0 93.3 100
Left Parotid zo  26 70.0 60.0 70.0 90.0 90.0 100
Larynx zo  45 93.3 83.3 89.7 89.7 93.3 100
Mandible z

max
o
 73.5 100 100 100 100 100 100

PTV70 z
90
t
� 70 97.6 97.6 97.6 97.6 95.2 92.8

PTV63 z
90
t
� 63 96.3 96.3 96.3 96.3 96.3 96.3

PTV56 z
90
t
� 56 100 100 100 100 100 100

All hidden constraints 86.0 78.0 82.0 88.0 88.0 94.0

All polyhedral constraints 92.0 90.0 94.0 92.0 90.0 94.0

Objective function value 40.3 41.0 41.0 41.0 40.0 37.8

We observe two important phenomena. First, the four leftmost plots are associated

with OAR constraints. By minimizing the objective, the associated OAR constraints

see progressively better adherence as expected. Note that the Mandible and PTV70

structures often overlap, meaning their constraints conflict with each other, preventing

improvement for this organ. Second, the PTV constraints show small but sustained

improvement as the number of training iterations increase. This is because they are

solely associated with feasibility and are not part of the objective function. In particular,

the PTV70 constraint is typically the hardest to satisfy in practice; IPMAN learns this

di�culty and makes predictions that lie close to the boundary of the feasible set.

Table 5.1 shows performance on the held-out test set for IPMAN at iteration 11

against the baseline models. In general, IPMAN models with �  64 satisfy the hidden

constraints better than the baselines. IPMAN with � = 4 dominates all other models,

including the baselines, in hidden and polyhedral constraint satisfaction, as well as objec-

tive function value. That is, this model predicts dose distributions that deliver lower dose

to healthy tissue while better satisfying the clinical criteria. We conclude that training

via IPMAN yields prediction models that produce feasible decisions more often and with

a lower objective function value than existing state-of-the-art methods. We also observe

that with higher values of �, constraint satisfaction comes with a price; the objective

function value is higher.

Recall that optimal solutions to the barrier problem satisfy a (�, ✏)-optimality guar-
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antee. At high �, this translates to a non-trivial upper bound with respect to the optimal

value of the true problem, while at low �, the guarantee translates to a non-trivial lower

bound (see Theorem 6 and also Appendix C.1). Because the generator learns via empir-

ical risk minimization of the barrier problem, the corresponding predictions should also

satisfy similar upper and lower bounds (see Theorem 7 and 8). While we may conse-

quently expect setting a low � to yield predictions that are infeasible (i.e., satisfying a

non-trivial lower bound with respect to the optimal value), we find that � = 4 yields the

best performance on out-of-sample data. In the next experiment, where the data is not

perfectly indicative of the constraints, we observe the benefits of using a higher � value

to predict decisions that are more likely to be feasible.

5.7.4 Adapting to the clinical constraints of a new institution

The previous experiments were constructed using the clinical criteria from one institution

under which the ground truth plans were developed. However, di↵erent clinics often use

di↵erent criteria (Wu et al., 2017). Further, small clinics may have limited patient volume

which may not be su�cient to properly train institution-specific models using existing

methods (Boutilier et al., 2016). In this experiment, we show how IPMAN can be trained

using the original data set to learn to predict feasible and optimal treatments for new

clinical constraints.

We use clinical criteria obtained from Geretschläger et al. (2015) who pursue a more

aggressive treatment policy for head-and-neck cancer. They prescribe tumors to receive

72 Gy, 66 Gy, and 54 Gy to their three target sites, respectively, which we re-label in

our data sets as PTV72, PTV66, and PTV54. Note that relative to the previous criteria

in Section 5.7.3, two of the criteria have become stricter while the third is now easier to

satisfy. Although we do not know the exact preferences of oncologists in determining when

a criteria is necessary, we assume that any patient in our data set who was prescribed

dose that satisfied the PTV hidden lower bound constraint from our institution would

be prescribed dose at the corresponding new level at this new institution.

We train the generator and classifier using IPMAN for 11 iterations using the same

settings as the previous section with one di↵erence: we omit the l1 regularization term.

While regularization can be useful to ensure that predictions are not vastly di↵erent from

clinical data (see Appendix C.3.3 for details), in this experiment, the clinical doses tend

to be infeasible under the new criteria because they were generated using criteria from

the original institution. For example, no plans in our data set received more than 72

Gy of dose to PTV70. Including the l1 term would, therefore, inappropriately guide the
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(a) Objective function and fraction of feasible plans with respect to the hidden and polyhedral constraints.
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(b) Average di↵erence from the hidden constraint bound ẑr(u). The dashed line is 0 Gy. Above 0 suggests
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Figure 5.5: Statistics on the validation set obtained during training on criteria
from Geretschläger et al. (2015).

model to generate doses that tried to match the old criteria, rather than learn the new

criteria.

Figure 5.5(a) displays the objective function value and the fraction of plans that

satisfied the hidden and polyhedral constraints. The models trained for �  16 decrease

in objective function value and constraint satisfaction as the algorithm progresses. In the

early stages, the classifier (which is initially trained mainly using the clinical data and

doses sampled from the same distribution) has not yet observed a su�cient and diverse

number of feasible plans. Therefore, the classifier is not yet a su�cient �-barrier, allowing

the generator to leave the feasible set.

Generally at high �, optimal solutions to the barrier problem are less aggressive in

terms of minimizing the objective and instead lie well in the interior of the feasible

set (see Appendix C.1). As the classifier improves, particularly after iteration 6, the

generative models for � � 64 quickly learn to predict solutions that are more likely to

satisfy the hidden constraints. In particular, the distance from the PTV72 boundary in
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Table 5.2: The percentage of predicted decisions on the held-out test set that satisfy each
hidden constraint of Geretschläger et al. (2015) to 1 Gy relaxation. The best performing
models on the summary statistics are highlighted.

Structure Criteria (Gy) Baseline IPMAN (�)

GAN 256 64 16 4

Right Parotid zo  26 83.3 85.7 85.7 100 100
Left Parotid zo  26 70.0 50.0 60.0 100 100
Larynx zo  45 93.3 86.7 76.8 100 100
Mandible z

max
o
 73.5 100 81.0 90.5 100 100

PTV72 z
90
t
� 72 7.31 95.2 95.2 14.3 0

PTV66 z
90
t
� 66 77.8 96.3 96.3 85.2 0

PTV54 z
90
t
� 54 100 100 100 96.0 0

All hidden constraints 18.3 64.0 66.0 26.0 0

All polyhedral constraints 93.8 94.0 90.0 88.0 0

Objective function value 40.3 42.3 42.3 34.3 10.0

Figure 5.5(b) begins to increase from the 6th iteration and passes 0 (i.e., satisfy the hidden

constraint) by the 10th iteration. This result demonstrates that our model is learning

a new constraint, the PTV72 hidden criteria, which cannot be learned by naively using

the training data. Recall that no clinical dose in the original data set reached 72 Gy on

the PTV70. Thus, learning the PTV72 constraint is entirely attributable to the IPMAN

procedure.

Table 5.2 shows the performance on the held-out test set for the generator at iteration

11. The baseline for comparison is the previous GAN which was trained on data from the

original institution. Since no new data exists, the GAN cannot be re-trained to recognize

the updated clinical criteria. As a result, few plans (18.3%) produced by the GAN satisfy

the hidden constraints with only 77.8% and 7.31% of the PTV66 and PTV72 criteria being

satisfied, respectively. In contrast, IPMAN is able to learn the new hidden constraints.

Overall, hidden constraint satisfaction is 64.0% with 96.3% and 95.2% of plans satisfy

the PTV66 and PTV72, constraints, respectively with � = 256 or 64. Nevertheless, as a

result of learning higher doses to the PTVs, constraint satisfaction on the OARs slightly

degrades, which is noted in the slightly higher objective function values.
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5.8 Conclusion

Conventional optimization techniques generally require well-structured problem formu-

lations and make limited account of auxiliary data present in problems where di↵erent

instances must be regularly solved. We propose Interior Point Methods with Adversarial

Networks, a learning-based approach for generating solutions to optimization problems

whose feasible sets are determined by instance-specific auxiliary information. We develop

an unconstrained barrier problem where the barrier is replaced by a classifier trained on

historical instances to predict feasibility. Because a classifier is not perfectly accurate,

we extend the theory of interior point methods to the setting where only a relaxation of

the feasible set is known and develop a corresponding optimality guarantee. Our main

algorithm iteratively trains the classifier as well as a generative model via empirical risk

minimization of the barrier problem. We demonstrate that the classifier learns to better

approximate an e↵ective barrier and the generative model learns to predict solutions with

an optimality guarantee for both in-sample and out-of-sample instances. Ultimately, we

obtain a deep learning model that can predict optimal solutions to problems in a frac-

tion of the time that it would take a conventional optimization solver. Furthermore, our

predictions account for instance-specific variations in the feasible set that conventional

optimization would fail to permit.

To illustrate the application of our algorithm, we use it to predict dose distribu-

tions for radiation therapy as part of an automated planning pipeline. We find that our

method learns to predict doses that better satisfy hidden clinical constraints and mini-

mize objective function values as compared to state-of-the-art baseline learning methods.

Furthermore, we show that our approach is adaptable in learning clinical criteria that

are di↵erent from those that were used to generate the ground truth doses. This result

suggests that an institution without a su�cient data set for training a dose prediction

model could apply our methodology using data from another clinic; our approach would

learn to produce appropriate doses tailored to the unique clinical criteria of the new in-

stitution while ensuring all solutions are certifiably optimal. As the global demand for

radiation therapy grows and new clinics open in rural and developing areas, such adapt-

able automated planning methodologies have the potential to close the supply-demand

gap in treatment planning capacity.



Chapter 6

Sampling from the complement of a

polyhedron

High-dimensional sampling is a fundamental tool in machine learning (Andrieu et al.,

2003), optimization (Bertsimas and Vempala, 2004), and stochastic modeling (Ripley,

2009). Sampling from a high-dimensional set is a key component of approximation algo-

rithms for problems that cannot be tractably solved with conventional methods.

The literature on high-dimensional sampling primarily addresses the problem of ef-

ficiently sampling points that lie within a convex set, with the family of Markov Chain

Monte Carlo (MCMC) sampling methods being the most commonly used approach in

this setting (Brooks et al., 2011). Recent applications in ranking have also generated

interest in the related problem of sampling from the boundary of convex sets (Dieker

and Vempala, 2015). However, to the best of our knowledge, there has not been prior

work on sampling from the complement of a convex set.

In this chapter, we consider the task of e�ciently sampling from sets defined by

the complement of a polyhedron for which there exist many potential applications. For

example, the complement operator can be used to represent disjunctions, which when

combined with conjunctions, can describe arbitrary sets. Moreover, both disjunctive sets

and MCMC sampling are common tools in mixed-integer programming (Balas, 1979;

Huang and Mehrotra, 2013). Additional applications exist in data-driven optimization,

where historical decision data can inform the construction of optimization models. For

example in data-driven robust optimization, an uncertainty set around the parameters

of a constraint is created by analyzing prior instances (Bertsimas et al., 2015).

This chapter is motivated by the problem of procuring an initial infeasible data set in

Chapter 5. There, our goal was to construct a barrier function for use in an interior point

method where we do not know the true feasible set, but are instead given a relaxation

93
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and a data set of feasible decisions. We constructed a binary classifier that predicts

whether a decision is feasible or not. In this chapter, we introduce a data augmentation

procedure to help the training of such a classifier. By sampling from a known subset

of the infeasible region, i.e., the complement of the relaxation, we augment our feasible

data set with unimplemented decisions.

While the complement of a polyhedron is a non-convex set and therefore di�cult for

conventional sampling techniques, our key methodological contribution is to propose an

e�cient MCMC algorithm based on sampling from the boundary of convex sets. We

prove this algorithm covers the entire complement and that it is su�cient to train a

binary classifier that learns to distinguish between feasible and infeasible points. We

perform numerical experiments over a set of optimization problems with a hidden fea-

sible set and a polyhedral relaxation. For each problem, we use a prior set of feasible

decisions and a sampled set of infeasible decisions to train a classifier. We compare our

approach with unsupervised density estimation baselines that do not use infeasible deci-

sion data and show that our approach is essential for creating classifiers that (i) perform

well when a tight separating boundary between feasible and infeasible regions is required;

and (ii) when the data set of feasible decisions is small. Our experiments over linearized

relaxations of MIPLIB (miplib2017) demonstrate that our sampling-based classifier sig-

nificantly outperforms all baseline models. Code for our experiments are available at

https://github.com/rafidrm/mcmc-complement.

Although our focus is on polyhedra, our approach can be adapted to non-linear sets

similar to how sampling from the boundary of a polyhedron generalizes to the boundary

of arbitrary convex sets. In Appendix D, we explore how to sample from the complement

of an ellipsoid and prove that our algorithm also covers the complement in this setting.

As a result, we demonstrate that our MCMC algorithm has more general applicability,

and can be applied to, for instance, problems in robust optimization which commonly

involve ellipsoidal uncertainty sets (Bertsimas et al., 2011).

6.1 Background

Consider a polyhedron P := {x 2 Rn | aT
m
x  bm, 1  m  M}. There exist several

algorithms for sampling from the interior int(P), with the most well-known being the

Hit-and-Run (HR) algorithm (Smith, 1984). Similarly, the Shake-and-Bake (SB) algo-

rithm is the most well-known approach to sampling from the boundary bd(P) (Boender

et al., 1991). These algorithms fall under the family of MCMC techniques which operate

by constructing a sequence of points governed by a proposal function. The sequence
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describes a Markov chain whose stationary distribution reflects the desired properties

encoded by the proposal function (e.g., HR and SB converge to uniform distributions

supported over int(P) and bd(P), respectively). Our MCMC approach for sampling

from Rn \ P is based on the SB algorithm.

SB operates on principles of stochastic billiards; intuitively, a ball bounces from each

facet of the polyhedron to other facets with the points of contact being the generated

points. The algorithm is as follows: assume an initial point w0 2 bd(P) that lies on a

single facet. That is, there is a unique m for which a
T
m
w0 = bm and a

T
m0w0 < bm0 for all

m
0 6= m. At every iteration of SB, given a boundary point x lying on the m-th facet,

sample a feasible direction vector r 2 Rm := {r | aT
m
r  0, krk = 1} according to some

direction probability distribution pr(r|w). Then, calculate the nearest boundary point

w
0 2 bd(P) from w in the direction of r. This new point is selected as the next point in

the Markov chain according to move probability pw0(w0|w). If w0 is not selected, then

the Markov chain does not update and the iteration repeats. Let N be the total number

of iterations. In their seminal work on SB, Boender et al. (1991) proved that (i) the

algorithm ensures (almost surely) every point on the Markov chain {wj}Nj=1 lies on a

unique facet of P , and (ii) the Markov chain has a stationary uniform distribution over

bd(P).

There exist several variants of the SB algorithm that di↵er in their choices for the

direction and move probabilities (Boender et al., 1991). The two most common variants

are the Original SB and the Running SB. In the Original SB, the direction probability

is uniform over the half-space defined by the facet Rm. This leads to a move probability

proportional to the angles of incidence. On the other hand, for the Running SB, the

direction probability is chosen such that the algorithm moves in every iteration, i.e.,

pw0(w0|w) = 1 for all w0
,w 2 bd(P). In this work, we consider the Original SB algorithm

due to its simplicity in calculating the direction probabilities.

6.2 Sampling from the complement of a polyhedron

Assume that P is full-dimensional and non-empty. Given a polyhedron P , we generate

a sequence of N points D = {xi}Ni=1 such that D ⇢ Rn \ P . In each iteration of SB,

a direction vector is sampled and the next point on the boundary is found by moving

in the given direction from the current point. Notice, however, that moving in the

negative direction from the current point yields points that lie in the complement of the

polyhedron, i.e., x 2 Rn \ P .

In our algorithm, we treat SB as a Hidden Markov chain. In each iteration, the
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x0 x3

x1

x2

w0

w1

w2

w3

w4

Figure 6.1: A sample sequence of points generated from the Complement SB algorithm.
� and ⇤ are points on the boundary and infeasible points respectively.

Algorithm 2 Complement Shake-and-Bake

Require: Polyhedron P =
�
x
�� aT

m
x  bm,m = 1, . . . ,M

 
; Sampling distributions

pw(w0|w), pr(r|w), p⇠(⇠|r,w), Number of points N ; Initialization ŵi 2 bd(P), i = 1,
D = ;
for i = 1 to N do

Randomly sample ri ⇠ pr(r|wi) and ⇠i ⇠ p⇠(⇠|r,w).
Update data set D  D [ {wi � ⇠iri}.
Let ✓ 2 minm

n
bm�aT

mwi

aT
mr̂i

> 0
o
.

With probability pw(wi + ✓r|wi), update wi+1  wi + ✓ri and increase i  i + 1,
else wi+1 = wi.

end for

previous boundary point is the hidden state and the observed state in the complement,

x, is generated according to the random direction vector that is sampled. Assume that

the direction and move probabilities pr(r|w) and pw(w0|w) are such that {wi}Ni=1 is a

Markov chain of points on bd(P). If we sample a random scale variable ⇠ ⇠ p⇠(⇠|r,w)

according to some positive distribution function, then x = w � ⇠r 2 Rn \ P . Figure 6.1

shows a sample path of the chain {(wi,xi)}Ni=1 which includes the hidden states. A

detailed description of the MCMC algorithm is presented in Algorithm 2.

Our algorithm enjoys all of the computational benefits of the original SB algorithm

since we recycle the direction vectors r and only reverse the signs to ensure the generation

of infeasible points. Generating the scale variable ⇠ is the only additional computation.

We refer to Boender et al. (1991) for details on pr(r|w) and pw(w0|w). Any absolutely

continuous distribution p⇠(⇠) supported over (0,1) will su�ce. Given an appropriate
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choice of p⇠(⇠|r,w), we show that Algorithm 2 covers all of Rn \ P . That is, any mea-

surable region of Rn \ P has positive stationary probability.

Theorem 9. Let µn denote the n-dimensional Lebesgue measure on a set. If p⇠(⇠|r,w) >

0 for all ⇠ 2 (0,1) and r,w 2 Rn, then for any initial point w0 and any µn-measurable

subset A ⇢ Rn \ P,

lim
N!1

P
�
xN 2 A

�� w0

 
> 0. (6.1)

Proof. Without loss of generality, let r̃ = ⇠r and pr̃(r̃|w) = pr(r|w)p⇠(⇠|r,w). Let

pSB(w) denote the stationary distribution of the hidden state SB algorithm. Let A0 ⇢
Rn \ X denote a µn measurable set for which there exists m such that aT

m
x > bm for all

x 2 A0. We first prove (6.1) for all A0 with this specific structure and show that any

A ⇢ Rn \ X contains a subset A0 ⇢ A. Then, the probability for A0 is a lower bound,

i.e., P
�
xN 2 A | w0

 
� P

�
xN 2 A0 | w0

 
, completing the proof.

Consider a set A0 with the proposed structure. We will construct two measurable sets

W and R̃(w) such that

n
w � r̃

�� w 2W , r̃ 2 R̃(w)
o
✓ A0

.

Given their existence, we can bound

lim
N!1

P
�
xN 2 A0 �� w0

 
� lim

N!1

Z

W
P
�
wN � r̃N 2 A0��wN

 
pSB(wN)dwN

� lim
N!1

Z

W

Z

R̃(wN )

pr̃(r̃N |wN)pSB(wN)dr̃NdwN .

First, for some fixed ✏ > 0, let

W :=
�
w
�� aT

m
w = bm, a

T
m0w < bm0 � ✏, 8m0 6= m

 
.

Because X is closed and bounded with a non-empty interior, this set must exist for some

✏ > 0. Furthermore, from Boender et al. (1991, Lemma 2), there exists " > 0 for which

W has positive (n�1)-Lebesgue measure, i.e., µn�1(W) > 0, and thus, pSB(W) > 0. We

avoid degenerate m by assuming that X has no redundant constraints.

Next for any wN 2W , let

R̃(wN) :=
�
wN � x

�� x 2 A0 
.



Chapter 6. Sampling from the complement of a polyhedron 98

Because µn(A0) > 0 and R̃(wN) is a translation, µn(R̃(w)) > 0 must hold as well. It

remains to show that pr̃(r̃N |wN) = pr(rN |wN)p⇠(⇠N |rN ,wN) > 0 for all r̃ 2 R̃(wN).

Since a
T
m
(wN � x) < 0 for all x 2 A0, the normalized vector rN = (wN � x)/ kwN � xk

is a valid direction for the SB algorithm and pr(rN |wN) > 0. Furthermore by assump-

tion in the Theorem statement, p(⇠N |rN ,wN) > 0 for ⇠N = kwN � xk > 0. Therefore

pr̃(r̃N |wN) > 0.

We now extend the proof to any arbitrary set A ⇢ Rn \ X such that µn(A) > 0. Let

�({1, . . . ,M}) denote the power set, i.e., the set of all subsets of {1, . . . ,M}. Then, A
can be written as a union of a finite number of disjoint subsets:

A =
[

M✓�({1,...,M})

n
x 2 A

��� aT
m
x > bm, a

T
m0x  bm0 , 8m 2M, 8m0

/2M
o
.

Since A is measurable, at least one of the subsets is also measurable. Furthermore, each

of the subsets can be characterized in the form A0, i.e., all points violating a specific

constraint. Because the subsets are disjoint, the probability of A is exactly equal to the

sum of the probabilities of the individual subsets, and therefore is positive.

Theorem 9 extends the main result from Boender et al. (1991) which proves that

the SB algorithm generates a stationary distribution which covers the entire boundary

uniformly. Here, we show that the Complement SB algorithm generates a stationary

distribution which covers the entire complement region. We remark that Algorithm 2

specifically applies to polyhedral sets X and can be extended to convex sets defined

by non-linear constraints which are prominent in many constrained optimization ap-

plications. In particular, in Appendix D.1, we demonstrate that a modified version of

Algorithm 2 can be used to generate points in the complement of ellipsoidal and spherical

feasible sets, thereby extending the main result from McDonald (1989).

Theorem 9 is useful for learning to classify a hidden feasible set. Consider an opti-

mization problem over a feasible set X̂ that is not known a priori. Instead, we have a

data set of feasible decisions D̂ ⇠ P̂ drawn i.i.d. from a distribution supported over X̂ .

We also have a relaxation of the feasible set P . Using Algorithm 2, we can generate a

data set of infeasible decisions D ⇢ Rn \ P with steady state distribution P. With this

augmented data set of feasible and infeasible points, we then train a binary classifier

D(x) : Rn ! {0, 1} such that D(x) = 1 for all x 2 X̂ and D(x) = 0 for x 2 Rn \ X̂ .

Suppose that we minimize the Binary Cross Entropy loss (Goodfellow et al., 2016):

min
D

� Ex̂⇠P̂

h
logD(x̂)

i
� Ex⇠P

h
log
�
1�D(x)

�i
.
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Recall Lemma 2 (Chapter 5), which stated that for a binary classifier to provably predict

points with perfect accuracy, the data distributions of those points must have closed and

disjoint supports. We revise the prior result to this setting in order to demonstrate that

it is possible to construct a classifier that approximates the feasible set.

Proposition 1. Consider P̂ supported over a closed set X̂ . Let X be a closed polyhedron

such that X̂ ⇢ int(X ) and let P be the steady state distribution of the Markov chain

generated by Algorithm 2 over X . Then the optimal classifier D
⇤(x) satisfies D

⇤(x) = 1

for x 2 X̂ and D
⇤(x) = 0 for x 2 Rn \ X .

Proof. From Theorem 9, the steady state distribution satisfies P{A} > 0 for any measur-

able A 2 Rn \X . Thus, the steady state distribution is supported over the entire Rn \X .

Note that X̂ and Rn \ X are disjoint. From Lemma 2, the optimal classifier perfectly

separates the two supports.

Proposition 1 states that given training data (i.e., P̂ supported over a hidden set X̂ and

P supported over the complement of a polyhedron Rn \X that relaxes the hidden set), a

classifier can learn to perfectly distinguish from a hidden set and its polyhedral relaxation.

We remark that training via the Binary Cross Entropy loss function is not necessary and

nearly any loss function will su�ce. However, we seek to distinguish between X̂ and

Rn \ X̂ and the proposition is useful insofar as the relaxation X is relatively tight. In our

numerical experiments, we demonstrate that the classifier does indeed accurately learn

to identify points in X̂ as feasible and points in the unknown band X \ X̂ as infeasible.

When implementing Algorithm 2, the choice of distribution p⇠(⇠) will depend on the

application. In this work, we assume an Exponential distribution p⇠(⇠) = Exp(�) =

�e
��⇠. In practice when training a classifier D(x) to learn a hidden feasible set, we do

not have access to P and P̂ but rather data sets D and D̂. Given a limited data set, it

is important for the classifier to accurately learn the regions near the boundary bd(P)

because the band near the boundary P \ X̂ is the most challenging region to classify.

Note that it is still important to generate some points far from the boundary in order to

satisfy Proposition 1. Using an exponential distribution ensures that we generate points

with high density near the boundary and low density further away. Figure 6.2 shows

several stages of Algorithm 2 for di↵erent values of �.

6.3 Numerical analysis

We implement Algorithm 2 and the corresponding SB-based classifier to learn the hidden

feasible set X̂ . Given a data set of feasible decisions D̂ = {x̂i}Ni=1 ⇢ X̂ and a relaxation
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(a) � = 1

(b) � = 10

Figure 6.2: Sample of points generated using an Exponential distribution p⇠(⇠|r,w) =
Exp(�). The left and right plots show N = 50 and N = 500 samples, respectively.

P , we augment or data set by sampling infeasible decisions before training an SB-based

classifier to predict whether a decision is feasible or not with respect to X̂ .

Classical approaches towards constructing a classifier D(x) would not have a set

of infeasible points D and would thus be forced to use some form of unsupervised or

generative modeling. We implement two baseline models: a Gaussian Mixture Model

(GMM) and Kernel Density Estimation (KDE). Both are generative modeling techniques

that use D̂ to estimate a probability distribution over X̂ .
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In our first set of experiments, we consider a simulated fractional knapsack problem.

We use this example to investigate the relative tightness of the relaxation and show that

when the relaxation is a reasonable approximation of the hidden feasible set, our approach

dominates the baseline models. We then investigate the e↵ect that the size of the data set

(i.e., |D̂|) has on the ability to learn the feasible set and show that by sampling from the

infeasible region, our classifier achieves competitive performance with the unsupervised

baseline models while requiring an order-of-magnitude less feasible data. Finally, we

show that as the dimension of the problem increases, our approach still learns the hidden

feasible set while the baseline models collapse.

Finally, we conduct experiments on linearizations over a set of MIPLIB problems that

have less than 80 variables (miplib2017). Our SB-based classifier dominates the baseline

models in terms of accuracy and F1 score on nearly all instances, often by margins of 20%.

Furthermore, we show that for challenging instances with a large number of variables,

the baseline models once again completely collapse and either indiscriminately predict

all test points as infeasible or all points as feasible. In contrast, the SB-based classifier

still demonstrates learning even for these challenging problems.

6.3.1 Data and methods

Consider a hidden polyhedron X̂ = {x | Ax � b}. We first construct a relaxation

P = {x | Ax � b � d}, where dm ⇠ pd(d) is a random perturbation variable. In

order to ensure X̂ ⇢ P and that P is a relatively close approximation to X̂ , we use an

Exponential distribution pd(d) = Exp(�) with a scale parameter � proportional to the

polyhedral constraints, i.e.,

� = �0 max{kbk1 , ka1k1 , ka2k1 , . . . , kaMk1}, (6.2)

for a constant �0 > 0. This ensures that P is neither too tight nor too loose of a

relaxation. We refer to � as the degree of the relaxation.

For each instance, we use a HR sampler to generate feasible points D̂ = {x̂i}Ni=1 ⇢ X̂ .

Thus, P and D̂ constitute the available information used to learn X̂ . Using Algorithm 2,

we generate an “infeasible” data set D = {xi}Ni=1 ⇢ Rn \P and then train an o↵-the-shelf

Gradient Boosted Tree (GBT) to classify between D and D̂. We do not tune hyper-

parameters for our classifier finding that it outperforms the baseline models in most

cases.

We consider two generative baseline models that estimate a probability distribution

p̂(x) over D̂. That is, we define a threshold parameter t = minx̂2D̂ p̂(x̂) as the small-
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est probability such that the data set consists entirely of feasible decisions. Then, the

baseline classifier applies a threshold rule over the generative model, i.e., D(x) = 1[x 2
P ]1[p̂(x) � t]. The first term in the classifier simply checks if the decision lies within

the given relaxation P . Thus, it is an intuitive approach to use the knowledge of the

polyhedral relaxation. We implement two baseline models: a KDE and a GMM and

cross-validate over their respective hyper-parameters using D̂. As these models typically

do not scale e�ciently to higher dimensions (Theis et al., 2016), we consider the use of

Principal Component Analysis (PCA) to pre-process the training data and reduce the

dimensionality of the problem. As a result, we implement all models with and without

PCA for ablation.

In order to evaluate our approach, we generate an out-of-sample test set of feasible

points D̂0 ⇢ X̂ and infeasible decisions D0 ⇢ P \ X̂ . Both data sets are generated with

an HR sampler. When generating D0, we simply reject points in X̂ for the Markov chain.

Note that we do not sample points in Rn\P for testing as they would be trivially identified

as infeasible given our knowledge of P . Our final out-of-sample test set is D̂0 [D0.

6.3.2 A fractional knapsack problem

Consider a fractional knapsack problem with the following feasible set X̂ and polyhedral

relaxation P :

X̂ =

(
x

�����

nX

i=1

xi  5, xi � 0

)

P =

(
x

�����

nX

i=1

xi  5 + d0, xi � �di

)
.

We compare the SB-based supervised learning approach with the two generative baselines

in three di↵erent scenarios. We first analyze the degree of relaxation � to assess the

algorithms’ ability to learn under di↵erent relaxations. We then investigate how the

size of the data set (N) a↵ects the performance of the di↵erent algorithms. Finally,

we assess the ability of the SB-based classifier to learn in n-dimensional spaces. Each

experiment varies a single parameter while holding the others constant; we set �0 = 0.1

(i.e., � = 0.5), N = 200, n = 2, as the default settings. We fix � = 0.5 when generating

D using Algorithm 2. All results are averaged from 50 trials.

Unsupervised learning techniques that rely only on D̂ to learn an approximation of

the feasible set can mis-classify regions where there is no information. For example,

regions outside X̂ but close to D̂ may be mis-classified as feasible since a KDE and
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Figure 6.3: Mean accuracy of the models from increasing the degree of the relaxation �.

Figure 6.4: Mean accuracy of the models as we increase the training set size N .

GMM would show a gradual drop in density from the data. Generating points in Rn \ P
o↵ers a counter-balance to unsupervised techniques that incorrectly mis-classify infeasible

regions as feasible. This e↵ect is particularly prominent when the relaxation is tighter

as demonstrated in Figure 6.3 which plots the out-of-sample accuracy as a function of �.

The SB-based classifier yields out-of-sample accuracy of approximately 91% regardless

of the value of �. The unsupervised baselines, in contrast, show poor out-of-sample

accuracy when � is small and slowly increase in performance as � increases. Even at

the largest value, � = 2.75, the SB-based classifier still outperforms the baseline models.

Thus, unsupervised learning only becomes competitive once the given relaxed bound is

at least 50% larger than the true hidden bound.

The unsupervised learning baselines require significantly more data than our SB-based
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classifier. Figure 6.4 plots out-of-sample accuracy as a function of N . When N = 5, all

of the methods are equally poor and achieve approximately 63% out-of-sample accuracy.

However, by using generated infeasible data, the SB-based classifier converges to 93% out-

of-sample accuracy with N = 100. Note that the baseline models are non-monotone due

to the grid-search algorithm used to find the best hyper-parameters of KDE and GMM,

respectively. The optimal selection of these hyper-parameters change as we increase the

amount of data and thus, the baseline models require extensive tuning. Nonetheless,

even if we take the envelope of the KDE and GMM curves, we can still conclude that

our sampling approach is on average an order-of-magnitude more data-e�cient than the

unsupervised baselines at learning the feasible set.

As previously shown, the unsupervised learning baselines require large data sets. As

a result, in higher dimensions, these models assign small probabilities to regions where

there may not be su�cient data. Thus, the di↵erences in probabilities between regions

where there are a small number of points and where there are no points can become

negligible and it may appear as if these unsupervised learning models are applying nearly

uniform (small) density over large areas. To address this issue, we pre-process the data

that is used to train the baselines using PCA in order to reduce the dimension of the

problem. While for n  8, the baselines have better accuracy without PCA, reducing

the dimensionality proves e↵ective for n � 9. When n is low, using PCA leads to a loss

of information for the unsupervised baselines.

More specifically, we consider increasing number of variables in the knapsack n, while

holding N = 200. Because KDE and GMMs are known to perform poorly in high-

dimensions, we use PCA in conjunction with the baseline models and our SB-based

classifier to reduce the dimension by 25%. Figure 6.5 plots the accuracy, True Positive

Rate (TPR) or recall, False Positive Rate (FPR), and precision over increasing n. Overall,

the SB-based classifier (without PCA) strictly dominates all baselines on accuracy and

precision. Furthermore, our classifier maintains a relatively flat FPR (around 25%) that

scales slowly with the number of variables. All of the baselines converge to exactly 50%

accuracy on the out-of-sample data demonstrating that they are not capable of learning

the feasible set with the given amount of data. Note that for the baselines, TPR, FPR,

and precision all decrease as n increases. When TPR and FPR are both 0, as in the case

of the baselines with no PCA for n � 12, there are zero true and false positives and the

models predict all points as infeasible.
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(a) Mean accuracy vs n (b) Mean TPR (recall) vs n

(c) Mean FPR vs n (lower is better) (d) Mean precision vs n

Figure 6.5: Evaluating accuracy, TPR (recall), FPR, and precision of the di↵erent models
as we increase the number of variables in the knapsack n. All models are are pre-processed
using PCA to reduce the dimension by 25%.

6.3.3 Learning hidden feasible sets on MIPLIB instances

We next consider learning the feasible set of realistic benchmark problems, by draw-

ing all instances of optimization problems with less than 80 variables from the MI-

PLIB database (miplib2017). We ignore problems marked “infeasible,” those with more

than 5000 constraints (e.g., supportcase21i), and those with large optimal values (e.g.,

flugpl), noting that these instances typically have pathological feasible sets.

For each instance, we use the LP relaxation of the feasible set and convert it to

inequality form {x | Ax � b}. However, these problems may yet have pathological
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Table 6.1: Out-of-sample accuracy over instances of MIPLIB problems. We implement
all models with and without PCA (reducing dimension by 50%). The best performing
models per MIPLIB instance are highlighted.

Instance Without PCA With PCA

SB KDE GMM SB KDE GMM

ej 90.6 97.3 94.2 85.5 84.5 82.3
gen-ip002 90.0 58.3 58.9 64.1 61.1 61.7
gen-ip016 53.0 50.0 50.0 47.4 61.0 61.0
gen-ip021 93.6 54.9 59.0 78.2 54.1 52.3
gen-ip036 95.2 56.7 63.6 85.1 61.3 60.3
gen-ip054 89.0 60.6 65.5 67.4 53.6 51.1
gr4x6 79.9 53.0 55.2 67.1 61.3 56.8
markshare 4 0 94.9 59.8 55.0 76.9 61.1 54.5
markshare 5 0 86.7 61.0 64.1 65.1 63.2 61.3
neos5 85.6 50.0 50.0 84.1 51.2 51.7

Table 6.2: Out of sample TPR, precision, and F1-score over instances of MIPLIB
problems. We draw the best-performing version of each model with respect to PCA. The
best performing models in terms of F1-score are highlighted.

Instance TPR Precision F1-score

SB KDE GMM SB KDE GMM SB KDE GMM

ej 99.9 99.6 99.9 84.7 95.2 90.0 91.7 97.4 94.7
gen-ip002 93.5 98.0 96.5 90.5 57.0 57.5 92.0 72.1 72.1
gen-ip016 12.2 27.1 27.1 23.7 35.7 35.6 16.1 30.8 30.8
gen-ip021 98.2 9.74 18.0 90.7 70.0 99.9 94.3 17.1 42.6
gen-ip036 99.8 99.6 34.2 91.9 56.6 86.3 95.7 72.2 49.0
gen-ip054 87.4 21.4 32.0 90.3 99.3 97.8 88.8 35.2 48.2
gr4x6 88.6 99.8 94.4 79.6 57.4 55.7 83.9 72.9 70.1
markshare 4 0 97.7 99.3 10.2 92.9 56.7 100 95.2 72.2 18.5
markshare 5 0 92.4 99.8 28.3 85.7 58.2 90.0 88.9 73.5 43.1
neos5 94.9 96.9 100 81.8 51.6 51.0 87.9 67.3 67.5

low-dimensional shapes. Consequently, we relax the right-hand-side terms by � to obtain

X̂ = {x | Ax � b � �1}. We set � as in (6.2), with �0 = 1. We then construct hidden

feasible sets P = {x | Ax � b � �1 � d} where dm ⇠ pd(d) = Exp(�) with the same

� as before. In each experiment, we generate training sets of N = 4000 feasible points

D̂ ⇢ X̂ and infeasible points D ⇢ Rn \ P . When generating D, we use Algorithm 2 and

fix p⇠(⇠) = Exp(1) for all instances. All results are averaged over 40 trials.

Table 6.1 shows the accuracy of each model on out-of-sample test sets with and
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without the use of PCA (reducing the dimension by 50%). The best performing model

for each MIPLIB instance is highlighted. The SB-based classifier outperforms all other

models in nearly every instance and is often over 10% better than the best baseline

model. Furthermore, the SB-based classifier performs better without the use of PCA.

This is because X̂ possesses structure (i.e., linear constraints) that is useful for learning.

Reducing the dimensionality of the problem through the application of PCA may result

in a loss of important information for training. However, PCA is useful for the baselines

and improves the performance of the KDE baseline on 10 instances. The GMM baseline

sees a similar improvement for 7 instances.

For many instances, the baseline models achieve an accuracy level that is near 50%.

Thus, we explore secondary metrics in order to understand the nature of these errors.

Table 6.2 shows the out-of-sample TPR, precision, and F1-score of the best performing

SB-based classifier, KDE, and GMM, respectively. For the majority of the instances, the

KDE baseline observes a TPR greater than 95% and precision less than 60% suggesting

that the number of false negatives is relatively small but the number of false positives

is approximately equal to the number of true positives. That is, the KDE baseline

predicts nearly every test point to be feasible. We observe the opposite behavior for the

GMM baseline in that TPR is small but precision is greater than 90%. That is, the GMM

baseline predicts nearly every test point to be infeasible. Note that the SB-based classifier

does not display these biases as can be observed by the F1-score (which combines TPR

and precision). Here, our classifier consistently dominates both of the baseline models.

6.4 Conclusion

We propose an MCMC method for sampling points in the complement of a polyhedron.

We prove that our algorithm will eventually sample all points in the complement and

demonstrate an application of our approach in a machine learning problem, i.e., augment-

ing data when learning a hidden feasible set using data from past implemented decisions.

In a series of numerical experiments, we show that our method is more data-e�cient and

e↵ectively scales to high dimensions as compared to the baseline models. We also show

that it is more adept at learning to classify feasibility when the separating boundary is

tight, as is a requirement in many optimization problems.

A potential extension of this work lies in sampling from the complement of sets that

are prominent in other areas of constrained optimization. To this end, in the Appendix,

we demonstrate that the Complement SB algorithm can be used to sample points from

the complement of ellipsoidal and spherical feasible sets. However, these results require
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several technical extensions. In future work, we hope to generalize our results and prove

that the Complement SB algorithm generates a stationary distribution which covers the

entire complement region for any arbitrary convex set.



Chapter 7

Conclusion

In this thesis, we construct personalized optimization models by by incorporating ma-

chine learning from data sets of past decisions. The methodological problem of learning

to formulate optimization models can be decomposed along two dimensions: (i) what

components of an optimization model to learn, and (ii) how to represent these learned

components. This thesis addresses several configurations of these two questions:

• We estimate a parametric linear cost vector for an optimization model using an

inverse optimization with an ensemble of decisions. We develop a framework that

unifies prior techniques and admits assumption-free exact solution methods. To

complement our framework, we develop a goodness-of-fit metric that provides in-

sight into the quality of the imputed model.

• We explore optimization over contextual feasible sets that must be estimated from

data. We develop a non-parametric model for such feasible sets and predict opti-

mal decisions over these learned feasible sets. Our algorithm blends interior point

methods with adversarial learning and our predicted decisions satisfy optimality

guarantees for both in-sample and out-of-sample instances.

• We further explore our non-parametric model for the feasible set and introduce

an MCMC sampling algorithm for data augmentation that generates infeasible

decisions used to train our model. We demonstrate the e↵ectiveness of this data

augmentation for learning the feasible set in comparison to baselines.

We apply these techniques to automate radiation therapy treatment design. KBP is

the prevailing framework for automated treatment planning and involves first estimating

a dose that a clinician is likely to approve before optimizing a treatment that can deliver

the dose. We make the following contributions:
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• We propose the first ensemble KBP pipeline by ensembling the outputs of multiple

dose generation models to an inverse optimization problem that estimates parame-

ters for the treatment model. Each dose prediction is biased towards certain clinical

metrics and the consensus obtained via ensembling better balances these criteria.

• We propose the first generative adversarial network for dose generation. Previous

ML approaches used hand-tailored features to predict low-dimensional summaries

of the dose. Deep learning treats the problem as a computer vision task and allows

for predicting a 3-D dose distribution in one shot. GANs outperform prior KBP and

conventional deep learning models in predicting doses that satisfy clinical metrics.

• We re-cast dose generation as an optimization problem of minimizing dose to

healthy tissue while satisfying a hidden set of clinical criteria constraints. Our

predicted doses outperform other deep learning models, including the GAN, on

criteria satisfaction. Furthermore, our algorithm can learn the criteria of one clinic

using data from another. As most clinics do not have the data to train custom

models, this suggest an easier deployment alternative.

This research o↵ers several directions for future methodological and applied work.

We list potential avenues below:

• The inverse techniques developed in Chapter 3 address learning parametric lin-

ear objectives. Other inverse optimization frameworks in the multi-point litera-

ture have explored non-parametric objectives as well as parametric constraints.

The general approach developed in this section can be fitted to learn general con-

vex objectives as well as learning non-parametric models (e.g., Bertsimas et al.,

2015). Similarly, we can also explore learning linear constraints in the ensemble

setting (e.g., Mahmoudzadeh and Ghobadi, 2020).

• We implement our ensemble KBP pipeline by combining several dose generation

models from the literature. However, a key result that we show is that the data

set must be carefully selected in order to get the best out of the ensemble pipeline.

Given that prior research has shown that certain dose generation models have a�ni-

ties with certain plan optimization models (e.g., Babier et al., 2020b), there may

be dose generation models that can generate a distribution of dose distributions for

a patient. Such models would have some a�nity for ensemble inverse optimization

and therefore may lead to better treatment plans overall.
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• Automated planning operates in two steps, by first converting a contoured CT

image into a dose estimate and then converting the dose estimate into a treat-

ment plan. Since dose generation can be recast into an optimization problem, the

overall KBP pipeline may be improved by integrating dose generation and plan

optimization into a single optimization problem over which IPMAN is run. Such

an approach would yield an entirely IPMAN-based KBP pipeline that generates

treatments in one shot and can significantly reduce the time cost of finalizing treat-

ment plans. However, this extension relies on constructing a neural network model

that is suitable for mapping from dose to beamlet vectors.

• A third extension to consider in automated planning is to remove the reliance on

contoured CT images. Contouring is often a laborious task and there has been

significant research in automating contouring via neural networks. Seeing as this

task can be easily learned, it should be possible to implement a KBP pipeline that

takes raw, uncontoured CT images to construct a treatment. If such a pipeline

yields competitive performance with KBP techniques that use contoured images

then the overall time to constructing treatments could be reduced by removing the

requirement for manual contouring of CT images.

• The IPMAN algorithm of Chapter 5 is highly suited for training neural networks

and other machine learning models that are trained via stochastic gradient descent-

based algorithms. However, models that do not rely on gradient-based training such

as decision trees and random forests cannot easily train using IPMAN. A key chal-

lenge for these models is that the problem, while unconstrained and di↵erentiable,

is often non-convex. Since tree-based models are often desirable due to their in-

herent interpretability, a valuable extension would be to update IPMAN so that it

can be amenable for training decision trees. This extension would likely involve a

modification of the Feasibility Classification Problem and the Generative Barrier

Problem to an integer programming formulation.

• An important but implicit assumption throughout this work is that the data set

of clinical treatment plans are independent samples obtained from some fixed dis-

tribution. In reality, the data is observational in that it is obtained via oncologist

decisions that may have varied in motivation or have been a↵ected by unobserved

variables. This assumption does not hurt the results in Chapters 3 and 4 which do

not rely on assumptions of the distribution, but may challenge the theory developed

in Chapters 5. Consequently, a future direction of work is to update the IPMAN

framework in a causal inference setting.
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• Finally, we remark that the methods introduced here have been applied primarily

to automated planning. However, applications of contextual optimization where

decision-maker preferences are taken into account exist in various other domains.

Future research will explore new applications towards learning to formulate and

solve optimization problems.



Appendix A

Supplement to Chapter 3

A.1 A general solution method for GIOR(D)

Although Proposition 5 reformulates GIOR(D) into three sub-problems, the norm con-

straint k·k
N
� K in the sub-problems adds two challenges: first, the constraint itself is

non-convex, and second, an appropriate value for K must be chosen in order for Proposi-

tion 5 to hold. As the non-convex constraint can be handled by polyhedral decomposition,

we first discuss how to choose a valid K. We then consider a relaxed reformulation of

GIOR(D) that often works well in practice. Finally, we summarize all of these results

into a general solution algorithm for inverse optimization minimizing the relative duality

gap. These steps are summarized in Algorithm 3.

The proof of Proposition 5 shows that for any K > 0, every feasible solution of

GIO
+
R(D;K), GIO

�
R(D;K), and GIO

0
R(D;K) can be mapped to a feasible solution of

GIOR(D). The normalization constraint kck
N
� K implies that the feasible region for

each sub-problem grows as K decreases. The proof then shows that for some su�ciently

smallK > 0, an optimal solution toGIOR(D) can be mapped to a feasible (and therefore,

also optimal) solution of one of (3.11)–(3.13).

To determine a su�ciently small K, note that the mapping of a solution of GIOR(D)

to solutions of one of (3.11)–(3.13) involves scaling the solution by b
T
y, �bT

y, or yT
1,

respectively. Bounding these terms allows us to determine a su�ciently small K. For-

mally, consider the following problem:

maximize
y

max
�
|bT

y|,yT
1
 

subject to
��AT

y
��
N
= 1, y � 0.

(A.1)

We refer to formulation (A.1) as the auxiliary problem for GIOR(D). The auxiliary
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problem can be written as three optimization problems, each with the same constraints

as (A.1) but a di↵erent objective: b
T
y, �bT

y, and y
T
1. Since the auxiliary problem

has a normalization constraint similar to the one in GIOA(D), we can use the same

methods to solve it. Let K
⇤ be defined as the reciprocal of the optimal value of the

auxiliary problem. Note that K⇤ is well-defined. That is, the auxiliary problem always

has a non-zero solution, because any feasible y to (A.1) must have y � 0 and at least

one non-zero yi > 0, meaning y
T
1 > 0 must always hold. We use K

⇤ to reformulate

GIOR(D) to GIO
+
R(D;K⇤), GIO

�
R(D;K⇤), and GIO

0
R(D;K⇤).

Theorem 10. Let z+ be the optimal value of GIO
+
R(D;K⇤) if it is feasible, otherwise

z
+ = 1. Let z

� and z
0 be defined similarly for GIO

�
R(D;K⇤) and GIO

0
R(D;K⇤),

respectively. Let z
⇤ = min {z+, z�, z0} and let

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
be the corresponding

optimal solution. Then,
�
c
⇤
/ kc⇤k

N
,y

⇤
/ kc⇤k

N
, ✏

⇤
1, . . . , ✏

⇤
Q

�
is optimal to GIOR(D).

Proof. Let (ĉ, ŷ) be optimal to GIOR(D) and K be defined as in (3.14). Since ŷ is

feasible for the auxiliary problem (A.1), 1/K⇤ � max
�
|bT

ŷ|, ŷT
1
 
, implying K

⇤  K.

The proof of Proposition 5 showed that scaling (ĉ, ŷ) appropriately yielded a corre-

sponding feasible solution to one of GIO
+
R(D;K), GIO

�
R(D;K), or GIO

0
R(D;K). Be-

cause K⇤  K, the scaled solution must also be feasible for the respective GIO
+
R(D;K⇤),

GIO
�
R(D;K⇤), or GIO

0
R(D;K⇤). Moreover, every solution of the three GIO

+
R(D;K⇤),

GIO
�
R(D;K⇤), or GIO

0
R(D;K⇤) can be scaled to a feasible solution of GIOR(D), com-

pleting the proof.

In the most general case, solving GIOR(D) is more computationally intensive than

solving GIOA(D). We must first identify K
⇤, which we can use to reformulate GIOR(D)

into three norm-constrained optimization problems. Subsequently, given an appropriate

choice of k·k
N
, each problem is decomposed into a series of linear optimization problems.

For instance, doing so leads to 2n linear programs if k·k
N
= k·k1 and 2n LPs if k·k

N
=

k·k1. These steps coupled with the auxiliary problem (A.1) used to determine K⇤ require

the solution of 12n linear optimization problems when k·k
N

= k·k1, or 6(2n) when

k·k
N

= k·k1. In some cases, however, it may be possible to find an optimal solution to

GIOR(D) by solving exactly three linear optimization problems.

Corollary 5. Let GIO
+
R,LP(D), GIO

�
R,LP(D), and GIO

0
R,LP(D) be the LP relaxations

of GIO
+
R(D;K), GIO

�
R(D;K), and GIO

0
R(D;K), respectively, obtained by removing the

normalization constraint kck
N
� K. Let z+LP be the optimal value of GIO

+
R,LP(D) if it

is feasible, otherwise z
+
LP = 1. Let z

�
LP and z

0
LP be defined similarly for GIO

�
R,LP(D)

and GIO
0
R,LP(D), respectively. Let z⇤LP = min

�
z
+
LP, z

�
LP, z

0
LP

 
and let

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
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Algorithm 3 General solution method for GIOR(D)
Input: Data set D
Output: Imputed model parameters

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�

1: Let z
+
LP  GIO

+
R,LP(D), z�LP  GIO

�
R,LP(D), z0LP  GIO

0
R,LP(D) be the optimal

values.
2: Let z⇤LP  min

�
z
+
LP, z

�
LP, z

0
LP

 
and

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
be the corresponding optimal

solution.
3: if c

⇤ 6= 0 then

4: return
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�

5: else

6: Solve the auxiliary problem (A.1). Let K⇤ be the reciprocal of the optimal value.
7: Let z+  GIO

+
R(D;K⇤), z�  GIO

�
R(D;K⇤), z0  GIO

0
R(D;K⇤) be the optimal

values.
8: Let z

⇤  min {z+, z�, z0} and
�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�
be the corresponding optimal

solution.
9: return

�
c
⇤
,y

⇤
, ✏

⇤
1, . . . , ✏

⇤
Q

�

10: end if

be an optimal solution of the corresponding problem. If c⇤ 6= 0, then z
⇤
LP is equal to the

optimal value of GIOR(D) and
�
c
⇤
/ kc⇤k

N
,y

⇤
/ kc⇤k

N
, ✏

⇤
1, . . . , ✏

⇤
Q

�
is an optimal solution

to GIOR(D).

Proof. Let (ĉ, ŷ, ✏̂1, . . . , ✏̂Q) be an optimal solution to GIOR(D). From Proposition 5,

this solution can be rescaled to construct a feasible solution for one of GIO
+
R,LP(D),

GIO
�
R,LP(D), and GIO

0
R,LP(D) with the same objective value. Conversely, for each of the

relaxed problems, let (c̃, ỹ, ✏̃1, . . . , ✏̃Q) be a feasible solution. Assuming that c̃ 6= 0, this

solution can be rescaled to construct (ĉ, ŷ, ✏̂1, . . . , ✏̂Q) = (c̃/ kc̃k
N
, ỹ/ kc̃k

N
, ✏̃1, . . . , ✏̃Q),

which is a feasible solution to GIOR(D) with the same objective value. Thus, if the

minimum ofGIO
+
R,LP(D), GIO

�
R,LP(D), andGIO

0
R,LP(D) yields an optimal solution with

a non-zero imputed cost vector, the two problems share the same optimal solution.

The key di↵erence between Proposition 5 and Corollary 5 is the non-zero assumption

(i.e., c⇤ 6= 0). By relaxing the normalization constraint, we permit potential solutions for

which c
⇤ = A

T
y
⇤ = 0 is a linearly dependent combination of the rows of A. However,

if c⇤ 6= 0 is an optimal solution to the relaxed problem, it is also an optimal solution

to GIOR(D). Therefore, to solve GIOR(D), we suggest first solving the three relaxed

problems, which are LPs, from Corollary 5. If c⇤ = 0, then we use the more general

approach. Section 3.4 (with details on the formulations in Appendix A.3) shows a case

where the LP relaxations via Corollary 5 are su�cient.
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A.2 Related work in inverse convex optimization

Multi-point inverse optimization has recently received significant interest under the set-

ting of convex forward problems, with several notable inverse optimization models having

been proposed for arbitrary convex forward problems (i.e., Aswani et al. (2018); Bert-

simas et al. (2015); Esfahani et al. (2018)). The methods proposed in this prior work

specialize to linear forward problems and overlap in formulation with the absolute duality

and the decision space models proposed in this paper. However, the geometric nature of

LPs poses new challenges, but also allows for some e�cient solutions, that are not present

in the strictly convex domain. In this section, we highlight the previous formulations and

discuss several di↵erences in the solution methods.

The inverse convex models in prior work assume that the data set consists of points

corresponding to di↵erent forward problem instances. As we focus on inverse optimization

for a fixed forward feasible set, we illustrate the results in the previous work for fixed P .

A.2.1 Inverse variational inequality

Let f(x; c) : Rn ! R be a convex function in x parametrized by c and let K be a

convex cone. Bertsimas et al. (2015) considered the forward conic optimization problem

minx {f(x; c) | Ax = b,x 2 K} and proposed an inverse optimization model that min-

imized the residuals from failing to satisfy the variational inequality of the first-order

optimality condition. The inverse variational inequality problem is

minimize
c,y1,...,yQ,✏1,...,✏Q

QX

q=1

|✏q|

subject to A
T
yq K rf(x̂q; c), 8q 2 Q

rf(x̂q; c)
T
x̂q � b

T
yq  ✏q, 8q 2 Q

c 2 C.

(A.2)

Setting K = Rn

+, f(x; c) = c
T
x, and C = {c 2 Rn | kck

N
= 1} makes formulation (A.2)

equivalent to GIOA(D), i.e., formulation (3.6).

In the original work, Bertsimas et al. (2015) focused mostly on strictly convex forward

problems and on ensuring a convex inverse optimization formulation. While the non-

convex normalization constraint is not always necessary when the forward problem is

strictly convex, setting f(x; c) = c
T
x implies that (c,y, ✏1, . . . , ✏Q) = (0,0, 0, . . . , 0) is a

trivially optimal solution (Chan et al., 2019; Esfahani et al., 2018). Note furthermore

that convex normalization constraints exist in the literature, e.g., Keshavarz et al. (2011)
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proposed setting c0 = 1. However, these convex normalization constraints often bias

the parameter space. For instance, setting c0 = 1 prevents imputing non-trivial cost

vectors where c0 = 0. We enforce the non-convex constraint within all of the inverse

optimization models in the current paper and propose polyhedral decomposition-based

solution methods in the general setting for GIOA(D). Furthermore, we find it important

to explore special cases where the non-convexity can be bypassed, leading to simpler,

sometimes analytic results (see Proposition 2 and 3, as well as Corollary 1).

Finally, Bertsimas et al. (2015) discussed a decision space alternative to formula-

tion (A.2) where instead of the variational inequality residual, they minimized kx̂q � xqk,
where xq is a variable that satisfies f(xq; c) = b

T
y. Furthermore, they assumed that the

gradient of the objective is strongly monotone, i.e., there exists � > 0 such that

�
rf(x; c)�rf(y; c)

�T�
x� y

�
� � kx� yk2 , 8x,y 2 P .

By focusing on the variational inequality nature of objective space inverse optimiza-

tion, Bertsimas et al. (2015, Theorem 1) translated the variational inequality error bound

of Pang (1987) to show that if there exists an solution (c⇤,y⇤
, ✏

⇤
1, . . . , ✏

⇤
Q
) to formula-

tion (A.2), then there exists x⇤
1, . . . ,x

⇤
Q
that are optimal solutions to the forward prob-

lem and satisfy
��x̂q � x

⇤
q

��
2

p
✏q/� for all q. That is, given the feasible solution to

an objective space inverse optimization problem, we can obtain a corresponding feasible

solution to a decision space problem where the error is bounded. Note, however, that in

the linear case, rf(x; c) = c does not satisfy the strong monotone property, i.e., � = 0.

As a result, the previous bound does not hold for inverse linear optimization.

A.2.2 Inverse risk minimization

Let f(x;u, c) : Rn ! R and g(x;u, c) : Rn ! Rm be convex functions in x that are

parametrized by u and c. Given minx {f(x;u, c) | g(x;u, c)  0}, Aswani et al. (2018)
proposed a bi-level inverse optimization model that minimized the distance between the

data set D = {(x̂1, û1), . . . , (x̂Q, ûQ)} of points sampled i.i.d. from a distribution Px,u

and the optimal solution sets. This inverse risk minimization problem is

minimize
c,✏1,...,✏Q

QX

q=1

k✏qkp

subject to x̂q � ✏q 2 argmin
x

{f(x; ûq, c) | g(x; ûq, c)  0} , 8q 2 Q

c 2 C.

(A.3)
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Setting f(x;u, c) = c
T
x, g(x;u, c) = b �Ax, and C = {c 2 Rn | kck

N
= 1} specializes

formulation (A.3) to an equivalent form as GIOp(D).

Formulation (A.2) satisfies statistical consistency (i.e., given su�cient points, the

imputed c converges to a true data-generating c) under several assumptions on the data

set and the forward model (Aswani et al., 2018):

1. Assumption 2: The parameter space C is convex.

2. Regularity 1: The feasible set P is closed and bounded.

3. Identifiability condition: There exists a unique c
⇤ such that:

(a) The data set corresponds to noisy perturbations of optimal solutions, i.e.,

x̂q = x
⇤
q
+ wq, where x

⇤
q
2 argminx {f(x;u, c) | g(x;u, c)  0}, and wq is a

random variable with mean 0 and finite variance.

(b) For any c 6= c
⇤, there exists Uc such that the marginal distribution Pu(u 2

Uc) > 0 and the optimal value for

inf
x,x⇤

kx� x
⇤k

s. t. x 2 argmin
w

{f(w;u, c) | g(w;u, c)  0}

x
⇤ 2 argmin

w
{f(w;u, c⇤) | g(w;u, c⇤)  0}

is equal to 0 for all u 2 Uc.

(c) For all c,

Pu

✓⇢
u

����

����argmin
x

{f(x;u, c) | g(x;u, c)  0}
���� > 1

�◆
= 0

These assumptions do not hold in this work where we focus on a fixed linear forward

problem for all data points. Particularly, setting f(x;u, c) = c
T
x and g(x;u, c) =

b � Ax implies that the forward and inverse optimization problem do not depend on

u. Consequently, the second Identifiability condition does not hold in many settings. A

trivial example is P = {(x1, x2) | 0  x1, x2  1}. Here, for any cost vector c
⇤, there

exists another cost vector ci = ai/ kaikN such that the facet described by ci contains

an optimal vertex of FO(c⇤). Furthermore, the third condition is also trivially violated

when c = ai for any i 2 I. Finally, our application in Section 3.4 is an example

where the dataset does not correspond to noisy perturbations, but is obtained via several

prediction models; we therefore cannot guarantee a well-behaved wq. We also remark



Appendix A. Supplement to Chapter 3 119

that our problem setting permits the feasible set P to be unbounded. A last consequence

of u not existing in our setting is that the parameter space becomes non-convex due to

the norm constraint. Overall, we find our problem setting to be incompatible with the

statistical consistency guarantees in Aswani et al. (2018).

Aswani et al. (2018) propose an e�cient semi-parametric algorithm to solve formu-

lation (A.3) under the assumption that the forward problem is strictly convex in x. For

when f(x;u, c) is linear however, Aswani et al. (2018) introduce an enumerative algo-

rithm for solving formulation (A.3) that relies on quantizing the set C to a finite set Ĉ,
and solving the corresponding formulation with fixed c 2 Ĉ. This algorithm is e↵ective

primarily because, for fixed c, formulation (A.3) (and incidentally, GIOp(D)) are convex.

However, the authors state that due to the enumerative nature, the algorithm is generally

only applicable when the parameter space is modest (e.g., n  5 is recommended). We

find that the algorithm of Aswani et al. (2018) is complementary to ours. That is, their

algorithm is ine�cient for large n, while ours is relatively insensitive to the increase in

n, but is ine�cient for large m.

A.2.3 Distributionally robust inverse optimization

Esfahani et al. (2018) study distributionally robust generalized inverse optimization for

convex forward problems. Let %(·) denote a risk measure such as the Value-at-Risk (VaR)

or Conditional Value-at-Risk (CVaR). The non-robust version of their formulation is

minimize
c,✏1,...,✏Q

%(k✏1k , . . . , k✏Qk)

subject to Constraints in (A.2) or (A.3)
(A.4)

Esfahani et al. (2018) consider several di↵erent variants of inverse convex optimization to

encapsulate previous methods; the variants are referred to as predictability (i.e., inverse

risk minimization), sub-optimality, first-order (i.e., inverse variational inequality), and

bounded rationality. When the forward problem is a linear program, the sub-optimality

loss model is in fact equivalent to the first-order loss model, and therefore also equivalent

to GIOA(D) proposed here.

A consequence of the general formulation (A.4) is that it leads to a new dominance

relationship to bound the optimal values between predictability and sub-optimality losses.

Similar to Bertsimas et al. (2015), Esfahani et al. (2018) define the parameter � � 0 to

be the largest parameter satisfying

f(x;u, c)� f(y;u, c) � rf(x;u, c)T(x� y) +
�

2
kx� yk22 , 8x,y 2 P ,u 2 U .
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Under this definition, Esfahani et al. (2018) show that their sub-optimality (i.e., objective

space) loss upper bounds their predictability (i.e., decision space) loss by a multiplica-

tive factor �/2. However, similar to the scenario in the previous bound, � = 0 when

f(x;u, c) = c
T
x. Consequently, this bound also does not hold for LP forward problems.

Esfahani et al. (2018) focus on solving a distributionally robust version of formula-

tion (A.4), where the robustness is over the worst-case distribution of data. As they

primarily address the sub-optimality loss model, which specializes to the absolute du-

ality gap model in this work, the comparison between their solution methods and ours

is similar to the comparison between Bertsimas et al. (2015) and ours. That is, we fo-

cus on developing e�cient algorithms based on linear programming geometry, and as a

consequence, yield several new e�ciencies in the absolute duality gap setting.

A.3 Automated radiation therapy treatment plan-

ning

The design of an IMRT treatment plan is typically done by mathematical optimization

where the decision variable x = (w,d) is composed of two components that represent

the beamlets and the dose delivered (in Gy) as a result of the intensities of the beamlets,

respectively. In this section, we detail the forward and inverse models used in automated

KBP. Specifically, we highlight the standard formulation used for experiments in Chap-

ter 3. Experiments in Section 4 use a slightly modified version of the forward and inverse

problems. We detail those in Appendix B.3.

The forward model for the experiments in Section 3.4 is a modified version of the one

used by Babier et al. (2018b). Let B denote the index set of beamlets and wb be the

radiation intensity of beamlet b 2 B. Similarly, let V denote the index set of voxels within

a patient and dv be the dose of radiation delivered to voxel v 2 V . Dose is calculated via

a weighted linear combination of all beamlet intensities, i.e., dv =
P

b2B Dv,bwb, where

Dv,b is the dose influence of beamlet b on voxel v.

For each patient, let T denote the index set of the three planning target volumes

(PTVs) with di↵erent prescription doses (i.e., PTV56, PTV63, and PTV70 with 56 Gy,

63 Gy, and 70Gy as prescription doses, respectively) and let O denote the index set of the

eight surrounding OARs (i.e., brain stem, spinal cord, right parotid, left parotid, larynx,

esophagus, mandible, and limPostNeck). Note that the limPostNeck is an artificially

defined region used solely in optimization; it does not possess a clinical criteria. For each

t 2 T and o 2 O, let Vt and Vo denote the set of voxels corresponding to the given target
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or OARs, respectively.

A.3.1 Forward objectives

The IMRT forward problem includes 65 di↵erent objectives each minimizing some feature

of the dose delivered to an OAR or PTV. For each OAR, we minimize the mean dose

delivered, the maximum dose delivered, and the average dose above a threshold �✓

o
. Here,

�
✓

o
is a fraction ✓ of the average maximum dose to OAR o over the data set of predictions;

we consider ✓ 2 ⇥ := {0.25, 0.5, 0.75, 0.9, 0.975}. Such objectives for each OAR can be

computed as follows:

z
mean
o

=
1

|Vo|
X

v2Vo

dv, 8o 2 O (A.5)

z
max
o

= max
v2Vo

{dv} , 8o 2 O (A.6)

z
thresh,✓
o

=
1

|Vo|
X

v2Vo

max
�
0, dv � �✓

o

 
, 8✓ 2 ⇥, 8o 2 O. (A.7)

Each PTV is assigned a prescribed dose �t, i.e., 56 Gy for PTV56, 63 Gy for PTV63,

and 70 Gy for PTV70. For each PTV, we minimize the dose over the prescription, under

the prescription, and the maximum dose delivered to the target, which can be computed

as follows:

z
over
t

=
1

|Vt|
X

v2Vt

max {0, dv � �t} , 8t 2 T (A.8)

z
under
t

=
1

|Vt|
X

v2Vt

max {0,�t � dv} , 8t 2 T (A.9)

z
max
t

= max
v2Vt

{dv} , 8t 2 T . (A.10)

A.3.2 Forward constraints

In order to ensure that no OAR or PTV is prioritized by the objectives at a cost to

the other organs, we assign a set of hard constraints for each structure. Every OAR is

assigned a constraint to ensure that the mean dose and maximum dose do not exceed

baseline safety limits. Similarly, every PTV is assigned a constraint to ensure that it

receives a baseline dose on average.

The safety constraints are relaxations of the clinical criteria used to evaluate plans.

Recall that clinical plans typically do not satisfy all of the clinical criteria. In fact,

satisfying all of the criteria is infeasible for most patients. Consequently, we set these
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safety constraints so that all plans can satisfy at least these baseline doses for each of

the OARs and PTVs; we then use the objectives to push the doses to achieving the

clinical criteria. The baseline values (i.e., right-hand-side), obtained from the average

and maximum dose delivered by the 130 clinical plans in our training set, are:

Brain stem: z
mean
o

 30, z
max
o
 53 (A.11)

Spinal cord: z
mean
o

 30, z
max
o
 46 (A.12)

Left parotid: z
mean
o

 68, z
max
o
 77 (A.13)

Right parotid: z
mean
o

 68, z
max
o
 78 (A.14)

Larynx: z
mean
o

 68, z
max
o
 77 (A.15)

Esophagus: z
mean
o

 52, z
max
o
 75 (A.16)

Mandible: z
mean
o

 63, z
max
o
 76 (A.17)

limPostNeck: z
mean
o

 21, z
max
o
 46 (A.18)

PTV56: z
mean
t

� 58 (A.19)

PTV63: z
mean
t

� 63 (A.20)

PTV70: z
mean
t

� 69 (A.21)

Note that we introduce a z
mean
t

variable for the targets, analogous to z
mean
o

in (A.5).

Finally, we include a constraint on the “complexity” or physical deliverability of the

treatment plan. This constraint, known as the sum-of-positive-gradients (SPG), restricts

the variation of radiation doses from neighboring beamlets so that the resulting dose

shape is deliverable by the LINAC (Craft et al., 2007). Let a 2 A index each angle of the

LINAC, r 2 Ra index each row of the LINAC at that angle, and Br be the index set of

beamlets along that row. Then, we add the following constraint to restrict the variation

of doses to be delivered from di↵erent beamlets:

X

a2A

max
r2Ra

(
X

b2Br

max {0, wb � wb+1}
)
 55, (A.22)

where we set wb+1 = 0 for the last beamlet in each row. The right-hand-side, i.e., the

SPG, is set to 55 Gy, following the convention from previous literature (Babier et al.,

2020a).
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A.3.3 Forward optimization problem

The final forward problem is then to minimize a weighted combination of the objectives:

RT–FO(↵) : minimize
z,w,d

X

o2O

 
↵
mean
o

z
mean
o

+ ↵
max
o

z
max
o

+
X

✓2⇥

↵
thresh,✓
o

z
thresh,✓
o

!
+

X

t2T

�
↵
over
t

z
over
t

+ ↵
under
t

z
under
t

+ ↵
max
t

z
max
t

�

subject to (A.5)� (A.22)
X

b2B

Dv,bwb = dv, 8v 2 V

wb, dv � 0, 8b 2 B, 8v 2 V .

(A.23)

We compress the notation of the above forward problem to

RT–FO(↵) : min
x

�
↵T

Cx | Ax � b,x � 0
 
.

This problem has several useful properties. Firstly under this notation, the matrix of

objective functions C is non-negative. Furthermore, the constraint vector b is also non-

negative. These properties are useful specifically as they allow for constructing almost

entirely linear inverse optimization problems. We discuss these in Section A.3.5.

A.3.4 Generating a data set of predicted treatments

We use the training set of 130 patients to implement several machine learning models

from the KBP literature. Each model is trained via supervised learning to map from

a segmented 3-D CT image (features) to a 3-D dose distribution (target) d̂ using the

clinical data set of paired CT images and delivered dose distributions. There are some

variations in how each model approaches the task. We use the same features and loss

functions for each model as described in their original papers, and summarize the models:

1. Random Forest: A random forest that uses 10 hand-crafted geometric features

to predict the dose for each voxel d̂v of the patient sequentially (Mahmood et al.,

2018; McIntosh et al., 2017). We run the random forest for all voxels of the patient

to complete a dose distribution. The list of features is available in Appendix B.2.

2. 2-D RGB GAN: A generative adversarial network that uses 2-D axial slices of

the patient’s CT as an RGB image to predict corresponding 2-D axial slices of

the patient’s dose also as an RGB image. We convert the images to grayscale and
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Table A.1: The percentage of predictions that are feasible with respect to their forward
problems.

Predictive model %-age of feasible predictions

3-D GANCER 95.3
2-D RGB GAN 90.1
2-D GANCER 82.3
2-D RGB GAN-sc. 83.9
RF-sc. 82.3
RF 86.2
2-D GANCER-sc. 87.7
3-D GANCER-sc. 86.9

run 2-D RGB GAN over all 128 axial slices of the patient to produce a 3-D dose

distribution. This model is the same as the one introduced in Chapter 4.

3. 2-D GANCER: A generative adversarial network that uses 2-D axial slices of the

patient’s CT as an RGB image to predict 2-D axial slices of the patient’s dose in

grayscale directly (Babier et al., 2020a). We run this model over all 128 axial slices

of the patient.

4. 3-D GANCER: A generative adversarial network that uses the full 3-D patient’s

CT image as input to predict the full 3-D dose distribution d̂ in one shot (Babier

et al., 2020a).

Babier et al. (2020a) noted that plans predicted using the above models often sought

to deliver low dose (i.e., significantly spare healthy tissue) at the cost of not satisfying

the prescription criteria for the PTVs, and implemented a rescaling method to create

a modified prediction to address this issue. In their experiments, they showed that

treatment plans constructed using inverse optimization-based KBP and the normalized

dose distributions would better satisfy the prescription criteria while performing slightly

poorer on sparing healthy tissue. Consequently, we implement the rescaling method on

all predictions from the models, and use both the non-scaled and scaled predictions as

input for the inverse optimization model. Thus, for each patient there is a data set of 8

dose distributions, i.e., D = {ẑ1, . . . , ẑ8}. Note that we do not require x̂q = (ŵq, d̂q), but

only the objective function values. Inverse optimization then yields a weight vector ↵k,

with which we solve FO(↵k) to obtain a reconstructed personalized treatment.

Dose predictions may be feasible and sub-optimal or infeasible. Recall from Propo-

sition 6 and 6 that if all decisions in the data set, then solving the ensemble absolute

or relative duality gap inverse optimization is equivalent to solving a single-point model
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using the centroid. Table A.1 highlights the percentage of the patients for which the pre-

dictions are feasible dose distributions with respect to RT–FO(↵). Typically we observe

that about 85% of predictions are feasible, suggesting that there is usually at least one

prediction for every patient which is infeasible.

A.3.5 Inverse optimization problems

In order to frame FO(↵) for generalized inverse optimization, we restrict imputed cost

vectors to be in the image of C, i.e., C =
�
C

T↵ | ↵ � 0
 
. Note that ↵ � 0 is an

application-specific constraint, as there is no clinical interpretation for negative objective

function weights.

A specific inverse optimization problem is formulated by appropriately selecting the

model hyperparameters (k·k , C, E1, . . . , EQ) from GIO(D). In our experiments, we use

the default parameters, except with the custom C to ensure the objective function is a

weighted combination of the di↵erent objectives. Moreover, we set k·k
N
= k·k1.

Absolute duality gap

Using Proposition 1 and our specific choice of C, we formulate an absolute duality gap

inverse optimization problem:

RT–IOA(D) : min
↵,y,✏1,...,✏Q

QX

q=1

|✏q|

s. t. C
T↵ � A

T
y, y � 0

↵T
ẑq = b

T
y + ✏q, 8q 2 Q

(CT↵)T1 = 1

↵ � 0.

(A.24)

RT–IOA(D) is obtained by substituting c = C
T↵ into formulation (3.4), and noting

that
��CT↵

��
1
= (CT↵)T1 when both ↵ � 0 and C � 0.

Relative duality gap

Using Proposition 4 and our specific choice of C, we formulate a relative duality gap

inverse optimization problem. We then use Corollary 5 to obtain the LP relaxation of

the relative duality gap problem. The two relevant formulations are given below.
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RT–IOR(D) :

min
↵,y,✏1,...,✏Q

QX

q=1

|✏q � 1|

s. t. C
T↵ � A

T
y, y � 0

↵T
ẑq = ✏qb

T
y, 8q 2 Q

(CT↵)T1 = 1

↵ � 0.

(A.25)

RT–IOR,LP(D) :

min
↵,y,✏1,...,✏Q

QX

q=1

|✏q � 1|

s. t. C
T↵ � A

T
y, y � 0

↵T
ẑq = ✏q, 8q 2 Q

b
T
y = 1

↵ � 0.

(A.26)

Using Algorithm 3, we first solve the LP relaxation of RT–IOR(D), stated above

as RT–IOR,LP(D). Note that this relaxation is the application-specific analogue of

GIO
+
R,LP(D), which is only one of the three reformulations of the relative duality gap

problem. We do not construct or solve relaxations of the other two (e.g., GIO
�
R,LP(D)

and GIO
0
R,LP(D)) due to the following reasons. First, the analogue to GIO

�
R,LP(D)

is infeasible; in our application, b � 0 implying b
T
y � 0 for all y � 0. Second,

the application-specific analogue of GIO
0
R(D) in practice is often infeasible or gener-

ates plans that perform poorly on the clinical criteria satisfaction metrics compared

to RT–IOR,LP(D). Recall that GIO
0
R(D) requires c

T
x̂q = 0 for all q 2 Q. In the

application-specific analogue (where the constraint is ↵T
ẑq = 0), both ↵ � 0 and ẑq � 0,

which means that the problem is feasible only when there exists an element of ẑq that

is equal to 0 for all of the predictions. The only objectives where this situation could

occur are the threshold objectives (A.7)–(A.9). Thus, the application-specific analogue

of GIO
0
R(D) is either infeasible or distributes all of the objective weights to these three

objectives. By strictly focusing on the threshold objectives however, the inverse problem

then generally fails to meet a large number of the clinical criteria. Consequently, we

advocate in this application to strictly use RT–IOR,LP(D) to solve the relative duality

gap inverse optimization problem.

A.3.6 Baseline implementations

In Section 3.4.3, we implement two conventional ensemble learning baselines to compare

with ensemble inverse optimization. The first baseline is an ensemble-then-inverse opti-

mization model. Here, we first compute the average of the individual decisions and then

solve a single-point inverse optimization problem to obtain a cost vector. The second

baseline is a Multiplicative Weights Algorithm (MWA). In our experiments, we imple-

mented both models using all eight predictions as well as for the 4 Pts. predictions

(RF-sc., RF, 2-D GANCER-sc., 3-D GANCER-sc.). We also use grid search with the
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Algorithm 4 Multiplicative Weights Algorithm Baseline
Input: Data set of CT images for training patients C, Data set of CT images for testing

patients C̃, Dose prediction models F1(·), . . . , FQ(·), Learning rate ⌘  0.5.
Output: Treatment plans for each patient
1: Initialize weights wq = 1 for q 2 Q.
2: for Each patient in the training data set ĉk 2 C̃ do

3: for q 2 Q do

4: Let d̂q,k  Fq(ĉk).
5: Let zq,k  RT–IOR({d̂q,k}).
6: Let wq  wq(1� ⌘zq,k).
7: end for

8: end for

9: Normalize weights wq  wq/(
P

Q

q0=1 wq0).
10: for Each patient in the testing data set ĉk 2 C do

11: Select prediction model Fq(·) with probability wq.
12: Let d̂q,k  Fq(ĉk).
13: Let ↵⇤

k
be the optimal solution to RT–IOR({d̂q,k}).

14: Let x⇤
k
 RT–FO(↵⇤

k
) and evaluate the corresponding treatment plan.

15: end for

training set patients to identify the best learning rate for the MWA.

Algorithm 4 summarizes the steps for the MWA. We use an o✏ine learning variant

of the Weighted Majority update rule of Arora et al. (2012). Each of the prediction

models Fq(·) in the ensemble KBP pipeline is treated as an expert and we initialize

a weight wq = 1 for each model. For each of the 130 training set patients k and each

prediction model, we predict a dose d̂q,k, solve a single-point inverse optimization problem

and update the weight wq by a penalty factor corresponding to the aggregate error of

the inverse optimization problem. After repeating this process for all of the training set

patients, we normalize the weights to a probability distribution and freeze them. Then

for each of the patients in the test set, we randomly select an ‘expert’ KBP pipeline to

generate a treatment plan.
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B.1 Network architecture

The general network architecture was adapted from Isola et al. (2017). Contoured CT

slices were used as input to the generator as 3-channel, 128⇥ 128 images. We used a U-

net architecture, where the generator was comprised of an encoder and a decoder stage.

We used 4⇥ 4 2D convolutions with stride 2 and padding 1. Each convolution layer was

followed by a leaky ReLU and batch normalization. Deconvolution layers were followed

by 50% dropout, ReLU, and batch normalization.

The encoder consisted of four downsampling layers. The first generated 64 channels,

and each subsequent layer downsampled by a factor of 2. This was followed by 2 bottle-

neck layers, before the data was then passed through 4 upsampling layers. The output

of each downsample layer was concatenated to the input of the corresponding upsample

layer. The final output was a 3-channel, 128⇥ 128 slice. We summarize the generator in

Table B.1.

The discriminator consisted of five convolution layers, where the first four each down-

sample the output by 2. The fifth, and last layer, mapped to a scalar output. We applied

batch normalization and leaky ReLU after the first four layers. The final layer was passed

through sigmoid activation. We summarize the discriminator in Table B.2

In our experiments, we also compare against a CNN baseline. The architecture for

this baseline is identical to the generator for the GAN. The key di↵erence between the

CNN and the GAN is that the CNN is trained by minimizing mean-squared error.

128
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Table B.1: Overview of the generator architecture. BN refers to batch normalization; LR,
R, and tanh refer to Leaky ReLU (0.2 slope), ReLU, and Tanh activations, respectively;
and D refers to dropout.

Layer Concatenate with Input shape Block Activation

1 — 128⇥ 128⇥ 128⇥ 3 conv2d BN-LR
2 — 64⇥ 64⇥ 64⇥ 64 conv2d BN-LR
3 — 32⇥ 32⇥ 32⇥ 128 conv2d BN-LR
4 — 16⇥ 16⇥ 16⇥ 256 conv2d BN-LR
5 — 8⇥ 8⇥ 8⇥ 512 conv2d BN-LR
6 — 4⇥ 4⇥ 4⇥ 512 conv2d BN-LR
7 — 4⇥ 4⇥ 4⇥ 512 conv2d BN-LR
8 — 4⇥ 4⇥ 4⇥ 512 conv2d BN-LR
9 — 2⇥ 2⇥ 2⇥ 512 deconv2d LR
10 layer 5 output 4⇥ 4⇥ 4⇥ 1024 deconv2d BN-R
11 layer 4 output 8⇥ 8⇥ 8⇥ 1024 deconv2d BN-D-R
12 layer 3 output 16⇥ 16⇥ 16⇥ 512 deconv2d BN-D-R
13 layer 2 output 32⇥ 32⇥ 32⇥ 256 deconv2d BN-R
14 layer 1 output 64⇥ 64⇥ 64⇥ 128 deconv2d tanh

Output — 128⇥ 128⇥ 128⇥ 3 — —

B.2 Random forest model

The random forest used ten custom features outlined in Table B.2 to predict the dose

delivered to each voxel in the patient. The RF was trained with ten trees, and default

settings with the randomForestRegressor from scikit-learn.

B.3 Plan optimization model

We follow the same approach as in Chapter 3 to transform dose distributions into treat-

ment plans. First an inverse optimization model takes the 3-D dose distribution as input

and estimates the weights for a multi-objective forward optimization problem. We then

re-solve the forward optimization problem with the imputed weights to construct a treat-

ment plan.

The forward optimization model in this chapter is a variant of RT–FO(↵) introduced

in Appendix A.3.1. The key di↵erence is that in the previous chapter, we incorporated

baseline safety constraints (A.11)–(A.21) in order to ensure that no plans deviate sig-

nificantly from the desired dose values. The formulation used in this Chapter does not

include these safety constraints.

The inverse optimization model used in this chapter is the same as the relative duality
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Table B.2: Overview of the discriminator architecture. BN refers to batch normalization;
LR, R, and sigmoid refer to Leaky ReLU (0.2 slope), ReLU, and Sigmoid activations.

Layer Input size Block Activation

1 128⇥ 128⇥ 128⇥ 6 conv2d LR
2 64⇥ 64⇥ 64⇥ 64 conv2d BN-LR
3 32⇥ 32⇥ 64⇥ 128 conv2d BN-LR
4 16⇥ 16⇥ 16⇥ 256 conv2d BN-LR
5 8⇥ 8⇥ 8⇥ 512 conv2d sigmoid

Output 1 — —

Feature Description

Structure Structure that the voxel is classified as
y-coordinate Voxel’s positions on the y-axis in a slice
z-coordinate Plane of voxel’s slice

Distance to larynx Shortest path between voxel and the surface of the larynx
Distance to esophagus Shortest path between voxel and the surface of the esophagus

Distance to limPostNeck Shortest path between voxel the surface of the limPostNeck
Distance to PTV56 Shortest path between voxel and the surface of the PTV56
Distance to PTV63 Shortest path between voxel and the the surface of PTV63
Distance to PTV70 Shortest path between voxel and the the surface of PTV70

Influence Sum of influence matrix elements for the voxel

Table B.3: The ten features used in the RF to predict the dose for any voxel.

gap inverse RT–IOR({x̂}) introduced in Appendix A.3.5. Note however that there we

used a data set of predictions. In this chapter, we only use a single prediction per inverse

optimization model.
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C.1 Structural properties of (�, ✏)-optimality for the

barrier problem

Our learning problem simultaneously trains a classifier and a generative model to learn

feasibility and predictive optimal solutions respectively. Alternatively, if we are already

given a �-barrier B�(x,u), we may consider directly optimizing BP(u, B�,�). We show

how tuning the � parameter can yield feasible or infeasible solutions of di↵erent qualities.

Under a mild regularity assumption, for a su�ciently large �, an optimal solution

x
�(u) to BP(u, B�,�) is guaranteed to lie inside X (u). Once � is su�ciently small, the

optimal solutions then enter N� (X (u)) \ X (u). We first state this assumption before

characterizing the trajectory of the sequence of points obtained via an IPM.

Assumption 3 (Regularity of the �-barrier).

1. There exist x̃ 2 int(X (u)) such that B�(x̃,u) > B�(x,u) for all x 2 cl(N� (X (u)) \
X (u)).

2. There exist x̃0 2 N� (X (u)) \ X (u) such that cTx̃0
< c

T
x
⇤(u) and 0 < B�(x̃0

,u) <

B�(x,u) for all x 2 X (u).

The first statement implies that there exists a point inside X (u) for which B�(x,u)

is greater than any point outside of X (u). Similarly, the second statement implies that

there exists a point outside of X (u) for which B�(x,u) is lower than any point inside

X (u). Intuitively, the barrier yields higher values for points inside X (u) rather than

outside. Furthermore, the existence of x̃0 for which c
T
x̃ > c

T
x
⇤(u) > c

T
x̃
0 is a direct

consequence of the linear objective. Figure C.1 shows an example of such points for a

131
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feasible set where the �-barrier is a canonical barrier for P . Given a barrier function

satisfying Assumption 3, � controls the feasibility of x�(u) for OP(u).

Lemma 3. If Assumption 3 is satisfied, then there exists �̃ such that for all � � �̃, the

optimal solution to BP(u, B�,�) is feasible for OP(u), i.e., x�(u) 2 X (u).

Proof. Let x+ 2 arg supx {B�(x,u) | x 2 N� (X (u)) \ X (u)} and x
� 2 arg infx

�
c
T
x | B�(x,u) > 0

 
.

Then, for x̃ satisfying Assumption 3 Statement 1, we set

�̃ =
c
T
x̃� c

T
x
�

logB�(x̃,u)� logB�(x+,u)
. (C.1)

From the optimality of x�, we have c
T
x̃ > c

T
x
�. Also, Assumption 3 implies that the

denominator is positive, and therefore �̃ > 0. Rearranging (C.1) yields

c
T
x̃� �̃ logB�(x̃,u) = c

T
x
� � �̃ logB�(x

+
,u).

By optimality of x+ and x
�, we have c

T
x � c

T
x
� and logB�(x,u)  logB�(x+

,u)

respectively, for all x 2 N� (X (u)) \ X (u). Therefore, cTx̃ � �̃ logB�(x̃,u)  c
T
x �

�̃ logB�(x,u) for all x 2 N� (X (u)) \ X (u), concluding that the optimal solution to

BP(u, B�, �̃) must satisfy x
�̃(u) 2 X (u).

Now for any " > 0, observe that

c
T
x̃� (�̃+ ") logB�(x̃,u)  c

T
x� �̃ logB�(x,u)� " logB�(x̃,u), 8x 2 N� (X (u)) \ X (u)

< c
T
x� �̃ logB�(x,u)� " logB�(x,u), 8x 2 N� (X (u)) \ X (u)

The first line is obtained by adding " logB�(x̃,u) to both sides, and the second from

B�(x̃,u) > B�(x,u) for x 2 N� (X (u)) \ X (u). Thus, BP(u, B�, �̃ + ") yields feasible

solutions to OP(u).

Lemma 4. If Assumption 3 is satisfied, then there exists �̃0 such that for all �  �̃
0, the

optimal solution to BP(u, B�,�) is infeasible for OP(u), i.e., x�(u) 2 N� (X (u))\X (u).

Proof. Let x
† 2 argmaxx {B�(x,u) | x 2 X (u)}. Then, for x̃

0 satisfying Assumption 3

Statement 2, let

�̃
0 =

c
T
x
⇤(u)� c

T
x̃
0

logB�(x†,u)� logB�(x̃0,u)
. (C.2)

Assumption 3 Statement 2 ensures c
T
x
⇤(u) > c

T
x̃
0 and logB�(x†

,u) > logB�(x̃0
,u).
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c

x
⇤(u)

x̃

x̃
0

P

X (u)

Figure C.1: The canonical barrier BP(x) where the dotted lines are level sets. x
⇤(u) is

optimal for OP(u) while x̃ and x̃
0 satisfy Lemmas 3 and 4 respectively.

Therefore, �̃0 > 0. Rearranging (C.2) gives us

c
T
x̃
0 � �̃0 logB�(x̃

0
,u) = c

T
x
⇤(u)� �̃0 logB�(x

†
,u).

By optimality of x⇤(u) and x
†, we have c

T
x � c

T
x
⇤(u) and logB�(x,u)  logB�(x†

,u)

respectively, for all x 2 X (u). Therefore c
T
x̃
0 � �̃0 logB�(x̃0

,u)  c
T
x � �̃0 logB�(x,u)

for all x 2 X (u), concluding that the optimal solution to BP(u, B�, �̃
0) must satisfy

x
�̃
0
(u) 2 N� (X (u)) \ X (u).

Now for any " > 0, observe that

c
T
x̃
0 � (�̃0 � ") logB�(x̃

0
,u)  c

T
x� �̃0 logB�(x,u) + " logB�(x̃

0
,u), 8x 2 X (u)

< c
T
x� �̃0 logB�(x,u) + " logB�(x,u), 8x 2 X (u)

The first line is obtained by subtracting " logB�(x̃0
,u) to both sides, and the second from

B�(x̃0
,u) < B�(x,u) for all x 2 X (u). Thus, BP(u, B�, �̃

0� ") yields infeasible solutions
to OP(u).

Lemma 4 and Assumption 3 explore the case where the barrier problem produces

undesirable results. Otherwise, if cTx̃0
> c

T
x
⇤(u) and B�(x̃0

,u) � B�(x,u) for all x̃0 2
N� (X (u)) \ X (u) and x 2 X (u), OP(u) could be solved by classical IPMs.

Lemmas 3 and 4 state that when � is set su�ciently high (or low), the corresponding

optimal solution x
�(u) is a certifiably feasible (or infeasible) solution to OP(u). Fur-

thermore, there exists a trajectory, i.e., feasibility (or infeasibility) is guaranteed for all

� su�ciently high (or low). Assuming access to an oracle  (x,u), we con construct a
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Algorithm 5 Interior Point Method with a �-barrier
Input: �-barrier B�(x,u); Initial dual variable �0 and decay rate ⌫ < 1; Oracle  (x,u).
Output: Optimal solution x

�(u) to the barrier problem.
1: for j = 0 to M do

2: Solve BP(u, B�,�j) to obtain optimal solution x
�j(u).

3: if  (x�j(u),u) = 0 then

4: return Previous optimal solution x
�j�1(u).

5: end if

6: end for

simple IPM (see Algorithm 5) to obtain optimal solutions to OP(u). We initialize with a

large �0 that satisfies Lemma 3. We define a decay rate ⌫ < 1 and a number of iterations

j 2 0, . . . , J . Then, for each j, we simply let �j = �0⌫
j and solve BP(u, B�,�j) to obtain

a new (�, ✏)-optimal solution in each iteration. At the end of each iteration, the oracle

checks if the solution is still feasible, and terminates when the solution exits the feasible

set.

Recall that we always have access to the canonical barrier BP(x) and therefore, we

only consider any �-barrier where �  dH(X (u),P). We prove the optimality bound for

solutions obtained via Algorithm 5.

Proposition 11. Consider a �-barrier where �  dH(X (u),P). Suppose that x̃1, x̃2 2
X (u) and x̃

0
1, x̃

0
2 2 N� (X (u))\X (u) satisfy Statements 1 and 2 of Assumption 3, respec-

tively. Assume without loss of generality B�(x̃1,u) > B�(x̃2,u) and c
T
x̃
0
1 > c

T
x̃
0
2. Let

x
P 2 argminx {f(x) | x 2 P}. For M > 0 and j 2 {0, . . . , J}, consider

�0 =
c
T
x̃1 � c

T
x
P

logB�(x̃1,u)� logB�(x̃2,u)
, ⌫ =

✓
c
T
x̃
0
1 � c

T
x̃
0
2

��0 logB�(x̃0
1,u)

◆1/M

, �j = �0⌫
j

Then, the following statements are true:

1. An optimal solution x
�0(u) to BP(u, B�,�0) is a feasible solution for OP(u).

2. There exists 1  j
⇤  M such that for all j < j

⇤, an optimal solution x
�j(u)

to BP(u, B�,�j) is feasible for OP(u) and for all j � j
⇤, x�j(u) is infeasible for

OP(u).

3. For any j < j
⇤, an optimal solution x

�j(u) is (0, ✏j)-optimal for OP(u) where

✏j =
�
c
T
x̃
0
1 � c

T
x̃
0
2

�
⌫
j�M

.

Further, for any j � j
⇤, x�j(u) is (�, ✏j)-optimal for OP(u), where �  dH(X (u),P).
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Proof. We first make several observations about the parameters. Note that because

X (u) ⇢ P relaxes the feasible set, we have c
T
x
P  c

T
x
⇤(u). Next for all j  M ,

�j = �0⌫
j and specifically �M = �0⌫

M = �(cTx̃0
1 � c

T
x̃
0
2)/ logB�(x̃0

1,u).

To prove the first statement, we show that �0 > �̃ where �̃ is defined as in (C.1) and

constructed using x̃1. Note that c
T
x
P  c

T
x
� and by Assumption 3, logB�(x̃2,u) >

logB�(x+
,u). We substitute c

T
x
P and logB�(x̃2,u) in �0 and prove �0 > �̃. By

Lemma 3, Statement 1 must hold.

We use a similar argument using x̃0
1 to show �M < �̃

0 as defined in (C.2). By Lemma 4,

an optimal solution x
�M must be infeasible for OP(u). Given that �j decreases every

iteration and using the first statement, there must exist a cuto↵ point 1  j
⇤  M for

which �j⇤ < �̃
0 and �j⇤�1 � �̃

0. Therefore, Statement 2 must also hold.

In order to prove the third statement, recall that �  dH(X (û),P) for all j. We

first prove (�(u), ✏j)-optimality when j = M , and then prove for j < M . Let ✏M =

c
T
x̃
0
1 � c

T
x̃
0
2. Note that

�M =
c
T
x̃
0
1 � c

T
x̃
0
2

� logB�(x̃0
1,u)

=
✏M

� logB�(x̃0
1,u)

<
✏M

� logB�(x⇤,u)
.

The second equality follows from substituting the value of ✏M and the inequality from

B�(x̃0
1,u) < B�(x⇤(u),u) (i.e., Assumption 3). We next show that x�M satisfies (�(u), ✏M)-

optimality,

c
T
x
⇤(u) + ✏M > c

T
x
⇤(u)� �M logB� (x

⇤(u),u)

� c
T
x
�M (u)� �M logB�

�
x
�M (u),u

�

> c
T
x
�M (u).

The first line follows from substituting the value of ✏M and the second from the optimality

of x�M (u) for BP(u, B�,�M). The third line follows from ��M logB�(x�M (u),u) > 0.

For each j < M , we have �j = �M⌫
j�M . Then, we write ✏j = (cTx̃0

1 � c
T
x̃
0
2)⌫

j�M .

The same steps used for the j = M case are repeated to obtain (�(u), ✏j)-optimality

certificates. Finally, note that from Statement 2, for all j < j
⇤, the optimal solutions

x
�j(u) are feasible for OP(u). By optimality of x⇤(u) for OP(u), we have � = 0 for all

j < j
⇤.

Proposition 11 first provides parameters �0 > �̃ and �M < �̃
0 for which the optimal

solutions toBP(u, B�,�0) andBP(u, B�,�M) lie inside and outside of X (u), respectively.

Next, it shows that the sequence of �j produces a sequence of optimal solutions {x�j(u)}
that start within the feasible set X (u) and proceed to move outside. Finally, it derives a
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sequence of corresponding {✏j} such that the sequence of solutions are (�(u), ✏j)-optimal

for OP(u). This implies the final solution is (0, (cTx̃0
1 � c

T
x̃
0
2)⌫

j
⇤�1�M))-optimal for

OP(u).

The above proposition summarizes an IPM for solving OP(u) when given a �-barrier

B�(x,u) at least as good as the canonical barrier and an oracle  (x,u). The IPM behaves

predictably; by initializing with large �, we ensure that we obtain feasible solutions, but

by decreasing �, we know that the solution will ultimately be infeasible. An oracle could

identify the point of termination immediately before the IPM leaves the feasible set. We

can from here obtain a tight bound on the (�, ✏)-optimality of the final solution.

While direct optimization is desirable for its structural properties, this IPM approach

is reliant on access to a �-barrier. On the other hand, IPMAN learns a classifier that

approximates a �-barrier after several iterations. Therefore, unless we are given an a

priori �-barrier (e.g., a canonical barrier for P), this IPM approach is not necessarily

feasible from the onset. A potential fix would be to first train IPMAN until a �-barrier is

obtained and then use the �-barrier IPM to solve subsequent problems. This ties to the

second di↵erence between the two approaches; IPMAN is ultimately a predictive model

and is therefore subject to prediction error. On the other hand, prediction from a trained

model is much faster than direct optimization. Therefore, in cases where the problem is

large and an IPM would be di�cult to solve or require numerous queries from an oracle,

the predictive power of IPMAN yields more practical benefits.

C.2 Proof of the generalization bound (Theorem 8)

The proof of the generalization bound uses a Generalization Lemma of Bertsimas and

Kallus (2020) to bound the (�, ✏)-bound in terms of an empirical risk objective function

error between F
⇤(u) versus x�(u) and Markov’s inequality to translate this bound to a

probabilistic (�, ✏)-optimality certificate. However, in order to use the lemma in this way,

we first require an auxiliary result to relate F
⇤ with RNu(F).

Assumption 2 states that the generative model F ⇤ is a composition; we project the

classifier output to P whenever F
(j,k)(u) /2 P . Although F

(j,k) 2 F , the final model

F
⇤(u) := ⇡(F (u)) = argminx{kx� F (u)k | x 2 P} may not be a member of F . We

first bound the Rademacher complexity of models composed from projection below.

Lemma 5. Let F = {F : U ! Rn} be a model class and ⇡(F) = {⇡(F ) | F 2 F} be

the class of models composed by a projection to a polyhedron P. Then for any Û ⇠ Pu,

R̂Nu(⇡(F), Û) 
p
2nR̂Nu(F , Û).
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Proof. We want to show for any fixed Û that

E�⇠p�

"
2

Nu
sup
F2F

NuX

i=1

�T
i
⇡
�
F (ûi)

�
#

p
2nE�⇠p�

"
2

Nu
sup
F2F

NuX

i=1

�T
i
F (ûi)

#
. (C.3)

By conditioning and iterating, it su�ces to prove the following inequality for any function

⌅(F ) : F ! R,

E�⇠p�


sup
F2F

�T
⇡(F ) + ⌅(F )

�
 E�⇠p�


sup
F2F

p
2n�T

F + ⌅(F )

�
. (C.4)

We first prove inequality (C.4), before returning to the main lemma.

As � ⇠ p� is a random vector of i.i.d. Rademacher variables, it is supported over the

(ordered) set {(�1, . . . ,�1,�1), (�1, . . . ,�1, 1), . . . , (1, . . . , 1, 1)} all with equal proba-

bility. Let �̂` denote the `-th element of this set. By iterating over all values, we expand

the left-hand-side of (C.4) out to:

E�⇠p�


sup
F2F

�T
⇡(F ) + ⌅(F )

�
=

1

2n

2nX

`=1

✓
sup
F2F

�̂T
`
⇡(F ) + ⌅(F )

◆
(C.5)

=
1

2n

2n�1X

`=1

✓
sup
F2F

�
�̂T

`
⇡(F ) + ⌅(F )

 
+ sup

F2F

�
��̂T

`
⇡(F ) + ⌅(F )

 ◆
(C.6)

=
1

2n

2n�1X

`=1

✓
sup

F1,F22F
�̂T

`
(⇡(F1)� ⇡(F2)) + ⌅(F1) + ⌅(F2)

◆
. (C.7)

Equation (C.5) follows by letting �̂` iterate over the support of the distribution. Equa-

tion (C.6) follows from the symmetry of the Rademacher distribution. That is, for every

�̂`, there exists ��̂` with equal probability, and we need to only characterize half of the

elements in the support. (C.7) merges the suprema.

By the Obtuse Angle Criterion, projection to a convex set is a non-expansive operation

(i.e., k⇡(F1)� ⇡(F2)k  kF1 � F2k). We use the Cauchy-Schwarz inequality and the non-

expansiveness property (in (C.8) and (C.9) below, respectively) to remove the dependency

on the projection operator:

RHS (C.7)  1

2n

2n�1X

`=1

✓
sup

F1,F22F
k�̂`k k⇡(F1)� ⇡(F2)k+ ⌅(F1) + ⌅(F2)

◆
(C.8)

 1

2n

2n�1X

`=1

✓
sup

F1,F22F
k�̂`k kF1 � F2k+ ⌅(F1) + ⌅(F2)

◆
(C.9)
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 1

2n

2n�1X

`=1

✓
sup

F1,F22F

p
n kF1 � F2k+ ⌅(F1) + ⌅(F2)

◆
(C.10)

 1

2

✓
sup

F1,F22F

p
n kF1 � F2k+ ⌅(F1) + ⌅(F2)

◆
(C.11)

 1

2

�p
n kF ⇤

1 � F
⇤
2 k+ ⌅(F ⇤

1 ) + ⌅(F
⇤
2 )
�
. (C.12)

Inequality (C.10) follows by noting k�k 
p
n for all � ⇠ p� and (C.11) from the fact

that the dependency on �̂` has been removed. We obtain (C.12) by letting F
⇤
1 and F

⇤
2

be the two values that attain the supremum.

We use the Khintchine inequality to bound kF ⇤
1 � F

⇤
2 k 

p
2E�⇠p�

⇥���T(F ⇤
1 � F

⇤
2 )
��⇤.

We then rearrange the terms as follows:

RHS (C.12)  1

2

⇣p
2nE�⇠p�

⇥���T(F ⇤
1 � F

⇤
2 )
��⇤+ ⌅(F ⇤

1 ) + ⌅(F
⇤
2 )
⌘

(C.13)

=
1

2

⇣
E�⇠p�

hp
2n
���T(F ⇤

1 � F
⇤
2 )
��+ ⌅(F ⇤

1 ) + ⌅(F
⇤
2 )
i⌘

(C.14)

 1

2

✓
E�⇠p�


sup

F1,F22F

p
2n
���T(F1 � F2)

��+ ⌅(F1) + ⌅(F2)

�◆
(C.15)

=
1

2

✓
E�⇠p�


sup
F2F

np
2n�T

F + ⌅(F )
o
+ sup

F2F

n
�
p
2n�T

F + ⌅(F )
o�◆

(C.16)

= E�⇠p�


sup
F2F

p
2n�T

F + ⌅(F )

�
. (C.17)

Inequality (C.14) brings all of the terms inside the expectation. (C.15) upper bounds by

the supremum. Because ⌅(F1) + ⌅(F2) is invariant under the exchange of F1 and F2,

the supremum will be obtained when �T(F1 � F2) is positive, meaning we can remove

the absolute value and separate the supremum in (C.16). Finally, the symmetry of the

random variable � implies that the two suprema are equal, thereby giving (C.17).

To complete the proof, we use a standard conditioning argument (see Maurer (2016))

to show (C.3) decomposes to (C.4). For any 0  m  Nu, we prove the following by

induction:

E�⇠p�

"
sup
F2F

NuX

i=1

�T
i
⇡
�
F (ûi)

�
#
 E�⇠p�

"
sup
F2F

mX

i=1

p
2n�T

i
F (ûi) +

NuX

i=m+1

�T
i
⇡
�
F (ûi)

�
#
.
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The case for m = 0 is an identity. Now for fixed values of �̂i, 8i 6= m, let

⌅(F ) =
m�1X

i=1

p
2n�̂T

i
F (ûi) +

NuX

i=m+1

�̂T
i
⇡
�
F (ûi)

�
.

Then, assuming the inequality holds for m� 1, we show

E�⇠p�

"
sup
F2F

NuX

i=1

�T
i
⇡
�
F (ûi)

�
#
 E�⇠p�

"
sup
F2F

m�1X

i=1

p
2n�T

i
F (ûi) +

NuX

i=m

�T
i
⇡
�
F (ûi)

�
#

= E�⇠p�


E�m⇠p�


sup
F2F

�T
m
⇡
�
F (ûm)

�
+ ⌅(F )

���� {�̂i, 8i 6= m}
��

 E�⇠p�


E�m⇠p�


sup
F2F

p
2n�T

m
F (ûm) + ⌅(F )

���� {�̂i, 8i 6= m}
��

= E�⇠p�

"
sup
F2F

mX

i=1

p
2n�T

i
F (ûi) +

NuX

i=m+1

�T
i
⇡
�
F (ûi)

�
#
.

The second inequality comes from substituting (C.4). When m = Nu, the proof is

complete.

Lemma 5 can be seen as an extension of the main theorem of Maurer (2016) and is

proved using a similar sequence of steps. There, the authors showed that composition

of a Lipschitz scalar-valued vector function onto a vector-valued model class bounds

the Rademacher complexity of the composed class by
p
2L. In the above, we compose

the projection operator, a vector-valued function, to the vector-valued model class and

bound the Rademacher complexity by
p
2n. Although we only specifically consider the

projection operator, the proof easily extends to any vector-valued function, so long as it

is L-Lipschitz, whereupon we would reintroduce L back into the bound.

Before proving Theorem 8, we re-state the Generalization Lemma of Bertsimas and

Kallus (2020).

Lemma 6 (Bertsimas and Kallus (2020)). Consider a function z(x,u) : P⇥U ! R that

is bounded and L1-Lipschitz continuous in x using the k·k1 norm,

sup
x2P,u2U

z(x,u)  K, sup
x1 6=x22P,u2U

z(x1,u)� z(x2,u)

kx1 � x2k1
 L1.
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For any � > 0, with probability at least 1� � with respect to the sampling of Û ,

Eu⇠Pu

h
z
�
F (u),u

�i
 1

Nu

NuX

i=1

z
�
F (ûi), ûi

�
+K

s
log(1/�)

2Nu
+ L1RNu

�
⇡(F)

�
, 8F 2 ⇡(F).

We are now ready to prove Theorem 8.

Proof. The proof follows by first applying Lemma 6, before applying Markov’s inequality.

We let z(x,u) = |cTx) � c
T
x
�(u)|, as a function of x 2 P and u 2 U , and show it is

bounded from above

sup
x2P,u2U

z(x,u) = sup
x2P,u2U

��cTx� c
T
x
�(u))

�� (C.18)

 max
x2P

c
T
x�min

x2P
c
T
x = K. (C.19)

Because P is compact, (C.19) is bounded. We set K to be equal to RHS (C.19).

We next show L1-Lipschitz continuity,

sup
x1 6=x22P,u2U

z(x1,u)� z(x2,u)

kx1 � x2k1
= sup

x1 6=x22P,u2U

��cTx1 � c
T
x
�(u)

���
��cTx2 � c

T
x
�(u)

��
kx1 � x2k1

(C.20)

 sup
x1 6=x22P,u2U

��cTx1 � c
T
x
�(u)� c

T
x2 + c

T
x
�(u)

��
kx1 � x2k1

(C.21)

= sup
x1 6=x22P

|cTx1 � c
T
x2|

kx1 � x2k1
= L1 (C.22)

Inequality (C.21) follows from the Reverse Triangle Inequality. (C.22) follows from the

fact that f(x) is linear and therefore, Lipschitz continuous using the k·k1 norm. We let

L1 be the Lipschitz constant of f(x).

Because z(x,u) satisfies the bounded and Lipschitz continuity assumptions, we apply

Lemma 6 to obtain

Eu⇠Pu

h
z
�
F (u),u

�i
 1

Nu

NuX

i=1

z
�
F (ûi), ûi

�
+K

s
log(1/�)

2Nu
+ L1RNu

�
⇡(F)

�
, 8F 2 ⇡(F).

Specifically, this bound holds for F ⇤ 2 ⇡(F). By Lemma 5, we can bound RNu(⇡(F)) p
2nRNu(F).



Appendix C. Supplement to Chapter 5 141

The remainder of the proof follows from Markov’s inequality. For � > 0,

Pu

n
z
�
F

⇤(u),u
�
> �

o
= Pu

n ��cTF ⇤(u)� c
T
x
�(u)

�� > �

o
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h ��cTF ⇤(ûi)� c
T
x
�(ûi)

��
i

�
.

From the Law of Total Probability, we obtain
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o
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��+K

s
log(1/�)

2Nu
+
p
2nL1RNu(F)

�
,

with probability 1 � �. The second and third line follow from Markov’s inequality and

substituting the bound from Lemma 6, respectively. Given that we have a probabilistic

bound for the error of F ⇤(u) from x
�(u), we bound the error to x

⇤(u). Recall that

x
�(u) is (�, ✏)-optimal. There are two cases to consider. First, if cTx�(u)  c

T
F (u)) 

c
T
x
�(u) + �, then by substitution,

c
T
F

⇤(u)� ✏� � < c
T
x
⇤(u) < c

T
F

⇤(u) + �.

Alternatively, if cTF ⇤(u)  c
T
x
�(u)  c

T
F

⇤(u) + �, then by substitution,

c
T
F

⇤(u)� ✏ < c
T
x
⇤(u) < c

T
F

⇤(u) + � + �.

Note that both of these events can be covered by adding and subtracting � to both the

upper and lower bounds respectively. Then,

Pu

n
c
T
F

⇤(u)� ✏� � < c
T
x
⇤(u) < c

T
F

⇤(u) + � + �

o
� Pu

n ��cTF ⇤(u)� c
T
x
�(u)

��  �

o
,

completing the proof.
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C.3 Implementation details for predicting optimal

dose distributions

C.3.1 Problem formulation

In our RT experiments, we assume that each patient contains seven organs-at-risk (OARs)

(i.e., brainstem, spinal cord, right parotid, left parotid, larynx, esophagus, and mandible)

to which we minimize the average dose. Each patient also contains up to three plan-

ning target volumes (PTVs) with di↵erent prescription doses (i.e., PTV56, PTV63, and

PTV70 with 56 Gy, 63 Gy, and 70Gy as prescription doses, respectively). We remark

that constraints to the brainstem, spinal cord, and esophagus are generally easily satisfied

by all predictions. Consequently, we focus specifically on the right parotid, left parotid,

larynx, mandible, PTV56, PTV63, and PTV70.

Each of the OARs and targets require polyhedral upper and lower bound constraints

to the mean dose delivered to that structure. Furthermore, there exists a hidden “clinical

criteria” constraint for each OAR and target that must be satisfied at the discretion of

an oncologist. That is, if the ground truth treatment plan for a given patient from the

data set satisfies a hidden constraint, then any generated plan for that patient must also

satisfy that constraint. The hidden constraint for each OAR is an upper bound on either

the mean or maximum dose delivered to that structure, while the hidden constraint for

each target is a lower bound on the value-at-risk, i.e., minimum dose delivered to 90-th

percentile of the target structure. The oracle  (x,u) is a look-up table that compares the

dose generated by our model with the ground truth (i.e., what was actually delivered).

In particular, for each structure,  (x,u) checks whether the input dose satisfies all the

constraints (i.e., two polyhedral and one hidden constraints).

C.3.2 Neural network architecture

(Babier et al., 2020a) propose a modified version of the generative adversarial network

of Chapter 4, extending their model to a 3-D GAN. We use a modified version of the

generative adversarial network (GAN) of (Babier et al., 2020a) where we take as input a

one-hot encoded CT image and incorporate average pooling layers. The GAN consists of

two networks learn to predict dose distributions. The architectures for F (u) and B(x,u)

are described in Tables C.1 and C.2, respectively.

The generator takes as input a tensor u 2 R128⇥128⇥128⇥8, where the first three di-

mensions correspond to a voxel in the patient’s geometry. The fourth dimension is a

concatenation of the CT image greyscale and a one-hot encoded vector in {0, 1}7 whose
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Table C.1: Overview of the generator architecture. BN refers to batch normalization; LR,
R, and tanh refer to Leaky ReLU (0.2 slope), ReLU, and Tanh activations, respectively;
AP refers to a mean pool; and D refers to dropout.

Layer Concatenate with Input shape Block Activation

1 — 128⇥ 128⇥ 128⇥ 8 conv3d BN-LR
2 — 64⇥ 64⇥ 64⇥ 64 conv3d BN-LR
3 — 32⇥ 32⇥ 32⇥ 128 conv3d BN-LR
4 — 16⇥ 16⇥ 16⇥ 256 conv3d BN-LR
5 — 8⇥ 8⇥ 8⇥ 512 conv3d BN-LR
6 — 4⇥ 4⇥ 4⇥ 512 conv3d BN-LR
7 — 2⇥ 2⇥ 2⇥ 512 deconv3d LR
8 layer 5 output 4⇥ 4⇥ 4⇥ 1024 deconv3d BN-R
9 layer 4 output 8⇥ 8⇥ 8⇥ 1024 deconv3d BN-D-R
10 layer 3 output 16⇥ 16⇥ 16⇥ 512 deconv3d BN-D-R
11 layer 2 output 32⇥ 32⇥ 32⇥ 256 deconv3d BN-R
12 layer 1 output 64⇥ 64⇥ 64⇥ 128 deconv3d AP-tanh

Output — 128⇥ 128⇥ 128⇥ 1 — —

elements label whether the voxel belongs to one of the seven contoured structures. The

generator then outputs a tensor x 2 R128⇥128⇥128 whose elements specify the dose to be

delivered to each voxel of the patient.

The classifier is trained to predict whether a given dose distribution satisfies all of

the constraints (both hidden and polyhedral) for each structure of the patient. This

network takes as input the concatenated tensor (x,u) and outputs a vector in [0, 1]7,

whose elements each indicate the classifier’s belief of whether the given dose distribution

has satisfied all of the constraints for each specific structure. Consequently, learning

feasibility becomes a multi-label classification problem and the classifier acts as seven

separate classifiers each predicting feasibility with respect to an individual structure,

but whose model parameters are shared with each other. For any structure, in order

to classify a dose distribution as satisfying the relevant constraints, the classifier must:

(i) first determine from the dose whether the polyhedral constraints are satisfied, (ii)

determine from the CT image whether the patient requires a hidden constraint to be

satisfied, and (iii) determine from the dose whether the hidden constraint is satisfied if

this constraint is required for the patient. Overall, a dose distribution is feasible only if

all constraints are satisfied.

C.3.3 Implementation of the IPMAN algorithm



Appendix C. Supplement to Chapter 5 144

Table C.2: Overview of the classifier architecture. BN refers to batch normalization; LR,
R, and sigmoid refer to Leaky ReLU (0.2 slope), ReLU, and Sigmoid activations.

Layer Input size Block Activation

1 128⇥ 128⇥ 128⇥ 9 conv3d LR
2 64⇥ 64⇥ 64⇥ 64 conv3d BN-LR
3 32⇥ 32⇥ 64⇥ 128 conv3d BN-LR
4 16⇥ 16⇥ 16⇥ 256 conv3d BN-LR
5 8⇥ 8⇥ 8⇥ 512 conv3d sigmoid

Output 7 — —

Algorithm 6 Generator pre-training and data augmentation

Input: Feasible and input data sets D = {(x̂i, ûi)}Nu
i=1, Û = {ûi}Nu

i=1, infeasible data set
D̄ = ;, Pre-training number of epochs EST .

Output: Pre-trained generative model F (0,0), Feasible and infeasible data sets D, D̄.
1: Initialize generator and discriminator F,D
2: for e = 1 to EST do

3: Update generator and discriminator F ⇤
, D

⇤  Adam(rLST ).
4: for all ûi 2 Û do

5: Append D  D [ (F ⇤(ûi), ûi) if  (F ⇤(ûi), ûi) = 1 else D̄  D̄ [ (F ⇤(ûi), ûi).
6: end for

7: end for

8: return F
(0,0)  F

⇤
,D, D̄.

In this subsection, we describe the exact implementation of the IPMAN algorithm

used in our experiments. We summarize the steps in Algorithm 7. As our generative and

classification models are neural networks, we remark on several improvements that can

be made to the algorithm.

Pre-training as a GAN

Just as classical IPMs require a good initial point (i.e., lying within the feasible set) in

order to construct a trajectory of points leading to an optimal solution, IPMAN can be

made more e�cient by ensuring that the generative model is initialized to predict points

that are likely to be feasible. This initialization can greatly improve the training time

and stability of the algorithm. Consequently, we first pre-train the generative model and

subsequently apply transfer learning at the beginning of the algorithm (Goodfellow et al.,

2016).

Pre-training amounts to training the generative model first as a Style Transfer GAN

to learn to predict dose distributions from CT images as in Mahmood et al. (2018). The
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Algorithm 7 IPMAN for radiation therapy

Input: Data sets of decisions D, D̄, and inputs Û = {ûi}Nu
i=1, Set of dual variables

{�j}Mj=0, Number of iterations K, Number of epochs EB, EF , Subset sampling rate s
Output: Final generative models F (j,K) for j 2 {0, . . . ,M}
1: Pre-train generator using Algorithm 6.
2: Initialize generator F (j,0)  F

⇤ for j 2 {0, . . . ,M}, classifier B.
3: for k = 1 to K do

4: Sample subsets to train D(k) = �(D; s), D̄(k) = �(D̄; s|D|/|D̄|).
5: for e = 0 to EB do

6: Update classifier B(k)  Adam(rLB).
7: end for

8: for j = 0 to M do

9: for e = 0 to EF do

10: Update generator F (j,k)  Adam(rLF ).
11: end for

12: for all ûi 2 Û do

13: Append D  D [ (F (j,k)(ûi), ûi) if  (F (j,k)(ûi), ûi) = 1 else D̄  D̄ [
(F (j,k)(ûi), ûi).

14: end for

15: end for

16: end for

17: return F
(j,K) for j 2 {0, . . . ,M}

steps are summarized in Algorithm 6. In order to pre-train our generative model, we

introduce a discriminator network D(x,u) : R128⇥128⇥128 ⇥ R128⇥128⇥128⇥8 ! R. As in a

Style Transfer GAN, we train the discriminator using D to classify whether a given dose

and CT image pair belongs to the data distribution and a generative model to predict

dose distributions that fool the discriminator. Specifically,

min
F

max
D

8
<

:LST :=
1

Nu

X

(ûi,x̂i)2D

logD(x̂i, ûi) + log
�
1�D(F (ûi), ûi)

�
+ �ST kF (ûi)� x̂ik1

9
=

; .

The l1-loss is a regularization term that ensures that the generator predicts dose distribu-

tions that resemble the ground truth and �ST is the regularization parameter. GANs are

trained by iterative gradient descent between F (u) and D(x,u). In our implementation,

we set �ST = 90 and train the GAN for 50 epochs, following the practice from Mahmood

et al. (2018). At the end of pre-training, we discard D(x,u) and let F (0,0)(u) denote the

trained generative model.
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Sampling an infeasible data set of decisions D̄

Training IPMAN requires an initial data set of infeasible decisions D̄. In practice, a data

set of infeasible decisions would not be available a priori and, instead, is generated by

sampling. Note, however, that in every epoch of the pre-training step, the generative

model generates candidate solutions F (ûi) to attempt to fool the discriminator. We

save the generated decisions during pre-training and label them afterwards as feasible or

infeasible using the oracle. By training using 100 patients for 50 epochs, we generate a

total of 5000 dose distributions that are labelled as feasible or infeasible and then binned

in the appropriate D or D̄, respectively. The steps are summarized in Algorithm 6.

Learning multi-label feasibility with sub-sampled data sets

Training IPMAN for multiple iterations can produce a large quantity of generated data

points. Furthermore, because we consider feasibility for each structure separately, train-

ing the classifier quickly becomes prohibitively expensive. In order to reduce training

time, we do not use the entire data sets D and D̄ but rather smaller sampled subsets.

Let �(·; s) be a random sampling operator (without replacement) where s is the frac-

tion of points to sample. For example, �(D; 0.5) denotes a randomly sampled subset

of size 0.5|D|. In our implementation, we set s = 0.3 and trained the classifier using

D(k) = �(D; 0.3) and D̄(k) = �(D̄; 0.3|D|/|D̄|); this reduced the training time to 24

hours.

We next define the multi-label classification problem. For any (ûi, x̂i) in D or D̄, let

 i,r be a label determining whether the dose distribution had satisfied the polyhedral and

(conditional) hidden constraints for structure r. That is, if the ground truth dose for ûi

satisfied the hidden constraints,  i,r = 1 if the polyhedral and hidden constraints were

satisfied and zero otherwise. If the clinical dose did not satisfy the hidden constraint,

then  i,r = 1 if only the polyhedral constraints were satisfied; here, the hidden constraint

is inactive for this patient. Then, let [B(x,u)]r denote the r-th element of the classifier

output. The classifier problem is

max
B2B

8
>><

>>:
LB :=

1

Nx + N̄x

X

(x̂i,ûi)2
D(k)[D̄(k)

X

r2R

⇣
 i,r log

⇥
B(x̂i, ûi)

⇤
r
+ (1�  i,r) log

⇣
1�

⇥
B(x̂i, ûi)

⇤
r

⌘⌘
9
>>=

>>;
.

The above problem specializes to FCP(D(k)
, D̄(k)) in the single-class setting (i.e.,

|R| = 1). For a dose distribution to be classified feasible, B(x,u)r = 1 for all r 2 R.

This approach of separating the constraint satisfaction along all structures individually is
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equivalent to modeling the optimization problem via a barrier function for each structure.

Furthermore, the barriers are approximated by a neural network classifier with shared

weights except in the last layer. As we describe later below, the objective of the barrier

optimization problem is obtained by summing all of the separate barriers, i.e., f(x) �
�
P

r2R log[B(x,u)]r. Finally, we minimize LB using the Adam optimizer for EB = 10

epochs in every iteration. Note that it is essential to ensure that the classifier accurately

predicts feasibility in order to be able to approximate a �-barrier.

Regularized barrier optimization problem

We include an l1 regularization term in training. This term is equivalent to the one used

in the pre-training stage and is useful to ensure that predicted dose distributions do not

deviate too far from the ground truth. Note that we only use this regularization in the

first set of experiments (Section 5.7.3) and remove it in the second set of experiments

(Section 5.7.4). There, the ground truth plans may not be feasible, meaning that it would

be incorrect to replicate ground truth behavior. However, a consequence of removing a

regularization term is that certain models may become unstable and deviate significantly

if the classifier is not a complete �-barrier. We observe this behavior in � = 4 where the

model minimizes dose while ignoring feasibility.

With slight abuse of notation, let z(F (u)) denote the vector of average doses to each

structure as constructed by the generative model. Then, the generative barrier problem

in this setting is

min
F2F

8
<

:LF :=
1

Nu

X

ûi2Û

 
1

�j
f

⇣
z
�
F (ûi)

�⌘
+ �ST kF (ûi)� x̂ik1 �

X

r2R

h
B

(k)
�
F (ûi), ûi

�i

r

!9=

; .

We minimize LF using the Adam optimizer for EF = 1 epoch in every iteration. It

is important to ensure that the classifier is trained close to optimality to ensure that

it approximates a �-barrier. Furthermore, given the nature of training the classifier,

it is often the case that the classifier’s support is uneven and may have areas of local

optimality that the generator may abuse. A standard practice in the GAN literature is

to control the training duration of the two networks; we employ a similar strategy by

training the generative model for a shorter duration than the classifier in order to ensure

that the generator does not overfit and abuse local optima caused by the classifier. As

previously mentioned, we set �ST = 50 for the first set of experiments but require that

�ST = 0 for the second set.
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Supplement to Chapter 6

D.1 Generalizing Complement SB to ellipsoids

The Complement SB algorithm can also be extended to sample over the complement of

non-polyhedral sets. Here, we focus specifically on ellipsoidal sets, where we develop an

analogous result to Theorem 1, i.e., the Complement SB covers the entire complement

of the set. However, note that the extension requires a di↵erent proof technique.

Assume that our set is a compact, full-dimensional ellipsoid defined as

X =
�
x | (x� xr)

T
P(x� xr)  1

 
,

where P 2 Sn⇥n is a positive semi-definite matrix and xr 2 Rn is the centroid. We can

rewrite this ellipsoid as X =
�
x | 1

2x
T
Ax+ b

T
x+ c  0

 
, where A 2 Sn⇥n, b 2 Rn, and

c 2 R are determined by expanding the quadratic term.

Let f(x) = 1
2x

T
Ax + b

T
x + c. For every w 2 bd(X ), the sub-gradient rf(w) =

A
T
w + b defines a supporting hyperplane of the ellipsoid, i.e.,

(AT
w + b)Tw � (AT

w + b)Tx, 8x 2 X .

From Rockafellar (1970), we may also write X as an intersection of the tangent half-

spaces, i.e., X = {x 2 Rn | rf(w)Tx � rf(w)Tx, 8w 2 bd(X )}.
The Complement SB algorithm for ellipsoids operates in the same manner as for

polyhedra with the only di↵erence being in how we generate a direction vector for the

next boundary point. When X is a polyhedron, we identify the current facet and select a

direction on the interior half-space of that facet. When X is an ellipsoidal set, we select

a direction on the interior tangent half-space. This is summarized in Algorithm 8.

148
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Algorithm 8 Complement Shake-and-Bake for Ellipsoids
Require: Ellipsoidal set X ; Sampling distributions pw(w0|w), pr(r|w), p⇠(⇠|r,w), Num-
ber of points N ; Initialization ŵ1 2 bd(X ), i = 1, D = ;
for i = 1 to N do

Randomly sample ri ⇠ pr(r|wi) and ⇠i ⇠ p⇠(⇠|r,w).
Update data set D  D [ {wi � ⇠iri}.
Let ✓i = max{t | wi + tri 2 X}.
With probability pw(wi + ✓iri|wi), update wi+1  wi + ✓iri and increase i i+ 1,
else wi+1 = wi.

end for

We first state the main theoretical result, that the entire complement is covered.

However, before proving the result, we present a technical lemma.

Theorem 11. Let µn denote the n-dimensional Lebesgue measure on a set. If p⇠(⇠|r,w) >

0 for all ⇠ 2 (0,1) and r,w 2 Rn, then for any initial point w0 and any µn-measurable

subset A ⇢ Rn \ X ,

lim
N!1

P
�
xN 2 A

�� w0

 
> 0. (D.1)

Recall that SB operates by generating direction vectors on the interior half-space

defined by the supporting hyperplanes. Points of the complement of the set are generated

by moving in the negative direction, i.e., directions on the exterior half-space of the

supporting hyperplanes. Thus to generate points in a specific region A ⇢ Rn \X , the set

X must have supporting hyperplanes that also act as separating hyperplanes between X
and A.

Lemma 1. For any bounded set A0, let

W :=

⇢
w 2 bd(X )

���� 9� > 0 : inf
x2A0
rf(w)Tx � rf(w)Tw + �

�
(D.2)

denote the points for which there is a corresponding supporting hyperplane of X that

strongly separates X and A0. If W is non-empty, then µn�1(W) > 0.

Proof. Select a point w0 2 W and let �0 be the corresponding slack variable defined

in (D.2). Let x
sup = supx2A0 kxk2 and let R = maxx,x02X kx� x

0k2 be the maximal

diameter of X . Finally, let

E :=

(
w0 � ✏

����� k✏k2 <
�0

krf(w0)k2 + kAk2,2 (R + xsup)

)
\ bd(X )
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denote the intersection of the boundary and a ball centered onw0. Note that µn�1(E) > 0

since it is the intersection of a ball and bd(X ). Thus, we only need to prove for each

point in E , that the supporting hyperplane of X is also a separating hyperplane, i.e.,

E ⇢W . We show for any w0 � ✏ 2 E ,

rf(w0 � ✏)Tx > rf(w0 � ✏)T(w0 � ✏), 8x 2 A0
.

We proceed as follows:

rf(w0 � ✏)T(w0 � ✏) (D.3)

= (AT
w0 �A

T✏+ b)Tw0 � (AT
w0 �A

T✏+ b)T✏ (D.4)

= (AT
w0 + b)Tw0 � ✏TA(w0 � ✏)� (AT

w0 + b)T✏ (D.5)

= rf(w0)
T
w0 � ✏TA(w0 � ✏)�rf(w0)

T✏ (D.6)

 rf(w0)
T
x� �0 � ✏TA(w0 � ✏)�rf(w0)

T✏ 8x 2 A0 (D.7)

Inequality (D.7) follows from w0 2 W and applying (D.2). We then apply the Cauchy-

Schwartz Inequality, decompose
��✏TA

��
2
using the matrix norm, and bound kw0 � ✏k2

by the maximal diameter:

RHS(D.7)  rf(w0)
T
x� �0 +

��✏TA
��
2
kw0 � ✏k2 + krf(w0)k2 k✏k2 8x 2 A0 (D.8)

 rf(w0)
T
x� �0 + k✏k2 kAk2,2 R + krf(w0)k2 k✏k2 8x 2 A0 (D.9)

Note that for any w0 � ✏ 2 W , there exists a slack variable ��0 > 0 such that �0 =

��0 + k✏k (krf(w0)k2 + kAk2,2 R + kAk2,2 xsup). Furthermore for any x 2 A0, that

✏TAx  k✏k2 kAk2,2 xsup. Substituting these two terms into (D.9) yields

RHS(D.9) = rf(w0)
T
x���0 � k✏k2 kAk2,2 x

sup 8x 2 A0

 rf(w0)
T
x���0 � ✏TAx 8x 2 A0

= rf(w0 � ✏)Tx���0 8x 2 A0

thus completing the proof.

Lemma 1 is the ellipsoid analogue of Boender et al. (1991, Lemma 2), which proved

a similar result for polyhedra. With this, we now prove Theorem 11.

Proof of Theorem 11. Without loss of generality, let r̃ = ⇠r and pr̃(r̃|w) = pr(r|w)p⇠(⇠|r,w).

Let pSB(w) denote the stationary distribution of the hidden state SB algorithm. Let
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A0 ⇢ Rn \ X denote a µn-measurable set that can be strongly separated from X , i.e.,

W as defined in (D.2) is non-empty. We first prove (D.1) for all A0 with this specific

structure and show that any A ⇢ Rn\X contains a subset A0 ⇢ A. Then, the probability

for A0 is a lower bound, i.e., P
�
xN 2 A | w0

 
� P

�
xN 2 A0 | w0

 
, completing the proof.

Consider a set A0 with the proposed structure. We will construct two measurable sets

W and R̃(w) such that

n
w � r̃

�� w 2W , r̃ 2 R̃(w)
o
✓ A0

.

Given their existence, we can bound

lim
N!1

P
�
xN 2 A0 �� w0

 

� lim
N!1

Z

W
P
�
wN � r̃N 2 A0��wN

 
pSB(wN)dwN

� lim
N!1

Z

W

Z

R̃(wN )

pr̃(r̃N |wN)pSB(wN)dr̃NdwN .

First, let W be defined as in (D.2) as the set of points on the boundary of X for

which the supporting hyperplane is a separating hyperplane between X and A0. From

Lemma 1, µn�1(W) > 0. Next for any wN 2W , let

R̃(wN) :=
�
wN � x

�� x 2 A0 
.

Because µn(A0) > 0 and R̃(wN) is a translation, we must have µn(R̃(w)) > 0 as well. It

remains to show that pr̃(r̃N |wN) = pr(rN |wN)p⇠(⇠N |rN ,wN) > 0 for all r̃ 2 R̃(wN).

Since rf(wN)T (wN � x)  0 for all x 2 A0, the normalized vector rN = (wN �
x)/ kwN � xk is a valid direction with pr(rN |wN) > 0. Furthermore, by assumption

in the Theorem statement, p(⇠N |rN ,wN) > 0 for ⇠N = kwN � xk > 0. Therefore

pr̃(r̃N |wN) > 0.

We now extend the proof to any arbitrary measurable set A ⇢ Rn\X by showing that

every A contains a subset of the structure of A0, i.e., measurable and strongly separated

from X . First, for any w 2 bd(X ), let

A(w) :=
�
x 2 A

�� rf(w)Tx � rf(w)Tw
 

denote the intersection of A with a supporting hyperplane of X . Now observe that the
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measure of A admits a union bound using the (infinite) set of supporting hyperplanes:

µn(A) 
X

w2bd(X )

µn (A(w))

Because µn(A) > 0, at least one of the above subsets has positive measure. Select one

such subset and let w0 be the corresponding boundary point. It remains to construct

A0 ⇢ A(w0) such that A0 is measurable and strongly separated from X . For any  2 Z+,

let

H :=

⇢
x

���� rf(w0)
T
x � rf(w0)

T
w0 +

1



�
.

and B = A(w0) \ H. Each B is strongly separated from X , meaning it has the

structure required to satisfy Lemma 1 as assumed by A0, and we argue that there must

exist  2 Z+ such that µn(B) > 0.

To observe this, note that A(w0) = [1
=1B is a union of ascending sets. By the

continuity of the Lebesgue measure

µn (A(w0)) = µn

 1[

=1

B

!
= lim

!1
µn (B) .

For any ✏ > 0, there must exist  such that |µn(A(w0)) � µn(B)| < ✏. Setting ✏ <

µn(A(w0)) implies that µn(B) > 0. Let A0 be equal to any such subset. Therefore,

any measurable set A contains a measurable subset A0 of the required structure. Then,

P
�
xN 2 A | w0

 
� P

�
xN 2 A0 | w0

 
> 0, completing the proof.
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Q. Zhao, A. Stettner, E. Reznik, D. Segrè, and I. C. Paschalidis. Learning cellular

objectives from fluxes by inverse optimization. In 2015 54th IEEE Conference on

Decision and Control (CDC), pages 1271–1276, Dec 2015.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation

using cycle-consistent adversarial networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2223–2232, 2017.

X. Zhu, Y. Ge, T. Li, D. Thongphiew, F. Yin, and Q. J. Wu. A planning quality evaluation

tool for prostate adaptive IMRT based on machine learning. Medical Physics, 38(2):

719–26, 2011.


