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Abstract 

Somatic mutation rates in cancer genomes are associated with chromatin state and informative of 

tumor tissue of origin. However, earlier studies considered the chromatin states of cell lines and 

normal tissues, while those of primary tumors remain uncharacterized. We used a machine-

learning approach to evaluate tumor-specific chromatin accessibility profiles as predictors of 

mutation rates in 2,500 whole cancer genomes with 23 million SNVs. Mutation rates were more 

accurately predicted by chromatin accessibility derived from tumours than healthy cells, 

suggesting that somatic mutagenesis is largely associated with the chromatin state of tumour cells 

rather than normal cells. Interestingly, melanoma mutations were better predicted by normal 

melanocyte chromatin accessibility, suggesting earlier mutational timing. Furthermore, 

chromatin state was an accurate predictor of carcinogen-induced mutation rates while the 

mutations of endogenous mutational processes were only weakly statistically associated. 

Integrative analysis of mutations and chromatin state provides us insight into tumour evolution 

and heterogeneity. 
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Chapter 1 

Literature Review 

1 Literature Review 

1.1 Cancer genetics and biology 

1.1.1 Cancer as a genetic disease 

Since the completion of the Human Genome Project (Lander et al. 2001), genome 

sequencing studies have shaped our understanding of many diseases. This is especially true 

in the case of cancer, where sequencing technology has revolutionized the fields of cancer 

biology and cancer treatment. First and foremost, the sequencing of a multitude of tumours 

uncovered that tumours from different parts of the body have distinctly different genetic 

makeups. Furthermore, tumours of the same tumour type from different patients can 

demonstrate remarkable molecular heterogeneity. Using genome sequencing data to uncover 

novel cancer subtypes is an area of active research.  

 

Sequencing experiments for cancer research in the past have mostly focused on the genomic 

and transcriptomic levels. On the genomic level, positive selection for both gain-of-function 

and loss-of-function mutations in genes has been demonstrated, with many of these genes 

thought to be involved in driving cancer-related phenotypes (Martincorena et al. 2017). On 

the transcriptomic level, the up- or down-regulation of specific genes and pathways has been 

linked to molecular subtypes and clinical outcome (Sanchez-Vega et al. 2018). Collectively, 

these experiments have broadened our understanding of cancer biology, prevention, and 

treatment. 
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1.1.2 Driver mutations in cancer 

Cancer is a disease caused by somatic mutations in cells. Somatic mutations indicate 

mutations which are passed along from cell to cell, through mitosis, in the somatic cells of an 

individual. These changes are not inherited from parents and are not passed onto offspring 

(unlike germline mutations). Cells tend to acquire somatic mutations in every tissue 

throughout the body and these accumulate throughout the lifetime of an individual. Despite 

the propensity of somatic cells for genomic alterations, only a minority of these will lead or 

contribute to tumour evolution. These mutations, known as driver mutations, confer certain 

hallmark properties to the cell. The hallmarks of cancer were described in a seminal paper by 

Hanahan and Weinberg in 2000 and again updated in 2011 (Hanahan and Weinberg 2000; 

Hanahan and Weinberg 2011). The authors argued that all cancers share six hallmark traits 

which govern oncogenesis. The hallmarks include self-sufficiency in growth signals, evading 

growth-suppressors, resisting cell death, inducing angiogenesis, enabling replicative 

immortality, and activating invasion and metastasis. Cancer cells most commonly acquire the 

hallmarks of cancer through alterations to protein-coding genes. There are two main classes 

of protein-coding genes relevant to cancer: oncogenes and tumour suppressors.  

 

Oncogenes are originally normally functioning genes (“proto-oncogenes”) which can 

become oncogenic through two distinct methods. The first method involves a significant 

increase in their expression leading to the upregulation of their original function. This 

increase can come from mutations to the gene itself, its non-coding promoter region, another 

protein-coding gene, or even another non-coding regulatory region/gene. One example of 

such an oncogene is EGFR (epidermal growth factor receptor) (Zandi et al. 2007), which is 

involved in inducing cellular proliferation, and has been shown to be significantly 

upregulated in both wild-type and mutant forms in many cancers. The second method occurs 

when proto-oncogenes undergo a gain-of-function mutation, whereby they can become 

hyperactive and oncogenic. For example, the Ras family of proto-oncogenes are involved in 

cellular signalling leading to cell growth. Mutations to these genes in cancer can lead to 

proteins which are locked in their active states, leading to uncontrolled cell growth. Ras 

family mutations are the first discovered instance of mutations to oncogenes and 20-30% of 

all cancer cases involve a mutation to a Ras gene (Fernández-Medarde & Santos 2011). 
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According to Darwinian evolution, gain-of-function mutations would be positively selected 

for in these genes. Indeed, missense mutations in NRAS, KRAS, and HRAS showed evidence 

of positive selection in cancer. 

  

The second class of protein-coding genes relevant to cancer consists of tumour-suppressor 

genes. The human genome has evolved many mechanisms to suppress oncogenic processes, 

such as genes involved in regulating cell growth, proliferation, and migration. The “two-hit 

hypothesis” states that both alleles of a tumour suppressor gene need to be mutated for an 

oncogenic change to the phenotype to occur (Knudson 2001). In many cases, one allele of 

the gene is mutated in the germline genome, without causing any change in phenotype. The 

second, wild-type, allele is then mutated later in life contributing to oncogenesis 

(MacPherson & Dyer 2007). The most important example of a tumour suppressor is the gene 

TP53 (tumour protein p53) which is mutated in >50% of human cancers. TP53 plays an 

important role in cell cycle progression, DNA repair, and apoptosis. Loss of this gene has 

been strongly implicated in oncogenesis (Olivier, Hollstein, & Hainaut 2010). Loss-of-

function mutations in tumour-suppressor genes also follow Darwinian principles, with 

positively selected mutations being shown in known tumour-suppressors such as TP53, 

PTEN (phosphatase and tensin homolog), and RB1 (RB transcriptional corepressor 1) in 

many cancers (Martincorena et al. 2017).  

 

On average, cancer genomes contain 4-5 driver mutations, however, the average number of 

driver mutations varies greatly between cancer types. Interestingly, there is a subset of 

tumours with no well-known driver mutations. The 2020 Pan-Cancer Analysis of Whole 

Genomes (PCAWG) study showed that ~5% of tumours had no mutations in known driver 

elements (Campbell et al. 2020). Thus, there may be currently unidentified driver elements 

which require larger-scale studies to identify in the future.   

1.1.3 The role of non-coding mutations in cancer 

Cancer research focuses primarily on mutations in protein-coding genes. These elements, 

however, make up less than 2% of the human genome. The function of the non-coding 
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genome is mostly unclear, but there are some examples of cancer driver mutations occurring 

in non-coding elements. 

 

The best-characterized of these are mutations to the promoter of the gene TERT (telomerase 

reverse transcriptase). TERT codes for a catalytic subunit of the enzyme telomerase which is 

involved in lengthening the telomere regions of the chromosomes. Telomere lengthening 

allows cells to escape a postmitotic state and potentially achieve replicative immortality; one 

of the hallmarks of cancer. Deregulation of TERT expression has been linked to oncogenesis 

in many cancers. The TERT promoter sequence regulates the gene’s transcription and 

mutations to it have been shown to enhance its activity two- to four-fold in melanoma (Kim 

et al. 2016). TERT promoter mutations have also been shown to be significantly prognostic 

of survival in thyroid cancer (Kim et al. 2016).  

More recently, work using the PCAWG project identified multiple non-coding driver 

mutations in cancer. Mutations in the 3′ untranslated regions (UTR’s) of the genes TOB1 

(transducer of ERBB2 1), NFKBIZ (NFKB inhibitor zeta), and ALB (albumin) were shown to 

be recurrent in specific cancer types (Rheinbay et al. 2020). Furthermore, work in our lab has 

demonstrated that mutations in several non-coding regulatory elements affect known cancer 

gene transcription levels through chromatin interactions (Zhu et al. 2020). The known cancer 

genes CCNB1IP1 (cyclin B1 interacting protein 1), ICK (intestinal cell kinase), and 

ZKSCAN3 (zinc finger with KRAB and SCAN Domains 3) are all distally regulated by 

regulatory elements that were shown to be frequently mutated in cancer. 

1.1.4 Somatic mutational processes in normal tissues 

Several landmark studies have recently challenged the classical notion of cancer drivers. In 

classical cancer driver discovery, one sequences all the mutations in a cancer cohort. One 

then considers the most frequently mutated genes within the cohort relative to a background 

sequence and labels them as positively selected for and therefore driving cancer. It has been 

recently shown that these same “driver” mutations exist in many normal tissues around the 

body and accumulate with age.  
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Clonal expansion and positive selection underlie the evolution of cancer cells. However, it 

has been also shown that this process is continuously active in normal cells. In 2015, 

Martincorena and colleagues showed that normal human skin contains somatic mutations 

previously thought to be exclusively cancer drivers such as NOTCH1/3 (Notch receptor 1/3), 

TP53, FAT1 (FAT Atypical Cadherin 1), and RBM10 (RNA binding motif protein 10) 

(Martincorena et al. 2015). Furthermore, they showed that clonal expansion due to positive 

selection also occurs in normal cells and significantly increases with age. This phenomenon 

was not limited to skin, however, as significant driver mutations and age-related clonal 

expansion were also shown in normal esophageal tissue (Martincorena et al. 2018).  

 

The high frequency of positively selected clones in normal tissues raises the question of the 

relative rarity of cancer in the population. One possible explanation is that tumour 

suppressive mechanisms are sufficiently robust, effective, and diverse that these clones can 

exist for long periods of time without ever undergoing oncogenesis. The presence of cancer 

associated mutations in normal cells also suggests that cancer is a continuum along which all 

of our cells lie. The end stage of that continuum is the overt, clinically diagnosed malignancy 

with which we are familiar. However, many cells can be in a “precancerous” stage without 

ever leading to cancer (Martincorena 2019). 

1.2 Regional mutation rates in cancer genomes 

1.2.1 Passenger mutations in cancer 

Although cancer research tends to focus on driver mutations, most mutations in a cancer 

genome are under no evolutionary selection, confer no advantage, and have no effect on 

cellular phenotypes (Martincorena et al. 2017). These mutations are known as passenger 

mutations. The total number of passenger mutations greatly exceeds that of driver mutations; 

however, it is highly variable between cancer types (Lawrence et al 2013). On the higher 

end, melanoma, due to skin tissue’s lifetime of exposure to UV light, has greater than 

100,000 somatic single nucleotide variants (SNV’s) and insertions/deletions (indels) per 

genome on average. On the lower end, childhood brain tumours, such as medulloblastoma, 

have less than 2000 somatic SNV’s and indels per genome on average. This is mostly like 
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due to these tumours lacking both the age and the exposure to exogenous mutagens required 

to accumulate a high mutation burden. 

 

It has been shown that the regional mutation rates at the level of large genomic windows is 

highly variable and cancer-type specific. Megabase-scale windows are commonly used to 

evaluate variability in regional mutation rate. One study was able to predict a patient’s cancer 

type at 92% accuracy using only regional mutation rates and a support vector machine 

(SVM) model (Salvadores, Mas-Ponte, & Supek 2019). Interestingly, using only driver 

mutations to classify tumours resulted in an inferior accuracy of 36% in the same study. 

Furthermore, another study showed that deep learning models trained on regional mutation 

rates can accurately classify the cancer type of primary tumours and metastatic samples at a 

91% rate (Jiao et al., 2020). This is an important observation because in 3% of cancer cases, 

a patient has a metastatic tumour with no clear primary tumour of origin. Identification of the 

primary tumour of origin can clarify diagnosis, prognosis, and treatment. The accumulation 

of mutations in various genomic regions is strongly associated with differential DNA damage 

and repair processes, chromatin accessibility, and replication timing. 

1.2.2 DNA damage and repair 

DNA mutations, such as SNV’s and small indels, occur due to a complex interplay between 

DNA damage, repair, and replication. Initially, there may be a DNA damaging agent or 

process which causes a DNA nucleotide to be chemically modified. These agents and 

processes may be endogenous (i.e., originating from the cells or the organism) and/or 

exogenous (i.e., originating from the environment). Some common examples of exogenous 

DNA damage agents are UV light, smoking, and reactive oxygen species. Endogenous 

mutational processes are most commonly caused by defects in DNA repair and low-fidelity 

replication pathways.  

 

DNA damage occurs continually in healthy tissues and single-stranded DNA damage is 

repaired via one of three major DNA repair pathways. The first of these is the Base Excision 

Repair (BER) pathway which commonly repairs damaged single bases. The single damaged 

base is removed from the DNA by glycosylase enzymes which cleave the bond between the 
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base and its corresponding deoxyribose without disrupting the sugar-phosphate backbone. 

This creates an apurinic/apyrimidinic site (AP site) which is then corrected by AP 

endonucleases, DNA polymerase, and DNA ligase (Wallace et al. 2012). The second DNA 

repair pathway is the Nucleotide Excision Repair (NER) pathway which typically repairs 

bulky DNA damage due to UV light such as pyrimidine dimerization. NER involves removal 

of DNA of up to a dozen base pairs both upstream and downstream of the damaged 

nucleotide after which DNA is resynthesized (Martein et al. 2014).  

 

The third major DNA repair pathway is the Mismatch Repair (MMR) pathway. MMR repairs 

mismatches which occur spontaneously during DNA replication. It is thought that each time 

a cell divides, approximately 100,000 polymerase errors occur by chance alone. These are 

normally corrected through the proofreading mechanisms of the polymerases epsilon and 

delta. However, some mismatches escape proofreading and must be corrected by the MMR 

pathway. MMR pathway proteins detect the mismatch, degrade the mutated stretch of DNA, 

and initiate re-synthesis. Defects in MMR due to mutations to one or more of the MMR 

pathway genes are commonly found in cancer and can lead to the microsatellite instability 

phenotype (MSI) (Baretti & Le 2018). MSI describes a “mutator phenotype” related to high 

levels of genomic instability and frameshift mutations. MSI has been recorded most 

prominently in colorectal adenocarcinoma as well as other cancer types such as endometrial 

adenocarcinoma, stomach adenocarcinoma, adrenocortical carcinoma, breast 

adenocarcinoma, and others (Bonneville et al. 2017). MMR deficiency has also been shown 

to be important in the accumulation of mutations related to temozolomide treatment in cancer 

(Pich et al. 2019). 

1.2.3 Mutational signatures in human cancers 

As described in the previous section, mutations accumulate as a result of specific endogenous 

and exogenous mutational processes. Notably, each of these processes are thought to 

generate a characteristic mutational signature that can be mathematically deciphered. An 

iterative non-negative matrix factorization (NMF) method has been previously used to 

discover de novo signatures in cancer cohorts with whole-genome sequencing data 

(Alexandrov et al. 2013). Some of these mutational signatures have been traced back to 
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specific mutational processes allowing us to better understand which mutational processes 

are contributing to a set of somatic mutations. Sequencing studies of multiple types of cancer 

have led to the discovery of more than 40 single-base substitution (SBS) signatures, most 

with unknown aetiologies (Alexandrov et al. 2020).  

 

SBS signatures consist of probabilities for each substitution type which includes the 

reference allele, the alternate allele, and the nucleotides adjacent to the mutation in the 5’ and 

3’ directions (96 possible combinations as there are 6 types of substitution x 4 types of 5’ 

base x 4 types of 3’ base). Several of these signatures have been attributed to exogenous 

mutational sources such as tobacco smoke and ultraviolet light as well as endogenous 

sources such as defective DNA repair and 5-methylcytosine deamination. As an example, 

SBS4 (attributed to smoking) is dominated by C>A mutations, most commonly in the CCA 

trinucleotide context (Alexandrov et al. 2013). As opposed to the trinucleotide context based 

SBS signatures analyzed in this project, signatures involving pentanucleotide context, 

insertions/deletions, and structural variants have been described more recently. 

 

Multiple mutational processes occurring in a cell will contribute to its mutational landscape. 

Therefore, the total set of somatic mutations from a single tumour sample often contains 

mutations from different mutational signatures, most of which have unknown aetiologies. 

Furthermore, SBS signatures are highly variable between cancer types and cancer samples, 

as well as in the number of mutations attributed to that signature per cancer sample 

(Alexandrov et al. 2020). 

1.2.4 Scales and covariates of regional mutation rates 

Several studies have shown a correlation between regional mutational rates and various other 

genomic features. The foremost of these include replication timing, histone marks, and 

chromatin accessibility (Schuster-Böckler & Lehner 2012; Polak et al. 2015). All classes of 

substitutions are increased in later-replicating regions of DNA, indicating a general 

mechanism of increased DNA damage and/or decreased DNA repair in these regions. One 

possible mechanism is the stalling of replication forks in the latter stages of DNA replication, 

leading to accumulation of single-stranded DNA (ssDNA) regions. ssDNA is more 
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susceptible to DNA damage, thereby leading to more mutations in these regions 

(Stamatoyannopoulos et al. 2009). 

 

Variation in regional mutation rates has been observed at multiple genomic scales, ranging 

from the single base-pair resolution to the megabase-pair resolution (Supek & Lehner 2019). 

Furthermore, the mechanisms which underlie these mutation rates are different depending on 

the scale being examined. Starting at the domain scale (105-106 base pairs), high mutation 

rates are strongly correlated with repressive histone marks (i.e. H3K9me3) and lower 

chromatin accessibility. Mounting evidence points to the differential activity of the DNA 

mismatch repair (MMR) pathway across genomic regions as MMR-deficient tumours were 

shown to lose regional variation in mutation rates at the domain-scale (Supek & Lehner 

2015). Some possible mechanisms are the preferential binding of MMR complexes onto 

earlier-replicating DNA, the depletion of MMR pathway proteins later in replication, and the 

reduced accessibility of heterochromatin to MMR repair factors. Increased transcription-

coupled DNA repair in open chromatin may also be a contributing factor as RNA 

polymerases stalled at damaged nucleotides has been shown to recruit NER repair factors 

(Svejstrup 2002). 

 

When examining regional mutation rates at the gene scale (103-105 base pairs), the clearest 

pattern is the asymmetry in mutation rates between the transcribed and non-transcribed 

strands of DNA. This strand bias results from two processes. The first is that the NER 

pathway preferentially targets the transcribed strand due to the stalling of RNA polymerase 

at DNA lesions. The second is an increase in DNA damage at the non-transcribed strand. 

This is thought to be due to its exposure as vulnerable single-stranded DNA, as the mutation 

signatures associated with this process correspond to single-strand related mutagenesis 

(Haradhvala et al. 2016). Mutations in primary tumours caused by platinum-based 

chemotherapies have also been shown to exhibit transcription-strand asymmetry due to 

preferential NER on the transcribed strand (Pich et al. 2019).  

 

At the sub-gene scale (101-103 base pairs), we find that regional mutation rate patterns are 

highly cell-type specific. For example, there is a high mutation rate at the binding sites of the 
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protein CTCF and its binding partner cohesin in colon cancer, liver cancer, stomach cancer, 

and melanoma. Evidence suggests that this may be due to an exclusion of DNA repair factors 

(MMR and NER) from the binding sites (Kaitanen et al. 2015; Poulos et al. 2016; Guo et al. 

2018). Furthermore, regional mutation rates have been shown to be associated with 

nucleosome (DNA wrapped around an octamer of histone proteins) occupancy as mutation 

rates follow a 200 bp periodicity matching the inter-nucleosomal distance (Brown et al. 

2018). There are also slight variations in mutation rate at a 10bp periodicity which is 

associated with the major groove/minor groove constraints of DNA as it is wrapped around 

the nucleosome (Pich et al. 2018). 

1.2.5 Whole-genome sequencing datasets of tumours 

With the advent of next-generation sequencing, it is possible to document every single point 

mutation in a cancer genome. In 2008, based on the opportunity that this new technology 

provided, the cancer genomics community established the International Cancer Genome 

Consortium (ICGC) with the goal of systematically documenting the somatic alterations that 

drive a diverse set of cancer types (Hudson et al. 2010; Campbell et al. 2020). The PCAWG 

collaboration was established to allow for cross-tumour comparisons of cancer whole 

genome mutation data to be meaningful. All samples in the PCAWG dataset were sequenced 

and processed using “gold-standard, benchmarked, version-controlled algorithms” (Campbell 

et al. 2020). In early 2020, the PCAWG papers were released collectively in the journal 

Nature and affiliated journals. The PCAWG dataset contains whole-genome sequencing data 

from 2,605 primary tumours and 173 metastases from 38 different cancer types. To date, this 

is the largest-scale, most-diverse, and highest quality dataset of tumour whole-genome 

mutation data. 

 

The tumour genome represents a combination of all the mutational processes mentioned in 

this section. While whole-genome sequencing (WGS) of tumours gives us a snapshot in time 

of the effects of these processes, the temporal, spatial, and mechanistic aspects of these 

processes are largely uncharacterized. Mutations show significant variation between cancer 

types, samples from the same cancer type, and even between cells within the same tumour. 

Furthermore, mutational processes show significant spatial variation at the domain-scale, 
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gene-scale, sub-gene scale, and single base-scale. Understanding these processes will allow 

us to better understand tumour evolution, improve driver discovery, and develop prognostic 

and diagnostic tools. 

1.3 Epigenetic markings of the genome 

1.3.1 Chromatin accessibility and histone marks 

Chromatin describes the complex of DNA and protein found in the nucleus of eukaryotic 

cells. It involves DNA wrapped around an octamer of histone proteins, also known as a 

nucleosome, and packaged into a highly condensed form. This is crucial, as the DNA strand 

can be over 3 metres long and must be packaged into a single nucleus with an average 

diameter of 6 micrometres. Some regions of DNA are less condensed than others, however, 

and these regions are often associated with transcriptional activity. This is because open 

chromatin is more accessible to the cell’s transcriptional machinery such as transcription 

factors and RNA polymerase (Flavahan et al. 2017). 

 

Chromatin accessibility is regulated through a variety of post-translational modifications to 

the tails of histones (also known as histone marks). This regulation occurs through the 

dynamic activity of enzymes known as histone “writers”, “erasers”, and “readers”. Histone 

writers deposit methyl, acetyl, and/or phosphoryl groups on specific histone tail residues 

while erasers remove these modifications. Readers identify the histone modification and 

exert a downstream effect. While the function of many of these modifications is not fully 

understood, we have been able to map histone marks to a variety of genomes and associate 

them with various transcriptional and chromatin states through chromatin 

immunoprecipitation sequencing (ChIP-Seq). Reader enzymes have multiple reader domains 

suggesting that they can recognize a combination of multiple marks on neighbouring histones 

concurrently and that combinations of neighbouring histone marks have variable downstream 

effects (Gates et al. 2017). 

 

Most of the histone marks occur on lysine residues as they are particularly abundant on 

histone tails (Tan et al., 2011). In 2015, the Roadmap Epigenomics project released a 
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mapping of chromatin accessibility (DNase-Seq) and 5 core histone marks (Table 1) in 111 

reference human epigenomes from various tissues in the body (Roadmap Epigenomics 

Consortium et al., 2015). These included the mono-methylation of histone 3 lysine 4 

(H3K4me1), the tri-methylation of histone 3 lysine 4 (H3K4me3), the tri-methylation of 

histone 3 lysine 36 (H3K36me3), the tri-methylation of histone 3 lysine 27 (H3K27me3), 

and the tri-methylation of histone 3 lysine 9 (H3K9me3). H3K4me1 marks are associated 

with enhancer regions (distal activating elements) while H3K4me3 marks are associated with 

gene promoters (Heintzman et al., 2007). Both marks are associated with increased 

transcriptional activity and tend to be near active transcription start sites (Roadmap 

Epigenomics Consortium et al., 2015). H3K36me3 marks are associated with transcribed 

regions such as gene bodies while H3K27me3 and H3K9me3 are associated with repressed 

regions. (Bonasio, Tu, & Reinberg, 2010; Peters et al., 2015). 

 

Table 1: The 5 core histone marks in the Roadmap Epigenomics project and their 

associations 

Histone Mark Association with element (transcription) 

H3K4me1 Enhancers (activation) 

H3K4me3 Promoters (activation) 

H3K36me3 Transcribed gene bodies (activation) 

H3K27me3 Polycomb repression (inhibition) 

H3K9me3 Heterochromatin (inhibition) 

 

1.3.2 Epigenetic regulation and cell differentiation 

A single human genome can lead to hundreds of different cell types, each with varying gene 

expression patterns. Gene expression patterns are controlled by dynamic epigenetic 

regulatory mechanisms such as histone modifications, DNA methylation, and nucleosome 

positioning. These mechanisms control how accessible chromatin is in a specific region 

thereby regulating the expression of genes contained in that region of DNA (Allis & 

Jenuwein 2016). However, it is not only the accessibility of chromatin that controls gene 
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expression. The three-dimensional architecture of DNA is crucial in regulating the 

interactions between a gene’s promoter element (which controls the gene’s expression) and 

other distal regulatory elements such as enhancers and insulators (Dixon, Gorkin, & Ren 

2016; Dekker & Misteli 2015).  Individual genomic loci are organized into topologically 

associated domains (TADs) which allow for the coordinated regulation of genes found within 

various TADs. Genes designed to be active must be accessible to transcription factors, while 

repressed genes must, at the same time, be sequestered and inaccessible to the same 

machinery (Flavahan et al. 2017).  

 

A prominent function of chromatin, with respect to cell differentiation, was shown to be the 

prevention of trans-differentiation that corresponds to the reprogramming of already 

differentiated cells. In one study, cells from Drosophila embryos were modified to be 

deficient in Polycomb repressors (one family of chromatin regulators) and were found to 

have the ability to reprogram and switch states (Lee, Maurange, & Paro 2005). The 

mechanism for this process is that repressive chromatin regulators sequester genes and loci 

which are unused for the specific lineage, thereby providing a barrier to further 

differentiation. Interestingly, in undifferentiated pluripotent cells, many loci are in a more 

dynamic and bivalent state, where genes can go from active to repressed more easily 

(Flavahan et al. 2017). After differentiation, these restrictive mechanisms become more 

stable, thereby securing the fate of the cell. The dysregulation of these cell differentiation 

pathways has been shown to be prominent in tumour development. 

1.3.3 Epigenetic regulation in tumour development 

In addition to the genetic basis of cancer, epigenetic alterations have been shown to be 

relevant to tumorigenesis. Cancers are known to be associated with aberrations in gene 

expression, cellular identity, and environmental response, all of which are regulated by 

chromatin remodelers. Around 50% of human cancers contain mutations in chromatin 

remodelling genes (You & Jones 2012). In fact, many tumours demonstrate an aberrant 

differentiation program indicative of a deregulation of chromatin architecture (Allis & 

Jenuwein 2016). These aberrant differentiation programs, sometimes caused by mutations to 
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genes involved in chromatin regulatory pathways, can lead to both increased epigenetic 

restriction and increased epigenetic plasticity.  

 

In terms of increased epigenetic restriction, it has been shown that the gene EZH2 frequently 

accumulates gain-of-function mutations in several lymphoma subtypes as well as melanoma 

(Gan et al. 2018; Donaldson-Collier 2019). EZH2 is part of the Polycomb repressive 

complex 2 (PRC2) which is involved in B-cell differentiation, with high activity found in B-

cell precursors and a downregulation found in differentiated B-cells. This gain-of-function 

mutation is shown to induce a restrictive state within B-cells, which prevents differentiation 

and locks the cell in a proliferative state (Lee & Chang 2019). As previously mentioned, 

uncontrolled cellular proliferation is one the hallmarks of cancer and is crucial for tumour 

development.  

 

On the other hand, epigenetic aberrations can lead to increased epigenetic plasticity in 

tumours. Epigenetic plasticity allows tumour cells to sample various transcriptional states 

and differentiation programs, some of which may confer oncogenic advantages. One 

important example of trans-differentiation in cancer is the epithelial-to-mesenchymal 

transition (EMT) which is seen in many tumours (Suvà, Riggi, & Bernstein 2013). EMT 

plays a crucial role in metastasis by allowing cancer cells to escape their tissue-specific loci 

and invade other parts of the body. The reverse process (MET) is then used to settle and 

colonize the new metastatic niche, developing into a secondary tumour (Roche 2018). 

Another important example of epigenetic plasticity in cancer is the disruption of oncogene 

insulation. Gain-of-function mutations in the IDH1 (isocitrate dehydrogenase (NADP+) 1) 

gene are shown to be tumour-initiating in glioma, leukaemia, and other tumours (Cairns & 

Mak 2013). Mutant IDH1 generates metabolites which inhibit DNA demethylating enzymes, 

resulting in hypermethylation disrupting the DNA binding of the transcription factor CTCF 

(CCCTC-binding factor). CTCF is involved in the establishment of chromosomal loops and 

TADs thereby insulating oncogenes from potential activating mechanisms. Disruption of 

CTCF binding in IDH1 mutant gliomas is associated with insulator dysfunction. More 

specifically, nearby genes normally separated by CTCF-mediated insulation show higher 

correlation of their expression. For example, the glioma oncogene PDGFRA (platelet derived 
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growth factor receptor alpha) is upregulated upon the loss of CTCF-mediated TAD 

boundaries as it can interact with a potent neighbouring enhancer.  

 

In summary, alterations to genes involved in epigenetic regulation play significant roles in 

tumour development by changing the epigenetic state of the cell. These can involve an 

increase in epigenetic restriction leading to a maturation block and cells being fixed in a 

proliferative state. It can also involve an increase in epigenetic plasticity which allows the 

cancer cell to sample states advantageous to its development. Epigenetic alterations may, in 

fact, be involved in every hallmark of cancer (Hanahan and Weinberg 2011). 

1.3.4 Epigenetic datasets of normal tissues and tumours 

Based on the increasing breadth of knowledge about the role the epigenome has in normal 

biology as well as many diseases, epigenomic mapping of human tissues has become 

paramount. Normal tissue epigenomes have been thoroughly characterized by the NIH 

Roadmap Epigenomics Mapping Consortium as well as the Encyclopedia of DNA Elements 

(ENCODE) project. Both groups leverage next-generation sequencing to map DNA 

methylation, histone modifications, chromatin accessibility and small RNA transcripts in 

human stem cells and primary ex vivo tissues (Roadmap Epigenomics Consortium et al. 

2015). In 2015, these groups released a public dataset consisting 127 human cell epigenomes 

from various tissues (5 of which were cancer cell lines) which were mapped using ChIP-Seq 

of 5 core histone marks. A subset of these epigenomes have chromatin accessibility (DNase-

Seq) and histone mark data.  

 

Until recently, large-scale genome-wide epigenomic mapping of primary tumours from 

multiple cancer types was not possible due to technical limitations. A study published in 

2018 performed Assay for Transposase-Accessible Chromatin using sequencing (ATAC-

Seq) experiments on 410 primary tumour samples from 23 different cancer types to map their 

genome-wide chromatin accessibility landscape (Corces et al. 2018). These tumours were 

derived from The Cancer Genome Atlas (TCGA) dataset which is a landmark cancer 

genomics program that molecularly characterized over 20,000 primary cancer and matched 

normal samples spanning 33 cancer types. The TCGA ATAC-Seq study opened further 
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possibilities for cancer epigenomics research. This study has revealed that chromatin 

accessibility peaks are highly cancer type-specific and reveal new functional elements within 

the cancer genome. 

1.4 Random forest method for evaluating the relationship 

between the epigenome and the cancer genome 

1.4.1 Cell-of-origin epigenome defines the mutational landscape of 

cancer 

A study published in Nature in 2015 by Polak et al. assessed how well regional mutation 

rates from various cancer types can be predicted by epigenomic data derived from various 

primary cells and cell lines (Polak et al. 2015). Firstly, they found that the most predictive 

epigenome of tumour regional mutation rates comes from the same or similar healthy tissue 

as the origin of the tumour (i.e., the melanocyte epigenome best predicts melanoma mutation 

rates as opposed to epigenomes derived from other cells and tissues in the body). Secondly, 

they found that epigenomes derived from healthy cells of the same tissue better predicted 

cancer mutation rates than epigenomes derived from cancer cell lines of the same cancer 

type. The authors concluded that one explanation is that most mutations in cancer are 

established prior to oncogenesis as they are most associated with the epigenome of the 

normal cells from which the tumour originated. There are several problems with their second 

finding and its subsequent conclusions, however.  

 

To test the predictive power of healthy vs. cancer cell epigenomes, they only had access to 

epigenomes derived from 2 cancer cell lines: melanoma (COLO829) and hepatocellular 

carcinoma (HEPG2). In addition to the small sample size of cancer cell lines tested, the 

epigenetics of cultured cell lines can be vastly different from human tissues, normal or 

tumour. Therefore, extending their hypothesis to primary tumour epigenomes is potentially 

problematic.  
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Furthermore, using the machine-learning method of random forests, they were only able to 

demonstrate that normal liver epigenomic features are more predictive of liver cancer 

mutation rates than those derived from the liver cancer cell line. For the case of melanoma, 

they only demonstrated that normal melanocyte epigenomic features were more correlated 

with melanocyte mutation rates. The random forest prediction accuracies are not shown for 

melanoma mutation rates in their study. Therefore, these conclusions need to be verified 

using more cancer types and epigenomes derived from tumour cells. 

1.4.2 Tumour mutational landscape is a record of its premalignant state 

The group that created the paper in section 1.4.1 later applied their methodology to a larger 

set of normal tissue epigenomic datasets as well as a larger set of mutational profiles (Kubler 

et al., 2019). They showed that epigenetic data from the tissue of origin was the best 

predictor of a cancer-type’s mutational rates in 23/32 cancer types tested. They concluded 

that the mutational landscape of a cancer cell holds the memory of its cell lineage and the 

cell of origin. They extended their analysis to metastatic tumour samples and found that they 

could predict the cell of origin by associating the mutational rates of these tumour samples 

with epigenomic data from normal tissues. They also showed that the mutational landscapes 

of different subtypes within the same cancer type were best associated with epigenomic 

tracks from different tissues implying different cells of origin. Finally, they showed that 

driver mutations were significantly more likely to occur in open chromatin regions of the 

tumour’s cell of origin as the genes in these open chromatin regions tend to play an important 

functional role. The use of normal cell epigenomes is again a limitation of this study because 

cancer cells are expected to change their epigenetic state upon transformation and chromatin 

state is a major correlate of mutation rates at the megabase-scale.   
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Chapter 2 

Hypothesis and research aims 

2 Hypothesis and research aims 

2.1 Overarching hypothesis 

Previous results have demonstrated a strong association between the chromatin landscape of 

the tumour “cell-of-origin” and the tumour mutational landscape when considering large 

megabase-scale genomic windows. These studies included chromatin tracks only from 

normal cells and cancer cell lines and had a more limited WGS mutation dataset. We 

hypothesize that regional mutation rates in cancer genomes have a stronger association 

with chromatin states of tumor tissues rather than normal tissues and cell lines. 

Therefore, the systematic evaluation of the interactions of genome-wide mutation rates 

and the chromatin landscapes of tumours and normal cells will reveal insights into 

tumour evolution, mutational processes, and cancer tissue of origin. 

2.2 Specific research aims 

To investigate this hypothesis, we use a machine learning approach to associate genome-

wide distributions of cancer mutations with chromatin landscapes. We study 25 types of 

cancer (plus pan-cancer) with WGS data available to us, 382 chromatin tracks derived from 

primary tumours, and 53 chromatin tracks derived from normal cells and cancer cell lines. 

Our project comprises the following two major aims: 

 

Aim 1: The first aim of this project is to evaluate whether each of our 26 cancer-type 

specific mutational rate tracks are better represented by the chromatin landscapes of 

tumor cells or normal cells. This allows us to infer the timing of the accumulation of 

mutations in each of these cancer types and provides us insight into the processes of 
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mutagenesis and oncogenesis. We can provide further insight into previous work done in the 

field. 

 

Aim 2: The second aim of this project is to uncover the association between specific 

mutagenic processes occurring in cancer cells and the chromatin landscape. Using 

mutations derived from specific mutational signatures, we can evaluate whether the genomic 

location of mutations due to specific mutational processes are associated with the chromatin 

landscape of normal or cancer cells.    
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Chapter 3 

Materials and methods 

3 Materials and methods 

3.1 Overview of approach 

To evaluate the relationship between the epigenomic landscape of human cells and the 

mutational landscape of cancer at the megabase-scale, we used the machine learning method 

of random forests. The predictor variables to these random forest models were megabase-

scale chromatin accessibility tracks from various human normal and cancer cells. These 

chromatin accessibility tracks were composed of an average chromatin accessibility score 

(derived from DNase-Seq and ATAC-Seq experiments) for each megabase window in the 

human genome. The response variable for this model was a cancer-type specific regional 

mutation rate track. Mutation rate tracks included mutations summed from every sample in 

the cancer WGS cohort for each megabase window in the human genome. This workflow is 

demonstrated in Figure 1. 

 

Next, we describe the chromatin accessibility and mutation data used in this project and then 

describe our machine learning approach. 
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3.2 Description of genomic and epigenomic datasets used in 

this project 

3.2.1 Chromatin accessibility tracks from normal tissues and cancer cell 

lines 

Chromatin accessibility tracks were derived from the Roadmap Epigenomics Project, 2015 

public data release (Roadmap Epigenomics Consortium et al 2015). This study collected 

DNase-Seq chromatin accessibility profiles of 53 human cell epigenomes. These were 

derived from tissues all around the body, multiple cell types, as well as 4 cancer cell lines. 

The tissues of origin of these chromatin tracks are summarized in Table 2.   
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Genome-wide DNase-Seq tracks had a chromatin accessibility score for every base pair 

along the human genome (build hg19). These scores were lifted over to the latest human 

genome build, hg38. The data was then processed into megabase windows representing the 

average chromatin accessibility score within that window for each chromatin accessibility 

track. Briefly, DNase-Seq involves the genome-wide mapping of regions sensitive to 

cleavage by the DNase 1 enzyme. More accessible DNA will be more prone to cleavage by 

DNase 1 and these cleavage sites are ligated and tagged with a ligand. DNA sequences are 

amplified using polymerase chain reaction (PCR) and sequenced using next-generation 

sequencing (NGS). The presence of tags represents a cleavage site and many of these 

cleavage sites within a specific region represents a highly accessible regulatory element 

(Song and Crawford 2010).  
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Table 2: Tissue of origin of DNase-Seq chromatin accessibility tracks from the 

Roadmap Epigenomics Project 
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3.2.2 Chromatin accessibility tracks from primary tumours spanning 23 

cancer types 

TCGA, a major cancer genomics program, molecularly characterized over 10,000 primary 

cancer samples spanning 33 cancer types (Hoadley et al. 2018). Molecular data for these 

samples include mapping of the exome, transcriptome, and methylome. In 2018, the first 

chromatin accessibility study of primary tumours was released comprising ATAC-Seq 

performed on 410 primary tumour samples spanning 23 cancer types from the TCGA dataset 

(Corces et al. 2018). The number of samples in each cancer type and their abbreviations are 

summarized in Table 3. 

 

The genome-wide ATAC-Seq tracks from TCGA include an ATAC-Seq insertion score as a 

proxy for chromatin accessibility for every 100 base pairs in the human genome (hg38 

build). ATAC-Seq was performed on 410 tumour samples derived from 404 donors. Two 

technical replicates were done for 386 out of the 410 samples yielding 796 genome-wide 

ATAC-Seq tracks (Corces et al. 2018). We processed each track to provide an average 

ATAC-Seq score for every million base pairs (megabase-pair scale). For each donor, 

multiple tracks (some donors had multiple samples) were averaged and donors with only 

single replicates were discarded due to lower confidence in the quality of the sample. This 

resulted in a megabase-scale tumour chromatin accessibility track for 382 donors from 23 

cancer types. 
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Table 3: Study names, abbreviations, and number of samples for the TCGA ATAC-Seq 

primary tumour chromatin accessibility dataset. 
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3.2.3 Catalogue of genome-wide somatic mutations spanning 37 cancer 

types 

To characterize megabase-scale regional mutation rates, we used the PCAWG whole genome 

mutation dataset. The PCAWG dataset comprises a large and uniformly processed whole 

genome somatic mutation dataset with whole genome sequencing performed on 2583 tumour 

samples (Campbell et al. 2020). Their processing of PCAWG involved tumour genomes 

being compared to the genome of a matched normal from either tumour-adjacent normal 

tissue, blood, or other skin/lymph tissue to exclude germline variants. Overall, samples were 

taken from 37 distinct tumour types with over 46 million SNV’s called. Tumour types 

showed considerable differences in mutation burden per patient: from a median of 169 

mutations/patient in pilocytic astrocytoma to a median of 70,873 mutations/patient in 

melanoma.  

 

During our processing, the PCAWG mutations file (MAF) was lifted over from the hg19 

build to hg38 to match our chromatin accessibility datasets. We only considered cohorts with 

greater than 30 patients which was 25 cancer types out of 37. We also considered a pan-

cancer dataset consisting of mutations from all 37 cancer types meaning that we analysed 26 

regional mutation tracks in total during this study. 66 hypermutated samples (mostly from 

melanoma), defined as having greater than 90,000 total mutations, were excluded to avoid 

biasing our mutation rate tracks towards a minority of tumour samples. We were interested in 

regional mutation rates, which represent an aggregated mutation burden per megabase 

window within a cohort. Regional mutational rate tracks were defined for each cancer type 

by summing all the SNV mutations from all the samples within each respective cohort for 

each megabase window in the genome. Cancer type and sample size data for our processed 

WGS dataset is shown in Table 4. 
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Table 4: Study names, project codes, and number of samples for the PCAWG whole-

genomic sequencing dataset 
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3.2.4 Excluding non-mappable regions of the genome 

Certain genomic regions are challenging and error-prone to map to using short read 

sequencing due to repetitive elements. For these cases, reads can map correctly to multiple 

genomic regions. These genomic regions show significant loss of signal in our chromatin 

accessibility and mutation datasets due to their high uncertainty. To address this problem, we 

used the UMAP tool which provides the coordinates of mappable regions in the genome 

(Karimzadeh et al. 2018). For our megabase-scale datasets, genomic windows were removed 

if over 20% of the window was predicted to be unmappable according to UMAP. The 

datasets originally had 2887 megabase windows and were processed down to 2465 mappable 

windows.  

3.3 Training random forest models 

3.3.1 Random forest machine learning method overview 

Random forest is a machine learning method used for classification and regression problems 

that utilizes an ensemble of decision trees (Ho 1995; Ho 1998). A decision tree involves 

having a series of decision nodes which use input variables to make a decision. This decision 

can be a classification or regression based on whether the target variable is discrete or 

continuous, respectively.  

 

A random forest combines many of these decision trees while adding two elements of 

randomness to the procedure (Amit and Geman 1997). The first element involves a 

procedure called bootstrap aggregation, or “bagging”. Bagging denotes randomly sampling 

observations with replacement N times from the dataset to train each tree. The predictions 

made by all the trees are then aggregated: either averaged in the case of regression or used 

for majority voting in the case of classification. The second element involves “feature 

bagging” which means that at every node or decision point, the model can only choose from 

a random subset of the input features. For our models, we used 250 trees for each forest 

while the maximum number predictors sampled at each node was the total number of 

predictors divided by 3. 
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Aggregation is the major advantage of random forests. Single decision trees that are deep 

(i.e. have many nodes/decisions) tend to overfit their training sets by learning irregular 

patterns, mainly noise in the data (Kleinberg 2000). This means that they are not 

generalizable to new data and serve little use in most applications. By introducing an 

ensemble of multiple decision trees which are decorrelated by the two steps introducing 

randomness, the final model is generalizable to new data.  

 

Random forest models have been used extensively in biomedical and bioinformatic research. 

One important case is the Polak et al., 2015 study where random forest models were used to 

analyze epigenomic data as predictors of regional mutation rates in cancer. As another 

example, a 2019 study used random forests to predict drug response in cancer patients using 

their mutational status of 145 oncogenes (Lind & Anderson 2019). They were able to predict 

whether a cancer patient would respond to various chemotherapy agents with 87% sensitivity 

and 87% specificity. In another 2019 study, DNA methylation was used to predict whether 

prostate tumours would progress to aggressive stages with an AUC (area under the receiver 

operating characteristic curve) accuracy score of 95% (Toth et al. 2019).  

3.3.2 Monte-Carlo cross-validation 

Cross-validation is a method to assess how a model will generalize to an independent and 

previously unseen data set. During cross-validation, the original dataset is first split into 

training and testing tests (typically 70-80% training set), after which the model is trained on 

the training set and tested on the testing set. The accuracy of the model regarding the test set 

is then recorded, and the process is repeated with a different split of the data.  

 

Monte-Carlo cross-validation refers to the method of randomly splitting the dataset into 

training and testing sets during each round of cross-validation (Dubitzky, Granzow, and 

Berrar 2007). This is different to K-fold cross-validation which involves splitting the dataset 

into K equally sized groups after which one group is kept as the testing set and all others as 

the training set (Hastie, Tibshirani, and Friedman 2009). This process is repeated K times 

with each group as the testing set once. K-fold cross-validation provides a nearly unbiased 
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estimate of the model’s performance as each data point is in the testing set exactly once. This 

contrasts with Monte-Carlo cross-validation, in which the same data point can be in the 

testing set in multiple runs. However, K-fold cross-validation test performance is highly 

variable relative to Monte-Carlo cross-validation, as all the testing sets are independent. 

Monte-Carlo cross-validation also provides the ability to test many different combinations of 

training and testing sets as is computationally practical (Arlot & Celisse 2010).  

3.3.3 Assessing model accuracy 

R2, also known as “percent variance explained”, represents the percent of variance in the 

response which is explained by the model. R2 is the most common accuracy metric used for 

random forest regression models. R2 is calculated by taking the Pearson correlation between 

the predicted and observed values for each observation in the test set, squaring it, and then 

multiplying by 100%.  

 

R2 tends to increase automatically and spuriously as extra predictors are added to the model. 

This is because more complex models have more capacity to explain the data by chance and 

to explain noise in the data. The adjusted R2 metric is an extension of the R2 metric that 

accounts for the complexity of the model by adjusting the R2 score based on the number of 

predictors (p) in the model relative to the number of observations (n) (Fig. 2) (Shieh 2008). 

Unlike R2, adjusted R2 increases only when the increase in R2 (due to the inclusion of a new 

predictor) is more than one would expect to see by chance. Adjusted R2 allows us to make 

better calibrated comparisons of the accuracy measures of models with differing numbers of 

predictors.  
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3.3.4 Using random forest models to analyse predictor importance 

A predictor’s importance metric in a random forest model is calculated by permuting all its 

values in a test dataset and then making predictions based on that test dataset. The percent 

increase in the model’s mean-squared-error (%IncMSE) after the permutation denotes how 

important that predictor is. 

 

Model interpretability is a significant advantage of using random forest models compared to 

more advanced models. One aspect of this interpretability is the ability to calculate how 

important each predictor is to making predictors on a previously unseen dataset.  
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3.4 Using chromatin accessibility to predict regional mutation 

rates in cancer 

3.4.1 Assessing the correlation between our chromatin accessibility 

tracks and cancer type-specific mutation tracks 

We used a Spearman correlation between all our chromatin accessibility tracks and all our 

cancer-type specific regional mutation rate tracks (including pan-cancer). This was an initial, 

exploratory step to map the associations of chromatin tracks and the mutation frequencies in 

different cancer types. To account for potential nonlinear associations of mutation rates and 

chromatin accessibility, the Spearman correlation method, as a non-parametric ranked 

correlation, addresses nonlinearity more efficiently compared to the Pearson correlation 

method.  

3.4.2 Comparing the predictive power of normal and tumour 

epigenomes in predicting cancer type-specific mutation tracks 

To compare the capacity of normal and tumour epigenomes to predict mutation rates, we 

trained a random forest model on all our DNase-Seq megabase-resolution tracks derived 

from normal cells. We also trained a random forest model on all our primary tumour ATAC-

Seq megabase-resolution tracks to predict regional mutational rates. All 25 cancer types plus 

pan-cancer were tested separately and 52 models were run in total. For each of those models, 

we performed 1000 Monte-Carlo cross-validations using an 80%/20% train/test split and 

then calculated an accuracy score based on the median Adjusted R2 from the 1000 splits. For 

each cancer type, we compared the accuracy of the primary tumour model and the accuracy 

of the normal cell model.  

 

Interestingly, when examining the accuracy scores across the cross-validations, models 

predicting regional mutation rates in chronic lymphocytic leukemia and B-cell non-

Hodgkin’s lymphoma showed a high variability in adjusted R2 accuracy metric across cross-

validations. Specifically, there is a subset of cross-validation runs which show significantly 

decreased accuracy. To understand this phenomenon, we examined those cross-validation 
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runs which were affected and found two specific megabase windows that had over a ten-fold 

increase in mutations over the median window. When one of or both hypermutated windows 

were part of the randomly sampled testing set, the model showed significantly decreased 

testing accuracy. Interestingly, the two hypermutated windows are in the same genomic 

location in both of our lymphoma and leukemia results (Fig. 3). 
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Regional hypermutation has been reported in normal blood cells. Hypermutation in the 

variable region of immunoglobulin genes has been well-documented as a means of 

diversifying the immune system’s antibodies to be able to bind to a broader set of antigens 

(Diaz & Casali 2002). The mistargeting of somatic hypermutation has been shown to target 

oncogenes and is thought to contribute to B-cell related blood cancers (Odegard & Schatz 

2006). Interestingly, when examining the 2 hypermutated windows, we found that both 

windows contained the two genetic loci which code for immunoglobulin light chain genes in 

humans found on chromosomes 2 and 22. Upon examining the hypermutated region on 

chromosome 2 more closely, we found that there is a localized enrichment in mutations in 

the immunoglobulin kappa joining cluster (IGKJ1-5) as well as another enrichment ~500 

base-pairs downstream not overlapping any genes in both leukemia and lymphoma. The 

hypermutated region on chromosome 22 showed multiple regional enrichments in mutations 

overlapping the immunoglobulin lambda gene cluster. Specifically, we observed an 

enrichment in mutations overlapping the IGLV3-1 and IGLL5 genes in both leukemia and 

lymphoma as well as IGLC3 in leukemia (Fig. 4). 

 



35 

 

 

To confirm and avoid the effect of these hypermutated windows, the random forest 

experiment was repeated in leukemia and lymphoma after excluding these 2 windows. The 

exclusion of the 2 hypermutated windows led to significantly increased model accuracies and 

decreased variance in accuracy (Fig. 5), suggesting that the random forest method may be 

sensitive to few outlier samples with high deviation from the values observed in other 

samples. Excluding the outlier genomic windows leads to a more conservative analysis 

throughout this study.  
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3.4.3 Training models on chromatin tracks derived only from matching 

normal/tumour tissue 

We examined the nine cancer types with available chromatin accessibility tracks derived 

from both normal and primary tumours of the same tissue. These nine cancer types included 

breast adenocarcinoma, glioblastoma multiforme, colorectal adenocarcinoma, renal cell 

carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, melanoma, stomach 

adenocarcinoma, and uterus adenocarcinoma. As an exception, uterus adenocarcinoma had 

no precisely matching chromatin accessibility track available and a cervical cancer cell line 

was used instead. We randomly sampled one primary tumour chromatin accessibility track 

from each cancer type we were examining during each cross-validation run (1000 runs, 80/20 

train/test split). This approach was used because there are considerably more predictors from 

primary tumours than normal cells and this sampling method allows us to account for the 

bias of comparing two sets of predictors of vastly different sizes. 
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In conclusion, each of our nine random forest models were trained on the same 18 predictors, 

nine of which were derived from matching DNase-Seq (normal cells with one exception) 

tracks and nine of which were derived from matching ATAC-Seq (primary tumours) tracks. 

Therefore, for each model, each of the nine cancer types had one matching normal predictor 

and one matching primary tumour predictor.  

3.4.4 Training models on all tumour chromatin tracks and analyzing 

predictor importance 

For this experiment, we trained 26 different random forest models to predict 26 different 

regional mutation rate tracks (25 cancer types plus pan-cancer). Each model was trained on 

all 382 primary tumour chromatin accessibility tracks. We then analyzed which cancer types 

contributed the most predictive chromatin tracks by using the median importance score to 

compare the contributions of various cancer types for each cancer mutational landscape.  

3.4.5 Training individual models trained on predictors derived from each 

cancer type 

We used a complementary method to study the relationship between the primary tumour 

epigenome and mutational landscapes. In contrast to training models on all our primary 

tumour chromatin tracks as described above, we trained individual models on only primary 

tumour chromatin tracks derived from one tumour type. We then compared the accuracy of 

the models trained on the various cancer types to determine which epigenomic landscape is 

best associated with a cancer type’s regional mutation rates.  

3.4.6 Using chromatin tracks to predict mutations derived from specific 

mutational signatures 

Here we used a precomputed dataset where each mutation from our WGS dataset was 

attributed to a specific mutational signature using the SigProfiler tool (Alexandrov et al. 

2020). SigProfiler is a computational framework based on non-negative matrix factorization 

(NMF) used to 1) discover mutational signatures from mutational catalogues and 2) classify 
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mutations as one of these signatures. Single-base substitutions can be biologically 

categorized by their trinucleotide context which includes the base change itself (i.e. C>T) 

and two flanking nucleotides (i.e. ACG). SBS signatures consists of percentages for each 

substitution type; there are 96 possible combinations as there are 6 types of substitution 

(mapped to the pyrimidine base) x 4 types of 5’ base x 4 types of 3’ base. Mutational 

signatures are linear combinations of these mutation types with each coefficient describing 

the probability of that signature producing that mutation type.  

 

We used this preprocessed dataset to create cancer type and mutations signature-specific 

regional mutation rate tracks using only mutations from specific cohorts and signatures. To 

analyze the relationship between the mutational processes associated with these signatures 

and the chromatin landscape, we used our total set of chromatin predictors to predict these 

mutation tracks. Cancer types were kept with >30 samples (same 25 cancer types plus pan-

cancer) and mutational signatures were kept if they included greater than 3% of the total 

mutations in the cohort. 

3.4.7 Examining the effect of using 100KB windows in the random forest 

experiments 

Somatic mutation rates in cancer genomes show regional variation that is apparent at 

multiple scales of resolution. The major contribution of these regional mutation rates likely 

comes from functionally neutral passenger mutations since driver mutations only make up a 

small minority of all somatic mutations in a cancer genome (Vogelstein et al. 2013). To 

assess the impact of changing the spatial scales, we repeated our random forest modelling to 

compare the prediction accuracy of models trained on chromatin accessibility profiles of 

primary tumours and normal cells at the 100KB scale (window size). We found that the 

models trained on primary tumour chromatin tracks were more predictive of regional 

mutation rates in all 26 cancer types (including pan-cancer) than the models trained on 

normal cell chromatin tracks at the 100KB scale (Fig. 6). We also found that the adjusted R2 

accuracies of our models were higher at the megabase-scale in nearly every cancer type 

tested.  
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Megabase-scale regional mutation rates, as opposed to other resolutions of the genome, are 

associated with replication timing and chromatin accessibility (Supek & Lehner 2019). 

Furthermore, it makes random forest experiments more viable technically (less windows and 

therefore less computational training time) as well as more mutations per window making 

our analysis better powered. Our observed variations in megabase-scale mutation rates are 

consistent with earlier studies (Polak et al. 2015, Kubler et al., 2019). However, confirming 

these variations at a smaller scale demonstrates the robustness of our observations.  
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3.4.8 Comparing the predictive power of histone marks to chromatin 

accessibility at predicting cancer regional mutation rates 

As discussed in section 1.3.1, histone mark tracks contain information complementary to 

chromatin accessibility about the epigenetic state of the cell. In Polak et al. 2015, histone 

mark tracks from various normal cells were used to predict the cell-of-origin of multiple 

tumours based on their capacity to predict regional mutation rates. For our analysis, however, 

no large-scale dataset containing ChIP-Seq of histone marks in primary tumours is available 

so we cannot use the existing ChIP-Seq of normal cells to address our hypothesis. We can, 

however, compare the predictive power of chromatin accessibility tracks to that of histone 

mark tracks to understand if histone marks contain additional information about the 

epigenome which can help us predict regional mutation rates. If so, repeating our analysis 

using histone mark data from primary tumours, once available, will provide us more insight 

into the cancer epigenome as well as the mutational landscape of cancer.   

 

After training separate random forest models on DNase-Seq and the 5 core histone marks 

from the Roadmap Epigenomics Project from the same 53 tissues and cells, we compared 

their adjusted R2 accuracy scores in predicting regional mutation rates (Fig. 7). We found 

that the models trained on the H3K9me3 mark showed modest increases in accuracy relative 

to the other models in several cancer types. Chromatin accessibility (DNase-Seq) showed 

negligible differences in terms of accuracy relative to the other models in most cancer types. 

Therefore, to complement the available chromatin accessibility tracks from primary tumours, 

we chose to focus on only chromatin accessibility from normal cells in this study.  
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Chapter 4 

Results 

4 Results 

4.1 Correlating primary tumour chromatin accessibility and 

cancer regional mutation rates 

4.1.1 Primary tumours demonstrate the classical negative relationship 

between chromatin accessibility and regional mutation rates 

Chromatin accessibility tracks derived from normal cells and cancer cell lines were 

previously shown to be negatively correlated with regional mutation rates derived from 

cancer cells at a megabase-scale (Schuster-Böckler & Lehner 2012). We have confirmed that 

this relationship also exists when deriving chromatin accessibility from primary tumours. We 

tested the Spearman correlation of our megabase-scale primary tumour chromatin tracks with 

regional mutation rates derived from 26 different cancer types from PCAWG (including pan-

cancer) (Fig. 8a). We found that all of our primary tumour chromatin tracks had a negative 

correlation with the 26 different regional mutation rate tracks (Fig. 8b), with the exception of 

one chromatin track from a low-grade glioma sample which showed a slight positive 

correlation (rho~0.3) (Fig. 8c). It is unclear why this sample is an outlier, as the patient it is 

derived from has no exceptional clinical characteristics and may in fact be a technical 

artifact. These results demonstrate that the well-characterized negative association between 

chromatin accessibility and lower mutational density are also present in primary tumours.  
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4.2 Tumour epigenomes are more predictive of regional 

mutation rates than epigenomes of normal cells in most cancer 

types 

We trained random forest models on the 382 megabase-scale primary tumour chromatin 

accessibility tracks derived from TCGA ATAC-Seq. Models were used to predict megabase-

scale mutation rates derived from 25 different cancer types and pan-cancer. We also trained 

random forest models on chromatin accessibility tracks derived from 53 normal cells 

(Roadmap Epigenomics Project) to predict mutation rates in the same 25 cancer types plus 

pan-cancer. Therefore, we have two models for each of our 26 regional mutation rate tracks, 

one trained on primary tumour and one trained on normal cell chromatin accessibility. By 

comparing the two models, we can describe whether the regional mutation rate of a specific 

cancer type is more associated with a normal or tumour epigenome.  

4.2.1 Primary tumour chromatin tracks out-predict the regional mutation 

rates of most cancer types when compared to healthy cell lines 

Polak et al. 2015 described that normal epigenomes define the mutational landscape of 

cancer. This study found that in 20/26 cancer types (including pan-cancer), the model trained 

on primary tumour chromatin accessibility outperformed the model trained on normal cell 

chromatin accessibility in predicting regional mutation rates in cancer. (Fig. 9). The accuracy 

measures of both the primary tumour and normal cell epigenome models were strongly 

correlated with the log-transformed average mutation burden in a cancer type as these 

datasets were better powered. This result indicates that our previous understanding of the 

mutational landscape of cancer needs refinement. Although as the chromatin profiles of 

normal cells are informative of regional mutation rates, the predictive power of tumor 

chromatin profiles is consistently larger. However, our analysis only indicates statistical 

significance suggesting biological associations and follow-up studies. 

 

The 2 cancer types which were tested by Polak et al., 2015 were liver cancer and melanoma 

(in both cases, epigenomic data was derived from cancer cell lines). For Liver-HCC, we 

found that primary tumour chromatin tracks outperformed normal cell chromatin tracks in 
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predicting Liver-HCC regional mutation rates (Adj. R2= 0.82 and 0.71, respectively). For 

melanoma, however, we found that normal epigenomes better predicted mutation rates when 

compared to primary tumour epigenomes (Adj. R2= 0.75 and 0.71, respectively). Melanoma 

was again seen as an exception due to a strong association of mutation rates and chromatin 

accessibility of normal melanocytes.  

 

The other five cancer types for which mutation rates were more strongly associated with the 

chromatin tracks of normal cells included chronic lymphocytic leukemia, bone osteosarcoma, 

B-cell non-Hodgkin’s lymphoma, medulloblastoma, and pilocytic astrocytoma. Interestingly, 

none of these cancer types are carcinomas (which make up over 90% of cancer cases). The 

predictor set consisting of primary tumour chromatin tracks may be less predictive because it 

does not contain chromatin tracks from any blood cancers or sarcomas. Another possibility is 

that only carcinoma mutation rate tracks demonstrate a stronger association with primary 

tumour chromatin tracks because carcinomas are all derived from the same general cell type: 

epithelial cells. We know that the epigenome is the determinant of cell type and therefore 

other cancer cell types (sarcomas, blood cancer cells), may show a stronger association 

between their mutational landscapes and normal cell chromatin landscapes. 

 

The limitation of this analysis is that only some cancer types that we tested had chromatin 

accessibility tracks derived from both matching primary tumour and normal cells. Most of 

these will have matching chromatin accessibility coming from only primary tumour or 

normal cells and some have no matching chromatin accessibility tracks whatsoever. We can 

address this by examining only the cancer types for which we have primary tumour 

chromatin accessibility, normal cell chromatin accessibility, and mutation rates. 
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4.3 Matched-tissue predictors reveal underlying relationships 

between the cancer genome and epigenome 

There were eight cancer types for which we had datasets on primary tumour chromatin 

accessibility, normal cell chromatin accessibility, and regional mutation rates. An additional 

cancer type used in this analysis, uterine adenocarcinoma, also had a chromatin tracks from a 

cervical carcinoma cell line instead of a normal cell chromatin track (defined in section 

3.4.3). For this analysis, we developed a unified set of predictors on which we trained each 

model to predict regional mutation rates. This set of predictors included one predictor for the 

primary tumour and one predictor for the normal tissue or cancer cell line matching to each 

of the nine cancer types (18 predictors in total). As there were multiple primary tumour 

chromatin tracks for each cancer type, one track was randomly sampled during each Monte-

Carlo cross-validation over a series of 1000 samplings. We used this strategy of random 

sampling of tracks, as opposed to choosing only one tumour from each cancer type or 

averaging multiple tumours, to account for the heterogeneity of tumour epigenomes from the 

same cancer type. Nine models were trained on these predictors to predict regional mutation 

rates in the nine cancer types and the top predictors were modeled using their importance 

metric (Fig. 10). 
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4.3.1 Tumor epigenomes are the strongest predictors of mutation rates 

in most cancer types 

Based on median predictor importance, five out of the nine cancer types had their matching 

primary tumour chromatin accessibility track as their top predictor: breast adenocarcinoma, 

glioblastoma multiforme (GBM), colorectal adenocarcinoma, renal cell carcinoma, and 

endometrial adenocarcinoma. This suggests that the majority of the mutational landscape of 

these cancers is established after oncogenesis as it is most associated with an epigenome that 

appears to be post-oncogenic in origin.  
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In colorectal cancer, the later mutational timing has been supported by WGS of normal 

colorectal tissue from middle-aged individuals. These normal tissues demonstrated a three- to 

seven-fold decrease in total substitutions compared to colorectal cancer (excluding 

hypermutated CRC samples) (Lee-Six et al., 2019). This may be due to genome instability 

found in colorectal cancers, as 20% of CRC samples exhibit mutational signatures associated 

with DNA mismatch repair deficiency and/or mutations in DNA polymerase ε or δ 

(Alexandrov et al. 2020). 

 

Later mutational timing in endometrial adenocarcinoma is also supported by a WGS study of 

normal endometrial cells. They showed that normal endometrial cells demonstrate a ~5-fold 

decrease in base substitutions (Moore et al. 2018). They attributed this to a subset of 

endometrial adenocarcinoma patients having mutational signatures associated with DNA 

mismatch repair deficiency and/or mutations in DNA polymerase ε or δ.   

 

As a current limitation, WGS has not yet been performed on the corresponding normal 

tissues of the remaining four cancer types discussed in this section (breast adenocarcinoma, 

glioblastoma multiforme, kidney renal cell carcinoma, and stomach adenocarcinoma). Based 

on our models and the supporting evidence for the other cancer types, we infer that the 

mutational landscapes of these 4 cancer types are also mostly established after oncogenesis. 

This inference is further supported by evidence of defective DNA repair in all 3 of the 4 

cancer types. Both kidney renal cell carcinoma and stomach adenocarcinoma are 

characterized by genomic instability and defective DNA repair pathways (Pilie et al. 2017; 

Sohn et al. 2017).  WGS of breast adenocarcinoma also demonstrated the presence of a 

mutational signature related to defective homologous repair pathways (Alexandrov et al. 

2020). Deficient NER and BER repair pathways have also been reported in breast cancer 

(Anurag et al. 2018). Glioblastoma multiforme, however, does not demonstrate a mutational 

signature related to genomic instability or defective DNA repair and will be discussed more 

closely in section 4.4.1. 
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4.3.2 Epigenetic profiles of non-lung cancers are the top predictors of 

mutation rates in lung cancers 

For the two types of lung cancers (adenocarcinoma and squamous cell carcinoma), the top 

predictors came from non-matching primary tumours (stomach and colon adenocarcinoma, 

respectively). In both cancer types, the matching primary tumour was the fourth best 

predictor and four of the top five predictors were derived from primary tumours. We did not 

observe considerable differences between the median importance metrics of the top 

predictors, suggesting that the associations of the epigenome and the megabase mutation 

rates in lung cancer derived from this analysis remain unclear. Interestingly, we did not 

observe the stronger association of regional mutation rates in lung cancer with the chromatin 

accessibility landscapes of cells derived from either the normal or tumour lung tissue.   

4.3.3 Regional mutation rates in melanoma are best predicted by a 

normal melanocyte chromatin track 

The top predictor of regional mutation rates in melanoma was derived from a healthy 

melanocyte skin cell. This is consistent with the Polak et al., 2015 study, demonstrating that 

the mutational landscape of melanoma is more associated with its earlier, potentially pre-

oncogenic epigenetic state, rather than the later oncogenic epigenetic state. This finding is 

supported by the study of Martincorena et al. 2015, where they performed WGS on 4 adult 

skin samples. They found that the mutation burden of these skin samples was within the 

lower end of the range found in melanomas and greater than what is found in many adult 

solid tumours. The likely explanation is that sun-exposed skin is an exceptional tissue due to 

a lifetime of exposure to ultraviolet light and its mutagenic effects. No other normal tissue 

has been shown to carry such a high mutation burden without first undergoing oncogenesis 

(Martincorena et al. 2019) 
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4.4 Models trained on all primary tumour chromatin tracks 

inform of the epigenetic determinants of mutation rates  

We wanted to assess the relationship between the cancer types of the most predictive primary 

tumour chromatin tracks and the cancer types of the regional mutation rate tracks they were 

predicting. We asked whether the chromatin tracks from the same cancer type would be most 

predictive of mutation rates. We also wanted to investigate the top predictors of regional 

mutation rates in cancer types with no chromatin tracks from the same cancer type available. 

Therefore, we trained a model on all primary tumour chromatin accessibility tracks to predict 

regional mutation rates for all 26 cancer types (including pan-cancer). 14 of these regional 

mutation tracks had chromatin accessibility tracks from tumours of the same cancer type. We 

then used the predictor importance metric of each of the predictors to determine which 

cancer type’s chromatin tracks were the most important to predicting regional mutation rates 

in each cancer type (Fig. 11)  
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4.4.1 Most cancer type-specific regional mutation rates are best 

predicted by chromatin tracks from the same cancer type 

Regarding the experiment described in Fig. 11 where we trained models on all primary 

tumour predictors; 14/26 cancer type-specific mutation rate tracks had a chromatin track 

from the same cancer type. We found that the matching cancer type contributed the most 

predictive chromatin tracks in 10 out of these 14 cancer types. These included breast, 



53 

colorectal, head and neck, kidney, liver, prostate, stomach, thyroid, endometrial cancer, and 

melanoma.  

 

Unexpectedly, the most predictive chromatin tracks of GBM mutation rates were derived not 

from GBM, but from low-grade glioma (LGG). LGG is often a precursor of secondary GBM 

which comprise 10% of glioblastomas (Mansouri, Karamchandani, & Das 2017). LGG 

chromatin tracks represent an epigenome which is more like normal glial epigenomes in 

terms of somatic evolution than GBM chromatin tracks.  We may even view LGG 

epigenomes as a proxy of normal glial cell epigenomes, as we do not have any chromatin 

accessibility data for these cell types. LGG chromatin tracks being the best predictors of 

GBM mutation rates suggests that the mutational landscape of GBM is established as an 

earlier event in tumour evolution than expected. 

 

Another exception involves regional mutation rates derived from esophageal 

adenocarcinoma, for which the top predictors were derived from stomach adenocarcinoma 

chromatin tracks. This makes sense, however, as the esophageal cancer chromatin tracks 

include both adenocarcinomas and squamous cell carcinomas. Therefore, the chromatin track 

of a stomach adenocarcinoma may be the closest match to regional mutation rates of 

esophageal adenocarcinoma in terms of cell type. Furthermore, both esophageal and stomach 

adenocarcinomas share a prominent mutational process caused by oxidative damage due to 

acid reflux (Tomkova et al. 2018). 

 

The final exceptions involve the two lung cancers, which do not have chromatin tracks from 

matching tissues as their top predictors, as was observed in several of our analyses. In this 

analysis, chromatin tracks derived from thyroid adenocarcinoma were the most predictive of 

lung adenocarcinoma regional mutation rates. Chromatin tracks derived from head and neck 

cancer were the most predictive of regional mutation rates in lung squamous cell carcinoma. 

Interestingly, the top predictors (thyroid and head and neck cancer) were derived from the 

same tumour cell type as the mutation tracks (lung adenocarcinoma and lung squamous cell 

carcinoma), potentially because chromatin accessibility is highly cell type specific.  
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4.4.2 Top predictors of regional mutation rates without chromatin tracks 

from the same cancer type reveal cell type-specific associations 

between the cancer genome and epigenome 

When examining the other 11 cancer types with no matched primary tumour chromatin 

tracks (excluding pan-cancer), we saw interesting trends in terms of top predictors. 

Regarding the two mutation rate tracks derived from brain tumours without chromatin tracks 

from the same cancer type, medulloblastoma and pilocytic astrocytoma, we saw the strongest 

association with chromatin tracks derived from the nervous system. Medulloblastoma 

regional mutation rates were best predicted by chromatin tracks derived from 

pheochromocytoma and paraganglioma (PCPG) and low-grade glioma (LGG) samples. 

PCPG tumours occur in the sympathetic nervous system, most commonly in neuroendocrine 

cells found in the adrenal medulla. LGG, as previously discussed, is a lower-grade glioma 

with a lower mutation burden than glioblastomas. Regional mutation rates in pilocytic 

astrocytoma were also best predicted by chromatin tracks derived from LGG. Both cancer 

types being examined here are childhood brain tumours and are two of the three lowest 

cancer types in terms of mutation burden in our dataset. It is possible that their mutational 

landscapes are associated with an earlier state in tumour development, however, chromatin 

accessibility from more CNS tissues and cell types are needed to confirm these results.  

 

In biliary adenocarcinoma, regional mutation rates were best predicted by chromatin tracks 

derived from liver hepatocellular carcinoma. Although these two cancer types are derived 

from different cell types, they do interact functionally and are proximal to each other in the 

body. Both diseases are associated liver cirrhosis caused by hepatitis B, hepatitis C, and 

alcohol abuse (Heidelbaugh & Bruderly 2006; Shaib et al. 2005). The association between 

the chromatin landscape of biliary adenocarcinoma and the mutational landscape of HCC 

may point to a shared mechanism of mutagenesis occurring within these 2 tumour types. 
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4.4.3 Individual models trained on chromatin tracks from only one 

cancer type support relationship between the cancer genome and 

epigenome 

We looked to validate our results from sections 4.4.1 and 4.4.2 using a different 

methodology. As opposed to training models on all primary tumour chromatin track 

predictors, we trained models on chromatin tracks derived from only one cancer type and 

repeated this procedure for each cancer type in our chromatin track dataset (Fig. 12).  

 

Overall, we found that this method agreed with the previous results in most cancer types. The 

previous findings showed that LGG chromatin tracks were the top predictors of GBM 

regional mutation rates and stomach adenocarcinoma chromatin tracks were the top 

predictors of regional mutation rates in esophageal adenocarcinoma. These results were 

replicated in this experiment as the most predictive model of GBM regional mutation rates 

was trained on LGG chromatin tracks and the most predictive model of regional mutation 

rates in esophageal adenocarcinoma was trained on stomach adenocarcinoma chromatin 

tracks. Contrary to previous results, we found that the most predictive model of the lung 

adenocarcinoma mutation track was trained on lung adenocarcinoma chromatin tracks. In the 

previous experiments, lung cancer regional mutation rates showed no preferential association 

with chromatin tracks derived from the same cancer type indicating there is a complementary 

relationship between the two methods. 
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4.5 Mutational signatures reveal underlying relationships 

between the cancer genome and epigenome 

Somatic mutations occur in genomes of individual cells due to mutational processes caused 

by specific endogenous or exogenous mutagens, deficient DNA repair processes, and/or 

DNA replication. Previous research has shown that different mutations grouped by their 

trinucleotide context are associated with these endogenous and exogenous processes, using 

algorithms that discover mutational signatures (Petljak et al. 2019; Alexandrov et al. 2020). It 

is unclear, however, what role the chromatin landscape plays in determining the genome-

wide activity of mutational processes and the related genomic distribution of mutational 

signatures.  

 

To uncover such relationships, we trained our models on our combined set of normal and 

tumour chromatin tracks to predict regional mutation rates consisting of mutations from only 

one signature in one cancer type. We predicted the role of each signature in the cancer type-

specific relationship between the genome and the epigenome.   

4.5.1 Specific mutational signatures drive the association between 

chromatin landscape and the mutational landscapes of cancer 

After examining the models trained to predict regional mutation rates from single mutational 

signatures, several trends became evident (Fig. 13). The foremost of these is that the 

performance of models trained to predict mutations from some signatures nearly matched the 

performance of those trained to predict all mutations in a cohort. For example, we see this 

trend with signatures SBS18 and SBS40, both of unknown aetiology, in colorectal 

adenocarcinoma. The adjusted R2 scores for models trained to predict SBS18 and SBS40 

(Adj. R2=85.4 and 86.4, respectively) mutations in the colorectal cancer cohort nearly match 

that of the model trained to predict all the mutations in the cohort (Adj. R2=87.3). We saw 

this trend occur in multiple signatures and cancer types, such as SBS40 in several cancer 

types, SBS7a (UV) in melanoma, and SBS4 (smoking) in lung cancers. However, we also 

found that models trained to predict mutations attributed to several signatures showed 

considerable decreases in accuracy such as SBS1 and SBS13 in several cancer types. These 



58 

results indicate that the regional mutation rates due to some mutational signatures are highly 

associated with the chromatin landscape of the cell while some others are not. 

 

We also observed that regional mutation rates from several mutational signatures of 

unknown aetiology were highly predicted in related cancer types. This was most evident with 

SBS18 in esophageal, stomach, and colorectal cancer as well as SBS17a/b in esophageal and 

stomach cancer, possibly suggesting that these mutational signatures represent a common 

mutagenic exposure occurring in the esophageal tract and the stomach. 
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4.5.2 Primary tumour and normal chromatin tracks are highly predictive 

of regional mutation rates related to exogenous mutational processes  

Upon further examination of our results (Fig. 14), we found that the models trained to predict 

regional mutation rates from exogenous sources were similar in performance to the models 

trained to predict all mutations in the cohort. Models trained to predict endogenous 

signatures tended to show more significant decreases in model accuracy suggesting that the 

location of these mutations is less dependent on the chromatin landscape. Finally, several 

signatures of unknown aetiology showed little to no decrease in model accuracy suggesting 

that mutations due to these signatures may in fact be of exogenous origin. 

 

In terms of exogenous mutational processes, we found that models trained to predict regional 

mutation rates attributed to SBS7a (UV light) in melanoma showed a similar performance to 

models trained to predict all melanoma mutations (Adj. R2=65.4 and 68.6, respectively) with 

SBS7a mutations representing 71% of total melanoma mutations in our dataset. We found 

that models trained to predict mutations attributed to SBS4 (tobacco smoking) showed 

similar performances to models trained to predict all mutations in lung squamous cell 

carcinoma (Adj. R2=72.1 and 73.5 respectively), lung adenocarcinoma (Adj. R2=65.0 and 

68.3, respectively), and liver HCC (Adj. R2 74.6 & and 80.8%, respectively). Finally, the 

SBS29 signature associated with tobacco chewing showed an 8.8% decrease in model 

accuracy. These results imply that the genomic regional variation in mutations due to 

exogenous signatures is highly dependent on the chromatin landscape of the cell. 

 

In contrast, when examining signatures related to endogenous sources of mutations, we find 

more significant decreases in model accuracy. In terms of mutations related to defective 

DNA repair pathways (SBS3, SBS36, and SBS44), we observed at least a 20% decrease in 

Adjusted R2 between the model predicting all mutations with a specific cohort and the model 

predicting regional mutation rates from only these signatures. This decrease in model 

accuracy was found in six of seven cancer type-signature combinations. The one exception 

was SBS3 in breast adenocarcinoma which only showed a 7.7% reduction in adjusted R2. 

Interestingly, SBS3 is associated with germline and somatic BRCA1 and BRCA2 mutations 

as well as BRCA1 promoter methylation in breast, pancreatic, and ovarian cancer (Nik-
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Zainal et al. 2012). In terms of mutational signatures related to APOBEC enzyme activity of 

mutagenesis (signatures SBS2 and SBS13), we observed at least a 20% decrease in adjusted 

R2 between the model predicting all mutations with a specific cohort and the model 

predicting mutations only from these signatures in 10 out of 12 cancer type-signature 

combinations. The two exceptions were SBS2 and SBS13 in lung squamous cell carcinoma 

which both showed a 16% decrease in adjusted R2 (SBS2 and SBS13 are highly associated 

with each other). This suggests that certain endogenous mutational processes are less 

associated with the chromatin landscape, potentially because these mutational processes act 

uniformly on DNA, regardless of chromatin accessibility. 

 

Two signatures are known to be associated with total number of stem cell replications and as 

a proxy of patient age – SBS1 and SBS5. These signatures showed a clear dichotomy 

between SBS5, for which regional mutation rates were accurately predicted and SBS1, for 

which model performance was significantly decreased. Aside from being highly correlated 

with age, SBS5 aetiology is mostly unknown. Some associations have been noted in bladder 

cancer samples with ERCC2 (ERCC excision repair 2) mutations and in many cancer types 

due to tobacco smoking (Kim et al. 2016). SBS1 is thought to be caused by the spontaneous 

enzymatic deamination of 5-methylcytosine to thymine. SBS1 mutation rates are highly 

different between tissues and are correlated with the tissue-specific rate of cellular division 

suggesting that it is a stem cell division or a mitotic clock. 

     

Most of the signatures with unknown aetiology we tested in this study demonstrated little to 

no decrease in model performance, with only one of 29 cancer type-signature combinations 

showing over a 20% decrease in model accuracy relative to the model predicting all 

mutations. Signatures from which regional mutation rates were highly predicted by 

chromatin tracks include SBS40, SBS18, SBS17a/b, and SBS12. Previously, we found that 

exogenous signatures were highly associated with the chromatin landscape while endogenous 

were not, suggesting that mutations due to these signatures may be of exogenous origin. 

Several of these unknown signatures are prominent in cancer types derived from related 

tissues, such as SBS18 in colorectal, stomach, esophageal, and pancreatic adenocarcinoma, 

SBS17a/b in stomach and esophageal adenocarcinoma, and SBS12 in liver HCC and biliary 



61 

adenocarcinoma (Fig. 13). This suggests that these signatures are associated with a shared 

process of mutagenesis in these related cancer tissues. The exception to this trend is SBS40 

which is found across most cancer types and across unrelated cancer tissues. Previously, 

SBS17 was shown to be associated with replication timing (which is also associated with 

chromatin accessibility) and it is thought to be caused by oxidative damage due to gastro-

oesophageal and duodena-gastric reflux as it was also found in Barrett’s oesophagus 

(Tomkova et al. 2018).  
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4.5.3 Regional mutation rates from most mutational signatures have 

consistent most predictive chromatin tracks within the same cancer type 

To examine which chromatin tracks were the most predictive of mutational signature- and 

cancer type-specific regional mutation rates, we performed the same analysis as in section 

4.3. We examined the same nine cancer types where mutational profiles were available with 

chromatin profiles of tumor cells and normal cells. For each of these cancer types, we used 

the same set of unified predictors, however in addition to predicting all mutations in a cohort, 

we predicted mutations belonging to specific signatures only (Fig. 15). We observed that 

most signatures had consistent top predictors within the same cancer type. This result 

demonstrates that for most signatures and cancer types, primary tumour epigenomes are 

better predictors of regional mutation rates, regardless of the underlying mutational process 

or signature examined in a given analysis. 
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4.5.4 Chromatin tracks derived from fetal tissues are the best predictors 

of SBS1 regional mutation rates across most cancer types 

Interestingly, fetal tissues were observed to be the most predictive chromatin tracks of SBS1 

mutation rates in multiple cancer types. In fact, SBS1 was best predicted by a chromatin 

track derived from fetal brain tissue in seven out of nine cancer types tested (Fig. 16).  

Furthermore, there were chromatin tracks derived from other fetal tissues such as kidney and 

intestine in the top five predictors of regional mutation rates of all nine cancer types. SBS1 

has been previously linked with stem cell division rate in multiple cancers and has been 

proposed as a mitotic clock (Alexandrov et al. 2020). Furthermore, the mutational landscape 

of fetal intestinal stem cells has been shown to be dominated by SBS1 mutations (Kuijk et al. 

2019). We speculate that fetal chromatin tracks are most predictive of the SBS1 mutational 
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landscape because fetal tissues have increased cellular replication rates and are therefore 

exposed to higher levels of replication-related mutations such as SBS1. Furthermore, fetal 

tissues are not exposed to the same set of exogenous mutagens as adult tissues and so the 

fetal chromatin landscape may be a proxy of the SBS1 and the replication-related mutational 

landscape. However, SBS1 mutations are only a minority of mutations in the cancer types we 

considered (10-15%) and the performances of our random forest models are mostly 

substandard (Adj. R2 15-45%). Therefore, these findings should be treated with caution. 

With the availability of chromatin and mutation profiles from fetal and adult tissues, further 

work can elucidate this link. 
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Chapter 5 

Discussion 

5 Discussion 

5.1 Summary of findings 

To date, few studies have examined the relationship between the mutational landscape of 

cancer and the chromatin accessibility landscape of primary tumours. This is mostly due to 

large-scale chromatin accessibility datasets derived from primary tumours only recently 

becoming available. Previous studies have used chromatin accessibility from normal cells 

and cancer cell lines as a proxy of the epigenetic landscape of primary tumors, however, this 

approach has profound limitations. Firstly, the chromatin landscapes of normal cells evolve 

dramatically after transformation. Epigenetic changes have been observed to be associated 

with all hallmarks of cancer. Secondly, cancer cell lines represent a genetically and 

epigenetically distinct entity to cells making up primary tumours due to in vitro culturing and 

passaging effects. Thirdly, the normal cell chromatin accessibility dataset only contains a few 

samples sequenced for each cell type thereby reducing the statistical power of such an 

analysis. Previous studies suggest that the associations of mutation rates and chromatin state 

are the strongest across the same cell type (i.e. melanocyte chromatin best predicts melanoma 

regional mutation rates) (Polak et al. 2015). With the availability of chromatin accessibility 

profiles from primary tumours rather than only cell lines and normal tissues, we can obtain a 

more accurate understanding of the associations of mutagenesis and chromatin state. 

Systematic evaluation of the interactions of genome-wide mutation rates and the chromatin 

landscapes of primary tumours and normal cells will reveal insights into tumour evolution, 

mutational processes, and cancer tissue of origin. 

 

Firstly, we demonstrated that chromatin tracks of primary tumour tissues are more predictive 

of regional mutation rates than chromatin tracks of normal cells in 20/26 cancer types 

(including pan-cancer). This would suggest contradicting evidence to the Polak et al. 2015 
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study, as we observe that primary tumour chromatin landscape is more strongly associated 

with the mutational landscape of cancer than normal cells (Polak et al. 2015).  

 

Upon examining the most predictive chromatin tracks of each cancer type-specific mutation 

track, we found several interesting trends. Firstly, in five out of nine cancer types, we 

observed that the most predictive chromatin tracks were derived from primary tumours of the 

same cancer type as the mutation track which they predicted. This was shown in breast 

adenocarcinoma, glioblastoma multiforme, colorectal adenocarcinoma, kidney renal cell 

carcinoma, and uterine adenocarcinoma. This result, in addition to previous work, implies 

that the mutational landscape in cells of these cancer types is established as a later event in 

tumour evolution. Further support is derived from defective DNA repair mutational 

signatures found in many of these late mutation-timing cancer types (Pilie et al. 2017; Sohn 

et al. 2017; Anurag et al. 2018; Alexandrov et al. 2020). This suggests that DNA repair may 

have been compromised during or after oncogenesis, after which most of the mutations 

occurred due to the lack of DNA repair. Importantly, these results allow us to infer 

mutational timing in cancer types for which WGS has not been performed in the 

corresponding normal tissue. This is only an indirect approach, however, and more direct 

evidence such as WGS experiments of more normal and tumour tissues are needed. 

 

Interestingly, we found that in melanoma, the top predictor of regional mutation rates was 

derived from the matching normal cell chromatin track of normal melanocytes. In various 

computational experiments, regional mutation rates in melanoma were most strongly 

associated with the chromatin landscape of normal melanocytes, rather than the chromatin 

landscape of melanoma cells. We speculate that while the mutational landscape in most of 

these cancer types is established after oncogenesis, most of the mutations in melanoma occur 

prior to oncogenesis. This is supported by WGS mutation data revealing high levels of 

mutation burden in normal skin tissue, within the range of mutation burden found in 

melanoma cells (Martincorena et al. 2015).  

 

In our next analysis, we observed that out of 14 cancer types with both mutation rate tracks 

and chromatin tracks from the same cancer type, 10 had these chromatin tracks as the top 
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predictors. This indicates high cell-type specificity in the genome-epigenome relationship. 

Interestingly, we found that regional mutation rates in GBM were best predicted by 

chromatin tracks from low-grade glioma (LGG). LGG is often a precursor to GBM and 

therefore represents an earlier stage in tumour development. This suggests that the 

mutational landscape of GBM may be established earlier than expected during tumour 

evolution, perhaps during the low-grade phase of glioma development, however, whole-

genome sequencing data of lower-grade gliomas is lacking in our dataset. Further analysis of 

WGS and epigenetic data from a cohort of LGGs and GBMs may reveal further insights into 

the genome evolution of these heterogeneous tumors. 

 

By using our chromatin tracks to predict regional mutation rates containing only mutations 

from specific mutational signatures, we made several observations to better understand the 

relationship between the epigenome and specific mutational processes. We first found that 

the genome-wide distributions of certain mutational signatures were better predicted by 

chromatin accessibility than others. This implies that mutations of these well-predicted 

signatures are highly associated with the cell’s epigenome. First and foremost, signatures 

associated with exogenous or carcinogenic aetiologies such as SBS7a (UV) in melanoma and 

SBS4 (smoking) in lung and liver cancer were associated with the chromatin landscape. In 

contrast, endogenous signatures related to defective DNA repair and APOBEC enzyme 

activity showed significantly weaker associations with the chromatin landscape. This may 

due to these endogenous mutational processes affecting DNA uniformly, regardless of 

chromatin accessibility. Several signatures of unknown aetiology (namely SBS12, SBS17a/b, 

SBS18, and SBS40) were highly associated with the chromatin landscape, suggesting that 

these signatures are of exogenous or carcinogenic origin, based on their associations with 

chromatin accessibility. Interestingly, SBS17 has been shown to be potentially associated 

with oxidative damage due to acid reflux in gastric and esophageal tissue, which our results 

support. Further work into uncovering the origin of these mutational signatures can yield 

insight into novel carcinogenic processes and agents and their associations with chromatin 

state. 
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Upon examining the most predictive chromatin track of each signature, we found that only 

one signature shows a common top predictor across cancer types; SBS1. SBS1 is a signature 

attributed to stem cell division rate and has been described as a mitotic clock (Alexandrov et 

al. 2015). The top predictor of SBS1 regional mutation rates in seven of nine cancer types 

was derived from normal fetal brain tissue. This is noteworthy as the fetal tissue has a high 

rate of stem cell division and is less exposed to exogenous sources of mutations. These 

results suggest that the fetal chromatin landscape is a proxy for the SBS1 mutational 

landscape. Performance of these models is substandard, however, so these results should be 

treated with caution. Further work using a larger set of SBS1 mutations and fetal chromatin 

tracks is required to elucidate these findings. 

 

In conclusion, we found that by analyzing the relationship between the cancer genome and 

epigenome, we gain insight into tumour evolution, mutational timing, and mutational 

processes. It is documented that the chromatin state undergoes significant changes while 

normal cells transform into tumour cells (Perdigoto 2019). The chromatin state is known to 

be associated with mutation rates in both normal and tumour cells. Therefore, if the 

chromatin state of tumour cells is more predictive of somatic regional mutation rates than the 

chromatin state of normal cells, the tumour chromatin state has had a stronger impact in 

shaping genome-wide mutation rates. This would suggest that most mutations have occurred 

after oncogenic transformation. We found this to be the case in most cancer types as primary 

tumour chromatin tracks were most predictive of cancer mutation rates in most cancer types. 

We found several exceptions, however, such as melanoma and to a lesser extent, GBM. Most 

of the mutations in melanoma are established prior to oncogenesis due to a lifetime of UV 

exposure and this was supported by our results from multiple analyses. Furthermore, the 

GBM mutational landscape was most associated with an epigenome earlier in tumour 

development (namely the LGG epigenome) rather than epigenomes derived from GBM 

tumours. This suggests that most of the mutations are established earlier than expected in 

tumour evolution. Finally, we examined the relationship between the chromatin landscape 

and the mutational landscape of specific mutational signatures/processes. We found that 

exogenous signatures were highly associated with the chromatin landscape while endogenous 

signatures were not. We also found evidence for the exogenous aetiology of several 
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signatures with previously unknown aetiologies. Finally, we showed that regional mutation 

rates due to the mutational signature SBS1 in cancer, associated with stem cell replication 

rates, were best predicted by chromatin tracks derived from fetal tissue, although the general 

model accuracy was relatively lower than in other analyses.  

5.2 Considerations and challenges 

Several challenges exist for bulk tumour sequencing datasets and their applications. First, 

bulk tumour sequencing datasets represent the average of a heterogenous composition of 

cells existing within the tumour microenvironment and may contain non-cancer cells such as 

immune infiltrates as well as cells in varying cell states. The primary tumour itself may 

contain several subclonal populations of cells with considerably heterogenous genomic and 

epigenomic compositions (Gerstung et al. 2020). In this project, it is important to consider 

that the mutational or chromatin landscapes used may be confounded by the contribution of 

one or more subclones as well as immune cells and other cells in the microenvironment that 

were included in the sequencing analysis. The emergence of single-cell sequencing as an 

alternative to bulk tumour sequencing will enable us to elucidate the molecular compositions 

of various tumour subclones as well as other cells within the tumour microenvironment.  

 

Next-generation sequencing of primary tumours also has several technical limitations. The 

length of reads being used as well as sequencing depth have a significant impact on the 

ability to call somatic variants or align reads to a reference genome. Short-read sequencing 

(75-300 bps) is the most common method as it is more cost-effective. However, 

reassembling the genome from short reads can be challenging, as many fragments look 

highly similar without additional context and are therefore difficult to align to the reference 

genome. Long-read sequencing (>10,000 bps) is an emerging technology that allows for 

increased overlap between reads and the ability to call variants in more repetitive regions of 

the genome. On the other hand, sequencing depth, or coverage, represents the number of 

reads sequenced for each nucleotide. The higher the sequencing depth, the more confidence 

there is that a variant call is in fact due to a variant and not a technical error. Higher 

sequencing depth is becoming more available as sequencing technology advances.  
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In terms of chromatin accessibility mapping, several limitations of DNase-Seq and ATAC-

Seq have been described. It has been shown that at the base pair scale, both methods have 

sequence biases (Calviello et al. 2019). However, we found no evidence that these sequence 

biases affected chromatin accessibility at the megabase pair scale, as all our chromatin tracks 

derived from DNase-Seq and ATAC-Seq showed a concordant negative correlation with 

regional mutation rates. Furthermore, peaks from these DNase-Seq and ATAC-Seq tracks 

were previously shown to be highly correlated (Corces et al. 2018). Importantly, the 

epigenomic landscape of a cell, unlike the genomic landscape, is highly dynamic while 

sequencing studies only capture one time point. The epigenome changes in response to 

endogenous stimuli such as hormones and exogenous stimuli such as chemicals, diet, and 

stress. Evidence indicates that epigenetic changes due to these stimuli can permanently alter 

the epigenetic state of an individual’s cells (Kanherkar et al. 2014).  

 

Regarding our tumour sequencing datasets, the most obvious limitation is the number of 

tumour samples in addition to the range of tissues and cancer types sequenced. It is important 

to note that we used datasets available to us at the time of the study, while the field is rapidly 

expanding with new studies and datasets being published regularly. For the WGS mutation 

dataset, we currently lack the statistical power to accurately describe the mutational 

landscapes of tumour types with lower mutational burdens such as childhood brain tumours. 

To elucidate the mutational landscapes of these cancer types, more samples are needed. In 

terms of our chromatin accessibility datasets, an increase in the number of samples and 

tissues being sequenced will lead to a better understanding of the human normal and tumour 

chromatin landscapes. With respect to our project, the desired combinations comprising 

chromatin accessibility mapping from matching types of normal and tumour tissues (i.e., 

melanocyte and melanoma) as well as WGS mutation data from the matching cancer type is 

only available for nine tissues. With the availability of more WGS and chromatin 

accessibility data published in the future, these experiments can be performed for more 

human tissues to better understand mutational processes, mutational timing, and tissue of 

origin across a wider spectrum of cancer types.    
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There are several limitations to our machine learning framework as well. Firstly, our 

mutation tracks were derived from the aggregated mutations within a cohort and then split 

into genomic windows of fixed width of one megabase. Cancer types with higher mutation 

burden such as melanoma are bound to provide better-powered signals compared to those 

with more silent genomes such as paediatric brain cancers. Secondly, our chromatin tracks 

were derived from the binned average of chromatin accessibility scores within each window. 

Several other methods have been used in the past such as counting number of accessible 

peaks, but the binned average method was used for its improved consistency in comparing 

chromatin accessibility across two experiment types such as DNase-Seq and ATAC-Seq. 

Thirdly, the random forest model best represented the non-linear relationship between the 

chromatin and mutation landscapes analysed in this project. However, with the availability of 

larger sequencing datasets, more complex machine learning models such as deep neural 

networks may become more relevant.       

5.3 Future directions 

The availability of larger and more diverse datasets of cancer genomics and epigenomics will 

enable the application of our analytical framework to more tissues with higher statistical 

power. Aside from increased data, however, there are two clear directions which can be 

taken to advance this project.  

 

First, our method can be applied to WGS datasets of metastatic tumours to elucidate the 

relationship between the mutational landscape of metastatic tumours and the chromatin 

landscape of normal cells and primary tumours (Priestly et al. 2019). Using the mutational 

landscape as a proxy, we can gain insights into the chromatin landscapes of metastatic 

tumours, for which literature is lacking. This will allow us to elucidate mutational timing, 

tissue of origin, and mutational processes in metastatic tumours and their response to cancer 

therapies. Additionally, we can better understand the role of the epigenome in the tumour 

cell’s transition from a localized primary tumour to a metastasis. In addition to advancing our 

understanding of the disease, this could have significant clinical impact as metastasis is the 

most common cause of death for cancer patients.  
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Second, although we have studied the regional variation in mutations and chromatin 

accessibility, work can be done to elucidate the local effects. Local effects indicate which 

regions of the genomes demonstrate a high association between the chromatin and mutational 

landscapes and which regions do not. This can provide insight into genomic regions, genes, 

and regulatory elements in which epigenetic deregulation may be the cause of oncogenic 

mutations. Further work into understanding these exceptional regions can lead to novel 

cancer prognostics, diagnostics, and therapies. 

5.4 Significance 

Here we demonstrated the association between the chromatin landscapes of normal cells and 

primary tumours and the mutational landscape of cancer. To our knowledge, this is the first 

study to analyze this relationship using chromatin accessibility derived from primary 

tumours. Using our chromatin tracks, we inferred mutational timing in multiple cancer types. 

We found that the mutational landscapes of most cancer types are more strongly associated 

with the primary tumour chromatin landscape compared to that of normal cells. These results 

suggest that most mutations in these cancer types are more likely to have occurred later in 

tumour evolution. Exceptionally, we found that the mutational landscape of melanoma is 

most associated with the chromatin landscape of normal skin cells suggesting a pre-

oncogenic accumulation of mutations, which has been confirmed by WGS experiments of 

normal skin tissue. Furthermore, we found that the mutational landscape of GBM is most 

associated with the chromatin landscape of LGG, a less aggressive tumour within the same 

cell type, suggesting that the mutational landscape was mostly established earlier than 

expected during tumour evolution, possibly in the low-grade glioma phase. Finally, we 

showed that exogenous mutational processes are highly associated with the chromatin 

landscape and demonstrated evidence for the exogenous aetiologies of several previously 

unclassified mutational processes. We also showed that mutation rates of signature SBS1 in 

cancer are most associated with the fetal chromatin landscape, suggesting that these 

mutations dominate the fetal genome. In conclusion, integrative analysis of mutations and 

chromatin state allows us to learn about tumour evolution, mutational processes, and cancer 

tissue of origin.   
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