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ABSTRACT

The performance of Lidar sensors degrades in the presence of dust. These particles

can impact sensor measurements and cause robot perception algorithms to misinter-

pret data. This thesis proposes two distinct dust filtering methods to address this

issue. These methods utilize both AI and non-AI techniques. Specifically, we designed

various dust filters including the Low-Intensity Dynamic Outlier Removal (LIDROR)

using intensity and range information. In addition, we proposed a voxel-based classifi-

cation method with multiple classifiers, such as Random Forest (RF), Support Vector

Machine (SVM), and Deep Neural Network (DNN).

Two dust LiDAR datasets were collected and labeled for evaluation purposes.

All proposed algorithms were implemented in the Robotic Operating System, allow-

ing for the testing of these filters in real time. Using labeled data, a comprehensive

comparison was made between these two methods. The proposed filters outperform

conventional filters in terms of achieving dust removal without losing the surrounding

data.
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Chapter 1

Introduction

1.1 Context of study

Many researchers have recently been working on creating autonomous systems for

off-road vehicles in a variety of industrial areas, including construction and mining [1,

2]. This is because these vehicles are able to perform certain tasks with high efficiency

and accuracy, particularly repetitive and tedious tasks. In addition, autonomy may

be advantageous for preventing humans from working in harsh situations. In these

situations, autonomous robots can perform the task instead of humans.

Autonomous operations consist of three components, including perception, plan-

ning, and control, as shown in Fig 1.1. The first is perception, in which robots use

sensors such as Light Detection and Ranging (LiDAR) and depth cameras to sense

Figure 1.1: This figure shows different components of autonomous systems including
perception, planning, and control.
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their surroundings. The robot should then process these data and extract meaningful

information for purposes such as object detection and simultaneous localization and

mapping (SLAM) and finally make decisions, such as whether the robot should stop

or continue moving, and send these commands to the robot’s actuator.

LiDAR is one of the most widely used sensors for performing perception in mobile

robots because it can provide important information regarding the geometry and

intensity of the surrounding environment. A popular LiDAR sensor, such as VLP-16

[4], can sense up to 600, 000 points per second in a distance of a hundred meters with

an accuracy of three centimeters. The image and point cloud data generated by the

VLP-16 sensor are shown in Fig. 1.2.

Due to the aforementioned benefits, the LiDAR sensor has a wide range of appli-

cations in mobile robotics, including object detection [5, 6], localization [7, 8], and

mapping [9, 10]. However, measured data by the LiDAR sensor can be corrupted in

the presence of adverse weather conditions such as dust [3, 11], snow [12, 13], and fog

[14, 15].

(a) (b)

Figure 1.2: An example of a LiDAR point cloud (a) and its corresponding image
captured by a depth camera (b).
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(a) (b)

Figure 1.3: Effect of dust on LiDAR point cloud: top-view (a) and pictorial view (b)
[3].

1.2 Effect of dust on 3-D LiDAR point cloud data

When exposed to extreme environmental conditions such as dust, the performance

of LiDAR sensors is systematically degraded [3] because, unlike radar, most commer-

cial LiDAR sensors operate at 900 nm wavelength, allowing them to detect airborne

particles. For instance, Fig. 1.3 illustrates an example of a LiDAR point cloud in the

presence of dust. As shown in Fig. 1.3b, the dust cloud resembles an object, which

may cause the robots to misinterpret their surroundings. In such a scenario, LiDAR

sensors may be unable to distinguish between data from dust clouds and data from

non-dust clouds. During the competition, the winner of the DARPA urban challenge,

Boss, had the same issue of misclassification of dust as an object. [16].

This behavior of the LiDAR sensor in adverse weather conditions could adversely

impact the entire vehicle’s perception. In order to use this sensor in these circum-

stances, it is necessary to identify and remove particles such as dust.
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1.3 Research objective

The primary goal of this thesis is to present novel methods for detecting and re-

moving dust particles using LiDAR sensors, which are commonly used in robotics,

in order to improve the performance of robot perception in adverse weather condi-

tions, especially dust. More specifically, the proposed methods target state-of-the-art

technologies, including AI and non-AI techniques, to detect airborne particles in 3D

LiDAR point cloud and minimize the effect of dust particles. The proposed solution

expects to be experimentally evaluated using datasets collected. Finally, the devel-

oped algorithms will be implemented in Robotic Operating System (ROS) so that

they can be utilized in real-time.

The detailed objectives of this research include:

1. Development of de-dust filtering algorithms based on AI techniques that can

remove dust point clouds from a LiDAR sensor in dusty environments while

keeping non-dust point clouds.

2. Development of de-dust filtering algorithms using methods that do not rely on

artificial intelligence and are capable of minimizing the impact of dust.

3. Real-time implementation of the developed de-dusting filtering algorithms using

the ROS.

4. Evaluation the performance of the proposed algorithms including both AI and

non-AI techniques, in terms of evaluation metrics using the labeled data gath-

ered in the presence of dust.

4



Figure 1.4: Separating the data by mapping it to a higher dimension using a polyno-
mial kernel [17].

1.4 Working foundation

The theoretical foundations for the research presented in this thesis are discussed

in the following sections. This includes an overview of the mathematics that underlies

the techniques that were developed here. Furthermore, the ROS is described to provide

the reader with a better understanding of how the proposed methods are integrated

with ROS.

1.4.1 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a robust and flexible Machine Learning model

that can perform linear or nonlinear classification and regression [17, 18]. SVMs are

based on the principle of projecting training data onto a higher-dimensional plane

using the kernel concept to make the data linearly separable and then applying a

large margin classifier to it there. There are numerous techniques for projecting data

into higher dimensions, one of which is illustrated in Fig. 1.4 named polynomial kernel

[17].

There are two types of large margin classification: hard margin classification and

soft margin classification. As shown in Fig. 1.5, the hard margin classifier requires

5



all instances be off the street and on the right side. Several issues exist with hard

margin strategy. First, it is applicable only when the data can be separated linearly.

Second, it is sensitive to outliers, which makes this classifier unsuitable for real data

containing noise. SVM with a hard margin is defined in Equations (1.1) and (1.2).

f(w, x) =


0, wTx+ b < 0

1, wTx+ b > 0

(1.1)

minimizew,b (
1

2
wTw) subject to ti(wtx+ b) ≥ 1

for i = 1, 2, ...,m

(1.2)

where w and b are hyperplane coefficients found after solving SVM and x are the

input features to the classifier for prediction, and m is the number of training points.

This strategy maximizes the width of the street between the two classes.

Soft margin classification is a more flexible model that can be used to avoid afore-

mentioned two issues. The objective of this method is to find a balance between

maximizing street width and minimizing margin violations (i.e., instances that end

up in the middle of the street or even on the wrong side). Soft margin is represented

by Equation (1.3).

minimizew,b ,ζ (
1

2
wTw + C

m∑
i=1

ζ i) subject to ti(wTx+ b) ≥ (1− ζ i)

for i = 1, 2, ...,m and ζ i ≥ 0

(1.3)

where w, b, x, and m are identical to hard margin classifier while for each instance, the

slack variable ζ i with coefficient C is added to a hard margin indicating how much the

ith instance is permitted to deviate from the margin. As shown in Fig. 1.6, the higher

the value for C, the less likely a violation will occur, and vice versa. Two hyperpa-

6



rameters affect the classification performance of SVM. The first hyperparameter is

selection of the Kernel for data separation. The choice of Kernel consist of polynomial,

Gaussian RBF, and Sigmoid. The second hyperparameter is the constant C, which

determines the margin violation tolerance. The selection of appropriate parameter

values is crucial for the training of this algorithm.

1.4.2 Random Forest (RF)

A random forest is a collection of Decision Trees trained with the bagging tech-

nique. The number of estimators indicates the number of decision trees utilized by

Random Forest. Scikit-Learn uses the classification and regression tree (CART) al-

Figure 1.5: Large margin classification illustration [19].
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Figure 1.6: The effect of coefficient C on the soft margin classification decision bound-
ary [18].

gorithm to train Decision Trees. Using a single feature k and a threshold tk, the

algorithm initially divides the training set into two subsets. It looks for the pair

(k, tk) that produces the purest subsets.

The cost function that this algorithm attempts to minimize is given in Equation

(1.4):

J(k, tk) =
mleft

m
Gleft +

mright

m
Gright (1.4)

where Gleft and Gright represent the impurity of the left and right subset and mleft

and mright represents the number of instances in the left and right subset. The Gini

impurity criteria is defined in equation (1.5):

Gi = 1−
n∑

k=1

P 2
i,k (1.5)

where Pi,k is the class k instance ratio among the training instances in the ith node.

After successfully splitting the training set into two, the CART algorithm divides the

subsets using the same logic, then the next subsets, and so on, recursively. When it

reaches the maximum depth, it stops recursing.
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Figure 1.7: Example of a decision tree classifier [20].

The maximum depth, minimum samples split, and minimum samples leaf are some

Decision Tree hyperparameters that can be tuned to find a better solution. The Fig.

1.7 depicts an example of a Decision Tree Classifier. In this example, the classifier

has a depth of three.

1.4.3 Principal Component Analysis (PCA)

One of the most widely used dimensionality reduction strategies is Principal Com-

ponent Analysis (PCA). This algorithm finds the hyperplane that is closest to the

data and projects it onto it. Fig. 1.8 illustrates this. PCA determines which axis ac-

counts for the most variance in the training set. It also identifies the second orthogonal

axis that accounts for the greatest amount of residual variance, and so on.

Using PCA, it is possible to calculate the eigenvalues and eigenvectors of the

point cloud. Fig 1.9 depicts an illustration of eigenvalues and eigenvectors for a simple

example of a groups of LiDAR points located inside a cube. When all of the points are
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roughly arranged in two dimensions, the eigenvalue in the last dimension is negligible

in comparison to the other eigenvalues. It can be inferred that the axis with the

most points aligned in its direction has a higher eigenvalue. This method was used to

extract geometrical information from the LiDAR point cloud for training AI models,

as explained in Chapter 3. An example of this information is the planarity, that is,

whether the points are scattered or roughly aligned.

1.4.4 Deep Neural Network (DNN)

The neural network is based on biological neurons. [23] developed a fairly simple

model of the biological neuron: it includes one or more binary (on/off) inputs and

one binary output. When more than a specific number of its inputs are active, the

artificial neuron activates its output. In their study, they demonstrated that even

with such a simple model, it is feasible to construct a network of artificial neurons

capable of computing any logical assertion.

Following that, [24] created the Perceptron. It is built on a slightly modified ar-

tificial neuron known as a threshold logic unit (TLU). The inputs and outputs are

integers, and each input connection has a weight assigned to it. The TLU computes a

weighted sum of its inputs, then applies a step function to that amount to get the re-

Figure 1.8: A dimensionality reduction example using PCA [21].
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Figure 1.9: An illustration of the concept of eigenvalues in point cloud data [22].

sult. For simple linear binary classification, a single TLU can be utilized. It takes the

inputs and computes a linear combination of them. A layer is called a fully connected

layer or a dense layer when all of the neurons in it are connected to every neuron in

the preceding layer.

z = w1x1 + w2x2 + ...+ wnxn = wTx

hevisise(z) =


0, if z < 0

1, if z > 0

(1.6)

where wi are coefficients corresponding to input xi, and z is a linear combination of

the input xi.

The inputs of the Perceptron are fed by unique passthrough neurons called input

neurons, which output whatever input they receive. Furthermore, an additional bias

component is usually added: it is normally represented using a unique sort of neuron

known as a bias neuron.

hw,b(X) = ϕ(W TX + b) (1.7)

whereX represents the matrix of input features,W contains all the connection weights
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except the one from the bias neuron, and b contains all the connection weights be-

tween the bias neuron and the artificial neuron. The function is called the activation

function: when the artificial neurons are TLUs, it is a step function.

The perceptron learning rule promotes connections that assist reduce mistakes.

More exactly, the Perceptron receives one training instance at a time and makes

predictions for each. It reinforces the connection weights from the inputs that would

have contributed to the right prediction for each output neuron that generated an

erroneous prediction. The rule is demonstrated using the equation (1.8).

W next step
i,j = Wi,j + α(yj − ȳj)xi (1.8)

where Wi,j is the connection weight between the ith input neuron and jth output

neuron, xi is the ith input value of the current training instance, yj is the output of

the ith output neuron for the current training instance, ȳj is the target output neuron

for the current training instance, and α is the learning rate.

Because each output perceptron’s decision boundary is linear, perceptrons are

incapable of learning complicated patterns. If the training cases are linearly separable,

however, this technique will converge to a solution.

Some of perceptron’s drawbacks can be overcome by stacking several perceptrons,

a technique known as Multilayer Perceptron (MLP). An MLP is made up of one input

layer, one or more hidden levels of TLUs, and one final layer of TLUs termed the

output layer. The parameters that should be tuned for each problem are the number

of hidden layers and the number of nodes in each layer. Except for the output layer,

each layer contains a bias neuron that is entirely connected to the following layer.

The approach is then trained with a backpropagation algorithm. This algorithm is

made up of numerous steps:
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1. It works with one mini-batch at a time (for example, 32 instances each), and it

passes through the entire training set numerous times. Each pass is referred to

as an epoch.

2. Each mini-batch is sent to the network’s input layer, which then forwards it to

the first hidden layer. After that, the algorithm computes the output of all the

neurons in this layer (for every instance in the mini-batch). The result is sent

on to the next layer, whose output is computed and passed on to the next layer,

and so on until we reach the last layer, whose output is computed and passed on

to the next layer. This is the forward pass: it is the same as creating predictions,

except that all intermediate findings are saved because they are required for the

backward pass.

3. The algorithm then calculates the network’s output error. To do so, it employs

a loss function that compares the desired output to the network’s actual output

and gives the error value.

4. The error is then calculated based on how much each output connection con-

tributes to the error. This is accomplished analytically by employing the chain

rule.

5. The method then uses the chain rule to determine how much of these mistake

contributions occurred from each connection in the layer below, going backward

until the algorithm reaches the input layer. As previously stated, this reverse

pass network propagates the error gradient backward across the network.

6. Finally, the algorithm uses the error gradients it just generated in a Gradient

Decent step to modify all of the network’s connection weights.

13



To make this technique work, the authors in [25] made a significant improvement

to the MLP’s architecture: they replaced the step function with a logistic function,

allowing gradient descent to make some progress at each step. Equation (1.9) defines

the logistic function.

σ(z) =
1

1 + exp(−z)
(1.9)

The sigmoid function, however, is not the only option for an activation function.

Other activation functions include the Rectified Linear Unit (ReLU) and Hyperbolic

Tangent function (Tanh). These alternatives, as well as their mathematical represen-

tation, are shown in Equations (1.10) and (1.4.4), respectively.

Tanh(z) =
exp(z)− exp(−z)

exp(z) + exp(−z)
(1.10)

ReLU(z) =


z, z > 0,

0, z < 0,

(1.11)

Choosing the loss function may differ depending on the application. The cross-entropy

loss function is commonly applied in binary classification, as seen in Equation (1.12).

cross entropy loss function =
1

N

n∑
i=1

−
(
yi log(ȳ) + (1− yi)× log(1− ȳ)

)
(1.12)

where N is the number of the training set, yi is a true label, and ȳ is a predicted

value.

To compute the gradient descent, several techniques such as ADAM [26], NADAM

[27], and momentum can be used. Depending on the application, each of these algo-
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rithms can be tested to see which one has the best performance for the situation at

hand. The table below summarises the list of Deep Neural Network parameters that

may require adjusting.

Table 1.1: Deep Neural Network Parameters

Parameters value

No. Hidden layers Usually between 2 and 5
Number of nodes in each layer No specific range

Learning rate Between 10−5 and 10−1

Optimization technique ADAM, NADAM, momentum

1.4.5 Robotic Operating System (ROS)

The Robot Operating System (ROS) is a flexible framework that includes nu-

merous tools and libraries for the development of robotic applications. It has various

advanced capabilities that aid developers in tasks such as message forwarding, dis-

tributed computing, code reuse, and designing cutting-edge algorithms for robotic ap-

plications. Morgan Quigley founded the ROS project in 2007, and it was maintained

at Willow Garage, a robotics research facility for creating hardware and open-source

software for robots. ROS’s purpose was to create a standard means of programming

robots while also providing off-the-shelf software components that could be readily

combined with custom robotic applications.

There are numerous reasons to select ROS as a framework for programming. First,

the ROS ecosystem is equipped with tools for debugging, visualization, and simula-

tion. For example, RViz is one of the most effective open-source visualization tools.

ROS also permits the use of a variety of device drivers and interface packages for

a wide range of robotic sensors and actuators. Among the high-end sensors are 3D

LIDAR, laser scanners, depth sensors, and actuators. These components can be ef-
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fortlessly connected to ROS.

Furthermore, the ROS message-passing middleware facilitates communication be-

tween a variety of programs. This middleware is referred to as nodes in ROS. These

nodes are writable in any language supported by ROS client libraries. C++ and

Python are two examples of these programming languages. ROS is one of the frame-

works that is used the most frequently in the robotics industry due to the reasons

that were discussed earlier.

1.5 Thesis outline

The rest of the thesis is organized into four sections. The second chapter is a

review of previous efforts to overcome the challenge of autonomous robot perception

using LiDAR sensors in adverse weather conditions such as dust. Chapter 3 proposes

the methodology for developing dust-filtering algorithms for 3-D LiDAR point clouds.

The results are then analyzed and discussed in chapter 4. Chapter 5 ends this thesis

with a summary of the work, a discussion of the findings, and suggestions for future

research.
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Chapter 2

Literature Review

This chapter provides the information necessary to better realize the work pre-

sented in this thesis. First Section 2.1 discusses the related work regarding how dust

particles affect the LiDAR measurements. Section 2.1, and 2.2.4 introduce the previ-

ous studies that have tried to minimize the adverse effects of averse weather conditions

using techniques such as non-AI filtering methods and AI techniques. Then Section

2.4 presents the existing open data sets that are available online. Finally, this chapter

ends with Section 2.5, highlighting the research gap.

2.1 Effect of dust on LiDAR data

The influence of dust particles on LiDAR data was thoroughly investigated by

[3]. In this paper, the authors classify four distinct dust particle behaviors that can

be detected by a LiDAR sensor. These behaviors are shown in Fig. 2.1. In scenario

(a), when the dust cloud is sparse, the LiDAR beam is able to penetrate it, and the

dust cloud does not produce noise in LiDAR measurements. In scenario (b), when

the dust cloud is dense, LiDAR images the surface of the dust cloud. The third
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Figure 2.1: Four behavior of LiDAR sensor in the presence of dust [3].

scenario is a transition between the first two. There are also exceptional situations in

which no LiDAR beam can be returned from an object corresponding to scenario (d).

They also studied the dust cloud parameters that influence the LiDAR return. As

shown in Fig. 2.2, these parameters include the distance between a LiDAR and dust

clouds, the distance between a LiDAR and a target, the dust cloud’s length, the dust

density, the dust particle’s size, and the reflectivity and the surface area of a target

(reflected points). In this thesis, these parameters were used when LiDAR data was

to be collected.

Additionally, they examined the impact of different dust cloud thicknesses at vari-

ous sensor distances. In mining applications, they also provided qualitative results for

dust-impacted LiDAR point clouds. They showed that dust particles have a system-

atic effect on LiDAR measurements. Dust, for instance, affects the return intensity

of other targets behind it. Fig. 2.3 presents various conditions corresponding to the

situation in Fig. 2.1 when the dust is present. In case (b), for example, dust prevented

the collection of LiDAR data from the target.
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Figure 2.2: Parameters of dust cloud that impacts the LiDAR return [3].

Figure 2.3: LiDAR return for the cases corresponding to 2.2 [3].

2.2 Non-AI-based techniques for noise removal in

adverse weather conditions

In this part, a variety of non-AI de-noise filters for LiDAR point clouds that

have been utilized to improve the quality of detection in severe weather conditions

are reviewed. These filters include Statistical Outlier Removal Filter (SOR), Radius

Outlier Removal Filter (ROR), Dynamic Outlier Removal Filter (DROR), and lastly,

Low-Intensity Outlier Removal Filter (LIOR).
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2.2.1 SOR filter

The objective of the SOR filter is to eliminate sparse outliers resulting from mea-

surement error [13, 28]. To accomplish this, the algorithm iterates over each point

and calculates the average distances di of k -nearest points to that point, where k is

an integer parameter of the filter that can be chosen based on how many neighbor

points are to be analyzed [28]. As another important variable, the threshold value T

can be defined as follows in Equation (2.1).

T = µ± β × σ (2.1)

where µ and σ are the mean and standard deviation of the average distances di, and

β is a constant multiplier. This filter removes any points whose average distances

exceed the threshold interval. The effectiveness of the SOR filter is dependent on the

selection of β and k. The authors of [13] utilized this filter as a potential filter for

de-snowing.

2.2.2 ROR filter

The ROR filter [13, 29] eliminates isolated outliers from point clouds by iteratively

traversing each point and counting the number of points fall inside a sphere with the

point’s center and search radius, R. The filtering process is depicted in Fig. 2.4. It

utilizes the k- d tree algorithm [30] to find a point within a sphere. If the number

of points is less than the minimum acceptable number of points N , it is discarded

as an outlier, otherwise saved as an inlier. The parameters N and R can be used to

determine the optimal ROR filtering solution.
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Figure 2.4: Illustration of how the ROR filter works [29].

2.2.3 DROR filter

In [13], the ROR and SOR filters were selected to evaluate their de-snowing per-

formance. This study figured out that the SOR was able to remove the majority of

snow points but was unable to remove snow points that were densely clustered. In

addition, although the ROR filter showed superior performance for de-snowing in

general, it eliminates all relevant environmental information that was farther than

18 meters from a LiDAR sensor. This is due to the reason that LiDAR point clouds

become sparser as sensor distance increases, whereas the search radius of the ROR

filter remains constant.

In order to address this issue, the research developed a DROR filter in which the

search radius varies proportionally with distance from the LiDAR sensor, as shown

in Equation (2.2).

Rdynamic = ϕ× α× 2
√

x2 + y2 (2.2)

where ϕ is a constant multiplier, α is the LiDAR sensor’s angular resolution, and [x, y]

are the Cartesian coordinates of the point. In Fig. 2.5, the pseudo-code for this filter is
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Figure 2.5: Pseudocode of the DROR filter.

shown . The dynamic radius in Equation ( 2.2) allows rich data from the surrounding

environment to be preserved while snow particles are removed. To avoid a very small

search radius for points close to the LiDAR sensor, search radii smaller than the

minimum search radius were set equal to the minimum search radius in the study.

2.2.4 LIOR filter

For denoising, the methods described above rely solely on geometry information

from a LiDAR sensor. Based on the observation that snow particles have a lower in-

tensity value than other objects, [31] utilized the intensity information from LiDAR’s

3D point clouds for de-snow filtering. The study [31] proposed the two-stage LIOR

filter by applying this principle. The initial stage consists of iterating through each

point and identifying those whose intensity is less than a threshold intensity value ϵ.

Choosing the proper threshold is essential for the proper operation of the LIOR filter.

In the second step, the ROR filter was applied to the candidate outliers that

had been identified in the first phase. All parameters associated with the ROR filter,
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Figure 2.6: Pseudocode of the LIOR filter.

including the minimum acceptable number of points and the search radius, play a

crucial role at this stage. Those points identified as outliers in the second step were

subsequently eliminated from the point cloud.

The preceding procedure is depicted in Fig. 2.6. The main feature of this filter is

to apply the ROR only to selected points. This enables the LIOR filter to achieve a

higher speed than the DROR filter while maintaining the same high level of snow-

removal performance as the DROR filter [31].

2.3 AI-based techniques for noise removal in ad-

verse weather conditions

The AI-based techniques in the literature for the perception of LiDAR sensors

can be divided into two broad categories: Deep learning methods and other machine

learning methods such as Support Vector Machine (SVM) and Random Forest (RF).

In general, deep learning frameworks for the LiDAR point cloud can be classified into

four types [32]:

1. Models based on voxels, such as VoxNet [33] and 3D ShapeNet [34]
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Figure 2.7: Results of voxel-based classification of dust particles [11].

2. Models based on point clouds, such as PointNet [35] and PointNet++ [36]

3. Models based on graphs, such as SyncSpecCNN [37] and Edge-Conditioned

Convolution[38]

4. Models based on views, such as MultiViewCNN [39] and MVCNN-MultiRes [40]

Each type of the mentioned classifiers has a unique set of input data. For voxel-

based models, the point cloud is first converted into voxels, which are then fed into

the models. The input for the AI architecture for a point-based model is a point. The

graph-based model first converts the point cloud data into a graph data structure and

then feeds it to the neural network, while the view-based model converts the point

cloud data into images and feeds them to the AI model.

The AI-based techniques can also be classified into 3D point cloud semantic seg-

mentation [41], 3D object detection [42, 43], and 3D object classification [44, 45] based

on their applications. Some deep learning techniques have been modified to be effec-

tive for dust classification. The authors of [11], for example, created a point-based

and voxel-based deep learning architecture for distinguishing dust particles from other

point clouds. The result of this work is shown in Fig. 2.7. These techniques have also

been used to combat other adverse conditions such as fog and snow. [12] removed

snow from the LiDAR point cloud using CNN methods.

Other machine learning techniques have also contributed significantly to this field.

For example, in [22], the authors used geometrical features obtained from a Principal
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Figure 2.8: Results of classification of fog using SVM and KNN [14].

Component Analysis (PCA) to perform ground classification using a Gaussian Mix-

ture Model (GMM). [46] proposed using LiDAR intensity returns as a feature in a

Support Vector Machine (SVM) classifier to recognize vegetation from road surfaces.

[47] used a Random Forest (RF) classifier to classify up to four terrain types using

both geometrical features and intensity returns. These techniques, such as deep learn-

ing methods, have also been applied to other adverse conditions such as fog and snow.

For example, in [14], the author used both SVM and KNN methods for defogging and

concluded that the SVM performed better. The result of this work is shown in Fig.

2.8.

The LiDAR sensor can provide two primary data sources that have been exten-

sively utilized by AI classifiers as input features. The first type of data is geometry

data, which is returned by the LiDAR sensor and enables the calculation of the carte-

sian coordinates of surrounding points. The second type of information is intensity
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information, which provides information regarding the data’s intensity. These data

can be then analyzed to obtain meaningful information about the environment.

2.3.1 Geometry features

There are some features that have been used in the literature for the voxel-based

classification technique showing good results. The examples of these features are slope

[48], roughness [48], curvature [32], local linearity [32], and local planarity [32]. These

features can be computed by applying the principal component analysis (PCA) to

the voxels and computing the eigenvalues, as seen in equations (2.3) - (2.7) can be

used.

slope = arcsin(
γ3
γ1

) (2.3)

roughness = γ3 (2.4)

curvature =
γ1

γ1 + γ2 + γ3
(2.5)

linearity =
γ1 − γ2

γ1
(2.6)

planarity =
γ2 − γ3

γ1
(2.7)

where γ1,γ2, and γ3 are eigenvalues.

2.3.2 Intensity features

A prestigious LiDAR sensor such as Velodyne provides both intensity and geome-

try data. Intensity value represents the intensity of light received by the sensor from

the emitted beam. Some researches have been conducted to identify the factors that
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Figure 2.9: Different parameters that can affect the final value reported by LiDAR
sensor as intensity [49].

can influence this value. For example, the authors of [49] figured out that intensity

value is affected by three major factors: the internal processes of a sensor, the medium

through which the LiDAR beam is emitted, and the target surface. The detailed list

of these parameters is displayed in Fig. 2.9.

Some studies, including [11, 48], have used the fact that each object’s surface can

have its own intensity value due to its unique reflectance as a feature for training

AI algorithms. Examples of a intensity-based feature are the mean intensity and the

standard deviation intensity of the points located within a voxel.

2.4 Existing LiDAR dataset

Several datasets containing LiDAR data are available to public, including the

well-known KITTI dataset [50], the A*3D Dataset [51], the nuScence Dataset [52],

the Oxford RobotCar Dataset [53], the Canadian Adverse Driving Conditions Dataset

[54], and the Waymo open dataset [55], but none of them contain dust datasets. The
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Marulan dataset [56] includes LiDAR data with airborne particles such as dust and

smoke. However, no information regarding intensity is provided here, and only 2D

LiDAR sensors were utilized in their experiments. In order to develop the proposed

dust filtering algorithms using a 3D LiDAR, it was necessary to generate new datasets

containing dust.

2.5 Research gap

This thesis attempts to fill in a few of the gaps that are present in the previously

published literature. The following provides a summary of these limitations:

1. Many researchers have developed autonomous off-road vehicles. These vehicles

operate in extreme weather, which includes dust. Surprisingly few studies on

dust filtering in adverse weather conditions have been published. Additionally,

current literature solely relies on deep learning methods in this area. However,

these AI techniques have the inherent problem of requiring a large number of

data sets, resulting in high computation costs and training time.

2. Prior research has primarily focused on AI methods or non-AI methods. None

of them offer a comprehensive comparison of these techniques.

2.6 Research contribution

The contribution of this research can be summarized as follows:

� To the best of our knowledge, the proposed non-AI solutions are the first at-

tempt to create dust-filtering algorithms using non-AI techniques that take

advantage of the inherent characteristics (intensity value) of dust point-cloud

data.
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� The proposed non-AI method can overcome the inherent problems of AI meth-

ods used for dust filtering, which require a large number of data sets for training,

resulting in high computation costs and training time.

� This study considers a dataset with various scenarios in the presence of dust.

� This study provides an in-depth and comprehensive discussion of various design

methodologies including both AI and non-AI techniques. Therefore, it can offer

practical recommendations on which is the most suitable method through a

comparative analysis.
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Chapter 3

Methodology

The LiDAR sensor’s performance is degraded when exposed to adverse environ-

mental conditions such as dust [3]. They operate at 900 nm wavelength, allowing

them to detect airborne particles. In such a case, LiDAR sensors may be unable to

distinguish between data from dust clouds and data from non-dust clouds, reducing

efficiency and robustness of the robot’s perception.

To address the aforementioned issues, this chapter presents developed filtering

technique to filter out dust particles from the LiDAR point cloud. These techniques

can be divided into two main categories, including AI-based methods and non-AI-

based methods. Then these proposed solutions were tested experimentally using two

different datasets representing different outdoor scenarios. Following that, the dataset

was manually labeled based on prior knowledge of the experimental environment. We

evaluated the performance of the designed filters using the labeled dataset.

The rest of this chapter is organized into four sections. Section 3.1 and 3.2 describe

the proposed non-AI techniques and AI techniques used for dust removal, respectively.

Section 3.3 explains how we created the datasets and the ground truth labeling meth-

ods. Finally, Section 3.4 discusses the design of a mobile platform necessary for testing
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the developed filtering algorithms in real-time.

3.1 Design of non-AI dust-filtering algorithms

One of the major goals is to create filtering algorithms capable of detecting and

removing dust from a LiDAR point cloud. To accomplish this, some of the filtering

methods that have shown promising results in other adverse conditions, such as snow,

were selected to design dust filters. Statistical Outlier Removal Filter (SOR), Radius

Outlier Removal Filter (ROR), Dynamic Radius Outlier Removal Filter (DROR),

and Low-Intensity Outlier Removal Filter (LIOR) are examples of these algorithms.

These filters were then designed to adapt to dust conditions. The general procedure

for designing these filters is shown in Fig. 3.1. The filters’ inputs, as shown in the

figure, are raw LiDAR point clouds with geometry and intensity information. These

filters’ outputs are dust-free point clouds. In Fig. 3.1, each filter has some parameters

that influence the filter performance. The filter parameters were then optimized based

on the feedback provided by the chosen evaluation metrics. The filter parameters are

then optimized based on the feedback provided by the chosen evaluation metrics. The

final parameters of these filters are presented in Table. 3.1.

Figure 3.1: An illustration of the designing process of non-AI techniques.
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Table 3.1: Selected conventional filters’ final parameters

Filters Parameters

SOR
No. of nearest points = 3
Multiplier constant = 0.1

ROR
Search radius = 0.04 (m)

Minimum acceptable No. of points = 3

DROR
Constant multiplier = 0.008

Minimum acceptable No. of points = 3
Minimum search radius = 0.04

The dust data are then analyzed in Section 3.1.1. According to the results of these

analyses, the LIOR technique can be a good candidate for dust filtering. Therefore,

we developed the LIOR filter for dust which is explained in detailed in Section 3.1.2.

Nonetheless, this filter has some limitations. As a result, Section 3.1.3 proposes a new

filtering technique to address LIOR’s shortcomings.

3.1.1 Data analysis method

The gathered data was analyzed to determine the properties of the measured

point clouds. Dust points have an intensity range of 0 to 10 that is significantly lower

than that of other objects. For instance, the point clouds are plotted according to

their intensity values using the turbo colormap in Fig. 3.2(b), where the dust point’s

color is close to black, which corresponds to an intensity value of 0. There are also

a few non-dust points, including some low-intensity ground points (dark blue). In

Fig. 3.2(b), dust noise (disturbance caused by dust) accounts for approximately 4.55

percent of the total number of points that should be eliminated.

According to above observation, intensity is a viable criterion for classifying or

filtering out dust point clouds. In the next step, the LIOR filter, which requires
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Figure 3.2: A scene of experimental data collection (a), and corresponding point cloud
(b).

intensity data, is applied to evaluate its capability and efficacy at removing dust.

33



(a) (b)

Figure 3.3: Histogram of a VLP-16 LiDAR point clouds when exposed to dust: His-
togram of dust points as a percentage of total dust points (a) and histogram of
non-dust points as a percentage of total non-dust points (b).

3.1.2 Optimizing LIOR for de-dusting

The LIOR filter has three parameters, as described in Section 2.2.4: intensity

threshold, search radius, and minimum acceptable number of points in the vicinity of a

query point. Achieving a high-performance dust filter requires identifying the optimal

intensity threshold value. Therefore, a data analysis was performed to determine the

appropriate threshold intensity.

The histograms in Fig. 3.3 depicts the distribution of intensity values for dust

and non-dust particles in Fig. 3.2. The intensity value in VLP-16 varies as an integer

between 0 and 255. Specifically, the x -axis represents an integer intensity interval,

whereas the y-axis represents a percentage of the intensity data falling within each

interval. In Fig. 3.3a, for instance, the x value of the second bin is within the interval

of [1,2), and its y value is approximately 71%. This indicates that 71 percent of dust

points in Fig. 3.3a have an intensity equal to 1. In contrast, the vast majority of

non-dust points, nearly 88 percent, have an intensity greater than 8 (see Fig. 3.3b).
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Figure 3.4: An illustration of the tuning process for LIOR and LIDROR.

A high threshold increases the possibility that low-intensity non-dust points will be

removed. Consequently, there is a trade-off between dust removal and environmental

information preservation, and both needed to be balanced. In the study, 7 was selected

as the threshold intensity after considering both perspectives. As depicted in Fig.

3.4, the optimal values of the two remaining LIOR parameters, search radius, and

minimum acceptable number of points, in Table 3.2 were determined by trial and

error using the data sets described in Section 3.3.1.

Table 3.2: LIOR final parameters

LIOR parameters value

Threshold intensity 7
Search radius (m) 0.044

Minimum acceptable number of points 6

3.1.3 Low-intensity dynamic radius outlier removal (LIDROR)

To make the LIOR filter more resistant to distance variation, we created a new

filter called LIDROR. Specifically, the ROR filter was replaced by the DROR filter

in the second stage of the LIOR filter in order to solve the ROR filter’s problem by

employing a dynamic search radius (from lines 5-9 of Fig. 3.5). Tuning parameters

for de-dusting in this filter are the constant multiplier and the minimum acceptable
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number of points within the search radius. They were tuned based on observations of

how these parameters affect the filtering performance and robustness in various dust

scenarios.

In addition to maximizing dust removal, the LIDROR filter has the advantage of

allowing the threshold intensity to be set higher without sacrificing important non-

dust information. Finding suggest that the threshold intensity for this filter should be

8, which is higher than the LIOR filter’s threshold intensity of 7. Table 3.3 summarizes

the finalized parameter values, including the threshold intensity.

Table 3.3: LIDROR final parameters

LIDROR parameters value

Threshold intensity 8
Minimum radius search (m) 0.044

Minimum acceptable number of points 5
Constant multiplier 0.011

Figure 3.5: Pseudocode of the LIDROR filter.
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Figure 3.6: Illustration of the operation of AI classification methods.

3.2 Development of AI-based dust-filtering algo-

rithm

This section suggests AI techniques for classifying LIDAR data from airborne

particles. The classification techniques consist of a class for dust and one for non-dust.

If every LIDAR point within a voxel is generated by dust particles, the voxel is labeled

as dust. Figure 3.6 depicts the three-step classification method. The discretization of

3D LIDAR point clouds is the initial step. Second, the input features of each voxel are

computed and passed on to the subsequent layer. Then, a machine learning classifier

assigns a category to each voxel as the third step. Each of these step is explained in

more detail in sections 3.2.1, 3.2.2, and 3.2.3, respectively.

3.2.1 Converting LiDAR point cloud into voxels

A 3D voxel map [24] is one of the most common techniques utilized in robotics for

obstacle detection or classification from point clouds. In addition, the discretization

of a point cloud is a common method for storing and processing spatial sensor data.

In the study, LiDAR scans were discretized by dividing the three-dimensional space

into equal-sized, non-overlapping voxels [vx, vy, vx]. A voxel map with the dimensions
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[mx,my,mx] is centered on the LiDAR coordinates’ origin. The experimentally de-

termined dimensions of the voxel map are mx = [−10m, 10m], my = [0m, 20m], and

mz = [−3m, 3m]. The voxel size was set to 0.2 m (i.e., vx = vy = vz = 0.2m)

so that each voxel contains enough LiDAR points to carry geometrical information

while preserving sufficient scene details. Depending on their positions on the map,

LiDAR points were accumulated in the corresponding voxels. Each LiDAR point is

positioned relative to the map’s origin. The intensity, ai, is a number between 0 and

256 that represents the amount of light reflected by the LiDAR’s surface hit. This

value depends on several variables, including the distance to the object, the angle of

incidence of the light ray on the surface, and the surface’s material.

3.2.2 Feature selection method

To select the most effective features for dust classification, we narrowed the list of

features to those that had previously been utilized in the literature and proven to be

effective. These features include the mean intensity of the points within the voxel, the

standard deviation of the points within the voxel, and a few other features that can

be calculated using the eigenvalues obtained by performing PCA on the points within

the voxel as discussed in Chapter 2.3.1. Then, to acquire a better understanding of

these, each feature is plotted against other features, as shown in Fig. 3.7, where dust

points and non-dust points are colored differently.

We selected input features for the classifier based on the analysis of patterns

derived from Fig. 3.7. For the DNN network, the mean intensity of the points inside

a voxel, the standard deviation of the points inside a voxel, the third eigenvalue, the

planarity, and the curvature are selected as input features, while the mean intensity,

the standard deviation, the slope and, the roughness are selected for RF and SVM

classifier.

38



Figure 3.7: Candidate features are plotted against each other.

3.2.3 Machine learning technique used for de-dusting

As AI techniques, including Support Vector Machine (SVM), Random Forest

(RF), and Deep Neural Network (DNN) were applied in this study. As mentioned

in Sections 1.4.1, 1.4.2, and 1.4.4, these classifiers have some parameters that need to

be tuned.
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Different libraries were used to train these machine learning techniques. Tensor-

Flow [57] and Keras [58] were used to tune the DNN hyperparameters, while Scikit-

learn [59] was used to train the SVM and RF. For tuning the hyperparameters, we

used the hyperband [60] method to find the best values for DNN. For SVM and RF,

their parameters were empirically determined to obtain the best performance using

the grid search function over a range of values and the 5-fold cross-validation step

that is offered by the Scikit-learn library in Python. The hyperparameters that are

used for this work are summarized in Table 3.4.

Table 3.4: Machine learning classifier final parameters.

Classifier Parameters

SVM
Kernel: Gaussian RBF

γ = 10
C = 400

RF

No. estimators = 10
Maximum depth = 15
Maximum features = 3
split criterion: Gini

DNN

No. hidden layers = 3
No. nodes in each layer = 128

Learning rate = 0.001
Optimization technique: NADAM

A Radial Basis Function (RBF) kernel with a penalty parameter of 400 and a

kernel coefficient of 10 was utilized in the SVM classifier. For the Random Forest

classifier, ten decision trees were utilized along with maximum depth and maximum

features to prevent data overfitting. In addition, the Gini index was chosen as a

splitting criterion. Three hidden layers containing 128 nodes were selected for DNN.

The learning rate utilized by the NADAM optimization strategy for DNN is 0.001.

To train the mentioned classifiers, labeled LiDAR points that were acquired from
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the first experiment in Section 3.3.1 were split into two groups with 80% training and

20% validation. The statistics related to first experiment data used for training is

presented in Table. 3.5. We computed voxels from each cloud of LiDAR points, with

a voxel size of 0.2 m.

Table 3.5: Statistics related to training data used for training the AI techniques

No. voxels

Non-dust Dust

training set 202,690 8,594
test set 50,672 2,148

3.3 Data preparation

A new data set with dust particles should be created to study the behavior of

dust and evaluate the designed filter under the various scenarios. We created two

distinct datasets to evaluate the developed algorithms. The first dataset contains a

static scene and the LiDAR sensor is stationary, whereas the second dataset contains

more complex experimental conditions such as a dynamic scene and robot movement.

3.3.1 First dataset

Data collection process

The experimental variables used in this dataset are based on the lesson learned

from the paper [7]. Based on this paper, several parameters, including the distance

between a LiDAR and dust clouds, the distance between a LiDAR and a target, the

length of the dust cloud, the dust density, the dust particle size, and the reflectivity

and the surface area of a target, influence LiDAR measurements exposed to dust. In
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this dataset, the first two parameters (see Figure 3.8) were selected as design variables

to generate a variety of experimental conditions. This is because the length, density,

and size of the dust cloud are difficult to control. The reflectivity and the surface area

were also omitted for the sake of simplicity, as computing these quantities for each

point in the point cloud could complicate the problem. In this study, the distance

between a LiDAR and the location of dust blowing was measured with a measuring

tape, and the target was positioned at a predetermined location outlined in Table 3.6.

As shown in this table, we designed four distinct experimental conditions by varying

these two variables. Under these conditions, data were collected using a VLP-16 [30]

LiDAR sensor and a leaf blower to generate dust particles on a clear day. Figure 3.10a

depicts an experimental scene with a person, trees, and other background objects, as

well as dust scattered by a blower. The LiDAR sensor used in this work is VLP-16

which has the following characteristics mentioned in Fig. 3.9.

Figure 3.8: A diagram of the experimental variables. The design variables in this
dataset are LiDAR-dust distance and LiDAR-target distance.
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Figure 3.9: Technical specifications of VLP-16.

Table 3.6: Experimental conditions

No. Experiment LiDAR-dust cloud distance LiDAR-target distance

1 4 5
2 5 10
3 8 10
4 10 15

(a) (b)

Figure 3.10: Experimental scene of the first data set (a) and corresponding LiDAR
point cloud (b).

3.3.2 Second dataset

The second dataset includes more sophisticated situations. The goal of this dataset

is to assess the robustness of the designed AI-technique-based filters against more

complex scenarios. These scenarios include the following components:

1. Sensor location changes as the mobile robot is moving.
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2. A person is walking around the scene, acting as a moving object.

3. The density of dust varies depending on whether one or two blowers are used.

One blower represents low-density dust, whereas two blowers represent high-

density dust.

To meet the first component in the second dataset, a mobile platform is required. As

a result, we designed our own platform to satisfy the following criteria:

1. The LiDAR sensor should be mounted in such a way that the LiDAR emissions

do not collide with the platform.

2. This platform should have enough space to accommodate the laptop, as all

computation is currently done on the laptop.

3. A depth camera should be installed on this platform to capture the scene situ-

ations that are required for data labeling.

4. This platform must be able to support the weight of the sensors, battery, laptop,

and frame that will be mounted on it.

Mobile platform design

After conducting extensive research on different platforms on the market, the

1/10 Night Crawler RC vehicle depicted in Fig. 3.11 was purchased to meet the

aforementioned requirements. However, how to effectively collocate the LiDAR sensor,

depth camera, and other essential components on an RC car is another designing

element.

To tackle this problem, we created the structure depicted in Fig. 3.12. This struc-

ture has three levels. It is connected to the RC vehicle on the first floor, and the

laptop is also placed on it. The LiDAR sensor is installed on the top floor. The depth
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Figure 3.11: A picture from the RC car used in this work.

camera is positioned on the second level, along with other essential equipment such

as the power source for the LiDAR sensor. The design is then printed on a 3D printer

and assembled on an RC car. The final result is illustrated in Fig. 3.13.

Data collection process

The design variable for second dataset are presented in Table 3.7. The dust density

in this data set varies depending on whether one or two blowers are utilized. In each

experiment, a human walks as a dynamic object around the scene. Other variables

in this experiment included the initial distance from the LiDAR sensor to the dust

cloud and target.

3.3.3 Ground truth labeling

Both training AI algorithms and evaluating proposed filters require factual data.

In particular, ground truth data was labeled using the MATLAB LiDAR Labeler app

based on the data collector’s prior knowledge and experience with the experiment.
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Figure 3.12: Designed structure in Solidworks. This structure is mounted on the RC
car.

Table 3.7: Experimental conditions

No. Experiment
Initial LiDAR-dust

distance
Initial LiDAR-target

distance
No. of blowers

1 4 5 1 or 2
2 6 5 1 or 2
3 7 10 1 or 2
4 11 10 1 or 2

Fig. 3.15 depicts the MATLAB LiDAR Labeler’s environment for the labeling process.

This app’s user interface for labeling allows users to easily create cuboids containing

dust points (particles). This application also permits users to calculate the cuboid’s

center and dimensions (length, width, and height). Using this data and a MATLAB

script, we could determine which LiDAR points fall within the dust cuboids and label

them as either dust or non-dust.
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Figure 3.13: Designed mobile platform used for gathering the data in the second
dataset.

3.4 Integrating into ROS environment

The developed filtering algorithms need to be deployed in real-time for on-site

testing. To do this, all programs and training models were integrated into the ROS

environment. Fig. 3.16 shows the architecture of the developed codes in the ROS envi-

ronments. This architecture consists of three nodes. The first node, Velodyne points,

is responsible for collecting data from the LiDAR and depth camera. The objective

of the second node is to convert the point cloud into voxels and then compute the re-
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Figure 3.14: A picture of the scene when data was gathered for the second dataset.

Figure 3.15: An example of a LiDAR labeler app in the MATLAB environment.

quired features for classification. The name of this node is feature node classVersion.

The final node, named as rostensorflow, aims to predict and visualize the results.

Figure 3.16: Illustration of ROS nodes used in this work and their dependencies.
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3.4.1 Voxel Map

The first step in implementing these algorithms in practice is to get the data from

the LiDAR sensor and convert these data into voxels. For the first part, a Velodyne

Library [61] in ROS was used. This library includes Velodyne driver, Velodyne laser

scan, Velodyne msgs, Velodyne PCL, and Velodyne point cloud as five separate pack-

ages. Each library has its unique functionality. However, two of them are useful for

this work: Velodyne driver and Velodyne pointcloud.

Velodyne driver is responsible for taking the data from the Velodyne and combin-

ing it into one message per revolution. These data are still raw and cannot be used by

the application. These data must be processed by another package called Velodyne

pointcloud in order to obtain the Cartesian information such as the coordinates of

points in Cartesian space. This driver converts raw Velodyne data produced by the

Velodyne driver node into a PointCloud2 message.

C++ programming was selected for creating voxels with the size of 0.2 m and

computing the features based on voxels because it is the most efficient programming

language available. A crop filter was applied to the data to focus only on the region

of interest. In order to use the point cloud data as input features for the proposed

artificial intelligence techniques, it should first be converted to a voxelized format. To

create the voxels, octree data structure from Point Cloud Library (PCL) [62] was used.

Finally, the eigenvalues, eigenvectors, mean intensity, and standard deviation intensity

of the points inside voxels were computed using the Singular Value Decomposition

function in the Eigen library [63], a C++ library that provides some linear algebra

operations.
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3.4.2 Visualization

In this work, it is necessary to visualize various data coming from the sensors.

The first is the raw data collected by LiDAR sensors. The second is a video from a

depth camera recording the scene. Finally, we should display the voxelized cube prior

to and after filtering. RVIZ was used for all of these visualizations because it is quick

and efficient when working with ROS.

There are packages available in RVIZ for visualizing LiDAR and cameras. To

visualize the voxels, however, programming is required. RVIZ’s Marker array cube list,

which was used in this study, is a custom data type optimized for the simultaneous

visualization of multiple cubes. Fig. 3.17 is an illustration of this type of visualization.

The upper left window displays classification results, with green cubes representing

non-dust points and yellow cubes representing dust points. The window on the upper

right is the result of removing the dust voxels. The lower left window is the raw

Figure 3.17: Voxel visualization of data in RVIZ: classified voxels before filtering (a),
and classified voxels after filtering (b), and raw LiDAR point cloud data (c), and
image of the scence captured by a depth camera (d).
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LiDAR point cloud data, while the lower right window is the captured depth camera

image.
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Chapter 4

Discussion and Results

The objective of this chapter is to present the outcomes of applying the suggested

filters. First, the metrics that were used for the evaluation of this work is explained.

Then, the results of non-AI techniques are presented first. After that, the outcomes

of AI-based techniques are presented.

4.1 Evaluation metrics

The data collected in the first and second experiments were labeled to evaluate

the proposed filters. Labeling was accomplished using the LiDAR labeler application

in MATLAB [64] as illustrated in Fig. 4.1, which allows us to draw a cube around

the dust cloud and label it as dust. The points inside the yellow cube are labeled

as dust in the figure. Dust and non-dust point clouds are consequently labeled 1

and 0, respectively. Accuracy, precision, recall, and F1-score, as defined in Equations
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Figure 4.1: Labeling data in MATLAB LiDAR labeler app.

(4.1)-(4.4), are the metrics used to evaluate the performance of the developed filters.

Accuracy =
TP + TN

N
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1− score =
2

1
Recall

+ 1
Precision

(4.4)

where TP represents the number of dust points that are removed correctly, TN rep-

resents the number of non-dust points that are saved correctly, FP represents the

number of non-dust points that are removed as dust falsely, FN represents the num-

ber of dust points that are preserved as non-dust falsely, and N represents the total

number of points inside the point cloud. A high precision score indicates a low FP,

indicating that the filter effectively eliminates dust noise. A high recall score, on the

other hand, indicates a low FN, indicating that the filter can effectively preserve

environmental information.
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4.2 Non-AI techniques

The results of dust removal with the designed filters SOR, ROR, and DROR are

depicted in Fig. 4.2-Fig. 4.4 for one of the scenario equivalent to experiment No.

1 in Table 3.6. In this scenario, dust clouds are located approximately 4 m from

a LiDAR sensor. For LIOR and LIDROR, another scenario was added for testing

their robustness under different conditions. The additional scenario is from Table 3.6

in which dust clouds are located within 8 m (experiment No. 3 in Table 3.6). The

results for LIOR and LIDROR are presented in Fig. 4.5 and Fig. 4.6. In all the figures,

the left figures are before filtering, and the right figures are after filtering.

Furthermore, the evaluation metrics described in Section 4.1 were applied to the

first scenario corresponding to experiment No.3 in Table 3.6. The results are shown in

Table 4.1. The SOR filter has the worst overall performance for removing dust noise,

which accounts for 4 percent of the total point cloud, according to the evaluation

results with the four metrics, as shown in Table 4.1. The SOR filter, on the other

hand, has a higher accuracy value than the ROR filter. This filter is ideal for removing

noises that are isolated from others because the SOR only considers the k -nearest

points when removing outliers (i.e., removing sparse outliers). This filter is ineffective

at removing dust, however, because the dust point cloud consists of a very small

number of isolated points.

On the other hand, the performance of the ROR filter for removing dust is de-

pendent on the selected search radius, as a small search radius results in the loss

of significant environmental information. The ROR outperforms the SOR because it

considers the neighborhood density. By addressing the sparsity issue in the LiDAR

point cloud, the DROR filter produces better results than the ROR and SOR. Due

to the same limitation as the ROR, selecting a smaller search radius than the current
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(a)

(b)

Figure 4.2: Experimental results following the application of the developed SOR de-
dusting filter: Point cloud map prior to filtering in case of experiment No.1 in Table
3.6 (a), and point cloud map after SOR filtering in case of experiment No.1 in Table
3.6 (b).

one cannot improve the performance of de-dusting filter.

Regarding dust removal, the LIOR filter is comparable to the LIDROR filter. Due

to the sparseness of a LiDAR point cloud at long range and considering the point

that the LIOR eliminates nearly all non-dust points selected in the first step beyond a
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(a)

(b)

Figure 4.3: Experimental results following the application of the developed ROR de-
dusting filter: Point cloud map prior to filtering in case of experiment No.1 in Table
3.6 (a), and point cloud map after ROR filtering in case of experiment No.1 in Table
3.6 (b).

certain distance, it has a lower recall score than LIDROR. The LIDROR has the best

performance across all metrics among the five filters, with an exceptional F1-score of

97.55 percent. In addition, it has the highest recall value (95.74 percent) and a preci-
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(a)

(b)

Figure 4.4: Experimental results following the application of the developed DROR
de-dusting filter: Point cloud map prior to filtering in case of experiment No.1 in
Table 3.6 (a), and point cloud map after DROR filtering in case of experiment No.1
in Table 3.6 (b).

sion value near 100 percent, indicating that this filter is not only capable of preserving

environmental data, but also of removing nearly all dust from the point cloud. Al-

though LIDROR has a higher F1 -score than LIOR, it is more expensive to compute.
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Figure 4.5: Results for LIOR de-dust filter: point cloud map before filtering in case
of experiment No.1, first scenario (a), and point cloud map after filtering in case
of experiment No.1, first scenario (b). Point cloud map before filtering in case of
experiment No.3, second scenario (c), and point cloud map after filtering in case of
experiment No.3, second scenario (d).

For the LIOR and LIDROR, the processing time for filtering is approximately 0.383

and 0.412 seconds, respectively.

4.3 AI techniques

The DNN technique was applied to one of the frames from the second dataset

corresponding to No. 1 in Table 4.2, while the RF and SVM techniques were applied

to the same first scenario as non-AI techniques. Fig. 4.7 and 4.8 show the results for

SVM and RF, respectively.

For instance, based on Fig. 4.7 and Fig. 4.8, it can be seen that the SVM incorrectly

classifies some dust points, whereas the RF correctly classifies them. Random forest
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Figure 4.6: Results for LIDROR de-dust filter: point cloud map before filtering in
case of experiment No.1, first scenario (a), and point cloud map after filtering in
case of experiment No.1, first scenario (b). Point cloud map before filtering in case of
experiment No.3, second scenario (c), and point cloud map after filtering in case of
experiment No.3, second scenario (d).
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Table 4.1: Evaluation results for non-AI technique

Filters Evaluation metrics (%)

Accuracy (%) Precision (%) Recall (%) F1 -score (%)

SOR 86.3 0.21 0.33 0.26
ROR 73.11 10.77 54.25 17.97
DROR 91.63 36.78 75.49 49.46

LIOR 89 99.27 89.87 94.24
LIDROR 95.46 99.44 95.74 97.55

Table 4.2: Evaluation results for SVM and RF

Filters Evaluation metrics (%)

Accuracy (%) Precision (%) Recall (%) F1 -score (%)

SVM 96.86 81.48 75.86 78.57
RF 98.43 92.5 86.2 89.2

Table 4.3: Evaluation results for DNN

Filters Evaluation metrics (%)

Accuracy (%) Precision (%) Recall (%) F1 -score (%)

1st dataset 97.2 87.95 79.08 83.28
2nd dataset 92.93 81.15 73.46 77.11

trains a group of decision tree classifiers, which is one of the reasons why it performs

better than SVM. To make predictions, it collects the predictions of all tree nodes

and then predicts the class with the most votes. It turns out that combining the

predictions of multiple predictors can result in a more accurate forecast than using

the best predictor alone. The DNN classifier shows the F1-score less than RF. It needs

to mention that DNN are applied to two different datasets. The second dataset has

a more sophisticated scenario, including a moving sensor and dynamic objects in the

scene, making the prediction much more difficult. Consequently, the DNN performs

better on the first dataset. However, the DNN’s score for second dataset is 77.11, still
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(a)

(b)

Figure 4.7: Experimental results following the application of the developed SVM
classification: Point cloud map prior to filtering in case of experiment No.1 in Table
3.6 (a), and point cloud map after SVM classification in case of experiment No.1 in
Table 3.6 (b).

allowing it to be applied to more complex situations. Fig. 4.9 and Fig. 4.10 illustrate

the DNN results applied to the first and second datasets, respectively.
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(a)

(b)

Figure 4.8: Experimental results following the application of the developed RF clas-
sification: Point cloud map prior to filtering in case of experiment No.1 in Table 3.6
(a), and point cloud map after RF classification in case of experiment No.1 in Table
3.6 (b).
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(a)

(b)

Figure 4.9: Experimental results following the application of the developed DNN
classification: Point cloud map prior to filtering in case of experiment No.1 in Table
3.6 (a), and point cloud map after DNN classification in case of experiment No.1 in
Table 3.6 (b).
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(a)

(b)

Figure 4.10: Experimental results following the application of the developed DNN
classification: Point cloud map prior to classification in case of experiment No.1 in
Table 3.7 (a), point cloud map after DNN classification in case of experiment No.1 in
Table 3.7 (b).
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Chapter 5

Conclusions and future work

5.1 Conclusion

This thesis aims to design noise-filtering algorithms that can eliminate dust from

LiDAR data for mobile industrial machines operating in dusty environments. In or-

der to reach the objective, we developed de-dust filters with two different approaches

including non-AI techniques and AI techniques. Non-AI techniques considered in this

work include Statistical Outlier Removal Filter (SOR), Radius Outlier Removal Filter

(ROR), Dynamic Radius Outlier Removal Filter (DROR), Low-Intensity Outlier Re-

moval Filter (LIOR) and Low-Intensity Dynamic Outlier Removal Filter (LIDROR).

The intensity-based filter, LIOR and LIDROR, were developed based on a compre-

hensive analysis of the properties of dust point clouds measured by a LiDAR sensor.

Among the AI techniques, we also selected some of the algorithms that have shown

good performance for adverse weather conditions and then designed them for the case

of dust. These algorithms include Support Vector Machine (SVM), Random Forest

(RF) and Deep Neural Network (DNN).

To evaluate the developed de-dusting algorithms, two different datasets are col-
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lected. These datasets were then labeled manually using prior knowledge about the

data gathering. Then four different metrics were used with the manually labeled data

sets to validate the performance of the developed algorithms.

For non-AI techniques, evaluation results show that the proposed LIOR and

LIDROR filters outperform the conventional filters, including SOR, ROR, and DROR.

Moreover, the LIDROR provides the most accurate and robust performance for dust

removal with an F1-score of 97.55. For the AI technique, although the RF has the

highest F1 -score among them, the DNN was applied to a more sophisticated dataset

which means that in overall, the DNN and RF have a good performance for dust

filtering. Furthermore, all the developed filter in this work was implemented in ROS

for real-time applications. It is expected from the results that the proposed filters can

be used in applications such as mining and off-road machinery under harsh environ-

mental conditions with dust.

5.2 Contribution

The contribution of this research can be summarized as follows:

� The suggested non-AI methods are, to the best of our knowledge, the first

attempt to construct dust-filtering algorithms utilizing non-AI techniques that

use the intrinsic properties (intensity value) of dust point-cloud data.

� The suggested non-AI solution can tackle the fundamental problems of AI dust-

filtering methods, which need a large number of training data sets, resulting in

high computing costs and training time.

� This paper discusses various design methodologies using SOR, ROR, DROR,

LIOR, LIDROR, and AI techniques such RF, SVM, and DNN. As a result of the
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comparison study, it provides practical advice on which approach is the most

appropriate to remove dust from LiDAR sensor data.

5.3 Future work

1. One of the limitation of current non-AI filter is that they were tested on a limited

dust conditions. So, future work for non-AI techniques can involve testing them

in a greater variety of dynamic scenarios (e.g., varying dust conditions such as

dust density, including moving objects to detect, etc.).

2. For non-AI technique, Convolutional Neural Network (CNN) can be considered

as an alternative for designing a dust filter as a future work.

3. The next step in this project that could be beneficial is to determine whether

combining LiDAR and camera data can effectively solve the de-dusting problem.
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